
Improving Soft Unification with Knowledge Graph Embedding Methods

Xuanming Cui 1 Chionh Wei Peng 2 Adriel Kuek 2 Ser-Nam Lim 1

Abstract
Neural Theorem Provers (NTPs) present a promis-
ing framework for neuro-symbolic reasoning,
combining end-to-end differentiability with the
interpretability of symbolic logic programming.
However, optimizing NTPs remains a significant
challenge due to their complex objective land-
scape and gradient sparcity. On the other hand,
Knowledge Graph Embedding (KGE) methods of-
fer smooth optimization with well-defined learn-
ing objectives but often lack interpretability. In
this work, we propose several strategies to in-
tegrate the strengths of NTPs and KGEs, and
demonstrate substantial improvements in both
accuracy and computational efficiency. Specif-
ically, we show that by leveraging the strength of
structural learning in KGEs, we can greatly im-
prove NTPs’ poorly structured embedding space,
while by substituting NTPs with efficient KGE
operations, we can significantly reduce evaluation
time by over 1000× on large-scale dataset such
as WN18RR with a mild accuracy trade-off.

1. Introduction
Deep Learning (DL) methods have recently achieved
tremendous progress in various tasks such as language mod-
eling (Touvron et al., 2023; Liu et al., 2023) and content
generation (Rombach et al., 2022; Kerbl et al., 2023). How-
ever, when compared with symbolic systems, they are still
limited by the long-lasting problems of the lack of interpreta-
tion, out-of-domain generalizability and reasoning abilities.

To address the above challenges, the concept of Neuro-
Symbolic AI (NeSy) has been proposed to integrate DL and
symbolic AI into one end-to-end differentiable system. A
popular approach for such integration is to embed discrete
symbols into continuous vector space to enable end-to-end

1Department of Computer Science, University of Central
Florida 2DSO National Laboratories. Correspondence to: Xu-
anming Cui <xuanming.cui@ucf.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

differentiability (Rocktäschel & Riedel, 2017; Minervini
et al., 2019; Badreddine et al., 2022). Neural Theorem
Prover (Rocktäschel & Riedel, 2017) (NTP) is a represen-
tative of such approach. It introduces the concept of soft
unification during backward chaining process, where the uni-
fication operation is on the learnt embedding space instead
of between discrete symbols. Subsequent works Greedy
Neural Theorem Prover (GNTP) (Minervini et al., 2019)
and Conditional Theorem Prover (CTP) (Minervini et al.,
2020) implement top-k rule retrieval and rule reformulation
to improve NTP’s scalability and performance.

Although there are numerous NeSy frameworks (Co-
hen, 2016; Das et al., 2018; Minervini et al., 2017) and
knowledge-base reasoning methods, we are particularly in-
terested in NTPs due to their straightforward reasoning
process based on similarity. This simplicity brings bet-
ter scaling potential compared to complex tensor opera-
tions employed in other NeSy frameworks and GNN-based
approaches. Moreover, such similarity-based design also
makes NTPs well-suited for leveraging pre-trained embed-
dings obtained from the recent advances in foundational
models, thereby enabling multi-modal reasoning and po-
tential zero-shot capabilities. This is crucial, as most ex-
isting NeSy (Maene & De Raedt, 2023; Yang et al., 2017;
Minervini et al., 2017) and Knowledge-Graph-related meth-
ods (Trouillon et al., 2016; Han et al., 2023; Zhu et al., 2021)
struggles to generalize to unseen entities, significantly lag-
ging behind the recent foundational and language models.

Although NTP has been shown to be effective on various
datasets, it is known to be hard to optimize (Rocktäschel &
Riedel, 2017; Minervini et al., 2019; Maene & Raedt, 2023;
de Jong & Sha, 2019). Specifically, as NTPs perform top-k
retrievals for unification, only a fraction of retrieved embed-
ding parameters will receive gradient updates. The model
optimization is thus heavily dependent on the initialization,
and can get stuck in local minima (de Jong & Sha, 2019).
DeepSoftLog (Maene & Raedt, 2023) addresses the above
limitation by using differentiable probabilistic semiring in-
stead of fuzzy semiring, along with other proposed proper-
ties to smooth out the back-propagation process. However,
as it requires additional modules for knowledge compila-
tion (Darwiche, 2011) and requires all possible proofs to be
considered during training (as opposed to k-best approxima-
tion), it is intrinsically hard to scale to larger datasets.

1

Improving Soft Unification with Knowledge Graph Embedding Methods

Instead of trying to improve NTPs from the sparse gradi-
ent perspective which may inevitably face performance-
efficiency trade-off, in this paper we take a different an-
gle and tackle the problem from the embedding perspec-
tive. We find the NTPs’ embedding space is extremely
poorly-structured, due to the sparse unification during train-
ing (detailed discussion in Section 7). On the other hand,
Knowledge Graph Embedding (KGE)s (Bordes et al., 2013;
Trouillon et al., 2016) are strong structure learners with
well-defined objectives and smooth optimization process.
However, as KGEs are purely sub-symbolic algorithms, they
lack the interpretability as compared to NTPs.

Motivated by the complementary properties of NTPs and
KGEs, we conduct the first systematic study for integrating
KGEs into the NTP framework. The rest of the paper is
arranged as follow: in Section 3 we provide brief introduc-
tion for NTPs and KGEs, and discuss the deficit of NTPs
from embedding perspective 7; In Section 8 we explain four
strategies for the integration, and conduct detailed experi-
ments in Section 9. Finally, we provide ablation studies to
examine important components during the integration. We
wish our work can serve as a first step to future studies on
such integration and to improve upon existing NTPs.

Contribution:

1. We provide the first systematic study for the integration
of KGEs into NTPs and propose four integration strate-
gies, improving both performance and efficiency. Note
that using KGE as auxiliary was originally proposed
in (Rocktäschel & Riedel, 2017). However, it was only
briefly mentioned without any further exploration, and
is not used in any subsequent NTPs (Minervini et al.,
2019; 2020; Maene & De Raedt, 2023).

2. We show that the integration noticeably improve the
baseline NTP by a large margin and achieve SOTA
results on multiple datasets. In particular, we analyze
the issue of NTPs from their learned embedding space
perspective and show that it can be benefited from the
integration of KGEs. We also show that by leveraging
the properties of KGEs we could drastically improve
the inference and evaluation efficiency of NTPs.

3. We provide detailed ablations to examine the key fac-
tors in the integration. Interestingly, we find NTPs
can achieve superior results with pure KGE objectives
under several datasets, suggesting the synergy between
the two distinct methods.

2. Related Work
Differentiable Logic Programming algorithms can be
roughly divided into two categories. (1) Disentangled per-
ception+reasoning (Manhaeve et al., 2018; Huang et al.,

2021; Yang et al., 2023). This line of works train a neural
network to output a probability distribution over symbols,
which is then consumed by a differentiable logic solver.
For example, DeepProbLog (Manhaeve et al., 2018) guides
a neural network with probabilistic circuits constructed by
Sentential Decision Diagram (Darwiche, 2011) (SDD). Scal-
lop (Huang et al., 2021) scales up DeepProbLog by only
considering top-k possible worlds. NeurASP (Yang et al.,
2023) adopts the same strategy, but replace SDD with a An-
swer Set Programming solver. Under this regime, the neural
component is completely separated from the reasoning mod-
ule. (2)Soft logic programming (Cohen, 2016; Badreddine
et al., 2022; Yang et al., 2017; Rocktäschel & Riedel, 2017).
This line of works are a continuous relaxation on top of
logic programming, by learning a mapping from symbols
and logic operations into latent embeddings and differen-
tiable tensor operations. Logic Tensor Network (Badreddine
et al., 2022) extends First-Order Logic (FOL) with fuzzy
semantics. NEURALLP (Yang et al., 2017) is a rule-based
algorithm that extends TensorLog (Cohen, 2016) by learn-
ing to soft select and compose rules. Neural Theorem Prover
(Rocktäschel & Riedel, 2017) extends backward chaining
algorithm with soft unification. Greedy Neural Theorem
Prover (Minervini et al., 2019) and Conditional Theorem
Prover (Minervini et al., 2020) improve the scalability of
NTP by top-k retrieval and soft rule reformulation.

Knowledge Graph Embedding (KGE) are SOTA meth-
ods for link prediction tasks over large-scale KGs.
TRANSE (Bordes et al., 2013) and its extensions (Wang
et al., 2014; Xiao et al., 2015) are translation-based
KGEs which minimize distance between subject and ob-
ject, translated by the predicate. On the other hand,
RESCAL (Nickel et al., 2011), COMPLEX (Trouillon et al.,
2016), TUCKER (Balazevic et al., 2019) etc. use multi-
linear maps to combine subject, relation and object for score
calculation. Besides traditional KGEs, recent advances such
as GeKCs (Loconte et al., 2023) reformulate KGEs with
valid probabilistic interpretation, LERP (Han et al., 2023)
aggregates sub-graph information as entity representation.

Path-based KG Algorithms explicitly learn the multi-
hop paths over KGs. They can be applied directly on top
of KGEs by handling multi-hop relation paths as composi-
tions over embedding space such as in (Lin et al., 2015),
or can be formulated as path-searching algorithms, opti-
mized by Reinforcement Learning objectives such as in
(Das et al., 2018; Zhu et al., 2023; Lin et al., 2018). Be-
sides, GNN-based approaches (Schlichtkrull et al., 2017;
Zhu et al., 2021) have also shown strong performance on
link prediction tasks. For example, RGCN (Schlichtkrull
et al., 2017) applies GNN to knowledge-graph learning task.
NBFNet (Zhu et al., 2021) generalizes the Bellman-Ford
algorithm with neural operators under the GNN framework
to solve path formulation.

2

Improving Soft Unification with Knowledge Graph Embedding Methods

topk topk topk

Figure 1. Illustration of CTP algorithm with a transitive rule template and depth = 1. Given a goal (s,R, o), it first transforms the goal
predicate to a list of predicates forming the proof path. Then it takes the known subject s and predicate Ri to predict the latent object zi
with top-k retrieval; it then uses the predicted zi as the next subject and predict zi+1 to step through the proof path.

3. Background

4. Neural Theorem Prover
In this section we define the syntax and briefly introduce the
SLD resolution and NTP algorithm. We refer the reader to
(Rocktäschel & Riedel, 2017) for an in-depth explanation.

Syntax. A term t can be either a constant c or a variable
X1. An atom is defined as a combination of a predicate
symbol and a list of terms. Rules are in the form of H :– B,
where the head H is an atom, and the body B is a list
of atoms connected by conjunctions. A rule with no free
variables is called a ground rule, and a ground rule with
an empty body is called a fact. A substitution, denoted as
ψ = {X1/t1, . . . ,XN/tN} , assigns variables Xi to terms
ti, and applying a substitution to an atom replaces each
occurrence of Xi with the corresponding term ti. In this
work, we only consider atoms with binary predicates in the
form of (s, r, o), where s, r and o denote subject, predicate
(relation) and object respectively.

Backward Chaining. Given the goal, backward chaining
works backward to find supporting facts and rules from
the Knowledge Base (KB). It can be seen as an iterative
process of applying AND/OR: the OR operation looks for all
rules with matching head to perform unification. The AND
module is subsequently called to iteratively prove all atoms
in the unified rule’s body, where the OR module is again
called recursively.

NTP and Soft Unification. NTPs provide a continuous
relaxation of backward chaining by introducing soft unifi-
cation. It calculates a unification score γ = ϕNTP(ci, cj)
over the embeddings of two symbols, where ϕNTP refers to
the predefined similarity function, ci and cj denotes two
constant terms to be unified. In case of NTP, a Gaussian
kernel is adopted for ϕNTP. The unification score γ at each
proof state are then aggregated following the min/max fuzzy
semiring, also known as the Gödel t-norm. Specifically, the
AND module performs min aggregation as all sub-goals have
to be proved for the given rule, and OR perform max aggre-
gation, since we only need one proof to be true to prove the
goal. During training, given a KG G, each fact (s, r, o) ∈ G
is corrupted to obtain negative samples (s′, r, o), (s, r, o′)

1We focus on function-free First Order Logic, and therefore
does not consider structured terms.

and (s′, r, o′) ̸∈ G. The objective is then defined as the
negative log likelihood of the aggregated unification score:

LNTPGθ =
∑

((s,r,o),y) ∈ G

−y log(NTPGθ ((s, r, o))−

(1− y) log(1− NTPGθ ((s, r, o)) (1)

where NTPGθ denotes NTP with KG G, parameterized by θ.

5. KGs and Embedding Methods
A Knowledge Graph (KG) G is a directed multi-graph, repre-
sented as a collection of triplets (facts) (s, r, o) ⊆ E×R×E ,
where E and R denote the set of entities and relations in
G. A KGE model defines a function that maps triplets to
scores ϕKGE : E×R×E → R. This score function ϕKGE can
be translation-based as in TRANSE (Bordes et al., 2013):
ϕTRANSE(s, r,o) = −||s+r−o||, or similarity-based using
a multi-linear function (Trouillon et al., 2016; Yang et al.,
2015). For instance, COMPLEX (Trouillon et al., 2016) de-
fines the score function as ϕCOMPLEX = Re(⟨s, r,o⟩), where
⟨·, ·, ·⟩ denotes the tri-linear product, Re denotes the real
part of the complex number, and · denotes the complex
conjugate. KGEs are traditionally interpreted as energy-
based models (EBMs), where the score is interpreted as the
negative energy of triplets, and are trained with contrastive
objectives and negative log likelihood loss, similar to LNTP.
Besides treating KGEs as EBMs, existing works (Joulin
et al., 2017; Lacroix et al., 2018; Ruffinelli et al., 2020) have
shown that KGEs can be effectively trained using cross-
entropy loss to predict missing object over E , given subjects
and predicates, i.e. by maximizing:

log p(o | s, r) = ϕKGE(s, r, o)− log
∑
o′∈E

expϕKGE(s, r, o
′)

(2)

6. NTPs as Memory-Augmented Path
Algorithm

Inspired by Conditional Theorem Prover (CTP) (Min-
ervini et al., 2020) we can implement NTP as a memory-
augmented path-based algorithm. Instead of searching for
all rules in the KB, CTP extends NTP by learning a goal
transformation module that directly transforms each goal

3

Improving Soft Unification with Knowledge Graph Embedding Methods

predicate to a list of predicates following pre-set rule tem-
plates (e.g. transitivity), thereby forming the proof paths.
Given a (sub)goal, the model steps through each atom
formed by the transformed goal predicate until it reaches
the end of the path. The above procedure is instantiated
recursively for each atom (sub-goal) along the path until it
reaches the depth limit. This formulation gives us more flex-
ibility for integrating KGE methods comparing to original
NTP. In Figure 1 we show a simple example of CTP with
depth = 1 and one transitive rule template of length n. At
each step, the process can be viewed as sampling k plausible
objects given the subject and predicate o ∼ P(s, r), which
shares similar formulation as in formula 2.

7. Hardness in Training NTPs
Previous works (Rocktäschel & Riedel, 2017; Maene &
De Raedt, 2023; de Jong & Sha, 2019) have primarily fo-
cused on analyzing and addressing the limitations of NTPs
from the perspective of unsmooth optimization, particularly
in relation to the sparse gradient problem. However, at-
tempts to mitigate this issue often introduce additional com-
putational overhead. For example, DeepSoftLog (Maene &
De Raedt, 2023) tackles the sparse gradient problem in NTP
training by employing differentiable probabilistic semantics,
combined with a knowledge compilation step for probabilis-
tic inference, and evaluates the entire proof tree (as opposed
to using a top-k approximation) to ensure accurate gradient
calculation. While this approach yields improved accuracy
and provides a more interpretable probabilistic framework,
it struggles to scale beyond small KBs.

0.00 0.25 0.50 0.75
0

1

2

3

4

1e7

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2
1e7

FB122

0.00 0.05 0.10 0.15
0

1

2

3

4

5

6

7

1e8

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e8

WN18RR NTP
NTP+KGE

Figure 2. Distribution of pairwise similarity from CTP (blue) and
CTP combined with KGE (orange).

In contrast to previous works, we try to view the hardness
in NTP training from the embedding perspective. Unlike
KGEs, which compute triplet scores based on interactions
between entities and predicates, NTPs derive embeddings
solely from pairwise unification scores. This results in em-
beddings in NTPs being less structured. Furthermore, while
KGEs typically sample a large number of negative exam-
ples (e.g., 256) to learn the distribution of entities given a
subject/object and relation: (o ∼ P(s, r)) or (s ∼ P(r, o)),
NTPs generally sample only a single negative example per
entity and retrieve only the top-k facts from the KB for uni-
fication, where k ≪ |E|. As a result, semantically similar
embeddings in NTPs may end up in vastly different regions
of the embedding space if they are never unified or do not

receive gradient updates due to the fuzzy min/max oper-
ations. In Figure 2 we show the distribution of pairwise
unification scores between entities, and we could observe
the pairwise score distribution for CTP (blue) is mostly close
to 0, suggesting only a handful of embedded symbols have
interactions with each other. This lack of interaction can
lead to an unstructured and suboptimal embedding space,
negatively affecting the performance of NTPs.

Therefore, given the above challenge in training NTPs, in
this work we explore different strategies for leveraging the
strengths of KGEs to regularize and enhance the embedding
space of NTPs, given the proven effectiveness of KGEs in
learning structured representations.

8. Method
In this section we discuss the four variants we considered
for integrating KGEs with NTPs. In Table 1 we summarize
how each variant are implemented on top of CTP.

KGE as an auxiliary loss model The most straightfor-
ward strategy for leveraging KGEs to support NTP training
is to use KGE as an auxiliary model for loss calculation.
The overall loss for training NTPs then becomes:

L = (1− λ)
∑

((s,r,o),y) ∈ G

[
− y log(KGEθ((s, r, o))

− (1− y) log(1− KGEθ((s, r, o))
]
+ λLNTPGθ

where λ is a hyper-parameter controlling the weight for the
mixture. We denote this variant as CTP1. Note that using
KGE as an auxiliary loss term was briefly mentioned in the
original NTP paper (Rocktäschel & Riedel, 2017). However,
it was not further examined nor was it used in the subsequent
works in GNTP and CTP.

KGE as an auxiliary score function. Similar to CTP1, we
again consider utilizing KGE score function. But rather than
appending it as a loss term at the very end, here we inject
KGE score function ϕKGE into NTPs as an auxiliary score
ϕmixed = λϕNTP + (1 − λ)ϕKGE. In this way, we could
provide additional regularization at each proof step, and
force the model to learn interactions between entities and
predicates along the proof path. We refer to this variant as
CTP2. Despite the simplicity, we find this variant to bring
the most consistent improvement across most experiments.

KGE for stepping through. For translation-based KGEs
such as TRANSE and ROTATE, the tail object o can be effi-
ciently calculated given (s, r). To leverage this translational
property, we consider replacing the topk retrieval with a
translation-based operation to improve inference efficiency.
Specifically, given a (s, r) pair, we use translational KGE
to obtain corresponding object and then retrieve the closest

4

Improving Soft Unification with Knowledge Graph Embedding Methods

Modules CTP VARIANTS

step i = topkG(s, r), k); z = G[i][−1] CTP3: z = trans(s, r); i = topkG((s, r, z), k)

scorelatent γ = ϕNTP((s, r, z),G[i]) CTP2: γ = λϕNTP((s, r, z),G[i]) + (1− λ)ϕKGE(s, r, z)

scorefinal i = topkG((z, r, o), k); γ = ϕNTP((z, r, o),G[i]) CTP4: γ = ϕKGE(z, r, o)

loss L = LNTP CTP1: L = λLNTP + (1− λ)LKGE

Table 1. Summary of the proposed four variants for integration. We consider four modules in CTP to inject KGEs: 1) step: Given (s, r)
find o; 2) scorelatent: unification score along each proof path; 3) scorefinal: unification score calculation at the last proof step, and 4) loss:
the final loss calculation. Column CTP/VARIANT shows the original/modified algorithm by integrating KGEs with the corresponding
modules. The variant only differs from the original CTP for the corresponding module (for instance, CTP1 includes the KGE objective
in the final loss function. This is the only difference between baseline CTP and CTP1, and all other variants do not include the KGE
objective in their loss function). G denotes the KG, and G[i] refers to the i-th facts in the KG. trans denotes the translation function of
KGEs, z refers to the tail entity predicted by (s, r), and topkG denotes the top-k retrieval from G that returns the top-k indices i.

k facts for score calculation. During inference we skip the
retrieval and score calculation. This variant, referred to as
CTP3, is designed to improve the efficiency of NTPs. In
this case, for each proof path, CTP3 is very similar to the
path-based KGE method PTRANSE (Lin et al., 2015). They
differ in (1) PTRANSE follows KGE training strategy, and
utilize additional prior for handling spurious relations, while
(2) CTP3 calculates unification scores along the proof path,
and uses NTP’s retrieval-based score calculation.

The replacement of top-k with the 1-1 mapping by transla-
tional KGE methods results in two drawbacks: 1. Limited
expressiveness due to the top-1 retrieval. 2. Susceptible to
spurious proof paths where subject and object are connected
but logically irrelevant (Lin et al., 2015). For example, con-
sider the path (s, born in, o1) → (o1, located in, o2) →
(o2, notable people, o) where s and o are connected but ir-
relevant. These issues become more obvious when the size
and complexity of the dataset increase. Therefore, we fur-
ther consider two approaches to mitigate these limitations.
1. Learnable entity expansion module. we add an additional
learnable neural module W ∈ R(d,k) which learns a map-
ping from the resulting entity embedding s obtained from
the translational KGE function to neighboring entities {S}k.
2. Filtering spurious relation paths. We consider using the
Path Constraint Resource Allocation (PCRA) for calculating
the path reliability by measuring how much resource flows
from the head to the tail entity following a path, as inspired
by PTransE (Lin et al., 2015).

KGE for final score calculation. We consider applying
KGE at the final step at each proof path. One drawback
on NTPs’ efficiency is their evaluation speed. During eval-
uation of a link prediction task, in order to rank all the
entities in the KG, the model retrieves top-k facts for each
combination of the missing entity and the known predicate-
object/subject pair, followed by the unification score calcu-
lation between two tensors of shape (|E|, k, 3d) where k is
the retrieved k facts, and d is the embedding dimension. For
example, WN18RR dataset contains 40,943 entities. With

k = 10 we need to compute the pairwise distance between
two matrices of shape (40, 943 × 10, 3d). This is done
at the end of every proof path, leading to extremely slow
evaluation compared to KGEs. Therefore, we try to replace
the last proof step with KGEs, while keeping the previous
steps with NTP. In this way, we wish to leverage the multi-
hop reasoning ability of NTPs while using KGEs for local
ranking at the final step. We refer to this variant as CTP4.

While it is trivial to combine any variants together, we do not
observe noticeable performance gain by doing so. Therefore
we leave them separated for clarity.

9. Experiments

10. Experimental Setups
Dataset We conduct experiments on popular link predic-
tion datasets including Countries, Nations, UMLS and Kin-
ship (Kemp et al., 2006). Following GNTP (Minervini
et al., 2019) we experiment on FB122 (Guo et al., 2016a),
WN18RR (Dettmers et al., 2018), and additionally CoDEx-
S (Safavi & Koutra, 2020). FB122 consists of two test splits:
Test-I and Test-II, where Test-II contains the set of triplets
that can be inferred via logic rules, and Test-I denotes all
other triplets. We follow the same evaluation protocol as in
GNTP and CTP, and report Mean Reciprocal Rank (MRR)
and HITS@m under the filtered setting. Besides, we also test
systematic generalization capabilities on CLUTRR (Sinha
et al., 2019) dataset, by testing on unseen relations between
entities that requires more reasoning steps than the model is
trained on, as done in CTP (Minervini et al., 2020).

Baseline. We compare our work with NTP-based meth-
ods: NTP (Rocktäschel & Riedel, 2017), GNTP (Min-
ervini et al., 2019) and CTP (Minervini et al., 2020),
KGE-based COMPLEX (Trouillon et al., 2016) and DIST-
MULT (Yang et al., 2015), rule miner such as NEU-
RALLP (Yang et al., 2017), MINERVA (Das et al., 2018),
DIFFLOGIC (SHENGYUAN et al., 2023),LERP (Han et al.,
2023), and GNN NBFNET (Zhu et al., 2021).

5

Improving Soft Unification with Knowledge Graph Embedding Methods

Datasets Metrics CTP1 CTP2 CTP3 CTP4 NTP GNTP CTP NEURALLP MINERVA NBFNET DRUM LERP

Countries
S1

AUC-PR
99.3 100 98.1 97.8 90.8 100 100 100 100 100 - -

S2 91.5 94.2 90.3 89.7 87.4 93.4 91.8 75.1 72.8 93.85 - -
S3 93.2 96.5 92.8 90.4 56.7 91.3 94.8 92.2 90.0 95.74 - -

Kinship

MRR 0.75 0.71 0.5 0.59 0.35 0.72 0.71 0.62 0.72 0.80 0.53 0.64
HITS@1 61.6 57.5 49.1 48.9 24.0 58.6 56.5 47.5 60.5 63.2 36.7 50.0
HITS@3 85.0 82.4 71.4 67.9 37.0 81.5 82.6 70.7 81.2 89.1 62.8 73.5
HITS@10 96.0 95.6 92.8 90.1 57.0 95.8 95.3 91.2 92.4 96.6 88.5 93.1

Nations

MRR 0.63 0.79 0.53 0.55 0.61 0.66 0.71 - - 0.75 - -
HITS@1 44.4 68.9 31.84 34.2 45.0 49.3 56.2 - - 63.3 - -
HITS@3 77.6 85.6 51.92 52.8 73.0 78.1 81.3 - - 81.5 - -
HITS@10 98.9 99.7 83.06 79.4 87.0 98.5 99.5 - - 95.1 - -

UMLS

MRR 0.82 0.85 0.65 0.70 0.80 0.84 0.81 0.78 0.82 0.82 0.69 0.76
HITS@1 69.9 75.2 54.6 62.7 70.0 73.2 69.4 64.3 72.8 72.1 54.6 64.6
HITS@3 93.2 94.6 77.4 84.4 88.0 94.1 89.8 86.9 90.0 89.6 80.8 85.5
HITS@10 98.7 98.2 92.6 92.2 95.0 98.6 95.3 96.2 96.8 97.1 93.5 94.2

Table 2. Link prediction results on Countries, Kinship, Nations and UMLS datasets. HITS@m are reported as %.

TransE RotatE ComplEx DistMult NBFNET CTP2

9.3 40 0.32 0.24 113 8.2

Table 3. Inference speed (millisecond) comparison on WN18RR.

Implementation. We conduct our experiments primarily on
CTP (Minervini et al., 2020). Since the original CTP did
not evaluate on large-scale dataset FB122 and WN18RR,
we perform hyper parameter tuning to obtain the CTP base-
line. By default, we use COMPLEX for CTP1, CTP3 and
CTP4, and ROTATE for CTP2 as we observe best overall
performance under these settings. During training, we ob-
tain negative samples by corrupting subject, entity, and both,
each with n times, resulting in 3n negative samples gener-
ated for each triplet. These negative samples will receive
negative label y = 0, and the model is trained according
to the NTP objective (Eq. 1). For CTP1 and CTP2 we use
λ = 0.5 as the default weight for combining KGE and NTP.

11. Results
Link prediction. In Table 2, 4 and 5 we show link pre-
diction results on the evaluated datasets. In most cases, we
can observe CTP2 performs the best among our proposed
four variants, and outperforms other NTPs by a large mar-
gin, achieving SOTA results on Countries, Nations, UMLS,
FB122 and CoDEx-S datasets. While NBFNET achieves
best performance on WN18RR, it comes at the cost of ef-
ficiency (Table 3), with the longest inference time, 13×
more than CTP2. On the other hand, while CTP2 is slower
than some KGE-based models, we believe it is still a good
compromise between speed and interpretability.

We conjecture the advantage of CTP2 over CTP1 is the
injection of KGEs into NTP’s chaining process, effectively
regularizing each latent subject along the proof path. There-

fore, it can be more effective at regularizing the embedding
space compared to appending the loss outside the proving
process as in CTP1. Moreover, as KGEs are usually trained
with large numbers of negatives, directly adding KGE to
the loss term of NTP may not be ideal. This can be confirm
where CTP1 performs reasonably well on small datasets
such as Kinship (↑ 0.04 MRR compared to CTP2, but sig-
nificantly lag behind on FB122 (↓ 0.12 MRR).

Systematic Generalization. In Table 6 we show results
on CLUTRR (Sinha et al., 2019) datasets, where we train
the model on graphs with 2-3 edges and test on graphs with
4-10 edges. We can observe CTP2 has smallest performance
degradation as the number of hops increases, with a 0.04
decrease from 4 hops to 10 hops. On the contrary, NBFNet
suffers from increasing edge length with an accuracy de-
crease of over 0.3. In particular, CTP2 shows noticeably
stronger performance compared to CTP1 which has little
improvements against baseline CTP.

CTP CTP3 CTP4

10 4

10 3

Se
co

nd
s (

Lo
g-

sc
al

e)

Inference Time per Sample
FB122
WN18RR

CTP CTP3 CTP4

10 3

10 2

10 1

100

Evaluation Time per Sample
FB122
WN18RR

Figure 3. Second/sample in log-scale on FB122 and WN18RR
dataset on a NVIDIA V100 GPU with batch size = 512.

Boosting NTP speed with KGE Despite having lower ac-
curacy, CTP3 and CTP4 can significantly improve training
and evaluation efficiency of NTP, especially on large-scale
dataset. In Figure 3, we show per-sample inference and eval-
uation time under CTP, CTP3 and CTP4. For inference,
CTP3 requires 2× and 7× less time compared to CTP on

6

Improving Soft Unification with Knowledge Graph Embedding Methods

Test-I Test-II Test-ALL
H@3 H@5 H@10 MRR H@3 H@5 H@10 MRR H@3 H@5 H@10 MRR

W
ith

R
ul

es

KALEP 38.4 44.7 52.2 0.32 79.7 84.1 89.6 0.68 61.2 66.4 72.8 0.52
KALEJ 36.3 40.30 44.90 0.33 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.67
ASRD 37.3 41.0 45.9 0.33 99.2 99.30 99.4 0.984 71.7 73.6 75.7 0.67
KBLRN - - - - - - - - 74.0 77.0 79.7 0.70

W
ith

ou
t

R
ul

es

TRANSE 36.0 41.5 48.1 0.29 77.5 82.8 88.4 0.63 58.9 64.20 70.2 0.48
DISTMULT 36.0 40.3 45.3 0.31 92.3 93.8 94.7 0.874 67.4 70.2 72.9 0.63
COMPLEX 37.0 41.3 46.2 0.33 91.4 91.9 92.4 0.887 67.3 69.5 0.72 0.64
GNTP 28.6 31.2 35.8 0.28 94.2 95.8 96.0 0.92 61.5 63.2 64.5 0.61
CTP 31.2 34.7 39.51 0.30 96.1 97.0 97.9 0.94 64.5 65.1 68.3 0.63
NBFNet - - - - - - - - 57.2 59.6 70.7 0.51

CTP1 30.6 33.1 37.8 0.29 95.0 95.9 96.6 0.89 60.4 61.3 62.9 0.56
CTP2 34.4 38.2 43.1 0.32 99.1 99.2 99.4 0.98 69.9 71.32 73.0 0.68
CTP3 25.3 30.2 34.2 0.25 93.7 94.5 94.8 0.83 59.4 60.8 62.2 0.53
CTP4 30.2 32.7 37.1 0.28 94.5 95.4 95.9 0.85 61.1 64.6 67.4 0.61

Table 4. Link prediction result on FB122 dataset. Following GNTP (Minervini et al., 2019) we report accuracy on Test-I, Test-II and
Test-ALL. H@m are reported as %. KALEP and KALEJ denote KALE-Pre and KALE-Joint from (Guo et al., 2016b). ASRD denotes
ASR-DistMult from (Minervini et al., 2017). All the aforementioned models have access to the ground-truth logic rules.

Metrics CTP1 CTP2 CTP3 CTP4 GNTP CTP COMPLEX DISTMULT NEURALLP MINER. DRUM NBFNET DIFFLOGIC

W
N

18
R

R MRR 0.39 0.51 0.37 0.33 0.38 0.44 0.41 0.46 0.46 0.45 0.43 0.55 0.50
H@1 36.4 46.2 35.2 31.8 37.1 38.6 38.2 41.0 37.6 41.3 - 49.7 -
H@3 37.9 56.6 36.6 33.5 38.5 41.2 43.3 44.1 46.8 45.6 - 57.3 -
H@10 41.5 63.5 39.4 37.7 39.5 50.7 48.0 65.7 65.7 51.3 56.5 66.6 58.7

C
oD

E
xS

MRR 0.30 0.48 0.35 0.27 0.29 0.32 0.40 0.44 - - 0.29 0.48 0.46
H@1 22.5 39.5 33.4 20.5 21.4 30.2 29.3 37.2 - - - 41.9 -
H@3 35.7 54.6 50.2 34.1 36.6 49.5 44.9 50.4 - - - 54.3 -
H@10 50.1 66.3 58.9 49.8 52.2 56.3 62.3 64.6 - - 39.5 65.5 65.5

Table 5. Link prediction results on WN18RR and CoDEx-S. H@m is reported as %.

of Hops CTP1 CTP2 CTPL LSTM MHA NBFNET

4 0.98 0.99 0.98 0.98 0.81 0.98
5 0.98 0.99 0.98 0.95 0.76 0.96
6 0.97 0.99 0.97 0.88 0.74 0.85
7 0.97 0.98 0.96 0.87 0.70 0.79
8 0.94 0.98 0.94 0.81 0.69 0.78
9 0.90 0.96 0.89 0.75 0.64 0.73
10 0.90 0.95 0.89 0.75 0.67 0.67

Table 6. Systematic generalization test on Clutrr, where we train
on graphs with 2-3 edges and test on graphs containing 4-10 edges.

FB122 and WN18RR dataset, while CTP4 reduces even
further by 28× and 92×. For evaluation, CTP3 requires 2×
less time than CTP on both datasets, while CTP4 reduces
942× and 1452× on FB122 and WN18RR. While perfor-
mance of CTP4 degrade noticeably, we show in Table 12
(Append.) we can substantially improve its accuracy by
incorporating more negative samples during training.

12. Ablation Studies
Regularized Embedding space In Figure 4 we show the
t-SNE visualization of the embedding space of original CTP
and CTP2-COMPLEX. For both methods, we could observe
a few points being close to each other, suggesting the model
are able to learn that they are unifiable. However, we can

Kinship Nations UMLS

Figure 4. t-SNE visualization of embeddings for CTP (blue) and
CTP2 (orange) with perplexity = 5.

clearly observe CTP2-COMPLEX also exhibits better global
structures, whereas for CTP there only exists extremely
local (pairwise) pattern. On the other hand, as shown in
Figure 2, while baseline CTP (left, blue) exhibits extremely
sparse connections between entities with unification score
all gathered around 0, CTP combined with KGE objec-
tives (right, orange) shows a smoother score distribution,
suggesting a much denser connectivity.

In Table 8 we show entity-pairs with their similarity score.
At the top of the table we can observe CTP2’s top-10 similar
entity-pairs have much higher similarity score, and are more
semantically correct as compared to CTP, whose similarity
score decreases drastically. At the bottom of Table 8 we
show three entity-pairs which are not successfully unified
during training of CTP2. We can observe even though they
are never unified directly, their similarity scores still show
their relevancy as compared to CTP. For instance, the entity
pair (Singer-songwriter, Lyricist) has a score of 0.22 for

7

Improving Soft Unification with Knowledge Graph Embedding Methods

KGE UMLS Kinship FB122 Test-ALL
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@3 H@5 H@10

CTP - 0.80 69.4 89.8 95.3 0.70 56.56 82.64 0.95 0.63 64.5 65.1 68.3

CTP1

DistMult 0.78 67.4 87.4 93.2 0.71 58.5 81.2 0.94 0.54 59.31 62.23 63.14
COMPLEX 0.81 68.9 93.1 98.7 0.74 61.6 85.0 95.94 0.56 60.4 61.3 62.9
TRANSE 0.74 61.1 83.9 96.0 0.43 32.3 47.5 64.15 0.51 57.42 60.04 62.43
ROTATE 0.67 53.1 77.5 92.6 0.61 46.6 68.9 91.52 0.50 57.34 61.47 62.85

CTP2

DistMult 0.84 74.5 93.1 98.3 0.71 59.0 79.9 93.5 0.68 69.35 72.1 73.4
COMPLEX 0.85 75.2 94.6 98.2 0.72 57.0 82.3 95.3 0.68 69.9 71.3 73.0
TRANSE 0.83 72.1 93.3 97.0 0.71 58.7 80.6 93.9 0.64 64.1 67.4 68.2
ROTATE 0.82 70.6 93.4 98.1 0.71 59.2 80.6 93.8 0.64 65.1 68.2 69.8

CTP3
TransE 0.48 36.6 57.4 78.2 0.49 40.3 68.12 90.54 0.31 28.8 35.7 44.4

ROTATE 0.65 54.6 77.4 92.5 0.54 45.2 71.47 92.84 0.53 59.4 60.8 62.2

CTP4

DistMult 0.72 57.1 78.2 89.0 0.61 49.7 69.52 91.7 0.62 62.4 64.32 66.8
COMPLEX 0.76 62.7 84.3 92.1 0.59 48.9 67.9 90.1 0.61 61.1 64.6 67.4
TRANSE 0.58 50.3 72.4 90.1 0.53 44.6 63.21 90.5 0.48 55.3 57.8 59.0
ROTATE 0.61 49.5 74.2 91.8 0.50 43.9 63.7 89.2 0.60 61.4 64.0 67.0

Table 7. Link prediction results on UMLS, Kinship and FB122 dataset with different KGE models.

CTP2 CTP

0.99: (Baptists, Protestantism)
0.94: (Christianity, Lutheranism)
0.92: (Christianity, Catholicism)
0.91: (English Lang, French Lang)
0.90: (England, United Kingdom)
0.89: (Lutheranism, Catholicism)
0.84: (Singer, Songwriter)
0.81: (Singer-songwriter, Musician)
0.80: (Writer, Author)
0.78: (Methodism, Catholicism)

0.92: (England,UK)
0.72: (Musician,Record producer)
0.59: (TV Director,TV producer)
0.54: (Composer,Musician)
0.52: (Composer,Record producer)
0.51: (Film Producer,TV producer)
0.40: (Comedian,TV producer)
0.38: (Film Producer,TV Director)
0.38: (Comedian,Writer)
0.37: (Will Smith,Bachelor of Arts)

0.23: (Los Angeles, Malibu)
0.22: (Singer-songwriter, Lyricist)
0.25: (Ontario, Canada)

0.12: (Los Angeles, Malibu)
0.0003: (Singer-songwriter, Lyricist)
0.19: (Ontario, Canada)

Table 8. Top: Top-10 entity-pairs ranked by similarity score on
FB122. Bottom: entities that are never unified during training of
CTP2. Green/Red denotes if entity-pair ever been unified or not.

CTP2, but only 3e−4 for CTP when it is never unified. This
suggests CTP2 can interpolate between un-unified entities
due to more structured embedding space.

Effect of weight λ We find the weight λ for combining
NTP and KGE loss/score function plays an important rule
on the performance of CTP1 and CTP2. Therefore, we
repeat experiments with different λ on three tested datasets,
with results visualized in Figure 5. We can observe as CTP2

tends to be invariant against λ, performance of CTP1 on
UMLS and Kinship dataset increases when λ decreases, yet
decrease on FB122 and WN18RR with smaller λ.

Interestingly, we find that for small datasets such as UMLS
and Kinship, CTP1 and CTP2 maintain decent performance
when λ = 0, suggesting both model perform well even when
the loss/score is fully substituted by the KGE loss/score. For
example, CTP1 achieves SOTA performance of 0.87 MRR
on UMLS when λ = 0.1, and 0.85 with λ = 0. On the other
hand, for bigger datasets such as FB122 and WN18RR

0.75
0.80
0.85

UMLS

0.6

0.7

KINSHIP

0.0 0.2 0.4 0.6 0.8
0.4

0.6

FB122

0.0 0.2 0.4 0.6 0.8

0.35

0.40

WN18RRM
RR

CTP1
CTP2
CTP

Figure 5. MRR with different weight λ

dataset, CTP1’s performance decreases noticeably when
λ = 0. This suggests the limitation of purely relying on
KGE objectives under NTP scheme on larger datasets.

Effect of using different KGEs In Table 7 we show the
performance of CTP1, CTP2 and CTP4 using different
KGE methods: ComplEx, DistMult, TransE and RotatE, and
CTP3 with TransE and RotatE. With CTP1 and CTP2, we
can observe that the two similarity-based KGEs, COMPLEX
DISTMULT generally yields the best performance, whereas
translation-based KGE TransE and RotatE often lag back by
a large margin. For instance, CTP1 achieves 0.81 MRR on
UMLS with COMPLEX, but only 0.67 MRR under ROTATE.
In general, we observe that CTP2 is mostly invariant to the
choice of KGE methods, followed by CTP1, whereas CTP3

and CTP4’s performance can vary largely with different
KGE methods. This is expected, as CTP1 and CTP2 are
using KGE score functions as a regularization term, whereas
CTP3 and CTP4 predict directly based on KGEs.

Improving CTP3 In Table 9, we show results on the
effect of Path Constraint Resource Allocation (PCRA) filter-
ing and the Entity Expansion (EE) module for CTP3. We
can see both PCRA and EE bring noticeable performance

8

Improving Soft Unification with Knowledge Graph Embedding Methods

UMLS Kinship Nations FB122 WN18RR Codex-s
H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR

CTP3 92.6 0.65 92.8 0.5 83.0 0.53 62.2 0.53 39.4 0.37 58.9 0.35
+ PCRA 93.3 0.66 92.7 0.50 83.1 0.54 63.6 0.55 41.6 0.39 61.7 0.38
+ EE 94.1 0.67 93.6 0.52 83.9 0.54 65.7 0.60 43.6 0.41 64.2 0.42
+ Both 94.1 0.67 93.6 0.52 85.0 0.55 66.8 0.63 44.2 0.42 64.6 0.44

Table 9. Ablations on the Path Constraint Resource Allocation (PCRA) and the learnable Entity Expansion (EE) module for CTP3.

Figure 6. t-SNE visualization of entity embeddings from trained
CTP2-COMPLEX (left) and COMPLEX (right).

gain under most datasets. In particular, both PCRA and EE’s
performance gains are relatively marginal on smaller KGs
such as Kinship and Nations, but are more effective on larer
datasets such as FB122 and WN18RR. For example, with
both PCRA and EE, CTP3 achieves 0.63 MRR on FB122,
a 10% increase over baseline CTP3.

13. Limitations
While incorporating KGE objectives into NTPs improves
the structural properties of their learned embeddings and
enhances performance, certain limitations remain. In Fig-
ure 6 we show t-SNE visualization of learned embeddings
between CTP2 and COMPLEX. Although CTP2 exhibits
denser pairwise similarity than the baseline CTP, as shown
in Figure 2, its embedding space on large-scale datasets like
WN18RR lacks the clear global structure obtained through
pure KGE training. We hypothesize two contributing fac-
tors: (1) the significantly fewer negative samples used in
NTPs compared to KGEs limit the model’s ability to cap-
ture global structures in large datasets, and (2) the sparse
gradient issue becomes more pronounced as dataset size
increases. While in this paper we focus on the embedding
perspective of NTPs, the sparse gradient problem still re-
mains as a bottleneck to the model performance.

14. Conclusion
In this paper we propose to leverage KGE methods to im-
prove NTP performance and efficiency, by enhancing NTP’s
embedding space to be better structured and regularized, and
by replacing computationally expensive NTP components
with efficient KGE operations. We explore four variants for
integrating KGEs into the NTP, and show that by injecting
KGEs into NTP’s score calculation (CTP2) we can achieve

the most stable and noticeable improvements across various
datasets and configurations. Finally, we conduct detailed
ablations and analyze on key components of the integration.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Badreddine, S., d’Avila Garcez, A., Serafini, L., and

Spranger, M. Logic tensor networks. Artificial Intel-
ligence, 303:103649, February 2022. ISSN 0004-3702.
doi: 10.1016/j.artint.2021.103649. URL http://dx.
doi.org/10.1016/j.artint.2021.103649.

Balazevic, I., Allen, C., and Hospedales, T. Tucker: Tensor
factorization for knowledge graph completion. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Lin-
guistics, 2019. doi: 10.18653/v1/d19-1522. URL http:
//dx.doi.org/10.18653/v1/D19-1522.

Bollacker, K., Cook, R., and Tufts, P. Freebase: a shared
database of structured general human knowledge. In
Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2, AAAI’07, pp. 1962–1963. AAAI
Press, 2007. ISBN 9781577353232.

Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pp. 2787–2795, Red Hook,
NY, USA, 2013. Curran Associates Inc.

Cohen, W. W. Tensorlog: A differentiable deductive
database, 2016. URL https://arxiv.org/abs/
1605.06523.

Darwiche, A. Sdd: a new canonical representation of propo-
sitional knowledge bases. In Proceedings of the Twenty-

9

http://dx.doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/10.18653/v1/D19-1522
http://dx.doi.org/10.18653/v1/D19-1522
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/1605.06523

Improving Soft Unification with Knowledge Graph Embedding Methods

Second International Joint Conference on Artificial In-
telligence - Volume Volume Two, IJCAI’11, pp. 819–826.
AAAI Press, 2011. ISBN 9781577355144.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar,
I., Krishnamurthy, A., Smola, A., and McCallum, A. Go
for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning, 2018.
URL https://arxiv.org/abs/1711.05851.

de Jong, M. and Sha, F. Neural theorem provers do not
learn rules without exploration, 2019. URL https:
//arxiv.org/abs/1906.06805.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
Convolutional 2d knowledge graph embeddings, 2018.
URL https://arxiv.org/abs/1707.01476.

Guo, S., Wang, Q., Wang, L., Wang, B., and Guo, L.
Jointly embedding knowledge graphs and logical rules.
In Su, J., Duh, K., and Carreras, X. (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 192–202, Austin, Texas,
November 2016a. Association for Computational Lin-
guistics. doi: 10.18653/v1/D16-1019. URL https:
//aclanthology.org/D16-1019.

Guo, S., Wang, Q., Wang, L., Wang, B., and Guo,
L. Jointly embedding knowledge graphs and logical
rules. In Conference on Empirical Methods in Natu-
ral Language Processing, 2016b. URL https://api.
semanticscholar.org/CorpusID:7958862.

Han, C., He, Q., Yu, C., Du, X., Tong, H., and Ji, H. Logi-
cal entity representation in knowledge-graphs for differ-
entiable rule learning, 2023. URL https://arxiv.
org/abs/2305.12738.

Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song,
L., and Si, X. Scallop: From probabilistic deductive
databases to scalable differentiable reasoning. In Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=ngdcA1tlDvj.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Joulin, A., Grave, E., Bojanowski, P., Nickel, M., and
Mikolov, T. Fast linear model for knowledge graph em-
beddings, 2017. URL https://arxiv.org/abs/
1710.10881.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T.,
and Ueda, N. Learning systems of concepts with an
infinite relational model. In Proceedings of the 21st

National Conference on Artificial Intelligence - Volume
1, AAAI’06, pp. 381–388. AAAI Press, 2006. ISBN
9781577352815.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G.
3d gaussian splatting for real-time radiance field render-
ing, 2023. URL https://arxiv.org/abs/2308.
04079.

Lacroix, T., Usunier, N., and Obozinski, G. Canonical ten-
sor decomposition for knowledge base completion, 2018.
URL https://arxiv.org/abs/1806.07297.

Lin, X. V., Socher, R., and Xiong, C. Multi-hop knowl-
edge graph reasoning with reward shaping, 2018. URL
https://arxiv.org/abs/1808.10568.

Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., and Liu, S.
Modeling relation paths for representation learning of
knowledge bases, 2015. URL https://arxiv.org/
abs/1506.00379.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing, 2023. URL https://arxiv.org/abs/2304.
08485.

Loconte, L., Mauro, N. D., Peharz, R., and Vergari, A. How
to turn your knowledge graph embeddings into gener-
ative models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=RSGNGiB1q4.

Maene, J. and De Raedt, L. Soft-unification in deep prob-
abilistic logic. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Maene, J. and Raedt, L. D. Soft-unification in deep prob-
abilistic logic. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=s86M8naPSv.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T.,
and Raedt, L. D. Deepproblog: Neural probabilistic logic
programming, 2018. URL https://arxiv.org/
abs/1805.10872.

Miller, G. A. Wordnet: a lexical database for english.
Commun. ACM, 38(11):39–41, November 1995. ISSN
0001-0782. doi: 10.1145/219717.219748. URL https:
//doi.org/10.1145/219717.219748.

Minervini, P., Demeester, T., Rocktäschel, T., and Riedel,
S. Adversarial sets for regularising neural link predic-
tors, 2017. URL https://arxiv.org/abs/1707.
07596.

Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S.,
and Grefenstette, E. Differentiable reasoning on large

10

https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1906.06805
https://arxiv.org/abs/1906.06805
https://arxiv.org/abs/1707.01476
https://aclanthology.org/D16-1019
https://aclanthology.org/D16-1019
https://api.semanticscholar.org/CorpusID:7958862
https://api.semanticscholar.org/CorpusID:7958862
https://arxiv.org/abs/2305.12738
https://arxiv.org/abs/2305.12738
https://openreview.net/forum?id=ngdcA1tlDvj
https://openreview.net/forum?id=ngdcA1tlDvj
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/1806.07297
https://arxiv.org/abs/1808.10568
https://arxiv.org/abs/1506.00379
https://arxiv.org/abs/1506.00379
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://openreview.net/forum?id=RSGNGiB1q4
https://openreview.net/forum?id=RSGNGiB1q4
https://openreview.net/forum?id=s86M8naPSv
https://openreview.net/forum?id=s86M8naPSv
https://arxiv.org/abs/1805.10872
https://arxiv.org/abs/1805.10872
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1707.07596
https://arxiv.org/abs/1707.07596

Improving Soft Unification with Knowledge Graph Embedding Methods

knowledge bases and natural language, 2019. URL
https://arxiv.org/abs/1912.10824.

Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E.,
and Rocktäschel, T. Learning reasoning strategies in
end-to-end differentiable proving, 2020. URL https:
//arxiv.org/abs/2007.06477.

Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model
for collective learning on multi-relational data. In Pro-
ceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, ICML’11, pp.
809–816, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

Rocktäschel, T. and Riedel, S. End-to-end differentiable
proving. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pp. 3791–3803,
2017. URL http://papers.nips.cc/paper/
6969-end-to-end-differentiable-proving.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Ruffinelli, D., Broscheit, S., and Gemulla, R. You can
teach an old dog new tricks! on training knowledge graph
embeddings. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=BkxSmlBFvr.

Safavi, T. and Koutra, D. CoDEx: A Comprehen-
sive Knowledge Graph Completion Benchmark. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pp. 8328–8350, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.669. URL https://www.aclweb.
org/anthology/2020.emnlp-main.669.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg,
R., Titov, I., and Welling, M. Modeling relational data
with graph convolutional networks, 2017. URL https:
//arxiv.org/abs/1703.06103.

SHENGYUAN, C., Cai, Y., Fang, H., Huang, X., and Sun,
M. Differentiable neuro-symbolic reasoning on large-
scale knowledge graphs. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 28139–28154. Curran Associates, Inc., 2023.

Sinha, K., Sodhani, S., Dong, J., Pineau, J., and Hamilton,
W. L. CLUTRR: A diagnostic benchmark for inductive

reasoning from text. In Inui, K., Jiang, J., Ng, V., and Wan,
X. (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 4506–4515, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1458. URL
https://aclanthology.org/D19-1458/.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R.,
Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subra-
manian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y.,
Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Sto-
jnic, R., Edunov, S., and Scialom, T. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

Trouillon, T., Welbl, J., Riedel, S., Éric Gaussier, and
Bouchard, G. Complex embeddings for simple link
prediction, 2016. URL https://arxiv.org/abs/
1606.06357.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge
graph embedding by translating on hyperplanes. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI’14, pp. 1112–1119. AAAI Press,
2014.

Xiao, H., Huang, M., Hao, Y., and Zhu, X. Transa: An
adaptive approach for knowledge graph embedding, 2015.
URL https://arxiv.org/abs/1509.05490.

Yang, B., tau Yih, W., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases, 2015. URL https://arxiv.org/
abs/1412.6575.

Yang, F., Yang, Z., and Cohen, W. W. Differentiable learning
of logical rules for knowledge base reasoning, 2017. URL
https://arxiv.org/abs/1702.08367.

Yang, Z., Ishay, A., and Lee, J. Neurasp: Embracing neu-
ral networks into answer set programming, 2023. URL
https://arxiv.org/abs/2307.07700.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
bellman-ford networks: A general graph neural network

11

https://arxiv.org/abs/1912.10824
https://arxiv.org/abs/2007.06477
https://arxiv.org/abs/2007.06477
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://www.aclweb.org/anthology/2020.emnlp-main.669
https://www.aclweb.org/anthology/2020.emnlp-main.669
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://aclanthology.org/D19-1458/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1509.05490
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1702.08367
https://arxiv.org/abs/2307.07700

Improving Soft Unification with Knowledge Graph Embedding Methods

framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Zhu, Z., Yuan, X., Galkin, M., Xhonneux, S., Zhang, M.,
Gazeau, M., and Tang, J. A*net: A scalable path-based
reasoning approach for knowledge graphs, 2023. URL
https://arxiv.org/abs/2206.04798.

12

https://arxiv.org/abs/2206.04798

Improving Soft Unification with Knowledge Graph Embedding Methods

A. Complexity Analysis
Below we provide complexity analysis for the baseline CTP and the proposed variants. We particularly focus on the final
step at each proof path during evaluation, since it is the computational bottleneck in the NTP framework.

Notations:

Let

• |E| be the number of entities

• k be the number of top facts retrieved per (s, r, t) pair.

• d be the embedding dimension.

• N be the number of proof path templates.

• D be the depth of the recursive proof tree.

Baseline CTP retrieves top-k facts for each combination of the missing entity and the known predicate-object/subject pair,
followed by the unification score calculation between two tensors of shape (|E|, k, 3d). We break down the time complexity
for retrieval and score calculation. Retrieval: we use the IndexFlatL2 index from FAISS library (Johnson et al., 2019),
which has linear complexity w.r.t. number of items. Since we are retrieving for each entity combination, the complexity of
retrieval is O(|E|2) for the final step at each proof path. Score calculation: we employ the Gaussian RBF kernel as the
similarity metric between two embeddings. The RBF kernel is defined as

RBF(xi, yi) = exp
(
−||xi − yi||2

2σ2

)
,

which has approximately linear complexity w.r.t. number of entities |E| and dimension d, i.e. O(|E| · kd).

Since this has to be done at each individual proof path, the complexity becomes O(ND(|E|2 + |E| · kd)).

CTP1 adds the KGE objective only as a loss term. Therefore the evaluation complexity is the same as baseline CTP1, which
is O(ND(|E|2 + |E| · kd)).

CTP2 adds the KGE scoring function on top of baseline CTP’s existing similarity function (RBF kernel). The exact
additional time complexity depends on the underlying KGE function. However, as we find the additional KGE scoring
function is only necessary during training and can be omitted during evaluation time, the evaluation complexity is the same
as baseline CTP1, which is O(ND(|E|2 + |E| · kd)).

CTP3 replaces retrievals with translational KGEs to directly compute the next unknown tail entity. This reduces the retrieval
complexity from quadratic to linear w.r.t. |E|. Therefore the complexity becomes O(ND(|E|+ |E| · kd)).

CTP4 replaces the final ranking step from baseline CTP’s retrieval + unification score calculation with direct ranking based
on the KGE score. Assume a linear complexity for the KGE function w.r.t. number of entities (e.g. ComplEx), the overall
complexity is further reduced to O(ND|E|).

B. CTP1 vs. CTP2, a gradient perspective
Below we analyze the advantage of CTP2 over CTP1 from a gradient perspective.

Let’s first derive the gradient for CTP1 and CTP2.

Recall the loss function for CTP1 is defined as

LCTP1
= (1− λ)

∑
((s,r,o),y) ∈ G

[
−y log(KGEθ((s, r, o))− (1− y) log(1− KGEθ((s, r, o))

]
+ λLNTPGθ (3)

To simplify notation, we omit λ and summation in the following derivations. Let θ denotes the learnable embeddings, ϕN
and ϕK denote the score function of KGE and the similarity metic of NTP, we can rewrite Eq. 3 as

13

Improving Soft Unification with Knowledge Graph Embedding Methods

LCTP1
(θ) = −y log ϕN (θ)− (1− y) log(1− ϕN (θ))− y log ϕK(θ)− (1− y) log(1− ϕK(θ)).

Applying the chain rule, the gradient of LCTP1with respect to θ is

∇θLCTP1 =

[
− y

ϕN (θ)
+

1− y

1− ϕN (θ)

]
∇θϕN (θ) +

[
− y

ϕK(θ)
+

1− y

1− ϕK(θ)

]
∇θϕK(θ)

= − y

ϕN (θ)
∇θϕN (θ) +

1− y

1− ϕN (θ)
∇θϕN (θ) + (− y

ϕK(θ)
)∇θϕK(θ) +

1− y

1− ϕK(θ)
∇θϕK(θ)

(4)

For CTP2, the score function is a combination (assume λ = 1
2) of KGE and original NTP’s similarity score, write as

ϕcomb(θ) =
ϕN (θ) + ϕK(θ)

2
,

and the loss becomes

LCTP2
(θ) = −y log ϕcomb(θ)− (1− y) log(1− ϕcomb(θ)).

By the chain rule, its gradient is

∇θLCTP2
=
dL(ϕcomb)

dϕcomb
∇θϕcomb(θ),

where
dL(ϕcomb)

dϕcomb
= − y

ϕcomb
+

1− y

1− ϕcomb
.

The gradient for ϕcomb(θ) is
∇θϕcomb(θ) = ∇θϕN (θ) +∇θϕK(θ),

therefore, the gradient for each individual score calculation in CTP2 is

∇θLCTP2
=
dL(ϕcomb)

dϕcomb
· ∇θϕcomb(θ)

=

[
− y

ϕcomb(θ)
+

1− y

1− ϕcomb(θ)

]
· (∇θϕN (θ) +∇θϕK(θ))

= − y

ϕcomb(θ)
· ∇θϕN (θ) + (− y

ϕcomb(θ)
) · ∇θϕK(θ) +

1− y

1− ϕcomb(θ)
· ∇θϕN (θ) +

1− y

1− ϕcomb(θ)
· ∇θϕK(θ).

(5)

By comparing the gradient for CTP1 (Eq. 4) and CTP2 (Eq. 5), we can see that CTP1’s gradient only involve ‘self’ terms,
e.g. − y

ϕN (θ)∇θϕN (θ), where the gradients of KGE and NTP are separately computed and then added. On the other hand,
CTP2’s gradient involves ‘cross’ terms, such as − y

ϕcomb(θ)
· ∇θϕN (θ) and (− y

ϕcomb(θ)
) · ∇θϕK(θ), which could potentially

provide a more coherent gradient update.

We can further consider the above implication from a gradient variance perspective. Assume both ϕN and ϕK are noisy
estimates of an underlying true signal

ϕN (θ) = ϕ+ ϵN , ϕK(θ) = ϕ+ ϵK ,

with independent zero-mean terms ϵN , ϵK each with variance σ2. Assume further

∇θϕN (θ) ≈ ∇θϕK(θ) ≡ ∇θϕ.

14

Improving Soft Unification with Knowledge Graph Embedding Methods

Define

g(ϕ) = − y
ϕ
+

1− y

1− ϕ
and g′(ϕ) =

y

ϕ2
+

1− y

(1− ϕ)2
.

Using a first-order Taylor expansion, we can approximate

g
(
ϕN (θ)

)
≈ g(ϕ) + g′(ϕ)ϵN , g

(
ϕK(θ)

)
≈ g(ϕ) + g′(ϕ)ϵK .

The gradient for CTP1 becomes:

∇θLCTP1
≈

[
g(ϕ) + g′(ϕ)ϵN

]
∇θϕ+

[
g(ϕ) + g′(ϕ)ϵK

]
∇θϕ

= 2g(ϕ)∇θϕ+ g′(ϕ)(ϵN + ϵK)∇θϕ.

The noise term is

∆CTP1
= g′(ϕ)(ϵN + ϵK)∇θϕ,

with variance

Var[∆CTP1
] ∝ (g′(ϕ))

2
Var(ϵN + ϵK) = (g′(ϕ))

2 · 2σ2. (6)

For CTP2, the combined score is

ϕcomb = ϕ+
ϵN + ϵK

2
.

Linearizing,

g
(
ϕcomb

)
≈ g(ϕ) + g′(ϕ)

ϵN + ϵK
2

.

Thus, the gradient for CTP2 becomes

∇θLCTP2 ≈
[
g(ϕ) + g′(ϕ)

ϵN + ϵK
2

]
∇θϕ.

The noise term is

∆CTP2 = g′(ϕ)
ϵN + ϵK

2
∇θϕ,

with variance

Var[∆CTP2] ∝ (g′(ϕ))
2
Var

(
ϵN + ϵK

2

)
= (g′(ϕ))

2 1

4
· 2σ2 = (g′(ϕ))

2 σ2

2
. (7)

By comparing Var[∆CTP1] and Var[∆CTP2] (Eq. 6 and Eq. 7), we can see the variance of the gradient noise for CTP2 is
reduced by a factor of 4 w.r.t. CTP1’s. This reduction could also lead to smoother and more stable optimization dynamic,
which is also what we observed empirically.

C. Dataset Information
We conduct experiments on three small-scale link prediction datasets: Kinship, Nations and UMLS (Kemp et al., 2006), as
well as two large-scale Knowledge Graph (KG) datasets: FB122 (Guo et al., 2016a) and WN18RR (Dettmers et al., 2018).
FB122 is a subset of Freebase (Bollacker et al., 2007) containing facts of people, location and sports. Its test set is splitted
into two subsets, Test-I and Test-II, where Test-I contains all triplets that cannot be derived by deductive logic inference, and
Test-II denotes all the rest triplets. WN18RR is derived from WordNet (WN18) (Miller, 1995), where test triplets that can be
obtained by inverting triplets in the training set are removed. In Table 10 we summarize the statistics of these datasets.

15

Improving Soft Unification with Knowledge Graph Embedding Methods

Dataset |E| |R| # Train # Validation # Test

Kinship (Kemp et al., 2006) 104 25 8544 1068 1074
Nations (Kemp et al., 2006) 14 55 1592 199 201
UMLS (Kemp et al., 2006) 135 46 5,216 652 661
FB122 (Guo et al., 2016a) 9738 122 91,638 9595 11243
WN18RR (Dettmers et al., 2018) 40,943 11 86,835 3,034 3,134

Table 10. Dataset statistics Statistics of datasets used in this work. Columns: number of entities (|E|), number of predicates (|R|), number
of training, validation, and test samples.

Kinship Nations UMLS FB122 WN18RR

term21(X,Y):-
term24(Y,Z)

term4(X,Y):-
term4(Y,Z)

term9(X,Y):-
term11(Y,Z)

treaties(X,Y):-
treaties(Y,X)

aidenemy(X,Y):-
militaryactions(Y,X)

lostterritory(X,Y):-
timesincewar(Y,X)

associated with(X,Y):-
process of(X,Y),
process of(Y,Z)

occurs in(X,Y):-
issue in(X,Y),
process of (Y,Z)

interconnects(X,Y):-
result of (X,Y),
result of (Y,Z)

contains(X,Y) :-
capital(Y, X)

language spoken(X, Y):-
official language(X,Y)

place lived(X,Y):-
place of birth(X,Y)

hypernym(X,Y):-
hypernym(Y,X)

verb group(X,Y):-
verb group(Y,X)

has part(X,Y) :-
part of (Y,X)

Table 11. Visualization of learnt rules under each dataset with CTP2

D. Experimental Settings
Indexing Library. In this work we use the FAISS search index (Johnson et al., 2019). We use the GPU version of the
library and use the IndexFlatL2 index, which performs exact search using L2.

Rule templates CTP defines a number of rule templates for the model to explore. The template is defined as number of
steps – how many steps to hop from the head to the tail entity, and whether it is a reverse relation, indicated by r, i.e.
stepping from tail to head entity. For example, rule = 0 means the model will try to directly unify the goal with facts in the
KB. rule = 2 means two steps from the head to the tail entity, e.g. R(s, o) :– R1(s, z), R2(z, o). rule = 1R means a reverse
relation: R(s, o) :– R1(o, s). For Kinship, Nations and UMLS we follow the setting in CTP with Kinship={0, 1, 1r},
Nations={0, 2, 1r}, and UMLS={0, 2}. For FB122 and WN18RR we both use {0, 1, 2, 1r}.

Training For hyper-parameters we follow CTP (Minervini et al., 2020) on Kinship and UMLS datasets for all the
experiments. Specifically, we use embedding size=50, top-k=4, batch size=8, learning rate=0.1, trained 100 epochs with
Adagrad optimizer. For each triplets we sample 3 negative sample per entity (a total of 9 negative samples per triplet). For
Nations we use batch size=256 with AdamW optimizer for the CTP2 variant, and the same as CTP for the rest of models.
For FB122 we mostly follow the setting from GNTP (Minervini et al., 2019), with embedding size=100, top-k=10, and 1
negative sample per entity. We use Adagrad optimizer and train 100 epochs. We find it necessary to keep a large number of
retrieval (e.g. 128) for larger datasets such as WN18RR. To avoid GPU OOM during evaluation due to the large matrix
operation, we only scale number of retrievals during training, while keeping the number of retrievals during inference or
evaluation low.

For baseline CTP we find freezing the model entities in the first 25 epochs work well, while for all our CTP variants we
receive better results by not freezing the model from the beginning. We also explore different score aggregation operations
for aggregating scores along one proof path (AND operation). For baseline CTP and CTP1 we find the original min generally
work well, while mean and multiplication work better for CTP2, CTP3 and CTP4. besides, we considered using cosine
similarity as the scoring metric, with using addition instead of concatenation for obtaining the embedding for the whole
triplets. However, we do not observe it to perform better than using the Gaussian kernel.

Incorporating KGE objectives To ensure KGE score lies within 0 and 1 we add a Sigmoid function to its negative score
function. To avoid small negative scores being pushed to zeros after Sigmoid, we first subtract the mean from the negative
scores.

16

Improving Soft Unification with Knowledge Graph Embedding Methods

n Metrics CTP CTP1 CTP2 CTP3 CTP4λ = 0 λ = 0.5 λ = 0.8 λ = 0 λ = 0.5 λ = 0.8

1
MRR 0.64 0.40 0.56 0.59 0.64 0.68 0.65 0.53 0.32
HIT@3 64.50 46.24 60.40 62.43 0.65 69.43 65.83 59.40 34.80
HIT@10 68.30 50.07 62.90 63.75 67.50 73.01 68.76 62.20 41.52

16
MRR 0.61 0.43 0.59 0.57 0.63 0.65 0.49 0.55 0.45
HIT@3 62.50 47.62 60.17 59.49 64.25 67.03 50.03 60.84 48.90
HIT@10 65.71 51.43 62.49 61.84 65.79 69.25 53.81 61.53 41.09

32
MRR 0.56 0.43 0.58 0.48 0.63 0.62 0.46 0.54 0.59
HIT@3 57.26 50.86 58.94 49.72 64.70 64.50 49.31 59.58 60.46
HIT@10 59.94 53.67 60.12 51.88 66.02 67.62 53.18 63.84 62.62

128
MRR - - - - - - - - 0.61
HIT@3 - - - - - - - - 61.10
HIT@10 - - - - - - - - 67.40

Table 12. Test results on FB122 with different number of negative samples n. Due to the computational limit, we only evaluate CTP4

when n = 128. Bold denotes column-wise best results.

E. Training Dynamics

0 200 400

1.5

2.0

2.5

3.0

0 200 400

0.4

0.6

0.8

1.0

1.2
Training Loss - Nations CTP

CTP1-0.0
CTP1-0.2
CTP1-0.4
CTP1-0.6
CTP1-0.8

Figure 7. Training loss on Nations with CTP (left, blue) and
CTP2-COMPLEX (right) with different λ.

0 20 40 60 80

Epochs

0.58

0.60

0.62

0.64

0.66

0.68

0.70
M

R
R

Validation Accuracy (MRR) training on FB122

CTP

CTP2-DistMult

CTP2-ComplEx

Figure 8. Validation MRR on FB122 dataset with baseline CTP
and CTP2 with DISTMULT and COMPLEX as integrated KGEs.

In Figure 7 we show training loss on Nations dataset given different λ. For CTP1 we find the training loss tends to be
much more stable with smaller λ as shown in Figure 2, which is as expected as the non-differentiable operations in CTP is
smoothed out by the differentiable KGE loss calculation. On the other hand, the training loss for baseline CTP is always
fluctuating without decreasing, even though the final test accuracy is reasonable.

In Figure 8 we show validation MRR during training on FB122 dataset for baseline CTP (blue), CTP2 with COMPLEX
(green) and DISTMULT (orange). We can observe that both CTP2 converges quickly in the first 20 epochs, with CTP2-
COMPLEX slightly higher than CTP2-DISTMULT, and both have much higher accuracy than the baseline CTP.

F. Visualization of learnt rules
In Table 11 we show visualization results generated under each dataset under CTP2. We can see it successfully learns logical
rules such as place lived(X,Y):- place of birth(X,Y), interconnects(X,Y):- result of (X,Y), result of (Y,Z), and contains(X,Y)
:- capital(Y, X).

G. Training NTPs with more negatives
Since KGEs, under the energy-based-model interpretation, require large amount of negative samples, we want to see if such
can benefit the integration of NTPs and KGEs, given NTPs’ number of negative samples is default to 1. In Table 12 we
show results where we increase number of negative samples during training our CTP variants. Interestingly, instead of

17

Improving Soft Unification with Knowledge Graph Embedding Methods

receiving better accuracy, we observe a drastic performance drop on CTP, CTP1 when λ = 0.8 and CTP2 with λ = 0.5 and
λ = 0.8. For example, the MRR of CTP1 with λ = 0.8 drops from 0.59 to 0.48 when number of negatives is increased from
1 to 32, and the MRR for CTP2 with λ = 0.8 drops from 0.65 to 0.46. Reversely, when λ = 0, CTP1’s MRR increases
from 0.40 to 0.438 as number of negatives increases. This implies increasing the number of negatives helps when λ is low,
i.e. when the KGE loss is contributing more to the gradient updates. However, even when λ = 0 for CTP1, recovering a
pure KGE optimization process, the accuracy with n = 32 is still far less than when λ = 0.5 and all other variants. This
suggests that the regularization of KGEs on NTPs is still limited, and we conjecture the bottleneck is the sparse gradient
problem introduced during training. As we do not focus on sparse gradient problem in this work, we will leave it for future
exploration. On the other hand, we notice drastic increase in accuracy with CTP4 from 0.32 MRR to 0.61 with n increases
from 1 to 128.

H. Details for Improving CTP3’s Performance
In this section we discuss why CTP3’s performance could be drastically lagging behind other variants especially on large
datasets, and propose two approaches to improve its performance. Recall for CTP3 we replace top-k retrieval by using
translational KGEs (e.g. TransE) to directly compute the unknown entity, which means we are effectively doing top-1
retrieval. This results in two main drawbacks: 1. Limited expressiveness due to the top-1 retrieval. 2. Susceptible to spurious
proof paths where subject and object are connected but logically irrelevant. For example, consider the path (s, born in, o1),
(o1, located in, o2), (o2, notable people, o), where s and o are connected but irrelevant. These issues become more obvious
when the size and complexity of the dataset increase.

To mitigate the above issues, we additionally propose two methods.

Filtering spurious relation paths. We consider using the Path Constraint Resource Allocation (PCRA) for calculating
the path reliability by measuring how much resource flows from the head to the tail entity following a path, as inspired by
PTransE (Lin et al., 2015).

Formally, for a pair of s and o and a path p = (r1, r2, . . . , rn), the flow path can be written as s r1−→ S1
r2−→ . . .

rn−→ Sn,
where Si are sets of entities, and o ∈ Sn. Following the notation in PTransE, given any entity m ∈ Si, the resource flowing
to m is defined as

Rp(m) =
∑

n∈Si−1(·,m)

1

|Si(n, ·)|
Rp(n),

where Si−1(·,m) are its direct predecessors in Si−1, and Si(n, ·) is the direct successors of n ∈ Si−1. By calculating
Rp(m) recursively from s to o, we can obtain the final resource (reliability) of the path p given s and o. For more details
please refer to (Lin et al., 2015). During training, we then mask out the path with lowest 10% reliability score (we do not
modify for evaluation stage).

Learnable entity expansion module. To alleviate the issue with top-1 retrieval, we consider adding an additional learnable
module which expands the resulting entity embedding obtained from the translational KGE function to k neighboring
entities. In other words, we learn a linear layer W with shape (d, k) to encode a set of related entities {Si}k given the
calculated entity s, i.e. p({Si}k|s,W).

In Table 9 we show the results for incorporating PCRA and entity expansion module for CTP3. We can observe noticeable
improvements, especially on larger datasets such as WN18RR.

I. Settings for Inference speed Comparison (Table 3)
We run inference on the selected models on a V100 GPU with a batch size of 8, embedding dimension 1000 for each KGE
method (default), and CTP2 with dimension 100, and NBFNet with dimension=32.

18

Improving Soft Unification with Knowledge Graph Embedding Methods

J. Pseudo-code implementation
Neural Theorem Prover implements backward chaining algorithm by recursively instantiating AND/OR modules, where
OR is called to prove each goal by unifying with each rule head in the KB. Then, the AND module is called to prove the
rule body, where for each atom in the body the OR is recursively called, until the algorithm reaches depth limit d. The
pseudo-code for NTP can be found in 1.

K. Conditional Theorem Prover
Conditional Theorem Prover extends upon NTP by incorporating a trainable neural module for predicting plausible rules
given goals. The pseudo-code for CTP can be found in 2.

Algorithm 1 Python pseudo-code for NTP with top-k retrieval following implementation from (Minervini et al., 2019)

KB: the Knowledge Base.

S: proof state
- score: unification score
- subs: substitution set

sim: similarity function for unification
topk: a function that performs top-k retrieval

def or(goal, S, k):

S_list = []
for rule in KB:

head, body = rule
topk_ind = topk(goal, KB)
if d < max_depth and no_cycle(S.subs, rule):

S_head = unify(head, goal, S, topk_ind)
S_head = kmax(goal, S_head)
S_body = and(body, S, d)
S_list.append(S_body)

return proof_states

def and(goal, S):

S_list = []
if len(goal) == 0:

S_list = [S]
elif d < max_depth:

goal, sub_goals = goal
new_goal = substitute(goal, subs)
for S_new in or(new_goal, S, d+1):

S_list.append(and(sub_goals, S_new))

return S_list

def unify(atom, goal, S, topk_ind):

grounded_atom, grounded_goal = [], []
for (atom_term, goal_term) in zip(atom, goal):

if is_variable(atom_term):
if atom_term not in S.subs:
S.subs.update({atom_term: goal_term}

elif is_variable(goal_term):
if is_grounded(atom_term) and \

goal_term not in S.subs:
S.subs.update({goal_term: atom_term}

elif is_grounded(atom_term) and \
is_grounded(goal_term):

grounded_atom.append(atom_term)
grounded_goal.append(goal_term)

score = sim(grounded_goal, \
grounded_atom[topk_ind])

S.score = min(S.score, score)

return S

19

Improving Soft Unification with Knowledge Graph Embedding Methods

Algorithm 2 Simplified Python pseudo-code for CTP following (Minervini et al., 2020)

KB: the Knowledge Base.
sim: similarity function for unification
topk: a function that performs top-k retrieval
max_depth: maximum recursive depth

def ctp(s, r, o, max_depth):

if max_depth == 0:
return unify(s, r, o)

else:
score = None
for d in range(max_depth):

level_score = None
for rule_path in rule_templates:

path_score = None
for step_ind, rule_transform in rule_path:

if is_inverse_relation:
latent_score, s = \

step(o, r, s, max_depth - 1)
else:

latent_score, s = \
step(s, r, o, max_depth - 1)

if path_score is None:
path_score = latent_score

else:
min aggregation --
all proofs need to be hold.
path_score = min(path_score, latent_score)

if step_ind == len(rule_path):
choose the max over the topk branches
path_score, _ = max(path_score, dim=-1)

if level_score is None:
level_score = path_score

else:
max aggregation --
only one proof path needs to be hold.
level_score = max(level_score, path_score)

if score is None:
score = level_score

else:
max aggregation --
only one proof path needs to be hold.
score = max(score, level_score)

def unify(s,r,o=None):

if o is not None:
topk_ind = topk([s, r, o])

else:
topk_ind = topk([s, r])
o = KB[topk_ind][-1]

score = sim([s, r, o], KB[topk_ind])
return score, o

20

