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Abstract001

In this work, we present a novel dataset specifi-002
cally designed for predicting pull request (PR)003
outcomes using large language models (LLMs).004
Our dataset is the first to integrate textual005
and code-related features, allowing the use of006
LLMs in PR outcome prediction, in contrast007
to earlier techniques that rely on numerical008
datasets. To construct this dataset we collected009
and carefully filtered pull request data from six010
well-known repositories on GitHub, the largest011
platform for collaborative code development.012
The dataset consists of 300 pull requests (PRs),013
each labeled with ‘green’ and ‘red’ flags to pre-014
dict whether the PR will be merged or rejected.015
The PRs are annotated based on key features016
such as PR title, body, comments, contributor017
statistics, code changes, and related issues. The018
merged-to-unmerged PR ratio in the dataset is019
approximately 2:1. To promote reproducibility020
and foster further research, we will publicly021
release the dataset. This work lays the ground-022
work for building intelligent systems that can023
assist in PR review and decision-making by024
leveraging the capabilities of LLMs.025

1 Introduction026

Pull requests (PRs) are a cornerstone of collab-027

orative software development. They provide a028

structured mechanism for contributors to propose029

changes and for maintainers to review, discuss, and030

ultimately decide on merging them into the main031

codebase (Gousios et al., 2014). This workflow is032

vital for ensuring code quality, maintainability, and033

project coherence. But in busy projects with lots034

of activity, it can also become time-consuming and035

mentally exhausting for maintainers who have to036

handle a large number of PRs. Automating aspects037

of this decision-making process, such as predicting038

the likelihood of PR acceptance, has the potential039

to significantly reduce review bottlenecks (Maddila040

et al., 2023), streamline development cycles, and041

improve contributor experience.042

Recent studies have applied machine learning 043

(ML) to predict PR outcomes, using structured fea- 044

tures like lines changed, response time, and contrib- 045

utor history (Azeem et al., 2020; Banyongrakkul, 046

2022; Chen et al., 2025; Zhao et al., 2019). Models 047

ranging from logistic regression to deep learning 048

and GNNs (Banyongrakkul and Phoomvuthisarn, 049

2023; Gupta, 2018) show moderate success but of- 050

ten overlook the textual and semantic context crit- 051

ical to human decisions (Ford et al., 2019; Lenar- 052

duzzi et al., 2021; Zhang et al., 2023). For example, 053

XGBoost may learn that PRs with over 10 changed 054

files often get rejected, but it can’t tell that a simple 055

typo fix in many files is low-risk. It treats PRs as 056

flat feature rows, not rich, connected documents. 057

In contrast, large language models (LLMs) 058

like GPT-4, Claude, CodeLlama, and DeepSeek- 059

Coder are built to reason over unstructured and 060

semi-structured text (Brown et al., 2020). They 061

can synthesize information from titles, descrip- 062

tions, commit messages, code changes, and com- 063

ments—offering a more holistic view of PRs (Fang 064

et al., 2022; Liu et al., 2019; Sakib et al., 2024). 065

However, their effectiveness in software engineer- 066

ing tasks depends on the availability of datasets 067

suited to their strengths. Most existing PR datasets 068

are designed for traditional ML models (Chen et al., 069

2025), focusing on shallow metadata and lacking 070

the rich language, code, and social context LLMs 071

need. 072

To bridge this gap, we present a novel dataset 073

of 300 annotated PRs from six popular GitHub 074

repositories. Each PR includes titles, descriptions, 075

commits, diffs, comments, contributor stats, and 076

linked issues. We also provide manual annota- 077

tions—green and red flags—capturing key indi- 078

cators behind acceptance or rejection. This dataset 079

supports research on PR reasoning with LLMs and 080

enables development of tools that prioritize reviews, 081

assist maintainers, and enhance code review effi- 082

ciency. 083
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Our study uses this dataset to explore two key084

research questions about LLMs:085

RQ1: Can LLMs accurately predict pull request086

outcomes (merge or rejection) using the rich, anno-087

tated PR data?088

RQ2: How effectively can LLMs identify and ex-089

plain the specific factors, represented by green and090

red flags, that influence PR acceptance decisions091

within the full PR context?092

2 Dataset093

2.1 Repository Selection094

We selected six popular GitHub reposito-095

ries—transformers, rails, mui, eslint, flask, and096

react-hook-form—to ensure coverage across di-097

verse languages and development styles. Selection098

was based on having at least 2,000 closed PRs099

to support meaningful sampling, frequent use100

of issue-linking syntax (e.g., closes #123) to101

enable PR–issue pairing, evidence of ongoing102

maintenance activity, and diversity in programming103

languages including Python, Ruby, JavaScript, and104

TypeScript. This strategy provided a balanced105

representation of frontend and backend tools,106

libraries, and frameworks with varying review107

practices.108

2.2 Data Collection Pipeline109

We built a two-stage pipeline using GitHub’s110

GraphQL and REST APIs:111

Stage 1: PR–Issue Pairing. We used the112

GraphQL field–closingIssuesReferences to ex-113

tract PRs that formally reference issues, following114

the approach in (Işık et al., 2025). To avoid false115

matches, we validated each issue via REST API to116

ensure it originated from the same repository and117

existed at the time of PR creation.118

Stage 2: Artifact Retrieval. For each valid PR–119

issue pair, we retrieved a comprehensive set of120

artifacts: PR metadata (including title, body, merge121

status, and lines changed), full code diffs and com-122

mit messages, reviewer feedback (both inline and123

top-level comments), the title and description of124

the linked issue, and contributor statistics such as125

prior PR history and acceptance rate. All retrieved126

data was saved in structured CSV format and sub-127

sequently imported into Google Sheets for annota-128

tion.129

2.3 Sampling Strategy 130

From the broad set of verified PR–issue pairs ex- 131

tracted in Phase 1, we chose a smaller set of 300 132

examples as the basis of downstream annotation 133

and analysis. This selection aimed to ensure diver- 134

sity in PR outcomes and characteristics of contri- 135

butions while making it feasible for manual anno- 136

tation. The final sample contains a combination 137

of unmerged and merged pull requests, spanning a 138

range of contribution types and complexity. These 139

samples contain the appropriate coverage to ac- 140

commodate the detection of green and red flags 141

as well as outcome reasoning. Table 1 shows the 142

final distribution of samples across all our selected 143

repositories. 144

Repository Total Merged Unmerged
huggingface/transformers 73 58 15
rails/rails 42 23 19
pallets/flask 52 32 20
eslint/eslint 52 37 15
react-hook-form/react-
hook-form

29 24 5

mui/material-ui 52 32 20

Table 1: Distribution of PR–issue pairs selected from
six repositories.

2.4 Flag-Based Annotation Framework 145

Each pull request was annotated using a dual-label 146

framework consisting of 10 green and 14 red flags, 147

representing positive and negative quality indica- 148

tors. Green flags denote alignment with linked 149

issues, test coverage, contributor reputation, clar- 150

ity in communication, and responsiveness. Red 151

flags highlight issues like test failures, poor or over- 152

engineered code, scope mismatch, large diffs, or 153

unaddressed reviewer concerns. Several of these 154

quality indicators were adapted from or inspired 155

by prior research on PR characteristics and accep- 156

tance criteria (Işık et al., 2025; Zhang et al., 2023; 157

Lenarduzzi et al., 2021). 158

Category Green Flag Red Flag

Clarity Clear title/desc Vague/missing info
Code Size Small (≤300 lines) Large (>500 lines)
Testing Good tests, all pass No or failing tests
Issue Link Linked to issue Unlinked/unrelated
Reviews Positive, responsive Negative or silent
Contributor
Stats

Merge rate ≥80% Merge rate <50%

Quality Clean, efficient Buggy or breaking

Table 2: Annotation criteria used for labeling.
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Impact Level (Weight) Green Flags Red Flags

Critical (19) – Failing tests, Risks breaking compatibility, Incorrect
or inefficient solution, Over-engineered solution

High (3) Clear alignment with issue, Includes test cases, High
contributor acceptance rate

PR not aligned with issue, Missing or inadequate
test cases, Low contributor acceptance rate

Medium (2) Positive sentiment in comments, Manageable num-
ber of changed lines, Responsive to feedback

Negative sentiment in comments, Large number of
changed lines, Unresponsive to feedback

Low (1) Clear PR title, description, and commit messages,
Good code quality

Unclear or missing PR title, description and commit
messages, Poor code quality

Table 3: Impact levels and corresponding green and red quality flags used during manual PR annotation.

To reflect their relative importance, flags were as-159

signed impact weights: low (1), medium (2), high160

(3), and critical (19). Green flags contribute pos-161

itively to a PR’s score, while red flags contribute162

negatively. The critical tier was calibrated to out-163

weigh all green signals (which total 18). Further-164

more, we included a computed total score column,165

where the weights for each PR’s green and red166

flags were added together. This was used as a san-167

ity check to ensure consistency in the annotations.168

Table 3 lists the full flag set with their weights.169

2.5 Annotation Protocol and Validation170

All 300 examples were labeled collaboratively by171

the three authors using a dropdown-based interface172

with multi-select flags and an optional notes field173

for justifying edge cases. To ensure consistency, we174

consulted three industry professionals to indepen-175

dently re-annotate 20% of the dataset. We observed176

a flag-level agreement of 81.67%; remaining dis-177

crepancies were resolved via discussion. Rather178

than enforce rigid inter-rater metrics, we prioritized179

semantic alignment and annotator intent, given the180

interpretive nature of this task.181

2.6 Summary182

Our final dataset comprises 300 annotated183

PR–issue pairs from six diverse GitHub reposito-184

ries, enriched with code, text, and social context.185

Each PR is labeled with weighted green and red186

quality flags to support both outcome prediction187

and quality reasoning using LLMs. Figure 1 pro-188

vides an overview of our end-to-end pipeline, span-189

ning from the dataset creation to LLM prompting.190

It encapsulates the full process, the rest of which191

we cover in the next sections.192

3 Experiment193

3.1 Model Selection194

Our dataset, combining textual and code-related195

PR features, suits CodeLlama 7B Instruct well196

due to its strong handling of both code and nat- 197

ural language. Fine-tuned for code tasks, CodeL- 198

lama excels at reasoning over code diffs and de- 199

scriptions, enabling context-sensitive PR outcome 200

predictions (Rozière et al., 2023). Its balance of 201

performance and computational efficiency makes 202

it an ideal choice given our resource constraints. 203

3.2 Experimental Setup 204

As a first step, we preprocess the data by clean- 205

ing text and code fields, consolidating annotations, 206

and ensuring all inputs are consistently formatted. 207

We then evaluate CodeLlama 7B Instruct on our 208

dataset using zero-shot and one-shot prompting. 209

Each experiment provides the model with full con- 210

text of the target PR—including textual and code- 211

related fields such as title, description, code diff, 212

comments, contributor stats, and related issues. In 213

one-shot, a labeled example PR is included to guide 214

prediction. The model predicts both PR outcomes 215

and associated red and green flags across the anno- 216

tated dataset. 217

3.3 Evaluation Metrics 218

To evaluate model performance on pull request out- 219

come prediction, we compare predicted outcomes 220

(merged or not) to ground-truth annotations using 221

standard classification metrics, such as accuracy, 222

precision, recall, and F1-score. 223

We assess performance using multiple metrics 224

for the multi-label task of detecting red and green 225

flags in pull requests. Per-flag precision, recall, and 226

F1-score measure how well each flag is identified, 227

balancing false positives and negatives. Macro F1 228

treats all flags equally to show balanced perfor- 229

mance, while micro F1 highlights overall effective- 230

ness by weighting frequent flags more. Hamming 231

loss indicates the average error rate per PR. Flat- 232

tened accuracy shows the proportion of correctly 233

classified individual flags, and exact-match accu- 234

racy reflects the percentage of PRs with a perfectly 235
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Figure 1: End-to-end pipeline from PR–issue pairing to artifact retrieval, annotation, and expert validation, followed
by pre-processing and LLM prompting.

predicted flag set.236

All metrics are computed using the proposed237

annotated dataset, with human-provided red and238

green flag labels as ground truth.239

4 Result240

We evaluated CodeLlama 7B Instruct on our241

dataset using zero-shot and one-shot prompting242

with merged and unmerged PR examples. Table 4243

summarizes the performance on subsets of PRs244

processed after excluding cases with resource con-245

straints.246

For acceptance prediction, CodeLlama 7B In-247

struct achieves an accuracy of 52% in the zero-shot248

setting, which increases to 68% and 67% for one-249

shot prompting with merged and unmerged exam-250

ple PRs, respectively. Using a merged PR example251

in the prompt attains higher recall for accepted PRs,252

while an unmerged example provides better recall253

balance between accepted and unaccepted cases254

across the dataset. Flag prediction remains chal-255

lenging, with macro F1 of 0.38 and micro F1 of256

0.48 in the zero-shot setting, reflecting high recall257

but limited precision and overall accuracy. In the258

one-shot scenario, both macro and micro F1 scores259

drop substantially (0.01), indicating persistent dif-260

ficulty in precisely identifying quality indicators.261

Flattened accuracy improves from 35% (zero-shot)262

to 69% (one-shot), but exact-match accuracy re-263

mains zero, underscoring strict evaluation criteria.264

These results confirm that our dataset effectively265

supports PR acceptance prediction while revealing 266

persistent challenges in multi-label flag classifica- 267

tion. 268

Metric Zero 1S-M 1S-U
Acceptance

Accuracy 0.52 0.68 0.67
Precision (yes) 0.77 0.69 0.74
Recall (yes) 0.44 0.95 0.80
Precision (no) 0.37 0.56 0.49
Recall (no) 0.71 0.12 0.41
Macro Avg F1 0.52 0.50 0.61

Multi-label Flags
Macro F1 0.383 0.012 0.011
Micro F1 0.481 0.008 0.011
Hamming Loss 0.65 0.31 0.31
Flattened Acc. 0.348 0.690 0.686
Exact-Match Acc. 0.000 0.000 0.000

Table 4: CodeLlama 7B Instruct performance on PR
outcome and flag prediction, for zero-shot and one-shot
(merged/unmerged example) prompting.

5 Conclusion 269

We present a novel, richly annotated dataset of 270

300 GitHub pull requests from six popular reposi- 271

tories, supporting both binary PR acceptance and 272

multi-label quality flag prediction. Experiments 273

with CodeLlama 7B Instruct show effective PR out- 274

come classification but highlight challenges in fine- 275

grained flag identification. This resource aims to 276

facilitate further research in automated pull request 277

review, with future work focusing on improved 278

prompting and model fine-tuning. The dataset and 279

details are available at this anonymous link. 280
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Limitations281

While our dataset provides a valuable resource for282

evaluating pull request outcomes and multi-label283

quality prediction, several limitations should be ac-284

knowledged. Of the 300 pull requests, predictions285

were successfully generated for 291 in the zero-286

shot setting, 263 in one-shot (merged), and 275 in287

one-shot (unmerged) and the remainder could not288

be processed due to resource constraints such as289

CUDA out-of-memory errors. Consequently, all290

reported results are based solely on these processed291

subsets rather than the entire dataset. Additionally,292

the dataset’s moderate size is a consequence of the293

time-intensive manual annotation process, which294

limited the number of pull requests that could be295

thoroughly labeled. Finally, our evaluation em-296

ployed only a single large language model (CodeL-297

lama 7B Instruct), so the results may not gener-298

alize across other model architectures or training299

approaches. Addressing these limitations in future300

work will enhance the robustness and applicability301

of automated pull request review systems.302
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