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Abstract

The goal of this work is to characterize the representational impact that foveation1

operations have for machine vision systems, inspired by the foveated human visual2

system, which has higher acuity at the center of gaze and texture-like encoding in3

the periphery. To do so, we introduce models consisting of a first-stage fixed image4

transform followed by a second-stage learnable convolutional neural network,5

and we varied the first stage component. The primary model has a foveated-6

textural input stage, which we compare to a model with foveated-blurred input7

and a model with spatially-uniform blurred input (both matched for perceptual8

compression), and a final reference model with minimal input-based compression.9

We find that: 1) the foveated-texture model shows similar scene classification10

accuracy as the reference model despite its compressed input, with greater i.i.d.11

generalization than the other models; 2) the foveated-texture model has greater12

sensitivity to high-spatial frequency information and greater robustness to occlusion,13

w.r.t the comparison models; 3) both the foveated systems, show a stronger center14

image-bias relative to the spatially-uniform systems even with a weight sharing15

constraint. Critically, these results are preserved over different classical CNN16

architectures throughout their learning dynamics. Altogether, this suggests that17

foveation with peripheral texture-based computations yields an efficient, distinct,18

and robust representational format of scene information, and provides symbiotic19

computational insight into the representational consequences that texture-based20

peripheral encoding may have for processing in the human visual system, while also21

potentially inspiring the next generation of computer vision models via spatially-22

adaptive computation.23

1 Introduction24

In the human visual system, incoming light is sampled with different resolution across the retina, a25

stark contrast to machines that perceive images at uniform resolution. One account for the nature of26

this foveated (spatially-varying) array in humans is related purely to sensory efficiency (biophysical27

constraints) (Land & Nilsson, 2012; Eckstein, 2011), e.g., there is only a finite amount of retinal28

ganglion cells (RGC) that can relay information from the retina to the Lateral Geniculate Nucleus29

(LGN) constrained by the thickness of the optic nerve. Thus it is “more efficient” to have a moveable30

high-acuity fovea, rather than a non-moveable uniform resolution retina when given a limited number31

of photoreceptors as suggested in Akbas & Eckstein (2017). Machines, however do not have such32

wiring/resource constraints – and with their already proven success in computer vision (LeCun et al.,33

2015) – this raises the question if a foveated inductive bias is necessary for vision at all.34

However, it is also possible that foveation plays a functional role at the representational level, which35

may confer perceptual advantages – as most computational approaches have mainly focused on36

saccade planning (Geisler et al., 2006; Mnih et al., 2014; Elsayed et al., 2019; Daucé et al., 2020).37

This idea has remained elusive in computer vision, but popular in vision science, and has been38

explored both psychophysically (Loschky et al., 2019) and computationally (Poggio et al., 2014;39
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Figure 1: A cartoon illustrating how a biologically-inspired foveated image (texture-based) is rendered
resembling a human visual metamer via the foveated feed-forward style transfer model of Deza et al.
(2019). Here, each receptive field is locally perturbed with noise in its latent space in the direction of
their equivalent texture representation (blue arrows) resulting in visual crowding effects that warp the
image locally in the periphery (Balas et al., 2009; Freeman & Simoncelli, 2011; Rosenholtz, 2016).
These effects are most noticeable far away from the navy dot which is the simulated center of gaze
(foveal region) of an observer under certain viewing conditions.

Cheung et al., 2017; Han et al., 2020). Other works that have suggested representational advantages of40

foveation include the work of Pramod et al. (2018), where blurring the image in the periphery gave an41

increase in object recognition performance of computer vision systems by reducing their false positive42

rate. In Wu et al. (2018)’s GistNet, directly introducing a dual-stream foveal-peripheral pathway in a43

neural network boosted object detection performance via scene gist and contextual cueing. Relatedly,44

the most well known example of work that has directly shown the advantage of peripheral vision45

for scene processing in humans is Wang & Cottrell (2017)’s dual stream CNN that modelled the46

results of Larson & Loschky (2009) with a log-polar transform and adaptive Gaussian blurring (RGC-47

convergence). Taken together, these studies present support for the idea that foveation has useful48

representational consequences for perceptual systems. Further, these computational examples have49

symbiotic implications for understanding biological vision, indicating what the functional advantages50

of foveation in humans may be, via functional advantages in machine vision systems.51

Importantly, none of these studies introduce the notion of texture representation in the periphery – a52

key property of peripheral computation as posed in Rosenholtz (2016). What functional consequences53

does this well-known texture-based coding in the visual periphery have, if any, on the nature of54

later stage visual representation? Here we directly examine this question. Specifically, we introduce55

perceptual systems: as two-stage models that have an image transform stage followed by a deep56

convolutional neural network. The primary model class of interest possesses a first stage image57

transform that mimics texture-based foveation via visual crowding (Levi, 2011; Pelli, 2008; Doerig58

et al., 2019b,a) in the periphery as shown in Figure 1 (Deza et al., 2019), rather than Gaussian59

blurring (Wang & Cottrell, 2017; Pramod et al., 2018; Malkin et al., 2020) or compression (Patney60

et al., 2016; Kaplanyan et al., 2019). These rendered images capture image statistics akin to those61

preserved in human peripheral vision, and resembling texture computation at the stage of area V2, as62

argued in Freeman & Simoncelli (2011); Rosenholtz (2016); Wallis et al. (2019).63

Our strategy is thus to compare in terms of generalization, robustness and bias these foveation-texture64

models to three other kinds of models. The first comparison model class – foveation-blur models –65

uses the same spatially-varying foveation operations but uses blur rather than texture based input.66

The second class – uniform-blur models – uses a blur operation uniformly over the input, with the67

level of blur set to match the perceptual compression rates of the foveation-texture nets. Finally, the68

last comparison model class is the reference, which has minimal distortion, and serves as a perceptual69

upper bound from which to assess the impact of these different first-stage transforms.70

Note that our approach is different from the one taken by Wang & Cottrell (2017), who have built71

foveated models that fit results to human behavioural data like those of Larson & Loschky (2009).72

Rather, our goal is to explore the emergent properties in CNNs with texture-based foveation on scene73

representation compared to their controls agnostic to any behavioural data or expected outcome.74

Naturally, the results of our experimental paradigm is symbiotic as it can shed light into both75

the importance of texture-based peripheral computation in humans, and could also suggest a new76

inductive bias for advanced machine perception in scenes.77
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Figure 2: A. Two of the four perceptual systems: Reference (top row) and Foveation-Texture (bottom
row), where each system receives an image as an input, applies an image transform (f(◦)), which is
then relayed to a CNN architecture (g(◦)) for scene classification. Reference provides an undistorted
baseline as a perceptual upper-bound, while Foveation-Texture uses a visual crowding model that
distorts the image with spatially-varying texture computation (shown on right) B. The algorithm of
how the biologically inspired Foveation-Texture transform works which enables effects of visual
crowding in the periphery (mainly steps 5-7).

2 Perceptual Systems78

We define perceptual systems as two-stage models with an image transform (stage 1, f(◦) : RD →79

RD), that is relayed to a deep convolutional neural network (stage 2, g(◦) : RD → Rd). Note that the80

first transform stage is a fixed operation over the input image, while the second stage has learnable81

parameters. In general, the perceptual system S(◦), with retinal image input I : RD is defined as:82

S(I) = g(f(I)) (1)

Such two-stage models have been growing in popularity, and the reasons these models are designed to83

not be fully end-to-end differentiable is mainly to force one type of computation into the first-stage of a84

system such that the second-stage g(◦) must figure out how to capitalize on such forced transformation85

and thus assess its f(◦) representational consequences (See Figure 2). For example, Parthasarathy &86

Simoncelli (2020) successfully imposed V1-like computation in stage 1 to explore the learned role87

of texture representation in later stages with a self-supervised objective, and Dapello et al. (2020)88

found that fixing V1-like computation also at stage 1 aided adversarial robustness. At a higher level,89

our objective is similar where we would like to force a texture-based peripheral coding mechanism90

(loosely inspired by V2; Ziemba et al., 2016) at the first stage to check if the perceptual system (now91

foveated) will learn to pick-up on this newly made representation through g(◦) and make ‘good’ use92

of it potentially shedding light on the functionality hypothesis for machines and humans.93

2.1 Stage 1: Image Transform94

To model the computations of a texture-based foveated visual system, we employed the model95

of Deza et al. (2019) (henceforth Foveated-Texture Transform). This model is inspired by the metamer96

synthesis model of Freeman & Simoncelli (2011), where new images are rendered to have locally97

matching texture statistics (Portilla & Simoncelli, 2000; Balas et al., 2009) in greater size pooling98

regions of the visual periphery with structural constraints. Analogously, the Deza et al. (2019)99

Foveation Transform uses a foveated feed-forward style transfer (Huang & Belongie, 2017) network100

to latently perturb the image in the direction of its locally matched texture (see Figure 1). Altogether,101

f : RD → RD is a convolutional auto-encoder that is non-foveated when the latent space is un-102

perturbed: f0(I) = D(E(I)), but foveated (◦Σ) when the latent space is perturbed via localized style103

transfer: f∗(I) = D(EΣ(I)), for a given encoder-decoder (E ,D) pair.104

Note that with proper calibration, the resulting distorted image can be a visual metamer (for a human),105

which is a carefully perturbed image perceptually indistinguishable from its reference image (Freeman106

& Simoncelli, 2011; Rosenholtz et al., 2012; Feather et al., 2019; Vacher et al., 2020). However,107

importantly in the present work, we exaggerated the strength of these texture-driven distortions108
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Figure 3: A. Two perceptually matched-resource controls to Foveation-Texture are introduced.
Middle-Right, orchid: uniform blurring emulating a matched-resource non-foveated visual system
(Uniform-Blur); Far-Right, seagreen: adaptive gaussian blurring (Foveation-Blur) emulating a
matched resource blur-based foveated system. B. A Rate-Distortion Optimization procedure is
summarized where we find the hyper-parameters of the new matched-resource image transforms
{(f̂0(◦), f̂∗(◦))} to Foveation-Texture via expected SSIM matching over the validation set.

(beyond the metameric boundary), as our aim here is to understand the implications of this kind109

of texturized peripheral input on later stage representations (e.g. following a similar approach as110

Dapello et al. (2020)). By having an extreme manipulation, we reasoned this would accentuate the111

consequences of these distortions, making them more detectable in our subsequent experiments.112

2.2 Stage 2: Convolutional Neural Network backbone113

The transformed images (stage 1) are passed into a standard convolutional neural network architecture.114

Here we tested two different base architectures: AlexNet (Krizhevsky et al., 2012), and ResNet18 (He115

et al., 2016). The goal of running these experiments on two different hierarchically local architectures116

is to let us examine the consequences across all image transforms (with our main focus towards117

texture-based foveation) that are robust to these different network architectures. Further, this CNN118

backbone (g : RD → Rd) should not be viewed in the traditional way of an end-to-end input/output119

system where the input is the retinal image (I), and the output is a one-hot vector encoding a d-class-120

label in Rd. Rather, the CNN (g) acts as a loose proxy of higher stages of visual processing (as it121

receives input from f ), analogous to the 2-stage model of Lindsey et al. (2019).122

2.3 Critical Manipulations: Foveated vs Non-Foveated Perceptual Systems123

Now, we can define the first two of the four perceptual systems that will perform 20-way scene124

categorization: Foveation-Texture, receives an image input, applies the foveation-texture transform125

f∗(◦), and relays it through the CNN g(◦). Similarly, Reference performs a non-foveated transform126

f0(◦), where images are sent through the same convolutional auto-encoder D(E(I)) of f∗(◦), but127

with the parameter that determines the degree of texture style transfer set to 0 – producing an upper-128

bounded, compressed and non-foveated reference image – then relayed through the CNN g(◦). Both129

of these systems are depicted in Figure 2 (A). As the foveation-texture model has less information130

from the input, relative to the reference networks, we next designed two further comparison models131

which have a comparable amount of information after the input stage, but with different amounts of132

blurring in the stage 1 operations. To create matched-resources systems, our broad approach was to133

use a Rate-Distortion (RD) optimization procedure (Ballé et al., 2016) to match information between134

the stage 1 operations, given the SSIM (Wang et al., 2004) image quality assessment (IQA) metric.135

Specifically, to create matched-resource Uniform-Blur, we identified the standard deviation of the136

Gaussian blurring kernel (the ‘distortion’ D), such that we could render a perceptually resource-137

matched Gaussian blurred image – w.r.t Reference – that matches the perceptual transmission ‘rate’138

R of Foveation-Texture via the SSIM perceptual metric (Wang et al., 2004). This procedure yields a139

model class with uniform blur across the image, but with matched stage 1 information content as the140
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Foveation-Texture. And, to create matched-resource Foveation-Blur, we carried our this same RD141

optimization pipeline per eccentricity ring (assuming homogeneity across pooling regions at the same142

eccentricity), thus finding a set of blurring coefficients that vary as a function of eccentricity. This143

procedures yielded a different matched-resource model class, this time with spatially-varying blur.144

Figure 3 (B) summarizes our solution to this problem. Details of the RD Optimization are presented145

in Appendix A.146

Ultimately, it is important to note that the selection of the perceptual metric (SSIM in our case),147

plays a role in this optimization procedure, and sets the context in which we can call a network148

“resource-matched”. We selected SSIM given its monotonic relationship of distortions to human149

perceptual judgements, symmetric upper-bounded nature, sensitivity to contrast, local structure and150

spatial frequency, and popularity in the Image Quality Assessment (IQA) community. However151

to anticipate any possible discrepancy in the interpretability of our future results, we additionally152

computed the Mean Square Error (MSE), MS-SSIM, and 11 other IQA metrics as recently explored153

in Ding et al. (2020) to compare all other image transforms to the Reference on the testing set.154

Our logic is the following: if the MSE is greater(↑) for Foveation-Texture compared to Foveation-155

Blur and Uniform-Blur, then the current distortion levels place Foveation-Texture at a resource156

‘disadvantage’ relative to the other transforms, and any interesting results would not only hold but157

also be strengthened. This same logic applies to the other IQA metrics contingent on their direction158

of greater distortion. Indeed, these patterns of results were evident across IQA metrics – except those159

tolerant to texture such as DISTS (Ding et al., 2020) – as shown in Table 1, and Appendix C.160

(mean±std) SSIM (Matched) MS-SSIM (↓) MSE (↑) Mutual Information (↓) NLPD (↑) DISTS (↑)
Reference 1.0 1.0 0.0 7.39±0.52 0 0

Foveation-Texture 0.58± 0.11 0.20± 0.03 976.78± 522.22 1.40± 0.42 0.75± 0.16 0.20± 0.03
Uniform-Blur 0.57± 0.15 0.36± 0.03 458.67± 277.13 1.86± 0.58 0.40± 0.09 0.36± 0.03

Foveation-Blur 0.58± 0.15 0.36± 0.03 507.35± 302.71 1.84± 0.56 0.45± 0.11 0.35± 0.03

Table 1: Comparing Image Transforms wrt Reference. Arrows indicate direction of greater distortion.
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Figure 4: Five example images from the
20 scene categories are shown, after be-
ing passed through the first stage of each
perceptual system.

Altogether, the 4 previously introduced perceptual systems162

help us answer three key questions that we should have163

in mind throughout the rest of the paper: 1) Foveation-164

Texture vs Reference will tell us how a texture-based165

foveation mechanism will compare to its perceptual upper-166

bound – shedding light into arguments about computa-167

tional efficiency. 2) Foveation-Texture vs Foveation-Blur168

will tell us if any potentially interesting pattern of results169

is due to the type/stage of foveation. This will help us170

measure the contributions of the adaptive texture coding171

vs adaptive gaussian blurring; 3) Foveation-Texture vs172

Uniform-Blur will tell us how do these perceptual systems173

(one foveated, and the other one not) behave when allo-174

cated with a fixed number of perceptual resources under175

certain assumptions – potentially shedding light on why176

biological organisms like humans have foveated texture-177

based computation in the visual field instead of uniform178

spatial processing like modern machines.179

Dataset: All previously introduced models were trained180

to perform 20-way scene categorization. Scene categories181

were selected from the Places2 dataset (Zhou et al., 2017),182

and were re-partitioned into a new 4500 images per cate-183

gory for training, 250 per category for validation, and 250184

per category for testing. The categories included were:185

aquarium, badlands, bedroom, bridge, campus, corridor, forest path, highway, hospital, industrial186

area, japanese garden, kitchen, mansion, mountain, ocean, office, restaurant, skyscraper, train interior,187

waterfall. Samples of these scenes coupled with their image transforms can be seen in Figure 4.188

Networks: Training: Convolutional neural networks of the stage 2 of each perceptual system were189

trained which resulted in 40 image-transform based networks per architecture (AlexNet/ResNet18):190
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Figure 5: Scene Categorization Accuracy of AlexNet and ResNet18 as g(◦). We observe the
following: Foveation-Texture has greater i.i.d. generalization than other matched-resource systems
across both network architectures; Uniform-Blur’s o.o.d generalization interacts with the architecture
(performing worse for ResNet18, but highest for AlexNet); Foveation-Blur maintains high o.o.d.
generalization independent of network architecture. Confusion Matrices can be seen in Appendix I.

10 Foveation-Texture, 10 Reference, 10 Uniform-Blur, 10 Foveation-Blur; totalling 80 trained191

networks to compute relevant error bars shown in all figures (standard deviations, not standard errors)192

and to reduce effects of randomness driven by the particular network initialization. All systems were193

paired such that their stage 2 architectures g(◦) started with the same random weight initialization194

prior to training. Testing: The networks of each perceptual system were tested on the same type of195

image distribution they were trained on. Learning Dynamics: Available in Appendix H.196

3.1 Texture-based foveation provides greater i.i.d. generalization than Blur-based foveation197

How well does the foveation-texture stage classify scene images (i.i.d. generalization) compared to198

the other matched-resource models that use blurring and the reference? The results can be seen in199

Figure 5. Each bars’ height reflects overall accuracy for each of the 10 neural network backbone200

runs (g(◦)) per system, with a square marker at the top indicating the i.i.d. accuracy. We found that201

Foveation-Texture had similar i.i.d. performance to the Reference – which is the the undistorted202

perceptual upper bound, and greater performance than both Uniform-Blur and Foveation-Blur. Thus203

the compression induced by foveated-texture generally maintains scene category information.204

We next performed a contrived experiment where we tested how well each perceptual system could205

classify the stage 1 outputs of the other models. For example, we showed a set of foveated blurred206

images to a network trained on foveated texture images. This experiment is in essence a test of207

out-of-distribution (o.o.d.) generalization. The results of these tests are also shown in Figure 5. For208

each model, the classification accuracy for the inputs from the other stage 1 images is indicated by209

the height of the different colored diamonds, where the color corresponds to the stage 1 operation.210

This experiment yielded a rather complex set of patterns, that even differed depending on the211

architecture (AlexNet vs ResNet18 as g(◦)). Generally, the Foveation-Texture model had a similar212

profile of generalization as the Reference model. However, the networks trained with different types213

of blur (Uniform-Blur & Foveated-Blur) in some cases showed very high o.o.d. generalization –214

though once again this is contingent on g(◦).215

Unraveling the underlying causes to understand this last set of results sets the stage for our experiments216

in the rest of this section. So far it seems like Foveation-Texture has learned to properly capitalize the217

texture information in the periphery and still out-perform all other matched-resource systems even if218

heavily penalized under several IQA metrics (Table 1) – highlighting the critical differences in texture219

vs blur for scene processing. As for the interaction of Uniform-Blur with g(◦), is is likely that the220

residual connections are counter-productive to o.o.d. generalization (or it has overfit). Interestingly,221

humans have a combination of texture and adaptive-gaussian based peripheral computation (Ehinger222

& Rosenholtz, 2016), so future work should look into the effects of continual learning, joint-training223

or a combined image transform (Texture + Blur) to merge gains of both i.i.d and o.o.d generalization.224
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Figure 6: Foveation-Texture has greater sensitivity to high pass spatial frequency filtered stimuli than
the Reference (contingent on the architecture for g(◦) – See A1.,B1.), though both of these systems
present notably higher sensitivity to high spatial frequencies than Uniform-Blur and Foveation-Blur.
This pattern is reversed for low pass frequency stimuli applied to both color and grayscale filtered
images (Appendix K). Visualizations of the first convolutional layer of AlexNet and ResNet18 as g(◦)
(A2.,B2.) shows strong similarities of learned filters despite texture-distortion for Foveation-Texture
to Reference preserving high spatial frequency Gabors; Uniform-Blur shows a strong predominance
of low spatial frequency Gabors for AlexNet and low spatial frequency center-surround filters for
ResNet18, and Foveation-Blur a mixture of high-low spatial frequency tuned filters.

3.2 Texture-based foveated systems preserve greater high-spatial frequency sensitivity225

We next examined whether the learned feature representations of these models are more reliant on low226

or high pass spatial frequency information. To do so, we filtered the testing image set at multiple levels227

to create both high pass and low pass frequency stimuli and assessed scene-classification performance228

over these images for all models, as shown in Figure 6. Low pass frequency stimuli were rendered by229

convolving a Gaussian filter of standard deviation σ = [0, 1, 3, 5, 7, 10, 15, 40] pixels on the foveation230

transform (f0, f̂0, f∗, f̂∗) outputs. Similarly, the high pass stimuli was computed by subtracting the231

reference image from its low pass filtered version with σ = [∞, 3, 1.5, 1, 0.7, 0.55, 0.45, 0.4] pixels232

and adding a residual. These are the same values used in the experiments of Geirhos et al. (2019).233

We found that Foveation-Texture and Reference trained networks were more sensitive to High234

Pass Frequency information, while Foveation-Blur and Uniform-Blur were selective to Low Pass235

Frequency stimuli. Although one may naively assume that this is an expected result – as both236

Foveation-Blur and Uniform-Blur networks are exposed to a blurring procedure – it is important to237

note that: 1) the foveal resolution has been preserved between Foveation-Texture and Foveation-Blur238

(See Fig. 4), thus high spatial frequency sensitivity could have still predominated in Foveation-Blur239

but it did not (though see Fig. 6 A2/B2 where these high pass Gabors are still learned, implying240

that higher layers in g(◦) overshadow their computation); and 2) Foveation-Texture could have241

also learned to develop low spatial frequency sensitivity given the crowding/texture-like peripheral242

distortion, but this was not the case (likely due to the weight sharing constraint embedded in the243

CNN architecture Elsayed et al., 2020). Finally, the robustness to low-pass filtering of Foveation-Blur244

suggests that foveation via adaptive gaussian blurring may implicitly contribute to scale-invariance as245

also shown in Poggio et al. (2014); Cheung et al. (2017); Han et al. (2020).246

3.3 Texture-based foveation develops greater robustness to occlusion247

We next examined how all perceptual systems could classify scene information under conditions248

of visual field loss, either from left to right (left2right), top to bottom (top2bottom), center part of249
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Figure 7: Foveation-Texture has greater robustness than both Foveation-Blur and Uniform-Blur while
roughly preserving a performance similarity to Reference (the upper bound) beyond the i.i.d. regime.
The asymmetry in performance of the Scotoma vs Glaucoma conditions for foveated models also
suggests they have learned to weigh spatial information differently in the fovea vs the periphery
despite a weight sharing constraint imposed through g(◦).

the image (scotoma), or the periphery (glaucoma). This manipulation lets us examine the degree250

to which learned representations relying on different parts of the image to classify scene categories.251

Critically, here we apply the occlusion after the stage 1 operation. The results are shown in Figure 7.252

Overall we found that, across all types of occlusion the Foveation-Texture modules have greater ro-253

bustness to occlusion than both the Foveation-Blur and Uniform-Blur models. Further, the Foveation-254

Texture models have nearly equivalent performance to the Reference. In contrast, both models with255

blurring, whether uniformly or in a spatially-varying way, were far worse at classifying scenes under256

conditions of visual field loss. These results highlight that the texture-based information content257

captured by the foveation-texture nets preserves scene category content in dramatically different way258

than simple lower-resolution sampling – perhaps using the texture-bias (Geirhos et al., 2019) in their259

favor; as humans too use texture as their classification strategy for scenes (Renninger & Malik, 2004).260

In addition, the Foveation-Texture model is not overfitting. As recent work has suggested an Accuracy261

vs Robustness trade-off where networks trained to outperform under the i.i.d. generalization condition262

will do worse under other perceptual tasks – mainly adversarial (Zhang et al., 2019) – we did not263

observe such trade-off and a greater accuracy did not imply lower robustness to occlusion.264

3.4 Foveated systems learn a stronger center image bias than non-foveated systems265

It is possible that foveated systems weight visual information strongly in the foveal region than the266

peripheral region as hinted by our occlusion results (the different rate of decay for the accuracy curves267

in the Scotoma and Glaucoma conditions). To resolve this question, we conducted an experiment268

where we created a windowed cue-conflict stimuli where we re-rendered our set of testing images269

with one image category in the fovea, and another one in the periphery (all aligned with a different270

class systematically; ex: aquarium with badlands). We also had an additional condition where the271

conflicting cue was now square-like and uniformly and randomly paired with a conflicting scene272

class and more finely sampled. We then systematically varied the fovea-periphery visual area ratios273

& re-examined classification accuracy for both the foveal and peripheral scenes (Figure 8).274

We found that the Foveation-Texture and Foveation-Blur transform imposed the networks g(◦) to275

learn to weigh information in the center of the image stronger than Reference & Uniform-Blur for276

scene categorization. A qualitative way of seeing this foveal-bias is by checking the foveal/peripheral277
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Figure 8: Foveated Perceptual Systems – independent of the computation type (Foveation-Texture,
Foveation-Blur) – show stronger biases to classify hybrid scenes with the foveal region; a result also
observed in humans (Larson & Loschky, 2009).

ratio where these two accuracy lines cross. The more leftward the cross-over point (⊗), the higher the278

foveal bias (highlighted through the vertical bars). This result was unexpected as we initially predicted279

that g(◦) would weigh the peripheral information stronger as it has been implicitly regularized through280

a distortion. However this was not the case and our findings are similar to Wang & Cottrell (2017)281

who showed this foveal bias on a foveated system with adaptive blur with a dual-stream neural282

network. Thus, these results indicate that the spatially varying computation from center to periphery283

is mainly responsible for the development of a center image bias even with a weight sharing constraint.284

Furthermore, it is possible that one of the functions of any spatially-varying coding mechanisms285

in the visual field is to enforce the perceptual system to attend on the foveal region – avoiding the286

shortcut of learning to attend the entire visual field if unnecessary (Geirhos et al., 2020).287

4 Discussion288

The present work was designed to probe the impact of foveated texture-based input representations in289

machine vision systems. To do this we specifically compared the learned perceptual signatures in290

the second-stage of visual processing across a set of of networks trained on other image transforms.291

We found that when comparing Foveation-Texture to their matched-resource models that differed in292

computation: Foveation-Blur (foveated w/ adaptive gaussian blur) and Uniform-Blur (non-foveated293

w/ uniform blur) – that peripheral texture encoding did lead to specific representational signatures,294

particularly greater i.i.d generalization, preservation of high-spatial frequency sensitivity, and ro-295

bustness to occlusion – even as high as its perceptual upper bound (Reference). We also found that296

foveation (in general) seems to induce a focusing mechanism, servicing the foveal/central region –297

whereas neither a perceptually upper-bounded system (Reference) or a non-foveated compressed298

system (Uniform-Blur) did not develop as strongly.299

The particular consequences of our foveation stage raises interesting future directions about what300

computational advantages could arise when trained on object categorization (Pramod et al., 2018)301

coupled with eye-movements (Akbas & Eckstein, 2017; Deza et al., 2017), as objects are typically302

centered in view and have different hierarchical/compositional priors than scenes (Zhou et al. (2014);303

Deza et al. (2020)) in addition to different processing mechanisms (Renninger & Malik (2004);304

Ehinger & Rosenholtz (2016)). We are currently exploring the impact of these foveated texture-based305

representational signatures on shape vs texture bias for object recognition similar to Geirhos et al.306

(2019) and Hermann et al. (2020), and assessing their interaction with scene representation.307

Further, a future direction is investigating the effects of texture-based foveation to adversarial308

robustness. Motivated by the recent work of Dapello et al. (2020) which has shown promise of309

adversarial robustness via enforcing stochasticity and V1-like computation by obeying the Nyquist310

sampling frequency of these filters w.r.t the image (Serre et al., 2007) in addition to a natural gamut of311

orientations and frequencies as studied in De Valois et al. (1982), it raises the question of how much312

we can further push for robustness in hybrid perceptual systems like these, drawing on even more313

biological mechanisms. Works such as Luo et al. (2015) and recently Reddy et al. (2020); Kiritani &314

Ono (2020) have already taken steps in this direction by coupling fixations with a spatially-varying315

retina. However, the representational impact of texture-based foveation on adversarial robustness,316

and its symbiotic implication for human vision still remains an open question.317
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a two-stage model that has a texture-based foveation transform and compared it to a506

reference model (a perceptual upper bound), and two matched resource systems: one507

foveated with blur and another one uniformly blurred.508

(b) Did you describe the limitations of your work? [Yes] At the end of each Experiments509

Sub-Section we provide a mini-discussion of our work and how it fits or does not fit the510

literature. Mainly we provide limitations in the Discussion at the end (See Section 4)511
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mentary Material (that provides access to a URL)523
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Places2 dataset is widely known and free to use.539
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As everything in the Supplementary Material/URL has been created/derived by us.541
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