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ABSTRACT

A fundamental challenge in online causal discovery is designing effective experi-
ments by selecting optimal intervention targets. Conventional numerical methods
struggle in the early stages when limited interventional data is available, often yield-
ing noisy or misleading selection guidance. In this work, we introduce the Large
Language Model Guided Intervention Targeting (LeGIT), a novel collaborative
framework that synergizes the vast world knowledge of LLMs with the precision
of numerical algorithms. By analyzing the meta-information of the causal sys-
tem, it proposes highly informative intervention targets, effectively bootstrapping
the discovery process to augment existing numerical approaches, while retaining
the convergence guarantees. Evaluated across four realistic benchmarks, LeGIT
demonstrates significant improvements in performance and robustness over existing
methods, and even surpasses humans. This work establishes that LLMs can play a
pivotal role in experimental design, offering a scalable and cost-efficient strategy
to accelerate causal and scientific discovery.

1 INTRODUCTION

Science originates along with discovering new causal knowledge with interventional experiments
inspired by observations (Kuhn & Hawkins, 1963). The art of finding causal relations from different
interventions is then summarized and improved with statistical methods (Pearl & Mackenzie, 2018;
Spirtes et al., 2010; Glymour et al., 2019). Identifying and utilizing causal relations is fundamental to
numerous applications, including biology (Vowels et al., 2022) and financial systems (Dong et al.,
2023). Despite the wide deployment of causal discovery methods, uncovering the underlying causal
connections merely based on observational data alone is typically challenging due to limitations in
identifiability. Mitigating this limitation usually requires additional interventional data obtained by
perturbing part of the causal system to overcome the limited identifiability issue (Spirtes et al., 2000).

However, collecting interventional data is expensive and time-consuming, as it usually involves a
physical process of a real-world system (Cherry & Daley, 2012). Consequently, both the number of
samples and the intervention targets are significantly limited in the experimental design in the real
world (Tong & Koller, 2001). Previous approaches usually rely on uncertainty (Lindley, 1956) or
information theoretic metric to maximize the utility of an experiment (Tigas et al., 2022). Recently,
leveraging gradient signals for intervention targeting has gained significant success (Olko et al.,
2023), as it naturally fits into various gradient-based causal discovery methods. Despite some success,
both uncertainty-based and gradient-based approaches may still suffer from suboptimality, as the
estimation of the signals is usually noisy. Especially when with limited interventional data, the
inaccurate estimation of the scores can easily mislead the intervention targeting and the subsequent
causal discovery. The emergence of large language models (LLMs) (OpenAI, 2023) provides an
opportunity to incorporate extensive world knowledge about experimental design into the intervention
targeting process. It therefore raises an intriguing research question:

Can we leverage LLMs for intervention targeting and do LLMs really help with it?

Recent explorations into the use of LLMs for various causal learning and reasoning tasks suggest that
these models may already encapsulate substantial domain knowledge (Kiciman et al., 2023; Lampinen
et al., 2023; Abdulaal et al., 2024; Li et al., 2024). LLMs have demonstrated the ability to process
the meta-information encoded in natural language and leverage the meta-information to reason for

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Causal 

Discovery 

You are an expert in car 

insurance. Can you help 

find potential root causes 

among those causal 

variables? 

<SocioEcon>: socioeconomic 

status

<DrivingSkill>: driving 

skill

<ThisCarDam>: damage to 

the car

...

Let's systematically analyze the variables 

and their potential causal relationships:...

Given these considerations, I recommend 

focusing on:

<SocioEcon>, since SocioEcon affects the 

focus …

(a) Warmup Intervention

Large Language Model

Experiment 

Design

Intervention &
Observation Data (b) 

Continue Numerical 
Intervention

Nodes

Scores

Estimated SCM

To identify root causes, we should target 

variables that are likely to influence many 

others and are not themselves results of 

other variables:

<DrivingSkill>, Influences …

Step 1: Understand Variables and Potential …

Step 2: Temporal Analysis …

Step 3: Select Intervention Targets 

<SocioEcon>, Directly Impact …

The root 

cause and 

intervention 

target is 

SocioEcon

Select the 

highest one:

1(DrivingSkill)

0

1

2

3

0 1 2 3

Figure 1: Illustration of the LeGIT framework. The left side represents the loop of Online Causal
Discovery, while the right side illustrates the experiment design process. In Step (a), Large Language
Models (LLMs) warm up the causal discovery process by leveraging world knowledge and aligning
it with the experiment’s meta-information. This enables the identification of clear causal structures,
which, in Step (b), guide previous methods to pinpoint informative intervention targets effectively.

causality, which was considered restricted to humans (Gopnik et al., 2004; Trott et al., 2022; Sahu
et al., 2022). Furthermore, LLMs have exhibited remarkable potential in advancing complex scientific
discovery (AI4Science & Quantum, 2023). Additionally, discussions about the limitations of LLMs
in understanding causality were also raised in the community (Zečević et al., 2023; Jin et al., 2023;
Zhang et al., 2023a). This underscores the need for a robust approach that optimally extracts the
world knowledge embedded in LLMs about experimental design while mitigating the risks of being
misled by their hallucinations regarding causality (Zhang et al., 2023b).

To this end, we present a new framework called Large Language Model Guided Intervention
Targeting (LeGIT), designed to maximize while robustly leveraging the knowledge in LLMs to assist
with the intervention targeting. Shown as in Fig. 1, at the beginning of the causal discovery, the
numerical-based methods have limited numerical knowledge about the underlying causal system to
use due to the limited data. Consequently, the estimated signals tend to be noisy and misleading. In
contrast, LLMs can leverage the meta-information about the causal system and relate the learned
world knowledge to identify high-potential intervening targets. After obtaining a relatively clearer
causal graph, LLMs may not be able to provide sufficient guidance. Therefore, similar to humans,
LeGIT leverages numerical methods to select the intervening targets. Our contributions can be
summarized as follows:

• To the best of our knowledge, we are the first to investigate the use of LLMs in the experimental
design to select intervention targets for causal discovery.

• We propose a novel framework called LeGIT that combines the advantages of both the previous
numerical methods as well as the LLMs to facilitate the intervening targeting.

• We conduct extensive experiments with 4 real-world based benchmarks and verify that LeGIT can
outperform previous numerical-based methods and even humans.

• We highlight the promise of LLMs in causal and scientific discovery, that LLMs can effectively
incorporate world knowledge, making them valuable cost-efficient complements to humans.

On the data contamination of LLMs for online causal discovery. A critical consideration when
employing Large Language Models for scientific tasks on established benchmarks is the potential for
training data contamination, as the benchmarks used in this work are from classic Bayesian network
datasets (Scutari, 2010). Nevertheless, Jiralerspong et al. (2024); Khatibi et al. (2024); Long et al.
(2023b) show that prominent LLMs struggle to accurately reconstruct the causal graphs of these
very benchmarks from node descriptions alone. In addition, there is limited knowledge existing in
the Internet on designing experiments for the Bayesian network datasets (Scutari, 2010). Hence,
merely using LLMs to select the intervention targets is insufficient for online causal discovery, as
also verified in our experiments.
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2 PRELIMINARIES

Algorithm 1 ONLINE CAUSAL DISCOVERY

Require: Causal discovery algorithmA (e.g., ENCO), Num-
ber of data acquisition rounds T , Intervention targeting
methodM, Observational dataset Dobs

Output: Final parameters of graph model: φT and Final
estimated CausalDAG: P(G)

1: Dint ← ∅
2: Fit graph model φ0 with algorithm A on Dobs

3: for each intervention acquisition round i = 1, 2, . . . , T
do

4: Ii ← generate intervention targets usingM
5: Di

int ← query for data from interventions Ii
6: Dint ← Dint ∪ Di

int
7: Fit φi with algorithm A on Dint and Dobs

8: end for

We begin by briefly introducing the
preliminaries and notation in online
causal discovery (Olko et al., 2023).

Causal relations among variables can
be modeled using Structural Causal
Models (SCMs) (Pearl & Mackenzie,
2018; Glymour et al., 2019), where
each variable Xi is generated by Xi =
fi(PAi, Ui), with PAi its causal
parents and Ui independent noise.
These relations can be represented
by a directed acyclic graph (DAG)
G = (V,E), where nodes correspond
to variables and edges represent di-
rect causal links. The joint distribu-
tion factorizes as P (X1, ..., Xn) =∏n

i=1 P (Xi|PAi). However, observational data alone can only identify the DAG up to a Markov
Equivalence Class (MEC) (Spirtes et al., 2000).

To recover the true DAG from the MEC, online causal discovery incorporates interventional data (Tong
& Koller, 2001; Hauser & Bühlmann, 2011; Ke et al., 2019). As outlined in Algorithm 1, a causal
discovery algorithm A iteratively updates its structure using both observational and interventional
data. Interventions, modeled as replacing P (Xi|PAi) with P̂ (Xi|PAi), yield modified distributions
Pi(X) = P̂ (Xi|PAi)

∏
j ̸=i P (Xj |PAj). We use hard interventions for simplicity. The online

discovery proceeds in T rounds: Initially, a causal graph model ϕ0 is fitted using observational data.
In each subsequent round, an intervention target I is selected using a targeting method, and new
interventional samples are collected to update the DAG.

Intervention targeting methods include Active Intervention Targeting (AIT), which uses an F -
test (Scherrer et al., 2021), and Bayesian Optimal Experimental Design, which selects targets via
posterior inference over DAGs (Tigas et al., 2022). Gradient-based Intervention Targeting (GIT) (Olko
et al., 2023) instead leverages gradient signals from gradient-based causal discovery to estimate the
utility of each intervention target via hallucinated gradients (Ash et al., 2020), offering improved
performance and natural integration with gradient-based methods such as ENCO (Lippe et al., 2022),
which we focus on in this study.

Figure 2: The selected Node Frequency obtained by different strategies on the initial stage from 5
different seeds. Frequency refers to the number of times a node is selected.
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3 METHODOLOGY

3.1 CHALLENGES IN EXISTING INTERVENTION TARGETING

Despite the success of the GIT method, similar to other estimation-based approaches, GIT is highly
sensitive to the accuracy of the gradient estimation and estimated causal graphs, which can be
extremely noisy in the early rounds of an experiment. Therefore, we might mistakenly choose a
variable that exerts minimal influence on the system, wasting valuable intervention budgets and
misdirecting subsequent learning steps.

To demonstrate the above issue and the challenges in the existing intervention targeting methods more
concretely, we consider four realistic causal discovery BN benchmarks (Scutari, 2010), i.e., Alarm,
Insurance, Child, and Fisram, and plot the distribution of the intervention target at the initial stage.

You are a helpful assistant and expert in Car Insurance system research.
Assuming we can do interventions to all the variables, your job is to assist in
designing the best intervention experiments among the following variables to
help discover variables’ causal relations:

<variable name>: Variable descriptions

Assuming we can do interventions to all the variables, given the aforementioned
variables and their descriptions, can you echo your knowledge about those vari-
ables, temporally analyze their relations, and then choose the best 5 intervention
targets from all the variables, which hopefully are the root causes of the other
variables to start our analysis of their causal relations?
Let’s think and analyze step by step. Then, provide your final answer (variable
names only) within the tags <Answer>..</Answer>, separated by ",

Figure 3: Prompt template at warmup stage.

As given in Fig. 2, it can be found that
the success of GIT varies across differ-
ent datasets. Intuitively, at the begin-
ning of the intervention, intervening
on variables that affect lots of other
variables can bring more informa-
tion about the system (Lindley, 1956;
Agrawal et al., 2019). In the Alarm
dataset, the selected intervention tar-
gets are influential nodes. However,
in the Insurance, Child, and Fisram
dataset, the selected nodes only influ-
ence a few other nodes. Intervening
on such targets with limited influence
may lead to resource waste and further misdirect subsequent online causal discovery rounds.

In comparison, we construct prompts to inquire LLMs about the potential root causes in the system,
given only the meta-information, such as the variable descriptions (see Fig. 3). To investigate the
effectiveness of LLM intervention targeting, we visualize the suggested intervening targets by LLMs
in Fig. 2. It can be found that given only the meta-information, LLMs are able to relate the rich world
knowledge to locate the desired influential nodes1. For example, in the Insurance dataset, LeGIT
identifies SocioEcon (socioeconomic status, node 1) as a crucial factor, plausibly influencing car
ownership, driving behavior, and access to safety features, while GIT cannot.

3.2 LARGE LANGUAGE MODEL GUIDED INTERVENTION TARGETING

Motivated by the aforementioned experiments, we present our framework Large Language Model
Guided Intervention Targeting (LeGIT) to combine the strengths of both numerical-based methods
and LLMs to facilitate the intervention targeting. The description of the algorithm of LeGIT is given
in Algorithm 2. LeGIT consists of four stages.

Warmup Stage. Since at the very beginning of the online causal discovery, numerical-based
estimations are noisy and easily mislead the online causal discovery, we begin by prompting LLMs to
relate the pre-trained knowledge, analyze the variable description, and suggest influential candidates.
The prompt template is given in Fig. 3. The prompting will give the beginning list of intervention
targets Dwarmup. From Dwarmup, we will select Twarmup variables to obtain a basic map of the
underlying causal system. For a robust performance, we perform self-consistency prompt skill (Wang
et al., 2022) to get the final targets for a robust performance.

Bootstrapped Stage. Although the first warmup stage yields a basic structure of the underlying
causal system, due to the intrinsic limitations of LLMs such as limited context length (Liu et al.,
2023) and hallucination (Zhang et al., 2023b), LLMs may only focus on a subset of the variables
and find the influential nodes therein. Nevertheless, when the number of causal variables is large,
LLMs tend to give an incomplete set of influential nodes. Therefore, we further incorporate a second
warmup stage to bootstrap the use of LLMs’ world knowledge in early intervention targeting.

1We provide the summary of the number of neighbors for each node in Appendix B Fig. 11-Fig. 14.
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Algorithm 2 LEGIT: LARGE LANGUAGE MODEL GUIDED INTERVENTION TARGETING

Require: Causal discovery algorithm for Intervention Data A (e.g., ENCO); Intervention Score tar-
geting methodM′ (e.g GIT); LLM for root cause proposal Ψ; Number of data acquisition rounds
T ; Observational dataset Dobs; Graph Node List V ; Warmup Epoch Twarmup; Bootstrapped
Search Epoch Tbootstrapped

Ensure: Final parameters of graph model: φT and CausalDAG: P(G)
1: Dwarmup ← Ψ(V, Twarmup) //Get Warmup List from LLM
2: for round i = 1, 2, . . . , T do
3: if i ≤ Twarmup then
4: DI

int ← Dwarmup[i]
5: else if i = Twarmup + 1 then
6: // Get the Unvisited Nodes List

Vunvisited ← Unvisited nodes from P(Gi)
7: //Get Bootstrapped warmup Intervention Target from Unvisited Nodes

Dbootstrapped ← Ψ(Vunvisited, Tbootstrapped)
8: DI

int ← Dbootstrapped[i− Tbootstrapped]
9: else if Twarmup < i ≤ Twarmup + Tbootstrapped then

10: DI
int ← Dbootstrapped[i− Twarmup]

11: else if Twarmup + Tbootstrapped < i ≤ 2(Twarmup + Tbootstrapped) then
12: //Re-sampling LLM’s List

DI
int ← (Dwarmup +Dbootstrapped)[i− Twarmup − Tbootstrapped]

13: else
14: DI

int ← generate intervention targets usingM′
15: end if
16: Dint ← Dint ∪ DI

int
17: Fit φi with algorithm A on Dint and Dobs

18: end for

More concretely, we leverage the intermediate causal discovery results φTwarmup
after the Twarmup

rounds and examine the left variables that have not been involved in Dwarmup. Then, we further
prompt LLMs to give more focus on the left set of variables and to find the influential variables that
were missing in previous rounds.

Re-sampling Stage. After getting the warmup and bootstrapped intervention target, we perform
re-sampling to refine the intervention selection further, thereby improving the final accuracy of the
algorithm while minimizing unnecessary interventions (Lippe et al., 2022). We interleave the two
lists so that each proposed target must “survive” two independent votes before being used. This
reduces the chance that a single hallucinated LLM suggestion dominates, and guarantees coverage of
both influential and previously isolated nodes.

Continual Intervention Stage. After the three warmup stages, we have already obtained relatively
clearer yet complicated causal graphs. Even for humans, it is hard to determine the best experimental
design. Therefore, we switch to using the numerical-based methods to continue to consume the
remaining intervention budgets.

3.3 THEORETICAL AND PRACTICAL DISCUSSION

After setting up the LeGIT algorithm, we discuss the convergence of LeGIT. Since LeGIT ends up
with a numerical-based method for concluding online causal discovery, it follows intuitively that,
like other numerical-based methods (e.g., GIT (Olko et al., 2023)), and an effective causal discovery
algorithm, such as ENCO (Lippe et al., 2022), LeGIT can converge, further details available in
Appendix D. Nevertheless, we empirically observe that LeGIT can converge to a better solution
compared to the same numerical-based method without LLMs involved.

Consistent with prior work, we mainly adopt GIT as the numerical-based methodM, and ENCO
as the gradient-based causal discovery method. However, as also suggested in GIT, ENCO can also
be switched to other gradient-based methods. Additionally, LeGIT is also compatible with other
numerical-based approaches.
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4 RELATED WORK

Intervention Targeting/Experiment Design. Scientific progress in causal discovery is often driven
by interventional experiments inspired by observational insights (Kuhn & Hawkins, 1963). Traditional
methods focused on designing effective experiments to establish causal links, while statistical
approaches aimed to automate causal inference from observational data (Pearl & Mackenzie, 2018;
Spirtes et al., 2000). However, observational data alone is insufficient for identifying causal structures,
and interventional data is costly to collect (Spirtes et al., 2000). To address these challenges, several
methods for optimal intervention design have been developed.

AIT selects intervention targets using an F -test inspired criterion, evaluating discrepancies in inter-
ventional sample distributions from a posterior distribution of graphs (Scherrer et al., 2021). Causal
Bayesian Experimental Design (CBED) uses Bayesian Optimal Experimental Design to select inter-
ventions that maximize mutual information (MI) between new data and existing graph beliefs, with
MI estimated via a BALD-like method (Tigas et al., 2022; Houlsby et al., 2011). GIT (Olko et al.,
2023) leverages gradient information to determine interventions that maximize impact on causal
parameter updates, which is particularly advantageous in low-data settings. In our work, we explore
leveraging these advanced intervention strategies within the framework of LLMs to determine whether
LLMs can effectively engage in experimental design for causal discovery, pushing the boundaries of
what automated, data-driven causal inference can achieve.

Causal Discovery with LLM. Recent advancements in LLMs have opened new opportunities in
causal learning and reasoning by incorporating domain knowledge, common sense, and contextual
reasoning (Kiciman et al., 2023). LLMs have demonstrated capabilities across Pearl’s ladder of
causation—association, intervention, and counterfactuals—bridging gaps that traditional models have
with high-level causal reasoning. They have shown promising results in pairwise causal discovery
tasks by utilizing semantic information not accessible through numerical data alone (Jiralerspong
et al., 2024; Vashishtha et al., 2025).

On the other hand, LLMs can sometimes behave like “causal parrots”, repeating learned associations
without demonstrating true causal reasoning (Zečević et al., 2023; Chen et al., 2024). Moreover, their
performance varies significantly depending on task complexity, with limited success in advanced
causal reasoning such as full graph discovery and counterfactual analysis (Zhang et al., 2023a; Jin
et al., 2023; Long et al., 2023a). Another promising line of work integrates LLMs with traditional
causal discovery methods to leverage their complementary strengths (Long et al., 2023a; Abdulaal
et al., 2024; Vashishtha et al., 2023; Liu et al., 2024). This hybrid approach has shown improved
performance in constructing causal graphs, benefiting from LLMs’ understanding of language context
and traditional methods’ data-driven precision.

While prior studies emphasize the role of LLMs in causal analysis, the question of whether LLMs
can meaningfully contribute to experimental design in causal discovery remains largely unaddressed.
Experimental design encompasses proposing interventions, predicting outcomes, and assessing
experimental strategies—tasks that extend beyond basic causal inference. This paper seeks to bridge
this gap by investigating the potential of LLMs to support experimental design, exploring their unique
value, and critically evaluating their strengths and limitations in guiding causal experiments.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate LeGIT on real-world datasets and
compare LeGIT against various baselines in intervention selection and humans. We provide a brief
overview of the experimental setups here, with further details available in Appendix C.

5.1 EXPERIMENTAL SETUP

Datasets. Specifically, we use four real-world based benchmark datasets along with their corre-
sponding ground truth causal graphs from the BN repository (BNMA; Scutari, 2010): Fisram, Child,
Insurance, and Alarm. It provides causal graphs derived from real-world applications that are widely
recognized as benchmarks. These datasets encompass a diverse set of professional scenarios, ranging
from car insurance, ecosystem to medical systems, which are crucial to enhancing the knowledge
captured by large language models (LLMs). More details are given in Appendix B.
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Table 1: Average SHD and SID with standard deviation (over 5 seeds) for real-world data (T = 33
rounds, |DI

int| = 32, N = 1056).

Methods Alarm Insurance Child Fisram
(37 Nodes, 46 Edges) (27 Nodes, 52 Edges) (20 Nodes, 25 Edges) (20 Nodes, 23 Edges)

SHD↓ SID↓ SHD↓ SID↓ SHD↓ SID↓ SHD↓ SID↓
CBED 28.20 ± 4.31 213.80 ± 42.44 21.60 ± 4.63 260.00 ± 31.83 5.40 ± 2.06 44.40 ± 18.51 3.60 ± 1.62 27.20 ± 6.31

AIT 32.80 ± 8.42 204.60 ± 52.09 24.20 ± 7.47 312.40 ± 87.50 9.00 ± 3.29 52.20 ± 21.03 8.00 ± 3.63 53.00 ± 29.23

Random Choice 38.80 ± 3.54 204.40 ± 58.15 26.00 ± 3.63 323.80 ± 14.96 5.40 ± 1.20 51.00 ± 17.11 4.40 ± 3.38 41.00 ± 37.38

Round Robin 25.00 ± 1.26 118.60 ± 21.78 17.40 ± 4.54 232.20 ± 27.23 3.40 ± 2.50 23.00 ± 14.39 4.80 ± 1.72 57.20 ± 19.61

Degree Prob 29.40 ± 4.67 144.60 ± 49.77 25.80 ± 2.93 305.20 ± 17.45 6.20 ± 2.48 36.20 ± 16.35 6.60 ± 1.20 40.60 ± 9.73

GIT 19.60 ± 3.77 131.40 ± 47.66 16.40 ± 3.14 243.80 ± 28.72 2.80 ± 0.75 20.40 ± 12.50 2.00 ± 1.67 27.00 ± 21.94

Human 22.60 ± 5.43 133.20 ± 27.01 14.20 ± 3.43 232.20 ± 40.74 2.00 ± 0.63 18.80 ± 8.42 1.60 ± 1.02 21.20 ± 12.61

LeGIT 17.40 ± 3.61 121.00 ± 38.27 12.60 ± 0.80 200.60 ± 35.32 2.20 ± 0.98 20.60 ± 5.61 1.20 ± 0.98 15.80 ± 8.23

Baselines. We compare LeGIT against different online causal discovery algorithms GIT (Olko et al.,
2023), AIT (Scherrer et al., 2021), CBED (Tigas et al., 2022) as selection strategies for online active
learning interventions, as well as four additional baselines following different heuristics:

1. Random Choice: A target node is randomly select from the set of all nodes at each step.

2. Round Robin: A target node is chosen randomly from the unvisited nodes at each step. Once all
nodes are selected, the visitation counts are reset.

3. Degree Prob Sample: A target node is randomly chosen from all nodes, with selection probability
normalized by each node’s out-degree.

4. Human: We ask five master’s/Ph.D.-level individuals, presenting them with the same information
and process as provided to the LLMs.

Among the baselines, Degree Prob Sample can be considered as an oracle to LLM that adopts the
out-degree of each node in the ground truth DAG. In addition, we also include the human baseline to
better isolate and understand the unique contributions of LLMs.

Implementation. We employ the GPT-4O2 (OpenAI, 2024) with ENCO (Lippe et al., 2022) as
the backbone causal discovery algorithm, with detailed settings provided in the Appendix C.1.
The observational dataset consists of |Dobs| = 5000 samples, and we conduct T = 33 rounds of
intervention sampling, with each round acquiring an interventional batch of |DI

int| = 32 samples,
leading to a total of N = 1056 interventional samples. For GIT and AIT, we use |G| = 50 graphs,
each with |DG,i| = 128 data samples for the Monte Carlo approximation of the score. We set
Twarmup = 3 and Tbootstrapped = 2 for LeGIT.

Metrics. We evaluate the performance of different methods using three metrics following the common
practice: Structural Hamming Distance (SHD) (Tsamardinos et al., 2006), Structural Intervention
Distance (SID) (Peters & Bühlmann, 2015), and Balanced Scoring Function (BSF) (Constantinou,
2019). SHD (lower is better) quantifies the number of edge insertions, deletions, or reversals needed
to transform one graph into another. SID (lower is better) assesses causal inference by evaluating the
correctness of the intervention distribution. BSF (higher is better) mitigates bias by balancing the
evaluation of edges and independencies within Bayesian Network structures. A detailed description
can be found in the Appendix C.2.

5.2 EMPIRICAL RESULTS

Recovery of causal graph. As shown in Table 1, it can be found that LeGIT achieves state-of-
the-art causal discovery performances, with consistent improvements against the adopted gradient-
based methods and even human baseline across all metrics and benchmarks. The superior SHD
scores demonstrate that LeGIT is highly effective in accurately reconstructing the underlying graph
structures, minimizing the number of erroneous edge modifications required.

Intervention dynamics. In Fig. 4, we further plot the performances of different methods along with
the increase of the data samples obtained from different rounds. It can be found that, although at
the beginning of the online causal discovery, LeGIT may not demonstrate outstanding SHD results.
Along with more data samples coming in, LeGIT converge to a better solution faster than any other

2We used gpt-4o-2024-08-06 from the Azure platform. We also tested open-source models in Appendix C.3.
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Figure 4: SHD metric for different methods (over 5 seeds) towards different intervention samples.
(T = 33 rounds, |DI

int| = 32, N = 1056)

Figure 5: BSF metric for different methods (over 5 seeds) under Table 1 setting.

methods. In contrast, despite a faster decrease speed of GIT, GIT finally converges to a suboptimal
solution due to unsuitable initialization, which verifies our discussion. Besides, SID results highlight
LeGIT’s robustness in preserving causal relationships and ensuring accurate causal inferences, which
is essential in real-world applications. For BSF metrics in Fig. 5, higher values are indicative that the
learned graph is more accurate and closely matches the true graph in terms of structure.

Figure 6: SHD score on Child and Alarm Dataset
for LeGIT and GIT with P-values over 10 seeds.

Statistical significance. In addition, we rerun
the experiment under the Table 1 settings with
10 seeds on Alarm and Child dataset, and per-
form Paired T-test and Wilcoxon signed-rank
test on SHD metrics (Virtanen et al., 2020)
against LeGIT and GIT. The results are shown
in Fig. 6. LeGIT exhibits the same level of per-
formance as with 5 seeds, consistently outper-
forming GIT across all three metrics. This per-
formance gap is statistically significant, with all
p-values falling well below the 0.05 threshold
for both datasets, confirming that our model’s
advantage is not an artifact of random chance. The full results are provided in Appendix C.4.

The consistently low SHD and SID scores, with high BSF values, underscore the efficacy of LeGIT in
accurately learning network structures and providing tangible benefits. Compared to heuristic-based
methods like Random Choice and Round Robin, LeGIT offers a more strategic and data-driven
approach, leading to better performance metrics.

Table 2: Average SHD and SID with standard deviation (over 5 seeds) for real-world data with a low
data budget (T = 33 rounds, |DI

int| = 16, N = 528).

Methods Alarm Insurance Child Fisram
(37 Nodes, 46 Edges) (27 Nodes, 52 Edges) (20 Nodes, 25 Edges) (20 Nodes, 23 Edges)

SHD↓ SID↓ SHD↓ SID↓ SHD↓ SID↓ SHD↓ SID↓
CBED 32.40 ± 4.36 214.20 ± 69.73 26.40 ± 3.56 327.00 ± 38.46 9.20 ± 3.25 46.60 ± 18.49 5.60 ± 1.02 44.20 ± 21.25

AIT 41.20 ± 5.49 270.00 ± 29.61 37.00 ± 12.26 421.40 ± 82.68 10.00 ± 3.29 73.40 ± 45.64 12.60 ± 1.96 80.60 ± 13.81

Random Choice 40.80 ± 2.71 236.40 ± 12.31 25.60 ± 2.24 311.00 ± 22.17 8.20 ± 2.32 51.60 ± 33.15 5.80 ± 2.79 46.00 ± 22.92

Round Robin 33.60 ± 7.34 169.00 ± 35.69 22.60 ± 3.72 269.20 ± 44.37 4.60 ± 2.42 32.40 ± 24.25 5.00 ± 1.55 45.60 ± 22.60

Degree Prob 42.60 ± 6.34 244.20 ± 35.06 31.80 ± 4.40 351.00 ± 27.64 9.00 ± 2.90 60.80 ± 23.01 11.00 ± 3.74 67.80 ± 20.45

GIT 27.20 ± 4.71 177.80 ± 61.65 22.40 ± 3.72 296.00 ± 44.23 6.00 ± 1.55 33.80 ± 15.75 3.60 ± 3.61 35.20 ± 31.90

Human 24.00 ± 2.28 188.40 ± 27.09 20.40 ± 2.65 280.60 ± 26.04 4.60 ± 2.06 20.60 ± 24.81 3.80 ± 1.47 33.80 ± 15.35

LeGIT 21.00 ± 2.37 159.40 ± 26.81 18.20 ± 1.17 259.00 ± 66.69 4.40 ± 2.15 28.20 ± 15.03 2.20 ± 1.17 29.00 ± 17.30

5.3 LOW DATA EXPERIMENT ANALYSIS

Furthermore, we conduct additional experiments in an extremely low-data setting, where only 16
interventional data samples are sampled from each round, and other settings are the same as above.
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This low-data setting is more practically relevant. Additionally, due to the insufficient intervention
data, the performance of causal discovery algorithms in estimating effects is diminished (Lippe et al.,
2022), which further tests the effectiveness and robustness of the intervention strategy.

The results presented in Table 2, where LeGIT achieves larger improvements under the challenging
low-data condition across all datasets. We also provide the SHD curves and BSF metrics with respect
to different intervention samples under Table 2 settings in Appendix C.5. These findings serve as
strong evidence that reaffirm the effectiveness of LeGIT in real-world experimental design scenarios,
where both the number of interventions and the sample size are limited.

The result of the low-data experiment further verifies our discussion that numerical methods suffer
from noise or insufficient data, leading to a suboptimal solution. The numerical-based method
does not even outperform round-robin on 3 smaller datasets, underscoring its limitations in such
scenarios. In contrast, the use of LLMs enables scalable and effective guidance that complements
numerical methods, reducing the risk of suboptimal convergence and having more stable performance
in real-world applications.

5.4 DETAILED COMPARISONS AND ANALYSES

Table 3: Results of paired with CBED meth-
ods under Table 1 settings with 5 seeds.

Dataset Metric Method

LeGIT (CBED) CBED

Alarm
SHD ↓ 26.20 ± 4.17 28.20 ± 4.31
SID ↓ 144.40 ± 24.21 213.80 ± 42.44
BSF ↑ 0.7908 ± 0.07 0.8053 ± 0.06

Child
SHD ↓ 2.40 ± 1.02 5.40 ± 2.06
SID ↓ 41.00 ± 9.85 44.40 ± 18.51
BSF ↑ 0.9778 ± 0.02 0.9150 ± 0.05

Paired Up with Other Method. To further test our
design, we pair LeGIT with CBED and evaluate un-
der the Table 1 settings. Table 3 shows that LeGIT
with CBED reduces both SHD and SID on Alarm
and Child when compared to vanilla CBED, indicat-
ing more accurate structure recovery and stronger
interventional consistency at the same budget. These
results confirm that LeGIT can be plugged into a
numerical method and deliver consistency gains.

Compared to humans. While Human interventions
remain strong competitors, LeGIT bridges the gap between automated methods and expert-driven
processes. LeGIT demonstrates superior performance on two complex datasets: Alarm and Insurance.
As the number of variables increases, determining the optimal interventions to reveal the structure
of the causal graph becomes combinatorially explosive. For humans, this process can be extremely
tedious or error-prone, as they may subjectively favor certain nodes, failing to synthesize different
viewpoints due to simpler mental models. In contrast, refer to Fig. 1, LLMs follow the instructions
provided in Fig. 3 step by step and align them with their background knowledge. With the self-
consistency prompt technique, LLMs generate more robust results, providing a highly cost-effective
alternative to hiring multiple human experts for advice.

Discussion. LLMs’ primary value lies in scalability and availability, providing immediate, cost-
effective guidance in real-time, especially for online causal discovery where rapid interventions are
required. They excel in large-scale systems with many variables, where it’s infeasible for experts to
assess all nodes. LLMs complement human oversight by filling gaps in availability, consistency, and
knowledge while helping avoid expert biases. Additionally, LLMs quickly process metadata, saving
experts time and providing a solid starting point, as seen in other AI-assisted tasks.

6 CONCLUSIONS

In this work, we investigated the feasibility of incorporating LLMs into the intervention targeting
experimental design in causal discovery. We introduced a novel framework called LeGIT, which
combines the best of previous numerical-based approaches and the rich knowledge in LLMs. Specifi-
cally, LeGIT leverages LLMs to warm up the online causal discovery procedure by identifying the
influential root cause variables to begin the intervention. After setting up a rough skeleton of the
underlying causal graph, LeGIT then integrates the numerical-based methods to continue to select
the intervention targets. Empirically, we verified the effectiveness of LeGIT leveraging LLMs to
warm up the online causal discovery can achieve the state-of-the-art performance across multiple
realistic causal discovery benchmarks. Notably, LeGIT also outperforms humans in intervention
targeting, highlighting the high potential and strong effectiveness of LeGIT. The findings with LeGIT
demonstrate that LLMs offer a scalable and cost-efficient approach to enhance experimental design,
paving the way for new research directions in causal analysis and scientific discovery.
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A THE USE OF LARGE LANGUAGE MODELS

We use LLM to assist and polish our writing. At the same time, this paper primarily investigates
whether we can leverage LLMs to identify intervention targets for obtaining interventional data for
causal discovery.

B MORE DETAILS OF DATASETS

In this part, we will further introduce the 4 different domain Causal graph discovery datasets
from bnlearn Repository (Scutari, 2010; Elidan, 2025) and BMNA BN Repository (BNMA). The
adopted causal graphs are already among the largest compared to other works using LLMs for
causal discovery (Zečević et al., 2023; Jin et al., 2023; Zhang et al., 2023a), as well as those used
in numerical methods for online causal discovery (Olko et al., 2023). For the description of each
variable, we refer to the original papers of each dataset, the bnlearn Package Document (Scutari,
2010). We show the ground truth and the out-degree node distributions as follows. For variable
description, please refer to Appendix E.

Fisram (Freshwater Fish Injurious Species Risk Assessment Model), shown as Fig. 7, is to assess
the potential invasiveness and harm of introduced freshwater fish species, aiding decisions on
their importation. The model consists of 20 nodes and 23 edges, representing key species traits,
environmental factors, and historical data used to assess potential ecological harm (Marcot et al.,
2019).

Child show as Fig. 8 is used to model the diagnosis of pediatric health issues, particularly those that
can occur in newborns or young children. It’s often employed in studies related to decision support
systems, where probabilistic graphical models assist in medical diagnosis, with 20 nodes and 25
edges (Dempster, 1993).

Insurance shown as Fig. 9 is intended to simulate a situation in which an insurance company
needs to assess various risks and make decisions regarding policies, claims, and customer behavior.
It represents the interdependencies between multiple insurance factors. It has 27 nodes and 52
edges (Binder et al., 1997).

Alarm shown as Fig. 10 is known as the ALARM (A Logical Alarm Reduction Mechanism) network,
and it was originally developed to model a patient monitoring system for anesthesia purposes. It helps
in predicting physiological conditions of patients, detecting potential complications, and generating
alerts when necessary, consists of 37 nodes and 46 edges (Beinlich et al., 1989).
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Figure 7: Ground truth Causal Graph for Fisram data.
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Figure 8: Ground truth Causal Graph for Child data.
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Figure 9: Ground truth Causal Graph for Insurance data.
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Figure 10: Ground truth Causal Graph for Alarm data.

Figure 11: Out-degree distribution of Fisram data.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Out-degree distribution of Child data.

Figure 13: Out-degree distribution of Insurance data.
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Figure 14: Out-degree distribution of Alarm data.

C MORE DETAILS OF EXPERIMENTS

C.1 ENCO HYPERPARAMETERS

For experiments using the ENCO framework, we used the exact parameters reported by (Lippe et al.,
2022). These parameters are provided in Table 4 to ensure the completeness of our report.

Table 4: Hyperparameters used for the ENCO framework.
PARAMETER VALUE

SPARSITY REGULARIZER λsparse 4× 10−3

DISTRIBUTION MODEL 2 LAYERS, HIDDEN SIZE 64, LEAKYRELU(α = 0.1)
BATCH SIZE 128
LEARNING RATE - MODEL 5× 10−3

WEIGHT DECAY - MODEL 1× 10−4

DISTRIBUTION FITTING ITERATIONS F 1000
GRAPH FITTING ITERATIONS G 100
GRAPH SAMPLES K 100
EPOCHS 30
LEARNING RATE - γ 2× 10−2

LEARNING RATE - θ 1× 10−1

C.2 DETAILED METRICS

In this section, we present the details of 3 different metrics mentioned in the experiment part.

• The Structural Hamming Distance (SHD) (Tsamardinos et al., 2006): SHD is a frequently
employed score comparing graph structures via their binary adjacency matrices. It represents
the minimum sum of edge additions (A), deletions (D), and reversals (R) required to convert
one adjacency matrix into that of the ground truth causal graph.

SHD = A+D +R (1)

• Structural Intervention Distance (SID) (Peters & Bühlmann, 2015): This metric measures
how closely two DAGs, G and H, align in terms of the causal effects they encode. SID
is defined as the total count of intervention distributions (from node i to node j) that are
inaccurately predicted by the candidate graph H when compared against the reference graph
G. Consequently, SID reveals the impact of edge errors within H on the resulting causal
effect estimations.

SID = #{(i, j), i ̸= j | the intervention distribution from
i to j is falsely estimated byH with respect to G}. (2)
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• Balanced Scoring Function (BSF) (Constantinou, 2019): BSF offers an unbiased method
for evaluating the performance of graph structure learning algorithms. It achieves this by
normalizing the contributions of true positives (TP ), true negatives (TN ), false positives
(FP ), and false negatives (FN ) according to the prevalence of actual dependencies and
independencies in the reference graph structure. The calculation is performed as follows:

BSF =
1

2

(
TP
a

+
TN
i
− FP

i
− FN

a

)
, (3)

Here, a is the count of arcs in the ground truth graph. The term i corresponds to the number
of absent arcs (independencies) in the true graph, calculated as i = |N |×(|N |−1)

2 − a, where
|N | is the total count of nodes.

C.3 OPEN-SOURCE MODELS EXPERIMENTS

We tested DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI, 2025), Deepseek-V3 (DeepSeek-AI,
2024), and LLama-3.1-405B (AI, 2024) in the Alarm and Insurance datasets. The SHD and MeanNHD
(NHD = 1

N2
node

SHD) results for the Alarm and Insurance datasets within 5 random seeds in 2
settings are shown in Table 5. With different LLMs, we can find that LeGIT still consistently shows
strong performance with these LLMs, highlighting the robustness and adaptability of our proposed
framework.

Table 5: SHD and MeanNHD of using different LLMs in LeGIT framework under 2 settings with 5
random seeds.

Methods Normal Settings Low Data Settings
Alarm Insurance MeanNHD ↓ Alarm Insurance MeanNHD ↓

GIT 19.60 ± 3.77 16.40 ± 3.14 0.0184 27.20 ± 4.71 22.40 ± 3.72 0.0253

LeGIT (GPT-4O) 17.40 ± 3.61 12.60 ± 0.80 0.0161 21.00 ± 2.37 18.20 ± 1.17 0.0202
LeGIT (DeepseekR1-14B) 20.00 ± 2.12 14.20 ± 2.71 0.0170 22.00 ± 0.82 24.60 ± 2.15 0.0249
LeGIT (DeepseekV3) 18.60 ± 3.44 14.60 ± 2.72 0.0168 22.40 ± 1.85 20.60 ± 1.02 0.0223
LeGIT (LLama-3.1-405B) 18.60 ± 2.33 15.80 ± 4.07 0.0176 28.00 ± 4.15 18.20 ± 4.26 0.0227

C.4 STATISTICAL SIGNIFICANCE

The full results on Alarm and Child datasets under Fig. 7 are provided in Table 6.

Table 6: Results on Alarm and Child datasets under Table 1 settings with 10 seeds, and P-value of the
Paired T-test and the Wilcoxon test with GIT and LeGIT SHD.

Dataset Metric Method Test on SHD

LeGIT GIT Paired T Wilcoxon

Alarm
SHD ↓ 17.60± 2.76 19.90± 4.37

0.0172 0.0277SID ↓ 122.00± 35.40 140.60± 52.36
BSF ↑ 0.9293± 0.03 0.9272± 0.02

Child
SHD ↓ 2.30± 1.00 3.70± 1.10

0.0165 0.0273SID ↓ 23.70± 11.99 30.20± 18.02
BSF ↑ 0.9655± 0.03 0.9584± 0.03

We also perform the Paired T-test and the Wilcoxon Signed-Rank test (Virtanen et al., 2020) against
GIT and LeGIT results in Table 1. The result is shown in Table 7. Considering the sample size, at a
90% confidence level, we believe that the results of LeGIT outperform GIT on all four datasets.

The results clearly indicate that LeGIT outperforms existing baseline methods across all three
evaluation metrics.

C.5 LOW-DATA SETTINGS VISUALIZATION

In this section, we provide the SHD curve under low-data settings as Fig. 15 and the selected Node
Frequency obtained by different strategies on Epoch 0-4 as Fig. 17. And the BSF metrics in Fig. 16.
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Table 7: P-value of Paired T-test and Wilcoxon test with GIT and LeGIT SHD results in Table 1.

Paired T-test Wilcoxon test

Alarm 0.074 0.100
Insurance 0.060 0.067
Child 0.070 0.083
Fisram 0.099 0.102

Figure 15: SHD metric for different methods (over 5 seeds) under Table 2 setting (T = 33 rounds,
|DI

int| = 16, N = 528)

Figure 16: BSF metric for different methods (over 5 seeds) towards different intervention samples.
(T = 33 rounds, |DI

int| = 32, N = 1056)

C.6 RESOURCES

We utilized a system comprising two Intel Xeon Platinum 8358P processors with 2.6GHz, two
NVIDIA A40 GPUs (48GB each), and 1 TB of memory. For the large language model (LLM) API,
we leveraged the Azure platform.

C.7 FINAL CAUSAL GRAPH

In this section, we present the final causal graph after T = 33, total sample N = 1056 results with
GIT, Human, and LeGIT.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 17: The selected Node Frequency obtained by different strategies on Epoch 0-4 under Table 2
setting.
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Figure 18: LeGIT final causal graph for Fisram dataset
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Figure 19: GIT’s final causal graph for Fisram dataset
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Figure 20: Human’s final causal graph for Fisram dataset
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Figure 21: LeGIT final causal graph for Child dataset
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Figure 22: Human’s final causal graph for child dataset
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Figure 23: GIT’s final causal graph for Child dataset
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Figure 24: LeGIT final causal graph for Insurance dataset
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Figure 25: Human’s final causal graph for Insurance dataset
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Figure 26: GIT’s final causal graph for Insurance dataset
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Figure 27: LeGIT final causal graph for Alarm dataset
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Figure 28: Human’s final causal graph for Alarm dataset
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Figure 29: GIT’s final causal graph for Alarm dataset
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D CONVERGENCE OF CAUSAL DISCOVERY WITH LEGIT

In this section, we provide a convergence argument for LeGIT, which combines a Large Language
Model (LLM) warmup phase with a numerical-based intervention targeting strategy (e.g., GIT (Olko
et al., 2023)).

D.1 PRELIMINARIES AND NOTATION

Structural Causal Models and Online Causal Discovery. We use standard definitions of structural
causal models (SCMs), directed acyclic graphs (DAGs), and single-node (hard) interventions as in,
e.g., ENCO (Lippe et al., 2022). Let

G∗ = (V,E∗), V = {1, 2, . . . , n},

indexing causal variables (X1, . . . , Xn); the goal is to recover G∗. In an online setting, at each
round t = 1, 2, . . . , T , we choose a single intervention target It ∈ V and obtain a small batch of
interventional samples under the regime do(XIt). We write Mi for the interventional setting do(Xi)
and use p(· |Mi) for the corresponding interventional distribution. Newly acquired interventional
data are then used to update the current structural hypothesis and its parameters.

LEGIT and the Warmup Stage. LEGIT begins with a small number of warmup rounds Twarmup,
optionally followed by a bootstrap stage Tbootstrapped. During these initial stages, an LLM proposes
intervention targets based on domain descriptions or meta-information about variables. After warmup
and bootstrap, we perform a single re-sampling pass that revisits both the initial LLM list and the
bootstrapped list exactly once (to mitigate outliers and ensure coverage). The algorithm then switches
to a purely numerical strategy for intervention selection—for example, GIT (Olko et al., 2023) or a
Bayesian method (Brouillard et al., 2020). Formally,

It =

{
LLM-based selection (warmup/bootstrapped), t ≤ 2

(
Twarmup + Tbootstrapped

)
,

numerical-based selection, 2
(
Twarmup + Tbootstrapped

)
< t ≤ T.

This schedule will be used in our analysis to justify the warmup coverage condition and subsequent
convergence guarantees.

D.2 CONVERGENCE PROOF

Throughout, let G⋆ denote the true DAG and let Pa⋆(j) be the true parent set of node j.

Assumptions. We adopt standard assumptions used by interventional CD methods such as GIT and
ENCO:

• A1 (Faithfulness). The observational/interventional distributions are faithful to a unique
DAG G⋆.

• A2 (Sufficiency). No latent confounding; all relevant variables are observed.

• A3 (Convergent Base Method). Given sufficiently many interventional samples on a
suitable set of targets, the numerical backbone (e.g., GIT for target selection coupled with
ENCO for parameter/structure updates) converges to G⋆; see original paper (Olko et al.,
2023; Lippe et al., 2022) for formal statements.

In addition, we formalize what it means for an intervention to be informative for a candidate edge.

Definition D.1 (Edge-informative single-node intervention). Fix an ordered pair (i, j). Consider
an intervention on Xi and let p̂a(j) denote the current candidate parent set for j. Define the
interventional log-likelihood gap

∆i→j := EMi
[ log p(Xj | p̂a(j) ∪ {Xi}) − log p(Xj | p̂a(j))] ,

where Mi indicates data drawn under do(Xi). The intervention do(Xi) is informative for (i, j) if
∆i→j > 0.
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This matches the quantity whose sign drives the expected gradient on the ENCO orientation parameter
for (i, j): when i ∈ Pa⋆(j), ∆i→j is strictly positive for at least one candidate p̂a(j) (ENCO’s
consistency condition), whereas if i /∈ Pa⋆(j) the expectation is non-positive.3

Warmup coverage. Our LLM warmup plus re-sampling stage is designed to touch influential/parent
candidates early. We capture this by a mild coverage requirement:
Assumption D.2 (Warmup edge coverage). There exists α > 0 such that in each warmup epoch, with
probability at least α, the selected target v is a true parent of some node c whose (v, c) orientation is
not yet resolved. Equivalently, the warmup yields a non-empty set of edge-informative interventions
in the sense of Def. D.1.

This is satisfied when (i) the LLM list contains some true parents for currently unresolved children
(as observed empirically), and (ii) the re-sampling stage visits all items in the LLM/bootstrapped lists
at least once, preventing a single bad suggestion from dominating.

D.2.1 KEY LEMMA: INFORMATIVE INTERVENTIONS MOVE ENCO TOWARD THE CORRECT
ORIENTATION

Lemma D.3 (Positive drift on true edges). Fix j and any true parent i ∈ Pa⋆(j). Under A1–A2, if
do(Xi) is taken and is informative for (i, j) in the sense of Def. D.1, then the expected ENCO update
on the orientation parameter for (i, j) points toward i→j. Consequently, after finitely many such
informative interventions on distinct true parents across unresolved edges, the expected number of
misoriented or spurious edges strictly decreases.

Proof. When intervening on Xi, the natural dependence from i to j is disrupted in the data distribution.
If i∈Pa⋆(j), incorporating Xi as a parent of j improves predictive adequacy for Xj under do(Xi)
relative to omitting it, yielding ∆i→j > 0. In ENCO, the expected gradient of the orientation
parameter for (i, j) under Mi has the same sign as ∆i→j ; hence its expectation is positive and pushes
the model toward the correct orientation i→j. If i /∈ Pa⋆(j), the gap is non-positive in expectation
and the update does not reinforce a wrong arrow. Summing over a finite set of unresolved true edges
receiving informative interventions produces a negative expected change in a potential such as the
structural Hamming distance to G⋆.

D.2.2 CONVERGENCE OF THE COMBINED PROCEDURE

Theorem D.4 (Convergence of LEGIT). Under A1–A3 and Assumption D.2, LEGIT converges to
the true DAG G⋆ as the total number of acquisition rounds T →∞.

Proof. By Assumption D.2 and Lemma D.3, the warmup/re-sampling stage executes a non-empty
set of edge-informative single-node interventions, reducing the expected number of misoriented/extra
edges around influential nodes. From round t = 2(Twarmup+Tbootstrapped)+1 onward, target
selection follows the base method (e.g., GIT), and parameters/structure are updated numerically (e.g.,
ENCO). By A3, once a sufficient variety of informative interventions has been gathered, the base
method converges to G⋆.

Intuitively, warmup shrinks the hypothesis space by resolving high-impact ambiguities; the base
method then continues to pick targets whose interventional data (together with the already-collected
warmup data) satisfy the sufficient conditions required by its own convergence proof (Olko et al.,
2023; Lippe et al., 2022). Therefore, the overall procedure converges to G⋆.

Remark D.5 (Relation to single-node identifiability). Our notion of informativeness is compatible
with the classical single-node identifiability result: with faithfulness and no latent confounding, a
finite set of single-node interventions suffices to identify the DAG up to exact orientation (Eberhardt
et al., 2012). The warmup aims to hit true parents early (often high-degree or high-influence nodes),
and the base method continues selecting targets; together, they assemble a set of interventions that
meets the sufficient conditions for exact recovery used in A3.

3ENCO updates edge-orientation parameters only when intervening on one of the endpoints; in expectation
the update direction is proportional to the interventional likelihood contrast between “edge present” and “edge
absent”. See Lippe et al. (2022), Thm. 3.1 conditions.
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Remark D.6 (Extension to Other Methods). Although we use GIT and ENCO as our illustrative
example, any gradient-based or Bayesian active learning method for causal discovery that is guaran-
teed to converge given a suitable variety of interventions can replace GIT in LeGIT. Under the same
conditions (A1–A3), the combined procedure will likewise converge to the true DAG G∗.

E EXAMPLES OF PROMPTS

For robust performance, we actually shuffle the order of variable descriptions following the self-
consistency prompt skill. We provide the prompt templates and the description of the variables used
in LeGIT below.

Fisram Warmup Prompt

You are a helpful assistant and expert in Freshwater Fish Injurious Species Risk Assessment
Model system research. Here are some tips that you can pay attention to:
1. Assess whether there is a direct causal relationship, and consider potential confounding
variables that might affect the relationship that could potentially not causal relationship.
2. Distinguish between correlations and causation; verify that correlations are not mistaken
for causal relationships.
3. Ensure the correct temporal order of variables; confirm that the cause precedes the effect.
Assuming we can do interventions to all the variables, your job is to assist in designing the
best intervention experiments among the following variables to help discover their causal
relations:
<OthTr>: Non-bite/toxin traits posing human-health risks (e.g., zoonotic pathogens, physical
injury from leaping species).
<Harm>: Actual or potential physical or behavioral injury to native species and/or humans,
or damage to habitats. <BehEff>: Combined effect of predation and competition on native
species behavior and viability.
<EcoEff>: Overall impact of habitat disturbance, predation, and competition on ecosystem
structure and function.
<Clim>: Sum of counts for climate similarity scores 6–10 divided by the sum of all climate
scores, as calculated by the CLIMATCH or RAMP tools.
<HumEff>: Combined influence of bites/toxins and other detrimental traits on humans.
<Estab>: Actual or potential for self-sustaining wild populations based on climate and habitat
inputs.
<NHumTrans>: Dispersal assistance by natural agents (wind, water, animals) beyond the
species’ own movement.
<HumTrans>: Intentional or unintentional movement by humans (e.g., trade, ballast water,
recreational stocking).
<BiteEnv>: Direct adverse effects on human health via bites, stings, toxins, injections,
ingestion, or absorption. <Pred>: Capacity to prey on and negatively affect native species
populations.
<Gen>: Capacity to affect native species’ genetics via hybridization, GMO escape, or
introgression.
<HabDis>: Capacity to modify or degrade habitat (erosion, eutrophication, sedimentation).
<Invas>: Final invasive-injurious outcome under the Lacey Act criteria, integrating Establish-
ment, Spread, and Harm. <Comp>: Capacity to compete with native species for food, space,
or habitat.
<SppEff>: Overall impact of predation, competition, and genetics on native species viability.
<Path>: Role in spreading infectious agents (bacteria, viruses, parasites, fungi) to native
wildlife.
<HabSuit>: Degree to which available habitat in the potential introduction area matches the
species’ known habitats.
<Spread>: Actual or potential spatial expansion across ecosystems, driven by climate, habitat,
and transport.
<Transp>: Combined human and non-human dispersal influence.
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Assuming we can do interventions to all the variables, given the aforementioned variables
and their descriptions, can you **echo your knowledge of those variables**, **temporally
analyze** their relations, and then **choose the best 4 intervention targets from all the
variables** which hopefully are the root causes of the other variables to start our analysis of
their causal relations?
Let’s think and analyze step by step. Then, provide your final answer (variable names only)
within the tags <Answer>...</Answer>, separated by ", ".

Child Warmup Prompt

You are a helpful assistant and expert in children’s disease research. Here are some tips that
you can pay attention to:
1. Assess whether there is a direct causal relationship, and consider potential confounding
variables that might affect the relationship that could potentially not causal relationship.
2. Distinguish between correlations and causation; verify that correlations are not mistaken
for causal relationships.
3. Ensure the correct temporal order of variables; confirm that the cause precedes the effect.
Assuming we can do interventions to all the variables, your job is to assist in designing the
best intervention experiments among the following variables to help discover their causal
relations:
<LungFlow>: low blood flow in the lungs
<ChestXray>: having a chest x-ray
<Disease>: infant methemoglobinemia
<Grunting>: grunting in infants
<Age>: age of infant at disease presentation
<XrayReport>: lung excessively filled with blood
<RUQO2>: level of oxygen in the right upper quadriceps muscle
<DuctFlow>: blood flow across the ductus arteriosus
<HypoxiaInO2>: hypoxia when breathing oxygen
<Sick>: presence of an illness
<CO2Report>: a document reporting high level of CO2 levels in blood
<LungParench>: the state of the blood vessels in the lungs
<LVH>: having left ventricular hypertrophy
<LowerBodyO2>: level of oxygen in the lower body
<BirthAsphyxia>: lack of oxygen to the blood during the infant’s birth
<CO2>: level of CO2 in the body
<LVHreport>: report of having left ventri
<GruntingReport>: report of infant grunting
<CardiacMixing>: mixing of oxygenated and deoxygenated blood
<HypDistrib>: low oxygen areas equally distributed around the body
Assuming we can do interventions to all the variables, given the aforementioned variables
and their descriptions, can you **echo your knowledge of those variables**, **temporally
analyze** their relations, and then **choose the best 4 intervention targets from all the
variables** which hopefully are the root causes of the other variables to start our analysis of
their causal relations?
Let’s think and analyze step by step. Then, provide your final answer (variable names only)
within the tags <Answer>...</Answer>, separated by ", ".

Insurance Warmup Prompt

You are a helpful assistant and expert in car insurance risks research. Here are some tips that
you can pay attention to:
1. Assess whether there is a direct causal relationship, and consider potential confounding
variables that might affect the relationship that could potentially not causal relationship.
2. Distinguish between correlations and causation; verify that correlations are not mistaken
for causal relationships.
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3. Ensure the correct temporal order of variables; confirm that the cause precedes the effect.
Assuming we can do interventions to all the variables, your job is to assist in designing the
best intervention experiments among the following variables to help discover their causal
relations:
<ThisCarDam>: damage to the car
<MakeModel>: owning a sports car
<OtherCarCost>: cost of the other cars
<PropCost>: ratio of the cost for the two cars
<AntiTheft>: car has anti-theft
<DrivQuality>: driving quality
<DrivHist>: driving history
<MedCost>: cost of medical treatment
<Mileage>: how much mileage is on the car
<Antilock>: car has anti-lock
<CarValue>: value of the car
<Accident>: severity of the accident
<OtherCar>: being involved with other cars in the accident
<SeniorTrain>: received additional driving training
<ILiCost>: inspection cost
<SocioEcon>: socioeconomic status
<Theft>: theft occurred in the car
<Age>: age
<RuggedAuto>: ruggedness of the car
<GoodStudent>: being a good student driver
<VehicleYear>: year of vehicle
<HomeBase>: neighbourhood type
<ThisCarCost>: costs for the insured car
<Cushioning>: quality of cushioning in car
<RiskAversion>: being risk averse
<DrivingSkill>: driving skill
<Airbag>: car has an airbag
Assuming we can do interventions to all the variables, given the aforementioned variables
and their descriptions, can you **echo your knowledge of those variables**, **temporally
analyze** their relations, and then **choose the best 4 intervention targets from all the
variables** which hopefully are the root causes of the other variables to start our analysis of
their causal relations?
Let’s think and analyze step by step. Then, provide your final answer (variable names only)
within the tags <Answer>...</Answer>, separated by ", ".

Alarm Warmup Prompt

You are a helpful assistant and expert in alarm message system for patient monitoring system
research. Here are some tips that you can pay attention to:
1. Assess whether there is a direct causal relationship, and consider potential confounding
variables that might affect the relationship that could potentially not causal relationship.
2. Distinguish between correlations and causation; verify that correlations are not mistaken
for causal relationships.
3. Ensure the correct temporal order of variables; confirm that the cause precedes the effect.
Assuming we can do interventions to all the variables, your job is to assist in designing the
best intervention experiments among the following variables to help discover their causal
relations:
<CATECHOL>: hormone made by the adrenal glands
<SAO2>: oxygen saturation of arterial blood
<VENTALV>: exchange of gas between the alveoli and the external environment
<ANAPHYLAXIS>: severe, life-threatening allergic reaction
<INSUFFANESTH>: whether there is insufficient anesthesia or not

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

<FIO2>: the concentration of oxygen in the gas mixture being inspired
<BP>: pressure of circulating blood against the walls of blood vessels
<PRESS>: breathing pressure
<VENTTUBE>: whether there is a breathing tube or not
<TPR>: amount of force exerted on circulating blood by vasculature of the body
<CO>: amount of blood pumped by the heart per minute
<PCWP>: pulmonary capillary wedge pressure
<ERRCAUTER>: whether there was an error during cautery or not
<KINKEDTUBE>: whether the chest tube is kinked or not
<PVSAT>: amount of oxygen bound to hemoglobin in the pulmonary artery
<INTUBATION>: process where a healthcare provider inserts a tube through a person’s
mouth or nose, then down into their trachea
<CVP>: measure of blood pressure in the vena cava
<HYPOVOLEMIA>: condition that occurs when your body loses fluid, like blood or water
<HRBP>: ratio of heart rate and blood pressure
<HREKG>: heart rate displayed on EKG monitor
<PAP>: blood pressure in the pulmonary artery
<EXPCO2>: expelled CO2
<ERRLOWOUTPUT>: error low output
<HISTORY>: previous medical history
<SHUNT>: hollow tube surgically placed in the brain (or occasionally in the spine) to help
drain cerebrospinal fluid and redirect it to another location in the body where it can be
reabsorbed
<VENTMACH>: the intensity level of a breathing machine
<VENTLUNG>: lung ventilation
<HRSAT>: measure of how much hemoglobin is currently bound to oxygen compared to
how much hemoglobin remains unbound
<LVFAILURE>: occurs when there is dysfunction of the left ventricle causing insufficient
delivery of blood to vital body organs
<DISCONNECT>: disconnection
<LVEDVOLUME>: amount of blood present in the left ventricle before contraction
<HR>: heart rate
<MINVOLSET>: the amount of time using a breathing machine
<PULMEMBOLUS>: sudden blockage in the pulmonary arteries, the blood vessels that send
blood to your lungs
<STROKEVOLUME>: volume of blood pumped out of the left ventricle of the heart during
each systolic cardiac contraction
<MINVOL>: amount of gas inhaled or exhaled from a person’s lungs in one minute
<ARTCO2>: arterial carbon dioxide
Assuming we can do interventions to all the variables, given the aforementioned variables
and their descriptions, can you **echo your knowledge of those variables**, **temporally
analyze** their relations, and then **choose the best 4 intervention targets from all the
variables** which hopefully are the root causes of the other variables to start our analysis of
their causal relations?
Let’s think and analyze step by step. Then, provide your final answer (variable names only)
within the tags <Answer>...</Answer>, separated by ", ".

LeGIT response for Fisram dataset

Let’s start by echoing the variables and their descriptions:
1. **Spread**: Refers to the actual or potential spatial expansion across ecosystems, driven
by climate, habitat, and transport.
2. **Estab**: Indicates the actual or potential for self-sustaining wild populations based on
climate and habitat inputs.
3. **BehEff**: Represents the combined effect of predation and competition on native
species behavior and viability.
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4. **Clim**: Measures climate similarity scores to assess potential habitat suitability.
5. **HumEff**: Describes the combined influence of bites/toxins and other detrimental traits
on humans.
6. **HabDis**: Capacity to modify or degrade habitat (erosion, eutrophication, sedimenta-
tion).
7. **EcoEff**: Overall impact of habitat disturbance, predation, and competition on ecosys-
tem structure and function.
8. **Gen**: Capacity to affect native species’ genetics via hybridization, GMO escape, or
introgression.
9. **Harm**: Actual or potential physical or behavioral injury to native species and/or
humans, or damage to habitats.
10. **Invas**: Final invasive-injurious outcome under the Lacey Act criteria, integrating
Establishment, Spread, and Harm.
11. **Transp**: Combined human and non-human dispersal influence.
12. **Comp**: Capacity to compete with native species for food, space, or habitat.
13. **Pred**: Capacity to prey on and negatively affect native species populations.
14. **HabSuit**: Degree to which available habitat in the potential introduction area matches
the species’ known habitats.
15. **Path**: Role in spreading infectious agents to native wildlife.
16. **SppEff**: Overall impact of predation, competition, and genetics on native species
viability.
17. **OthTr**: Non-bite/toxin traits posing human-health risks.
18. **NHumTrans**: Dispersal assistance by natural agents beyond the species’ own
movement.
19. **HumTrans**: Intentional or unintentional movement by humans.
20. **BiteEnv**: Direct adverse effects on human health via bites, stings, toxins, etc.
Now let’s analyze the temporal relationships and potential causal links:
1. **Clim** and **HabSuit** are likely early indicators of whether a species can establish
(Estab) and spread (Spread), as they relate to environmental suitability.
2. **Transp**, **HumTrans**, and **NHumTrans** are likely influential in the spread of
species (Spread), as they involve movement and dispersal.
3. **Estab** leads to **Spread** as a species that can establish will likely expand its range.
4. **Spread** and **Estab** can contribute to **Invas**, as they are integral parts of
invasive potential.
5. **BehEff**, **Comp**, and **Pred** are likely results of established populations
interacting with native species.
6. **HabDis**, **EcoEff**, and **Harm** might be consequences of established and
spreading populations.
7. **Gen** might affect native species’ genetics once a species is established and interacting.
8. **Path** might be influenced by **Spread**, as wider distribution can lead to more
interactions and potential for disease spread.
9. **HumEff**, **OthTr**, and **BiteEnv** are related to human impacts and may be less
directly connected to ecological establishment and spread.
Considering the temporal order and potential causation:
- **Clim** and **HabSuit** are foundational for establishment and spread.
- **Transp** is crucial for movement and dispersal.
- **Estab** is a precursor to many other impacts.
Therefore, the best intervention targets to start analyzing causal relations are those that
influence establishment and spread directly, as they are likely root causes:
<Answer>Clim, HabSuit, Transp, Estab</Answer>

LeGIT response for Child dataset

To address the problem effectively, we will follow a structured approach to understand the
potential causal relationships among the variables. We will start by echoing the knowledge of
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each variable, analyze their temporal relationships, and then identify the best intervention
targets.
### Echoing Knowledge of Variables
1. **RUQO2**: Level of oxygen in the right upper quadriceps muscle.
2. **LVHreport**: Report of having left ventricular hypertrophy.
3. **BirthAsphyxia**: Lack of oxygen to the blood during the infant’s birth.
4. **DuctFlow**: Blood flow across the ductus arteriosus.
5. **Disease**: Infant methemoglobinemia.
6. **LungParench**: The state of the blood vessels in the lungs.
7. **CO2Report**: A document reporting high levels of CO2 in blood.
8. **LungFlow**: Low blood flow in the lungs.
9. **GruntingReport**: Report of infant grunting.
10. **Age**: Age of infant at disease presentation.
11. **LowerBodyO2**: Level of oxygen in the lower body.
12. **ChestXray**: Having a chest x-ray.
13. **CO2**: Level of CO2 in the body.
14. **HypDistrib**: Low oxygen areas equally distributed around the body.
15. **Grunting**: Grunting in infants.
16. **XrayReport**: Lung excessively filled with blood.
17. **LVH**: Having left ventricular hypertrophy.
18. **CardiacMixing**: Mixing of oxygenated and deoxygenated blood.
19. **HypoxiaInO2**: Hypoxia when breathing oxygen.
20. **Sick**: Presence of an illness.
### Temporal Analysis
1. **BirthAsphyxia** is an early event that can lead to multiple downstream effects, such as
hypoxia and potential cardiac issues.
2. **CardiacMixing** and **DuctFlow** are congenital or physiological conditions that
can affect oxygenation and blood flow.
3. **HypoxiaInO2**, **LungFlow**, and **LowerBodyO2** are likely influenced by
earlier conditions like **BirthAsphyxia**, **CardiacMixing**, and **DuctFlow**.
4. **CO2** and **CO2Report** are indicators of respiratory function and can be affected
by lung and cardiac issues.
5. **LungParench**, **XrayReport**, and **ChestXray** are diagnostic or descriptive of
lung conditions.
6. **Grunting** and **GruntingReport** are symptoms that may arise from respiratory
distress.
7. **LVH** and **LVHreport** are indicative of cardiac stress or abnormalities, potentially
secondary to other physiological issues.
8. **Disease** (infant methemoglobinemia) could be a result of hypoxic conditions and
other metabolic issues.
9. **Sick** is a general indicator of illness and can be influenced by multiple preceding
factors.
### Choosing Intervention Targets
To identify root causes, we need to target variables that likely influence many others and are
early in the causal chain:
1. **BirthAsphyxia**: Early event potentially causing hypoxia, cardiac stress, and other
downstream effects.
2. **CardiacMixing**: Affects oxygenation and can lead to hypoxia and other cardiac issues.
3. **DuctFlow**: Influences blood flow and oxygenation, impacting many other variables.
4. **LungFlow**: Directly affects oxygenation and can lead to hypoxia and respiratory
distress.
These variables are likely to be root causes or early influencers in the causal network, making
them ideal intervention targets to explore causal relationships.
### Final Answer
<Answer>BirthAsphyxia, CardiacMixing, DuctFlow, LungFlow</Answer>
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LeGIT response for Insurance dataset

To analyze the causal relationships among these variables and select the best intervention
targets, let’s first categorize and understand the potential causal structure among them.
### Step 1: Echoing Knowledge of Variables
1. **<ThisCar>**: Costs for the insured car
2. **<Mileage>**: Mileage on the car
3. **<DrivQuality>**: Driving quality
4. **<RiskAversion>**: Being risk-averse
5. **<CarValue>**: Value of the car
6. **<MakeModel>**: Owning a sports car
7. **<ThisCarDam>**: Damage to the car
8. **<Theft>**: Theft occurred in the car
9. **<ILiCost>**: Inspection cost
10. **<Age>**: Age
11. **<OtherCar>**: Involvement with other cars in an accident
12. **<SeniorTrain>**: Received additional driving training
13. **<SocioEcon>**: Socioeconomic status
14. **<VehicleYear>**: Year of vehicle
15. **<HomeBase>**: Neighborhood type
16. **<DrivHist>**: Driving history
17. **<Accident>**: Severity of the accident
18. **<Airbag>**: Car has an airbag
19. **<AntiTheft>**: Car has anti-theft
20. **<ThisCarCost>**: Costs for the insured car
21. **<MedCost>**: Cost of medical treatment
22. **<Antilock>**: Car has anti-lock
23. **<GoodStudent>**: Being a good student driver
24. **<OtherCarCost>**: Cost of the other cars
25. **<Cushioning>**: Quality of cushioning in the car
26. **<RuggedAuto>**: Ruggedness of the car
27. **<PropCost>**: Ratio of the cost for the two cars
28. **<DrivingSkill>**: Driving skill
### Step 2: Temporal Analysis of Relations
- **Demographic and Personal Factors**:
- **<Age>**, **<RiskAversion>**, **<SocioEcon>**, **<GoodStudent>**: These are
inherent traits or long-term conditions that can influence driving behavior and decisions.
- **Vehicle Characteristics**:
- **<VehicleYear>**, **<MakeModel>**, **<CarValue>**, **<Airbag>**, **<An-
tiTheft>**, **<Antilock>**, **<Cushioning>**, **<RuggedAuto>**: These are intrinsic
to the car and can influence safety and risk but are typically decided before other events.
- **Driving Experience and Skills**:
- **<DrivQuality>**, **<DrivingSkill>**, **<DrivHist>**, **<SeniorTrain>**: These can
evolve over time and influence accident likelihood.
- **Environmental Factors**:
- **<HomeBase>**: Affects exposure to theft and accidents.
- **Incident and Cost Factors**:
- **<ThisCarDam>**, **<Theft>**, **<Accident>**, **<ILiCost>**, **<ThisCarCost>**,
**<MedCost>**, **<OtherCarCost>**, **<PropCost>**: These are outcomes or costs
associated with incidents.
### Step 3: Choosing Intervention Targets
To identify root causes, we should consider intervening on variables that are likely to influence
many others and are not themselves primarily effects of other variables. The best interventions
would be on variables that are upstream in the causal chain and can potentially change multiple
downstream outcomes.
1. **<RiskAversion>**: Can influence driving behavior, choice of car, and safety measures.
2. **<SocioEcon>**: Affects car choice, home base, and potentially driving habits.
3. **<MakeModel>**: Influences car value, safety features, and possibly driving style.
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4. **<DrivingSkill>**: Directly impacts driving quality, accident likelihood, and associated
costs.
These variables are chosen because they are fundamental characteristics or decisions that
precede and potentially influence many other variables in the system.
### Final Answer
<Answer>RiskAversion, SocioEcon, MakeModel, DrivingSkill</Answer>

LeGIT response for Insurance dataset

To determine the best intervention targets, we need to consider the relationships and possible
temporal orders among the variables. Here’s a step-by-step analysis:
### Step 1: Understanding the Variables
1. **Respiratory and Ventilation Variables:**
- **<VENTMACH>**: Intensity level of a breathing machine.
- **<MINVOLSET>**: Time using a breathing machine.
- **<VENTLUNG>**: Lung ventilation.
- **<PRESS>**: Breathing pressure.
- **<MINVOL>**: Minute volume; gas inhaled/exhaled per minute.
- **<VENTTUBE>**: Presence of a breathing tube.
- **<VENTALV>**: Gas exchange in alveoli.
- **<DISCONNECT>**: Disconnection.
- **<EXPCO2>**: Expelled CO2.
- **<ARTCO2>**: Arterial carbon dioxide.
- **<FIO2>**: Oxygen concentration in inspired gas.
2. **Cardiovascular Variables:**
- **<HREKG>**: Heart rate on EKG.
- **<PCWP>**: Pulmonary capillary wedge pressure.
- **<HRBP>**: Ratio of heart rate and blood pressure.
- **<BP>**: Blood pressure.
- **<CO>**: Cardiac output.
- **<HR>**: Heart rate.
- **<TPR>**: Total peripheral resistance.
- **<STROKEVOLUME>**: Blood volume per heart contraction.
- **<LVEDVOLUME>**: Blood in left ventricle before contraction.
- **<PAP>**: Pulmonary artery pressure.
- **<CVP>**: Central venous pressure.
- **<SAO2>**: Oxygen saturation of arterial blood.
- **<PVSAT>**: Oxygen saturation in pulmonary artery.
- **<HRSAT>**: Hemoglobin oxygen saturation.
- **<CATECHOL>**: Adrenal hormones.
3. **Medical Conditions and Procedures:**
- **<ANAPHYLAXIS>**: Severe allergic reaction.
- **<INTUBATION>**: Insertion of a breathing tube.
- **<INSUFFANESTH>**: Insufficient anesthesia.
- **<PULMEMBOLUS>**: Pulmonary embolism.
- **<HYPOVOLEMIA>**: Fluid loss condition.
- **<LVFAILURE>**: Left ventricle failure.
- **<SHUNT>**: Drainage tube for cerebrospinal fluid.
- **<KINKEDTUBE>**: Kinked chest tube.
4. **Errors and Anomalies:**
- **<ERRLOWOUTPUT>**: Low output error.
- **<ERRCAUTER>**: Cautery error.
5. **Other:** - **<HISTORY>**: Previous medical history.
### Step 2: Temporal Analysis
- **<INTUBATION>** and **<VENTMACH>** are likely initial interventions that can
influence many respiratory and cardiovascular variables.
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- **<ANAPHYLAXIS>**, **<PULMEMBOLUS>**, and **<HYPOVOLEMIA>** are
acute conditions that can cause significant changes in cardiovascular and respiratory variables.
- **<INSUFFANESTH>** can affect heart rate and blood pressure due to inadequate sedation.
- **<VENTLUNG>**, **<VENTALV>**, and **<MINVOL>** are outcomes of ventilation
interventions.
### Step 3: Choosing the Best Intervention Targets
To determine causality effectively, we want to target variables that are likely root causes or
significant influencers:
1. **<INTUBATION>**: This is a direct intervention that can affect many respiratory
variables.
2. **<VENTMACH>**: Controls the intensity of mechanical ventilation, influencing
respiratory and possibly cardiovascular variables.
3. **<ANAPHYLAXIS>**: A condition that can have widespread effects on cardiovascular
and respiratory systems.
4. **<HYPOVOLEMIA>**: Can significantly impact cardiovascular variables like blood
pressure and cardiac output.
These interventions can provide insights into the causal relationships within the system.
### Final Answer
<Answer>INTUBATION, VENTMACH, ANAPHYLAXIS, HYPOVOLEMIA</Answer>
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