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Abstract

Conventional imitation learning assumes access to the actions of demonstrators, but
these motor signals are often non-observable in naturalistic settings. Additionally,
sequential decision-making behaviors in these settings can deviate from the assump-
tions of a standard Markov Decision Process (MDP). To address these challenges,
we explore deep generative modeling of state-only sequences with non-Markov
Decision Process (nMDP), where the policy is an energy-based prior in the latent
space of the state transition generator. We develop maximum likelihood estimation
to learn both the transition and the policy, which involves short-run MCMC sam-
pling from the prior and importance sampling for the posterior. The learned model
enables decision-making as inference: model-free policy execution is equivalent to
prior sampling, model-based planning is posterior sampling initialized from the
policy. We demonstrate the efficacy of the proposed method in a prototypical path
planning task with non-Markovian constraints and show that the learned model
exhibits strong performances in challenging domains from the MuJoCo suite.

1 Introduction

Imitation from others is a prevalent phenomenon in humans and many other species, where individuals
learn by observing and mimicking the actions of others. An intriguing aspect of this process is the
brain’s ability to extract motor signals from sensory input. This remarkable capability is facilitated
by mirror neurons [1, 2], which respond to observations as if the imitator is performing the actions
themselves. In conventional imitation learning [3, 4] and offline reinforcement learning [5], action
labels have served as proxies for mirror neurons. But it is important to recognize that they are
actually productions of human interventions. Given the recent advancements in Al, now is probably
an opportune time to explore imitation learning in a more naturalistic setting.

While the setting of state-only demonstrations is not common, there are certain exceptions. For
example, Inverse Reinforcement Learning (IRL) initially formulated the problem as state visitation
matching [6], where demonstrations consist solely of state sequences. Subsequently, this state-
only setting was rebranded as Imitation Learning from Observations (ILfO), which introduced the
generalized formulation of matching marginal state distributions [7, 8]. These methods typically rely
on the Markov assumption and Temporal Difference (TD) learning techniques [9]. One consequence
of this assumption, previously believed to be advantageous, is that sequences with different state orders
are treated as equivalent. However, the success of general sequence modeling [10] has challenged
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Figure 1: Graphical model of policy and transition in standard Markov Decision Process and non-Markov
Decision Process. Reward variables are omitted in the probabilistic graph to emphasize the difference in
dependency between actions and states. nMDP is a natural generalization of standard MDP.

this belief, leading to deep reflections. Notable progresses since then include an analysis of the
expressivity of Markovian rewards [11] and a series of sequence models tailored for decision-making
problems [12—15]. Aligning with this evolving trend, we extend the state-only imitation learning
problem to encompass non-Markovian domains.

In this work, we propose a generative model based on non-Markov Decision Process (nMDP),
in which states are fully observable and actions are latent. Unlike existing monolithic sequence
models, we factorize the joint state-action distribution into policy and causal transition according
to the standard Markov Decision Process (MDP). To further extend to the non-Markovian domain,
we condition the policy on sequential contexts. The density families of policy and transition are
consistent with conventional IRL [4]. We refer to this model as Latent-action non-Markov Decision
Process (LanMDP). Because the actions are latent variables following Boltzmann distribution, the
present model is closely related to the Latent-space Energy-Based Model (LEBM) [16]. To learn
the latent policy by Maximum Likelihood Estimation (MLE), we need to sample from the prior and
the posterior. We sample the prior using short-run Markov Chain Monte Carlo (MCMC) [17], and
the posterior using importance sampling. Specifically, the proposed importance sampling sidesteps
back-propagation through time in posterior MCMC with a single-step lookahead of the Markov
transition. The transition is learned from self-interaction.

Once the LanMDP is learned, it can be used for policy execution and planning through prior and
posterior sampling, or in other words, policy as prior, planning as posterior inference [18, 19]. In
our analysis, we derive an objective of the non-Markovian decision-making problem induced from
the MLE. We show that the prior sampling at each step can indeed lead to optimal expected returns.
Almost surprisingly, we find that the entire family of maximum entropy reinforcement learning [4, 20—
24] naturally emerges from the algebraic structures in the MLE of latent policies. This formulation
avoids the peculiarities of maximizing state transition entropy in prior arts [20, 24]. We also show that
when a target goal state is in-distribution, the posterior sampling is optimizing a conditional variant
of the objective, realizing model-based planning. In our experiments, we validate the necessity and
efficacy of our model in learning to sequentially plan cubic curves, and illustrate an over-imitation
phenomenon [25, 26] when the learned model is repurposed for goal-reaching. We also test the
proposed modeling, learning, and computing method in MuJoCo, a domain with higher-dimensional
state and action spaces, and achieve performance competitive to existing methods, even those that
learn with action labels.

2 Non-Markov Decision Process

The most well-known sequence model of a decision-making process is Markov Decision Process. A
MDP is a tuple M = (S, A, T, R, p, H) that contains a set S of states, a set A of actions, a transition
T : S x A TI(S) that returns for every state s; and action a; a distribution over the next state s;y1;
areward function R : S x A — R that specifies the real-valued reward received by the agent when
taking action a; in state s;; an initial state distribution p : TI(.S); and a horizon H that is the maximum
number of actions/steps the agent can execute in one episode. A solution to an MDP is a policy that
maps states to actions, 7 : S — II(A). The value of policy 7, V™ (s) = ETJ[Zf:O R(s¢)|so =
s] is the expected cumulative reward (i.e. return) when executing with this policy starting from
state s. The state-action value of policy 7 is Q™ (s¢,a:) = R(st,at) + Ers, 15,00 [V (5t41)]-
The optimal policy 7* can maximize either E,,,)[V ™ (s0)], or the same objective plus the policy
entropy [27, 4, 22]. The Markovian assumption supports the convergence of a series of TD-learning
methods [9], whose reliability in non-Markovian domains is still an open problem.



A non-Markov Decision Process is also a tuple M = (S, A, T, R, p, H). It generalizes MDP by
allowing for non-Markovian transitions and rewards [28]. Notably, assuming Markovian transition
and non-Markovian reward is usually sufficient since a state space with non-Markovian transition can
be represented with its Markov abstraction [29]. Markov abstraction can be done either by treating
the original space as observations generated from the latent belief state in a Partially Observable
Markov Decision Process (POMDP) [30], or by projecting historic contexts into an embedding space
for sequence pattern detection [31, 32, 28]. Presumably, it is statistically more interesting in deep
learning to focus our attention on non-Markovian domains where the temporal dependencies in
transition and reward differ. Therefore, without loss of generality, we assume that the state transition
is Markovian T' : S x A > II(S), while the reward is not [33, 11], i.e. R : ST — R, with S
denotes the set of all finite non-empty state sequences with length smaller than /7. Obviously, the
policy should also be non-Markovian 7 : S* + TI(A). Check Figure 1 for a probabilistic graphical
model of the generation process of state sequences from a policy.

3 Learning and Sampling

3.1 Latent-action nMDP

A complete trajectory is denoted by

CZ {Sﬂvaﬂaslvalv"' aaT—lasT}; (1)
where 7' is the maximum length of all observed trajectories and 7' << H. The joint distribution of
state and action sequences can be factorized according to the causal assumptions in nMDP:

pe(() = p(So)pa(ao|80)p5(S1|80, ao) e 'pa(anl|3():T71)pﬁ(3T|5T717 anl)
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where p, (at|S0:t—1) is the policy model with parameter o, pg(s¢|s¢—1, a;—1) is the transition model
with parameter 3, both of which are parameterized with neural networks, 6 = («, 8). p(sg) is the
initial state distribution, which can be sampled as a black box.

The density families of policy and transition are consistent with the conventional setting of IRL [4],
where the transition describes the predictable change in state as a single-mode Gaussian, sy41 ~
N (gs(ss,ar),0?), and the policy accounts for bounded rationality as a Boltzmann distribution with
state-action value as the unnormalized energy:

DPa (at |30:t) =

1
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where f,(a; so.t) is the negative energy, Z (o, so.t) = §exp(fa(at; so:t))day is the normalizing
constant given the contexts sg.;. We discuss a general push-forward transition in Appx A.3.

Since we can only observe state sequences, the aforementioned generative model can be understood
as a sequential variant of LEBM [16], where the transition serves as the generator and the policy
is a history-conditioned latent prior. The marginal distribution of state sequences and the posterior
distribution of action sequences are:

po(S0:1, G0:T7—1)

po(s0.7) = JPG(SO:T;GO:Tfl)dCLO:Tflv po(ao.r—1]s0.7) = 4)
pQ(SO:T)
3.2 Maximum likelihood learning
We need to estimate § = (a,/3). Suppose we observe offline training examples: {£'},i =
1,2,---,n, & =][sb, s, ..., sk The log-likelihood function is:
n .
Los(6) =, logpe(€)). )

Denote posterior distribution of action sequence pg(ao.7—1|S0.7) as pg(A|S) for convenience where
A and S means the complete action and state sequences in a trajectory. The full derivation of the
learning method can be found in Appx A.2, which results in the following gradient:

T—1
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policy/prior transition




Due to the normalizing constant Z(«, sg.¢) in the energy-based prior p,, the gradient for the policy
term involves both posterior and prior samples:

6a,t(s) = Epg(AlS) [Va log pa. (at |50:t)] = Epg(A\S) [vocfoc(aﬁ SO:t)]_Epa(aﬂso:,,) [vafa (at§ 30(t7>)] >
where d,,.(S) denotes the expected gradient of policy term for time step ¢. Intuition can be gained
from the perspective of adversarial training [34, 35]: On one hand, the model utilizes action samples
from the posterior pp(A|S) as pseudo-labels to supervise the unnormalized prior at each step. On the
other hand, it discourages action samples directly sampled from the prior. The model converges when
prior samples and posterior samples are indistinguishable.

To ensure the transition model’s validity, it needs to be grounded in real-world dynamics 7r when
jointly learned with the policy. Otherwise, the agent would be purely hallucinating based on the
demonstrations. Throughout the training process, we allow the agent to periodically collect on-policy

data {(si,af,si 1)}, i =1,2,--- ,m,t =1,2,--- T with po(a¢|so.:) and update the transition
with a composite likelihood [36]
m T . .
Lcomp(ﬁ) = Loff (9) + Lon(ﬂ)v Lon(ﬂ) = Zi=1 Zt:l logpﬁ(5;+1|5;v a;) (8)

3.3 Prior and posterior sampling

The maximum likelihood estimation requires samples from the prior and the posterior distributions of
actions. It would not be a problem if the action space is quantized. However, since we target general
latent action learning, we proceed to introduce sampling techniques for continuous actions.

When sampling from a continuous energy space, short-run Langevin dynamics [17] can be an efficient
choice. For a target distribution 7(a), Langevin dynamics iterates a1 = aj, + sVq, log m(ay) +
v/2s€;,, where k indexes the number of iteration, s is a small step size, and ¢, is the Gaussian white
noise. 7(a) can be either the prior p,,(at|so:+) or the posterior pg(A|S). One property of Langevin
dynamics that is particularly amenable for EBM is that we can get rid of the normalizing constant. So
for each ¢ the iterative update for prior samples is

a1 =k + $Va, , fa(ark; S0:) + V2s€k. ©

Given a state sequence Sg.7 from the demonstrations, the posterior samples at each time step a; come
from the conditional distribution p(a¢|so.r). Notice that with Markov transition, we can derive

-1 -1
polao:r—1]sor) = Ht:o po(aclso.r) = tho po(ai|so:+1)- (10)

Eq. (10) reveals that given the previous and the next subsequent state, the posterior can be sampled at
each step independently. So the posterior iterative update is

At k1 = Ak + 5V, , (108 Da(ask|50:t) +10g pp(St41]5¢, s k) + V2s€p. (1)

policy/prior transition
Intuitively, action samples at each step are updated by back-propagation from its prior energy and a
single-step lookahead. While gradients from the transition term are analogous to the inverse dynamics
in Behavior Cloning from Observations (BCO) [37], it may lead to poor training performance due to
non-injectiveness in forward dynamics [38].

We develop an alternative posterior sampling method with importance sampling to overcome this
challenge. Leveraging the learned transition, we have

pp(Stt1lse, ar)
Ep. (ar]so.) [PB(St41]8t, at
Let c(at; 80:041) = Ep (as]s0.0) [P8(5¢41]5¢, a¢)], posterior sampling from pg(ao.7—1[s0:7) can be
realized by adjusting importance weights of independent samples from the prior p,, (a¢|So.¢), in which

the estimation of weights involves another prior sampling. In this way, we avoid back-propagating
through non-injective dynamics and save some computation overhead.

Pa(at|80:t+1) = )]Pa(at|80:t)~ (12)

To train the policy, Eq. (7) can now be rewritten as

pa(sir1lse, az)
80t(S) = By (ar50.0) [ﬁt+|tt

Vafalas; sot) | —Ep (ar1ses) [ Vafalas; sot)] . 13
c(at; 80:t41) fa(as; so:) pa(aclsoe) | Vafalat; so)] (13)



4 Decision-making as Inference

In Section 3, we present our method within the framework of probabilistic inference, providing a
self-contained description. However, from a decision-making perspective, the learned policy may
appear arbitrary. In this section, we establish a connection between probabilistic inference and
decision-making, contributing a novel analysis that incorporates the latent action setting, the non-
Markovian assumption, and maximum likelihood learning. This analysis is inspired by, but distinct
from, previous studies on the relationship between these two fields [39, 20, 40, 41, 24].

4.1 Policy execution with prior sampling

Let the ground-truth distribution of demonstrations be p* (so.7 ), and the learned marginal distributions
of state sequences be py(so.7). Eq. (5) in Section 3.2 is an empirical estimate of

Epst (s0.r) 108 Do (s0:7)] = By () [108 p* (50) + Epst (51,1150 [108 Pa (s1:7]50)]] - (14)

We can show that a sequential decision-making problem can be constructed to maximize the same
objective. Our main result is summarized as Theorem 1.

Theorem 1. Assuming the Markovian transition pgsx (Si41|S¢,ar) is known, the ground-truth
conditional state distribution p*(S¢11|S0:t) for demonstration sequences is accessible, we can
construct a sequential decision-making problem, based on a reward function r,(S¢41, S0:t) =
log § pa(ai|so:t)ppx (St41|S¢, ar)day for an arbitrary energy-based policy pa(at|so.t). Its objective

is
T T T
tho Ep# (s0.0) [VP (50:¢)] = Eps (0.7 [tho Zk:t To(Sk41; So;k)] ,

where VP (s50.4) i= Eps (s, 1.0]50:0) [Zfzt To(Sk+1; So:x )] is the value function for p,,. This objective
yields the same optimal policy as the Maximum Likelihood Estimation Ex s, ..\ [1og pe(s0.)].

If we further define a reward function r4,(St41, at, S0:t) 1= To(St41, So:t) + log pa(at|so:t) to con-
struct a Q function for p,,

QP> (at; 50:¢) = Epk (s, 11500) [Ta (St 415 at, 50:¢) + VP (50:41)] -
The expected return of QP> (ay; so.¢) forms an alternative objective
By (arlson [Q7 (ar; 50:0)] = VP (s04) — Halarlsos) = )

that yields the same optimal policy, for which the optimal Q* (ay; so.+) can be the energy function.

T-1

k=ti1 ]Ep* (St+1:k]50:t) [Hoz(ak |50:k)]

Only under certain conditions, this sequential decision-making problem is solvable through non-
Markovian extensions of the maximum entropy reinforcement learning algorithms.

Proof. See Appx B. [

The constructive proof above offers profound insights. By starting with the hypothesis of latent
actions and MLE, and then considering known transition and accessible ground-truth conditional
state distribution, we witness the automatic emergence of the entire family of maximum entropy
(inverse) RL. This includes prominent algorithms such as soft policy iteration [20], soft Q learning [22]
and soft Actor-Critic (SAC) [23]. Among them, SAC is the best-performing off-policy RL algorithm
in practice. Unlike the formulation with joint state-action distribution [20, 24], our formulation avoids
the peculiarities associated with maximizing state transition entropy. The choice of the maximum
entropy policy aligns naturally with the objective of capturing uncertainty in latent actions, and it
offers inherent advantages for exploration in model-free learning [42, 22].

4.2 Model-based planning with posterior sampling

Lastly, with the learned model, we can do posterior sampling given any complete or incomplete
state sequences. The computation involved is analogous to model-based planning. In Section 3.3,
we introduce posterior sampling with short-run MCMC and importance sampling when we have the
target next state, which generalizes all cases where the targets of immediate subsequent states are
given. Here we introduce the complementary case, where the goal state st is given as the target.



The posterior of actions given the sequential context sg.; and a target goal state st is

po(as.r|S0:¢, 7)o (ar:T, ST|50:0)

T—t—1 (15)
= J nk:o [pﬂ(5t+k+1 |at+k, 3t+k)pa(at+k|50:t+k)] p5<5T|aT71; s7—1)dsir1.7-1,

in which all Gaussian expectation E, [-] can be approximated with the mean [43]. Therefore, a1
can be sampled via short-run MCMC with V,, .. log pg(as.T, sT|S0:+) back propagated through time.
The learned prior can be used to initialize these samples and facilitate the MCMC mixing.

5 Experiments

5.1 Cubic curve planning

To demonstrate the necessity of non-Markovian value and test the efficacy of the proposed model,
we designed a motivating experiment. Path planning is a prototypical decision-making problem, in
which actions are taken in a 2D space, with the x-y coordinates as states. To simplify the problem
without loss of generality, we can further assume z, to change with constant speed h, such that the
action is Ay;. Obviously, the transition model (441, yr+1) = (z: + h, y¢ + Ay,) is Markovian.

Path planning can have various objectives. Imagining you are a passenger of an autonomous driving
vehicle. You would not only care about whether the vehicle reaches the goal without collision but also
how comfortable you feel. To obtain comforting smoothness and curvature, consider y is constrained
to be a cubic polynomial F(z) = ax® + bz? + cx + d of x, where (a,b,c,d) are polynomial
coefficients. Then the policy for this decision-making problem is non-Markovian.

To see that, suppose we are at (x4, y;) at this moment, and the next state should be (z; + h, F'(x;+h)).
With Taylor expansion, we know F(z; + h) ~ F(x;) + F'(z)h + £ 2(!:“)h2 + £ ?)(Ix")h3, sO

we can have a representation for the policy, 7(Ay:|xs,y:) = F'(z¢)h + FNQ(,“) h? + F//;(,zt)hg’.
However, our representation of state only gives us (z,y;), so we will need to estimate those
derivatives. This can be done with the finite difference method if we happen to remember the previous
states (T¢—1,Y¢t—1)s - (Tt—3, Yt—3). Taking the highest order derivative for example, F"'(z;) =
(y¢ — 3ys—1 + 3ys—2 — ys_3)/h3. Itis thus apparent that the policy would not be possibly represented

if we are Markovian or don’t remember sufficiently many prior states.

This representation of policy is what models should learn through imitation. However, they should not
know the polynomial structure a priori. Given a sufficient number of demonstrations with different
combinations of polynomial coefficients, models are expected to discover this rule by themselves.
This experiment is a minimum viable prototype for general non-Markovian decision-making. It can
be easily extended to higher-order and higher-dimensional state sequences.

Setting We employ multi-layer perception (MLP) for this experiment. Demonstrations can be
generated by rejection sampling. We constrain the demonstration trajectories to the (x,y) € (—1,1) x
(—1,1) area, and randomly select y and 3’ at x = —1 and = = 1. Curves with third-order coefficients
less than 1 are rejected. Otherwise, the models may be confused in learning the cubic characteristics.

Non-Markovian dependency and latent energy-based policy are two prominent features of the
proposed model. To test the causal role of non-Markovianness, we experiment with context length
{1, 2,4, 6}. Context length refers to how many prior states the policy is conditioned on. When it is 1,
the policy is Markovian. From our analysis above, we know that context length 4 should be the ground
truth, which helps categorize context lengths 2 and 6 into insufficient and excessive expressivity.
With these four context lengths, we also train Behavior Cloning (BC) models as the control group.
In a deterministic environment, there should not be a difference between BC and BCO, as the latter
basically employs inverse dynamics to recover action labels. For our model, this simple transition can
either be learned or implanted. Empirically, we don’t notice a significant difference.

Performance is evaluated both qualitatively and quantitatively. As a 2D planning task, a visualization
of the planned curves says a thousand words. In our experiment, we take & = 0.1, so the planned
paths are rather discretized. We use mean squared error to fit a cubic polynomial and use the residual
error as a metric. When calculating the residual error, we exclude those with a third-order coefficient
is less than 0.5. Actually, the acceptance rate itself is also a viable metric. It is the number of accepted
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Figure 2: Results for cubic curve generation. (a-c) show curves generated at training step 3000 with context
lengths 1, 2, 4. Starting points are randomly selected, and all following are sampled from the policy model. Only
models with context length 4 learn the cubic characteristic. (d) shows curves from demonstrations. (e) and (f)
present the smoothed acceptance rate and fitting residual of trajectories from policies with context lengths 1, 2,
4, 6. The x-axis is the training steps. (e)(f) are better to be viewed together because residual errors will only be
calculated if the acceptance rate is above a threshold. For context length 1, the acceptance rate is always zero for
BC, so it is not plotted here. (g) shows curves planned by BC with context length 2. It can be compared with (b).
Interestingly, LanMDP with context length 2 demonstrates certain cubic characteristics when trained sufficiently
long, while the BC counterpart only plans straight lines. (h) is the result of goal-reaching planning, where the
dashed line comes from a hand-designed Markov reward, the solid line from the trained LanMDP.

trajectories divided by the total number of testing trajectories. It is complementary to the residual
error because it directly measures the understanding of cubic polynomials.

Results Fig. 2(a-c) show paths generated with LanMDP after training for 3000 steps. They have
context lengths 1, 2, 4 respectively. Compared with demonstrations in Fig. 2(d), only paths from
the policy with context length 4 exhibit cubic characteristics. The Markovian policy totally fails this
task. But it still generates curves, rather than straight lines from Markovian BC (see Fig. Al). The
policy with context length 2 can plan cubic-like curves at times. But some of its generated paths are
very different from demonstrations. To investigate this interesting phenomenon, we plot the training
curves in Fig. 2(e)(f). While LanMDP policies with sufficient and excessive expressivity achieve
high acceptance rates at the very beginning of the training, policies with Markovian and insufficient
expressivity struggle to generate expected curves at the same time. Remarkably, as training goes by,
the policy with context length 2, which can only approximate the ground-truth action in the first order,
gradually improves in acceptance rate and residual error. This observation is consistent with Fig. 2(b).

Continuing our investigation, we plot curves generated by its BC counterparts in Fig. 2(g) but only
see straight lines like the Markovian BC. Therefore, we conjecture that the LanMDP policy with
length context 2 leverages its energy-based multi-modality to capture the uncertainty induced by
marginalizing part of the necessary contexts. The second-order error in Taylor expansion is possibly
remedied by this, especially after long-run training. The Markovian LanMDP policy, however, fails
to unlock such potential because it cannot even figure out the first-order derivative.

There are some other note-worthy observations. (i) Excessive expressivity does not impair perfor-
mance, it just requires more training. As shown in Fig. 2(e)(f), at the end of training, LanMDP
policies with context length 6 perform as well as ones with context length 4. This demonstrates
LanMDP’s potential in inducing proper state abstraction from sequential contexts. TD learning,
however, has been shown to be incapable of such abstraction in a prior work [44]. (ii) BC policies
with sufficient contexts do not perform as well as LanMDP, as shown in Fig. 2(e)(f). We conjecture
that this might be attributed to the larger compounding error in BC. To shield the influence of com-
pounding errors, we design an experiment where we measure the residual error of the next state after
filling the historical contexts in the learned LanMDP context 4 and BC context 4 with expert states,
rather than sampled states. The errors are both around 0.0004 for LanMDP and BC, closing the gap
in Fig. 2f. The implication seems to be LanMDP is more robust to compounding errors than BC.



-1.00
-100 -0.75 -050 -0.25 000 025 050 075 100

Figure 3: Mapping a generated curve to a trajectory in the value landscape. We train a neural network to
approximate the non-Markovian value function constructed with the learned policy and transition following
Theorem 1, and then visualize the landscape by projecting all history-augmented states to a 2D space with a
top view (left) and a front view (middle). Starting from a random initial state, decisions are sequentially made
according to the learned policy, leaving a curve in the original state space (right) and a trajectory on the value
landscape. It is evident that the non-Markovian value increases monotonically along the trajectory.

To verify our analysis in Section 4, we visualize the non-Markovian value function defined in
Theorem 1 in Fig. 3. The value increases monotonically when the policy generates the cubic curve
step by step. In an animation we included on the project homepage', we further show that the action
sampling at each state yields the highest value in reachable next states.

At last, we study repurposing the learned sequence model for goal-reaching. This is inspired by
a surprising phenomenon, over-imitation, from psychology. Over-imitation occurs when imitators
copy actions unnecessary for goal-reaching. In a seminal study [25], 3- to 4-year-old children and
young chimpanzees were presented with a puzzle box containing a hidden treat. An experimenter
demonstrated a goal-reaching sequence with both causally necessary and unnecessary actions. When
the box was opaque, both chimpanzees and children tended to copy all actions. However, when a
transparent box was used such that the causal mechanisms became apparent, chimpanzees omitted
unnecessary actions, while human children imitated them. As shown in Fig. 2(h), planning with
the learned non-Markovian value indeed leads to casually unnecessary states, consistent with the
demonstrations. Planning with designed Markov rewards produces causally shortest paths.

5.2 Mujoco control tasks

We also report the empirical results of our model and baseline models on MuJoCo control tasks:
Cartpole-v1, Reacher-v2, Swimmer-v3, Hopper-v2 and Walker2d-v2. We train an expert for each
task using PPO [45]. They are then used to generate 10 trajectories for each task as demonstrations.
Actions are deleted in the state-only setting.

Setting We conduct a comparative analysis of LanMDP against several established imitation
learning baselines including BC [46], BCO [37], GAIL [35], GAIFO [7], and OPOLO [38]. Note that
BC and GAIL have access to action labels, positioning them as the control group. The experimental
group includes state-only methods such as LanMDP, BCO, GAIFO, and OPOLO. The expert is the
idealized baseline. For all tasks, we adopt the MLP architecture for both transition and policy. The
input and output dimensions are adapted to the state and action spaces in different tasks, and so
are short-run sampling steps. Sequential contexts are extracted from stored episodic memory. The
number of neurons in the input and hidden layer in the policy MLP varies according to the context
length. We use replay buffers to store the self-interaction experiences for training the transition model
offline. See Appendix D for detailed information on network architectures and hyper-parameters.

Results Results for context length 1 are illustrated through learning curves and a bar plot in Fig. 4.
These learning curves are the average progress across 5 seeds. Scores in the bar plot are normalized
relative to the expert score. Our model demonstrates significantly steeper learning curves compared to
the state-only GAIFO baselines, especially in Cartpole and Walker2d. This illustrates the remarkable
data efficiency of model-based methods. Additionally, LanMDP consistently matches or surpasses
the performance of BC and GAIL, despite the latter having access to action labels. In comparison to
the expert, LanMDP only lags behind in the most complex Walker2d task. However, it still maintains
a noticeable margin over other state-only baselines.

Thttps://sites.google.com/view/non-markovian-decision-making
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Figure 4: Results in MuJoCo. for our LanMDP (red), BC (orange), BCO (green), GAIL (purple), GAIFO
(cyan), OPOLO (gray), expert (blue). The learning curves are obtained by averaging progress over 5 seeds.
‘We only plot curves for interactive learning methods. The scores of all other methods are plotted as horizontal
lines. LanMDP does not have performance scores in the first /' steps because this data is collected with random
policy to fill the replay buffer, which is then used to train the transition model. K = 0 for Cartpole, 2e4 for
Reacher and Swimmer, 2eb for Hopper and Walker2d. We include these steps for fair comparisons. LanMDP
outperforms existing state-only methods and matches BC, the best-performing state-action counterpart. The bar
plot presents the scores from the best-performing policy during the training process, averaged across 5 seeds and
normalized with the expert mean. The score in Reacher is offset by a constant before the division of the expert
mean to align with the positive scores in all other tasks. The expert mean is plotted as a horizontal line. Our
model clearly stands out in state-only methods, while matching and even outperforming those with action labels.
Its scores only lag behind the expert mean in the most complex task. Better viewed in color.

Table 1: Comparison between Markovian and non-Markovian policy in MuJoCo control task. Context
length is the number of prior sequential states that the policy depends on, with the current one included. Recall
that these MuJoCo tasks are inherently Markovian, thanks to highly specified state features. Nevertheless,
non-Markovian policies perform on par with Markovian ones and BC, despite having higher expressivity than
sufficient. The best and the second-best results are highlighted. Results are averaged over 5 random seeds.

TASK CONTEXT 3 CONTEXT 2 CONTEXT 1 BC
CARTPOLE 500.00+0.00 500.00+0.00 500.00+0.00 474.80+18.87
REACHER -10.9140.73 -9.70+0.64 -9.00+0.87 -8.76+0.12
SWIMMER 42.67+4.66 43.52+4.31 41.22+42.67 38.64+1.76
HoOPPER 3051.16+£111.78  3053.91+176.5 3045.27+240.45 3083.32+156.61

WALKER2D  1703.024+228.86 1811.77+£369.54 1753.46+193.69 1839.94+376.87

Results for longer context lengths, i.e. the non-Markovian setting, are reported in Table 1, in which
the highest return across the training process is listed. Originally invented for studying differentiable
dynamics, MuJoCo offers state features that are inherently Markovian. Though a MDP is sufficiently
expressive, learning a more generalized nMDP does not impair the performance. Sometimes it can
even improve a little bit. Due to the limit of time, the maximum context length is only 3. Within the
investigated regime, our result is consistent with that reported by Janner et al. [12]. We leave the
experiments with longer memory and more sophisticated neural networks to future research.

Table 2 is a study of the computational overhead for the sampling techniques involved. The short-run
MCMC for posterior inference takes longer than a single step of gradient descent. Replacing it with
the proposed importance sampling improves training efficiency by a large margin.



Table 2: Computational overheads for posterior sampling, importance sampling, and gradient descent (in seconds)
in one training step. MLP(n,m) means that we implement the policy model as an MLP with m layers and n
hidden neurons each layer. Results are averaged over 10 epochs. The number of MCMC steps is set to 10, 50
respectively. Replacing posterior sampling with importance sampling improves training efficiency.

TASK aDIM sDIM ARCHITECTURE 10 STEPS 50 STEPS

REACHER 2 11 MLP(150;4) 0.0108/0.0076/0.0014  0.0480/0.0350/0.0014
SWIMMER 2 8 MLP(150;4) 0.0100/0.0071/0.0014  0.0463/0.0340/0.0014
HOPPER 3 12 MLP(512;4) 0.0268/0.0170/0.0074  0.1403/0.0836/0.0073
WALKER2D 6 18 MLP(512;4) 0.0282/0.0184/0.0077  0.1487/0.0899/0.0076

6 Discussion

Related work in imitation learning Earliest works in imitation learning utilized BC [3, 47]. When
the training data is limited, temporal drifting in trajectories [48, 49] may occur, which led to the
development of IRL [6, 50, 51, 4, 34, 35]. In recent years, the availability of abundant sequence/video
data is not the primary concern, but rather the difficulty in obtaining action labels. There has since
been increasing attention in ILfO [52, 53, 7, 38, 8], a setting similar to ours. Distinguished from
existing ILfO solutions, our model probabilistically describes the entire trajectory. In particular,
the energy-based model [54, 55] in the latent policy space [16] has been relatively unexplored.
Additionally, the capability for model-based planning is also a novel contribution.

Limitation and potential impact The proposed model factorizes the joint distribution of state-
action sequences into a time-invariant causal transition and a latent policy modulated by sequen-
tial contexts. While this model requires sampling methods, and can be non-negligible for higher-
dimensional actions, it is worth noting that action quantization, as employed in transformer-based
models [12, 13], has the potential to reduce the computation overhead. In our experiments, a measure
of the diversity of behavior is omitted, similar to other works in the literature of reinforcement learn-
ing. Howeyver, it deserves further investigation since multi-modal density matching is a crucial metric
in generative modeling. Importantly, our training objective and analysis are independent of specific
modeling and sampling techniques, as long as the state transition remains time-invariant. Given the
ability of neural networks to learn approximate invariance through data augmentation [56-59], we
anticipate that our work will inspire novel training and inference techniques for monolithic sequential
decision-making models [12-15].

Implications in neuroscience and psychology The proposed latent model is an amenable frame-
work for studying the emergent patterns in the mirror neurons [60, 61], echoing recent studies in
grid cells and place cells [62, 63]. When the latent action is interpreted as an internal intention,
the inference process is a manifestation of Theory of Mind (ToM) [64]. The phenomenon of over-
imitation [25, 26, 65] can also be relevant. As shown in Section 5, although the proposed model
learns a causal transition and hence understands causality, when repurposed for goal-reaching tasks,
the learned non-Markovian value can result in “unnecessary” state visitation. It would be interesting
to explore if over-imitation is simply an overfitting due to excessive expressivity in sequence models.

7 Conclusion

In this study, we explore deep generative modeling of state-only sequences in non-Markovian domains.
We propose a model, LanMDP, in which the policy functions as an energy-based prior within the
latent space of the state transition generator. This model learns by EM-style maximum likelihood
estimation. Additionally, we demonstrate the existence of a decision-making problem inherent in such
probabilistic inference, providing a fresh perspective on maximum entropy reinforcement learning.
To showcase the importance of non-Markovian dependency and evaluate the effectiveness of our
proposed model, we introduce a specific experiment called cubic curve planning. Our empirical
results also demonstrate the robust performance of LanMDP across the MuJoCo suite.
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A Learning and Sampling

A.1 Deep generative modelling
A complete trajectory is denoted by

C:{807CL0781,G1,"' uanhsT}a (1)

where T is the maximum length of all observed trajectories. The joint distribution of state and action
sequences can be factorized according to the causal assumptions in nMDP:

pe(C) = p(So)pa(ao|So)p5(51|50, ao) e ’pa(aT—l|50:T—1)pﬁ(5T|5T—17 CLT—l)
T-1 2)
= p(s0) nt:o Pa(at]so:t)ps(sesilse, ar),

where p, (at|s0:¢—1) is the policy model with parameter c, pg(s¢|s¢—1, a;—1) is the transition model
with parameter 3, both of which are parameterized with neural networks, 6 = («a, 8). p(sg) is the
initial state distribution, which can be sampled as a black box.

The density families of policy and transition are consistent with the conventional setting of IRL [4].
The transition describes the predictable change in state space, which is often possible to express the
random variable s, as a deterministic variable s;+1 = gg(s¢, a, €), where € is an auxiliary variable
with independent marginal p(¢), and gg(.) is some vector-valued function parameterized by /5. The
policy accounts for bounded rationality as a Boltzmann distribution with state-action value as the
unnormalized energy:

pa(at|50:t) = ) exp (fa(at;So:t)), 3

1
Z(CY, S0:t
where f,(a; so.t) is the negative energy, Z (o, so.t) = §exp(fa(at; so:t))day is the normalizing
constant given the history sg.;.

Since we can only observe state sequences, the aforementioned generative model can be understood
as a sequential variant of LEBM [16], where the transition serves as the generator and the policy
is a history-conditioned latent prior. The marginal distribution of state sequences and the posterior
distribution of action sequences are:

9\ S50:T, A0:T—
po(so.r) = J‘pe(SO:T;aO:Tfl)dGO:Tflv po(ao.T—1s0.1) = Po(s7, GoT-1) “
p@(SO:T)
A.2 Maximum likelihood learning
We need to estimate 6 = («, 3). Suppose we observe training examples: {¢},i = 1,2, ,n, &' =

[sh,st, ..., sk]. The log-likelihood function is:

L(0) =Y logpe(&"). ®)

Denote posterior distribution of action sequence pg(ao.7—1|S0.7) as pg(A|S) for convenience where
A and S means the complete action and state sequences in a trajectory. The gradient of log-likelihood
is:
Vo logpe(§) = Valogpa(so, s1, - ,57)
po(A|$) [ Vo logpe(so, s1,--- ,57)]
po(A19)[Vologpo(so, s,y s7)] + Epyajs)[Valog pe(A|S)]
po(AlS) [Vologpa(so, ag, 51,01, -+ ,ar—1,57)]
po(AlS) [V 10g;0(80)]0a(a0|80) -palar—1|sor—1)ps(sr|sr—1,ar—1)] (0)

Vi Z (logpa(at|50-t) + log ps(set1lse, ar))]

=E
E
E
E
Epy a1l
=E, A|S)[E (V logpa(at|50t)+V[310gpﬁ(st+1|staat))]

pollcy/prlor transition
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where the third equation is because of a simple identity E ., (,) [Vg log ms(a)] = 0 for any probability
distribution 7y (a). Applying this simple identiy, we also have:
0= Epa(aﬂso;f,) [v& 10g Pa (at‘s():t)]
= Epa (at|so:t) [va.fa (at; 50:1‘,) - va log Z(Oé, SO:t)] (7)
= }Ep(y (at|so:t) [vafa (at; 80:t>] - Va lOg Z(a7 SO:t)~

Due to the normalizing constant Z(«, so.;) in the energy-based prior p,,, the gradient for the policy
term involves both posterior and prior samples:

0a,t(S) = Epyars) [Valogpalalso.t)]
=Ep,(a19) [Vafalas; sor) — Valog Z(a, so.t)]
= Ep,(als) [Vafalas 504) = Ep, ar)so.) [V Falas so:)]]
=Ep,a15) [Vafalas s0:0)] = Ep (ar)son) [Vafalas so:6)]

where 0, ¢(S) denotes the surrogate loss of policy term for time step ¢. Intuition can be gained from
the perspective of adversarial training [34, 35]: On one hand, the model utilizes action samples from
the posterior pg(A|S) as pseudo-labels to supervise the unnormalized prior at each step pq, (at|So:)-
On the other hand, it discourages action samples directly sampled from the prior. The model converges
when prior samples and posterior samples are indistinguishable.

®)

To ensure the transition model’s validity, it needs to be grounded in real-world dynamics when
jointly learned with the policy. Otherwise, the agent would be purely hallucinating based on the
demonstrations. Throughout the training process, we allow the agent to periodically collect self-
interaction data with p,, (a;|so.;) and mix transition data from two sources with weight wg:

05,t(S) = waEp, a5y [V logpp(sit1lse, ar)] + (1 —wp)Ey (ay]s0.0),7r [V 10gp,8(£t+1|5t»at)(]9-)

A.3 General transition model

We need to compute the gradient of /3 for the logarithm of transition probability in Equation 9, and
as we will see in section 3.3, we also need to compute the gradient of the action during sampling
actions. The reparameterization [43] is useful since it can be used to rewrite an expectation w.r.t
pa(St+1]8t, ar) such that the Monte Carlo estimate of the expectation is differentiable, so we use
delta function §(.) to rewrite probability as an expectation:

pp(Ses1lse, ar) = J5(St+1 = S141)Pa(Styalse; ar)dsi g

(10)
= J(S(stﬂ — gs(st, ar, €))p(e)de.
Taking advantage of the properties of §(.):
1
| 1@y = 10, 807 = B st =) (an

where f is differentiable and have isolated zeros, which is x,,, we can rewrite the transition probability
as:

pp(sepilse, ar) = JZ z (e — en)p(€)de

gﬁ Staata )|5:€n
Z | £g5(

where ¢, is the zero of 5,11 = gg (st,at, €). Therefore, if we have a differentiable simula-
tor Vg, logps(si+1/st, ar) and the analytical form of p(e) , then gradient of both a; and 3 for
log pg(s¢+1|st, ar) can be computed.

(12)

)

B\St, Qt, € >|e=e"

The simplest situation is:

st1 = galse,ar) + €,¢ ~ p(e) = N(0,02). (13)
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In this case, there is only one zero €¢* for the transition function, s;+1 = gg(s¢, ar) + €*, and the
gradient of log probability is:

p(e*)
‘%(gﬁ(st’ at) + 6)|e:e*
= Vlogp(e*) (14)
= Vlogp(si+1 — gs(st, ar))

Vlogpg(si+1lst,ar) = Vlog

1
= ?(31#1 - gﬁ(st, at))VQﬂ(Su at)-

A.4 Prior and posterior sampling

The maximum likelihood estimation requires samples from the prior and the posterior distributions of
actions. It would not be a problem if the action space is quantized. However, since we target general
latent action learning, we proceed to introduce sampling techniques for continuous actions.

When sampling from a continuous energy space, short-run Langevin dynamics [17] can be an efficient
choice. For a target distribution 7(a), Langevin dynamics iterates ay+1 = ay + sV, log m(ay) +
v/2s¢,, where k indexes the number of iteration, s is a small step size, and ¢, is the Gaussian white
noise. 7(a) can be either the prior p, (at|so:¢) or the posterior pg(A|S). One property of Langevin
dynamics that is particularly amenable for EBM is that we can get rid of the normalizing constant. So
for each ¢ the iterative update for prior samples is

at k+1 = Gk + sVatykfa(at,k; SO:t) + vV 2s€. (15)

Given a state sequence Sg.7 from the demonstrations, the posterior samples at each time step a; come
from the conditional distribution p(a¢|so.r). Notice that with Markov transition, we can derive

T-1 T—1
polao:r—1]sor) = tho po(atsor) = tho po(atlso:t+1)- (16)

The point is, given the previous and the next subsequent state, the posterior can be sampled at each
step independently. So the posterior iterative update is
At k1 = gk + 5V, , logpe(ask|so.e41) + V2sey

= at + 5V, , logpe(so:t, atk, se+1) + V2se (17)

=ayk + 5Va,, (log pa (az,k|so:¢) +log ps(sey1lse, at)) + V2sep.

policy/prior transition
Intuitively, action samples at each step are updated with the energy of all subsequent actions and
a single-step forward by back-propagation. However, while gradients from the transition term are
analogous to the inverse dynamics in BCO [37], it may lead to poor training performance due to
non-injectiveness in forward dynamics [38].

We develop an alternative posterior sampling method with importance sampling to overcome this

challenge. Leveraging the learned transition, we have
pa(st+1]se, ar)

Epe (arlso) [P (sta1lse, ar

Let c(at; s0:t41) = Ep, (as]s0.) [P8(St41]5¢, a¢)], posterior sampling from py(ao.r—1|s0.7) can be

realized by adjusting importance weights of independent samples from the prior p,, (a¢|So.¢), in which

the estimation of weights involves another prior sampling. In this way, we avoid back-propagating
through non-injective dynamics and save some computation overhead in Eq. (17).

po(at|so:+1) = )]pa(at|50:t)~ (18)

To train the policy, Eq. (8) can now be rewritten as

pa(st+1lse, at)
60[,15(5) = Ep(,(adso:t) [mvafa (at; SO:t) - Epg(a“so:,,) [vafa(at; SO:t)] . (]9)

A.5 Algorithm

The learning and sampling algorithms with MCMC and with importance sampling for posterior
sampling are described in Algorithm 1 and Algorithm 2.
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Algorithm 1: LanMDP without importance sampling

Input: Learning iterations [V, learning rate for energy-based policy 7, learning rate for transition
model 7, initial parameters 6y = (v, o), expert demonstrations {so. }, context length L, batch
size m, number of prior and posterior sampling steps { Kq, K1}, prior and posterior sampling step
sizes {so, 1}
Output: 0y = (OLN7 BN)
Reorganize {sg.pr} to to state sequenec segments (S¢— 41, - ,St+1) with length L + 1.
Use energy-based policy with ay collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model ;.
fort =0to N —1do
Demo sampling Sample observed examples (S¢—r,4+1, -« , S141)req-
Posterior sampling: Sample {a;}!" ; using Eq. (17) with K iterations and stepsize s;.
Prior sampling: Sample {G;}", using Eq. (15) with K iterations and stepsize sg.
Policy learning: Update o to a;41 by Eq. (8) with learning rate 7,,.
Transition learning: Update replay buffer with trajectories from current policy model a1,
then update 3; to B;41 by Eq. (9) with learning rate 3.
end for

Algorithm 2: LanMDP with importance sampling

Input: Learning iterations /V, learning rate for energy-based policy 7., learning rate for transition
model 7, initial parameters 8y = (o, Bo), expert demonstrations {so.zr }, context length L, batch
size m, number of prior sampling steps K and step sizes s.
Output: 6y = (an, Bn).
Reorganize {so.q} to to state sequenec segments (S;—r,+1, - , S¢+1) With length L + 1.
Use energy-based policy with ay collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model Jy.
fort =0to N —1do
Demo sampling Sample observed examples (s;—7, 11, , st+1)£1.
Prior sampling: Sample {a;}, using Eq. (15) with K iterations and stepsize sg.
Policy learning: Update o, to a;11 by Eq. (19) with learning rate 7.
Transition learning: Update replay buffer with trajectories from current policy model a1,
then update ; to B;41 by Eq. (9) with learning rate 7)3.
end for
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B A Decision-making Problem in MLE

Let the ground-truth distribution of demonstrations be p* (sq.7 ), and the learned marginal distributions
of state sequences be pg(so.7). Eq. (5) is an empirical estimate of

Ep*(So:T)[logpa(SO:T)] = Ep*(So) [Ing* (s0) + Ep*(sllevSO)[1ng0(813T|80)]] . (20)

We can show that a sequential decision-making problem can be constructed to maximize the same
objective. To start off, suppose the MLE yields the maximum, we will have pg« = p*.

Define V*(sg) := Ep# (5,.0]s0) [108 p* (51:7[50)], We can generalize it to have a V' function

& (SO:t) = Ep*(st+1;ﬂs0;t) [logp* (St+1:T‘SO:t)]7 (21)
which comes with a Bellman optimality equation:
V*(50:) = Ep (5141 150.0) [T(8¢41, S0:¢) + V¥ (s0:041)] (22)

with 7(s41, So:¢) 1= log p*(s1+150:¢) = 10g § pas (at|so.4)ppx (Se41|t, ar)dag, V*(so.r) := 0. It
is worth noting that the r defined above involves the optimal policy, which may not be known a priori.
We can resolve this by replacing it with 7, for an arbitrary policy p, (a¢|so.+). All Bellman identities
and updates should still hold. Anyways, involving the current policy in the reward function should
not appear to be too odd given the popularity of maximum entropy RL [20, 24].

The entailed Bellman update, value iteration, for arbitrary V' and « is

V(s0:t) = Ept (syp1150.0) [T (50: St41) + V(s0:641)] - (23)
We then define r(s¢11, at, So:¢) = 7(St+1, S0:¢) + 10g Do (ar|S0.¢) to construct a @ function:
Q*(at; 50:t) = By (s, 11 1s0.0) [T (82415t 50:) + V7 (s0:041)] (24)
which entails a Bellman update, Q backup, for arbitrary o, QQ and V'
Q(at; $0:t) = Eps(s,41150.) [Ta(S0:t, at, se41) + V(S0:441)] - (25)

Also note that the V' and @ in identities Eq. (23) and Eq. (25) respectively are not necessarily
associated with the policy p, (at|so.¢t)- Slightly overloading the notations, we use Q%, V% to denote
the expected returns from policy p, (at|so:)-

By now, we finish the construction of atomic algebraic components and move on to check if the
relations between them align with the algebraic structure of a sequential decision-making problem [9].

We first prove the construction above is valid at optimality.
Lemma 1. When f,(a;; so.t) = Q*(as; s0.¢) — V*(S0:t), Pa(at|S0:¢) is the optimal policy.
Proof. Note that the construction gives us
Q" (at; 50:¢) = Bt (5,41 [50.0) [T(8e41, S0:¢) + 10g pax (ae|s0:¢) + V™ (s0:641)]
= log P (ar|50:t) + B (5,41 150.0) [T(8e415 50:¢) + V*(S0:041)] (26)
= log pax (at|so:t) + V*(s0:1)-
Obviously, Q* (ay; so.¢) lies in the hypothesis space of f, (a; So.¢)- O

Lemma 1 indicates that we need to either parametrize f,(at; So:t) or Q(az; So:¢)-

While Q* and V¢ are constructed from the optimality, the derived Q* and V* measure the perfor-
mance of an interactive agent when it executes with the policy p, (a¢|so.¢). They should be consistent
with each other.

Lemma 2. V*(s0.t) and E,,  (a,|s0..)[Q“ (at; 50:t)] yield the same optimal policy pux (at|so.t)-
Proof.

B (arls0.) [ Q% (a3 50:0)] = By (ars0.0) [Bp (s fson) [7(86415 @ty s0:6) + V* (s0:041)]]
:Epa(at\s&t) [Ep* (st+1]s0:¢) [logpa(at|50:t) + T(st+17 SO:t) + Va(s():tJrl)]]

ZEP*(SHHSO;O [’I‘(St+1, SO:t) - 7'lt)z(at'SO:t) + VQ(SO:tJrl)]

T-1
:VQ(SO:t) _ Ha(at\so:t) - Zk:t+1

27)

Ep*(StJrl:k‘SO:t) [HO& (ak |50:k)]7
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where the last line is derived by recursively applying the Bellman equation in the line above until sg.7
and then applying backup with Eq. (23). As an energy-based policy, p, (a¢|So.+)’s entropy is inherently
maximized [66]. Therefore, within the hypothesis space, pq (a¢|so.+) that optimizes V(sq.¢) also
leads to optimal expected return B, (q,|s,.,)[@“ (at; 50:¢)]- O

If we parametrize the policy as p (a¢]So.t)oC exp(Q*(a¢; So-¢)), the logarithmic normalizing constant
log Z%* (s0.¢) will be the soft V function in maximum entropy RL [21-23]

VE - (s0e) 1= log f exp(Q(as: s0.0))da, 28)

even if the reward function is defined differently. We can further show that Bellman identities and
backup updates above can entail RL algorithms that achieve optimality of the decision-making
objective V'*, including soft policy iteration [20]

exp(Q* (ay; S0:t))
Zak (SO:t)

Vsou, ke [0,1,...M]; (29)

pak+1(at|50:t) <«
and soft Q iteration [21]

Q™ (at; 50:t) < Epx (s, 1150,0) [ra(s():hatv Si+1) + Vgil}t(s():t+1):| , V80:¢, Gt
(30
Vf;’}:l (s0:¢) < logJexp(Qo"“ (a; s0.¢))da, Vso.4, k € [0,1,...M].

Lemma 3. If p*(s;11|s0:¢) is accessible and pgx (s141|5¢, ar) is known, soft policy iteration and
soft Q learning both converge 10 pox(at|so:t) = pox(ae|So:+)oc exp(Q* (at; So:¢)) under certain
conditions.

Proof. See the convergence proof by Ziebart [20] for soft policy iteration and the proof by Fox et al.
[21] for soft Q learning. The latter requires Markovian assumption. But under some conditions, it can
be extended to non-Markovian domains in the same way as proposed by Majeed and Hutter [67]. [

Lemma 3 means given p* (sy11|s0:¢) and pgx (S¢11|s¢, a¢), we can recover p,,» through reinforcement
learning methods, instead of the proposed MLE. So p,(a¢|so.+) is a viable policy space for the
constructed sequential decision-making problem.

Together, Lemma 1, Lemma 2 and Lemma 3 provide constructive proof for a valid sequential
decision-making problem that maximizes the same objective of MLE, described by Theorem 1.

Theorem 1. Assuming the Markovian transition pgx (8t41]8¢, ar) is known, the ground-truth
conditional state distribution p*(s;+1|s0.¢1) for demonstration sequences is accessible, we can
construct a sequential decision-making problem, based on a reward function r,(St41,S0:¢) =
log § pa(ai|so:)pp* (Se+1|5¢, ar)day for an arbitrary energy-based policy pa(ai|so.t). Its objective

A
T

T T
=0 Eps (s0.0) [VP* (80:)] = Eps (s0.1) [Zt=0 Zk=t Ta(Sk+1; SO:k)] )

where VP (s0.t) 1= Epx (s, 1.7]50.0) [Zfzt "o (Sk+1; So:x )] is the value function for p,,. This objective
yields the same optimal policy as the Maximum Likelihood Estimation E,x« (s, .\ [1og pe(s0.)].

If we further define a reward function r4,(St41, at, S0:t) 1= To(St41, So:t) + log pa(at|so:t) to con-
struct a Q function for pq,

QP> (at; 50:¢) = Epk (s, 1]50.0) [Ta (St 415 a1, 50:¢) + VP (50:41)] -
The expected return of QP> (ay; so.¢) forms an alternative objective
B (ar]s0.0) (@ (ar; S0:0)] = VP (50:0) — Ha(as]so:) = Y.

that yields the same optimal policy, for which the optimal Q* (ay; so.¢) can be the energy function.

T-1

k=t+1 EP* (St41:x]50:¢) [HO& (a’k |801k)]

Only under certain conditions, this sequential decision-making problem is solvable through non-
Markovian extensions of the maximum entropy reinforcement learning algorithms.
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C More results on Curve Planning

The energy function is parameterized by a small MLP with one hidden layer and 4 = L hidden neurons,
where L is the context length. In short-run Langevin dynamics, the number of samples, the number of
sampling steps, and the stepsize are 4, 20 and 1 respectively. We use Adam optimizer with a learning
rate le-4 and batch size 64. Here we present the complete result in Fig. A1 with different training
steps under context length 1 2 4 6, the acceptance rate and residual error of the testing trajectories, as
well as the behavior cloning results. We can see that even with sufficient context, BC performs worse
than LanMDP. Also, from the result of context length 6 we can see that excessive expressivity does
not impair performance, it just requires more training.

Acceptance Rate Residual Error BC Markovian BC Context Length 4

—— LanMDP Markovian

~— LanMDP Context 2 ”
—— LanMDP Contexta | .,
—— LanMDP Context 6
—— BC Context 2 s
—— BC Contexta

© %0 1000 1500 2000 2500 3000 3500 4000 © %0 1000 1500 2000 2500 3000 3500 4000 100 075 050 025 000 025 050 075 100 T00 075 050 025 000 025 050 075 100

Markovian

s
-100 075 -050 -025 000 025 050 075 100

Context Length 2

00 075 050 025 000 025 030 075 100 100 075 050 025 000 025 050 075 100 T00 075 050 025 000 025 050 075 100

Context Length 4

100 075 050 025 000 025 050 075 100 00 075 050 025 000 025 030 075 100 100 075 050 025 000 025 050 075 100 T00 075 050 025 000 025 050 075 100

Context Length 6

100 075 050 025 000 025 050 075 100 100 075 050 025 000 025 030 075 100 100 075 050 025 000 025 050 075 100 100 075 050 025 000 025 050 075 100

Training Step 1500 Training Step 2500 Training Step 3000 Training Step 4000

Figure A1: More results for cubic curve generation

D Implementation Details of MuJoCo Environment

This section delineates the configurations for the MuJoCo environments utilized in our research. In
particular, we employ standard environment horizons of 500 and 50 for Cartpole-v1 and Reacher-
v2, respectively. Meanwhile, for Swimmer-v2, Hopper-v2, and Walker2d-v2, we operate within
an environment horizon set at 400 as referenced in previous literature [52, 68—72]. Additional
specifications are made for Hopper-v2 and Walker2d-v2, where the velocity of the center of mass was
integrated into the state parameterization [52, 68, 70, 72]. We leverage PPO [45] approach to train the
expert policy until it reaches (approximately) 450, -10, 40, 3000, 2000 for Cartpole-v1, Reacher-v2,
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Swimmer-v2, Hopper-v2, Walker2d-v2 respectively. It should be noted that all results disclosed in the
experimental section represent averages over five random seeds. Comparative benchmarks include
BC [46], BCO [37], GAIL [35], and GAIFO [7]. MoblILE [52] is a recent method for Markovian
model-based imitation from observation. However, we failed to reproduce the expected performance
utilizing various sets of demonstrations, so it is prudently omitted from the present displayed result.
We specifically point out that BC/GAIL algorithms are privy to expert actions, however, our algorithm
is not. We report the mean of the best performance achieved by BC/BCO with five random seeds, even
though these peak performances may transpire at varying epochs. For BC, we executed the supervised
learning algorithm for 200 iterations. The BCO/GAIL algorithms are run with an equivalent number
of online samples as LanMDP for a fair comparison. All benchmarking is performed using a single
3090Ti GPU and implemented using the PyTorch framework. Notably, in our codebase, the modified
environments of Hopper-v2 and Walker2d-v2 utilize MobILE’s implementation [52]. Referring to
the results in the main text, our presentation of normalized results in bar graph form is derived by
normalizing each algorithm’s performance (mean/standard deviation) against the expert mean. For
Reacher-v2, due to the inherently negative rewards, we first add a constant offset of 20 to each
algorithm’s performance, thus converting all values to positive before normalizing them against the
mean of expert policy.

We parameterize both the policy model and the transition model as MLPs, and the non-linear
activation function is Swish and LeakyReLU respectively. We use AdamW to optimize both policy
and transition. To stabilize training, we prefer using actions around which the transition model is
more certain for computing the expectation over importance-weighted prior distribution in Eq. (19).
Therefore, we use a model ensemble with two transition models and use the disagreement between
these two models to measure the uncertainty of the sampled actions. We implement Algorithm 2 for
all experiments to avoid expensive computation of the gradient for the transition model in posterior
sampling. As for better and more effective short-run Langevin sampling, we use a polynomially
decaying schedule for the step size as recommended in [73]. We also use weakly L2 regularized
energy magnitudes and clip gradient steps like [74], choosing to clip the total amount of change
value, i.e. after the gradient and noise have been combined. To realize more delicate decision-making,
another trick in Implicit Behavior Clone [75] is also adopted for the inference/testing stage that we
continue running the MCMC chain after the step size reaches the smallest in the polynomial schedule
until we get twice as many inference Langevin steps as were used during training.

Hyper-parameters are listed in Table 3. Other hyperparameters that are not mentioned here are left
as default in PyTorch. Also, note that the Cartpole-v1 task has no parameters for sampling because
expectation can be calculated analytically.

Table 3: Hyper-parameter list of MuJoCo experiments
Parameter Cartpole-v1 Reacher-v2 Swimmer-v2 Hopper-v2 Walker2d-v2

Environment Specification

Horizon 500 50 400 400 400
Expert Performance (=) 450 -10 40 3000 2000
Transition Model

Architecture(hidden;layers) MLP(64;4) MLP(64:4) MLP(128;4) MLP(512;4) MLP(512;4)
Optimizer(LR) 3e-3 3e-3 3e-3 3e-3 3e-3
Batch Size 2500 20000 20000 32768 32768
Replay Buffer Size 2500 20000 20000 200000 200000

Policy Model (with context length L)
Architecture(hidden;layers) MLP(150% L;4) MLP(150% L;4) MLP(150% L;4) MLP(512% L;4) MLP(512%L;4)

Learning rate le-3 le-2 le-2 le-2 5e-3
Batch Size 2500 20000 20000 32768 32768
Number of test trajectories 5 20 20 50 50

Sampling Parameters

Number of prior samples \ 8 8 8 8
Number of Langevin steps \ 100 100 100 100
Langevin initial stepsize \ 10 10 10 10
Langevin ending stepsize \ 1 1 1 1
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