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Abstract

Relatedness between tasks, which is key to
transfer learning, is often characterized by
measuring the influence of tasks on one an-
other during sequential or simultaneous train-
ing, with tasks being treated as black boxes. In
this paper, we propose MetaEval, a set of 101
NLP tasks. We fit a single transformer to all
MetaEval tasks jointly while conditioning it on
low-dimensional task embeddings. The result-
ing task embeddings enable a novel analysis
of the relatedness among tasks. We also show
that task aspects can be used to predict task em-
beddings for new tasks without using any an-
notated examples. Predicted embeddings can
modulate the encoder for zero-shot inference
and outperform a zero-shot baseline on GLUE
tasks. The provided multitask setup can func-
tion as a benchmark for future transfer learning
research.

1 Introduction

Knowledge transfer from pretrained models has
recently undergone considerable progress in NLP.
Transformer-based encoders, such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2020),
have achieved state-of-the-art results on text classi-
fication tasks. These models acquire rich text rep-
resentations through masked language modeling
(MLM) pretraining (Tenney et al., 2019; Warstadt
et al., 2019, 2020b). However, these representa-
tions need additional task supervision to be use-
ful for downstream tasks (Reimers and Gurevych,
2019). The default technique, full fine-tuning, opti-
mizes all encoder weights alongside the training of
the task-specific classifier.

The resulting encoder weights can be seen as a
very high-dimensional1 continuous representation
of a model that is dedicated to a task Ti (Agha-
janyan et al., 2020).

1E.g., ≈ 110M dimensions for BERTBASE full fine-tuning.

Continuous representations of tasks provide di-
rect ways to probe the content of tasks and to assess
the relationships among tasks. However, these pos-
sibilities are hindered by the very high dimensional-
ity of the model weights. As a result, previous work
on transfer learning treats each task as a black box
instead of using continuous task representations.
When tasks are viewed as black boxes, the task rela-
tionships are modeled by the influence they have on
each other during sequential or joint training. For
instance, Phang et al. (2018) note that fine-tuning
on T1 = MNLI2 and then on T2 = RTE (Dagan
et al., 2006) outperforms directly fine-tuning on
T2 = RTE. These findings lead to accuracy im-
provement but provide only coarse, unidimensional
relations between tasks, and measuring all possible
interactions among many tasks is computationally
expensive.

Recently, Houlsby et al. (2019) proposed
adapters fine-tuning, a strategy that consider-
ably reduces the number of task-specific weights
needed to achieve a performance comparable to
full fine-tuning.3 To do so, they freeze the pre-
trained transformer weights and insert residual,
low-dimensional trainable modules Aαi called
adapters between transformer layers. During fine-
tuning, each task can then be represented by αi,
the parameters of the adapters. Pilault et al. (2021)
then showed that in a multitask setting with a col-
lection of tasks Θ, a set of adapters {Ai , Ti ∈ Θ}
can be decomposed into two components: a set
of task embeddings {zi, Ti ∈ Θ} and a single
shared conditional adapter Aα(zi). The task em-
beddings are trained jointly with the conditional
adapter, which allows each task to modulate the

2MNLI (Williams et al., 2018) and RTE are two natural
language inference (NLI) datasets. We call each dataset a task,
even if they handle the same type of task, i.e., NLI.

3Houlsby et al. (2019) fine-tune the equivalent of 3% of
BERT weights with a 0.4% GLUE (Wang et al., 2019b) aver-
age accuracy decrease compared to full fine-tuning
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shared model in its own way. This approach leads
to a performance improvement over individual
adapters. Moreover, the parametrization is a very
low-dimensional (dim(z) ≈ 100) task representa-
tion.

In this work, we leverage conditional adapters
and propose a novel use of the obtained low-
dimensional task embeddings. We derive task em-
beddings for 101 tasks based on a joint multitask
training objective. This approach enables new anal-
yses of the relationships among the tasks. More-
over, we show that we can predict the task embed-
dings from selected task aspects, which enables
control of the model through the task aspects, thus
contributing to selective and interpretable transfer
learning.

We answer the following research questions:
RQ1: How consistent is the structure of task embed-
dings? What is the importance of weight initializa-
tion randomness and sampling order on a task em-
bedding position within a joint training run? How
similar are task relationships across runs? RQ2: A
consistent structure allows meaningful probing of
the content of task embeddings. How well can we
predict aspects of a task, such as the domain, the
task type, or the dataset size, based on the task em-
bedding? RQ3: Task embeddings can be predicted
from task aspects, and a task embedding modulates
a model. Consequently, can we predict an accurate
model for zero-shot transfer based solely on the
aspects of a task?

Since we study task representations, many tasks
and, ideally, many instances for each task type
are required for our analysis. Consequently, we
have assembled 101 tasks in a benchmark that can
be used for future probing and transfer learning.
Our contributions are the following: (i) We assess
low-dimensional task embeddings in novel ways,
enabling their in-depth analysis; (ii) We show that
these embeddings contribute to transferring models
to target downstream NLP tasks even in situations
where no annotated examples are available for train-
ing the downstream NLP task; (iii) We introduce
MetaEval, a benchmark framework containing 101
NLP classification tasks.

2 Related Work

A common way to measure task relatedness is to
train a model on a source task, or a combination
of source tasks in the case of multitask learning
(Caruana, 1997), and then measure the effect on

zi

Task: i
Text: x

h[CLS] gγ1
...

Task 
Embedding 

Layer

A(zi) A(zi) A(zi)

i

gγi

Frozen

Trained

ŷi
...

gγN

A(zi)

Figure 1: An overview of a transformer with a con-
ditional adapter in a classification setup with N tasks.
Batches for each task are used sequentially in random
order. Each text example x is represented by h[CLS],
which is the input of gγi and the classifier for the task
Ti.

the target task’s accuracy.
The search for the most useful source tasks for

each target task has been the object of numerous
studies. Mou et al. (2016) study the effect of trans-
fer learning when the target task has a different
domain from the source task and focus on differ-
ent fine-tuning strategies, for instance, freezing or
unfreezing specific layers. Conneau et al. (2017)
train a sentence encoder with a selection of source
tasks and show that natural language inference
(NLI) provides the most transferable representa-
tions. Phang et al. (2018) also address the fine-
tuning of pretrained BERT with a two-stage ap-
proach: an auxiliary pretraining stage on a source
task before the final fine-tuning on the target task.
Wu et al. (2020) investigate the phenomenon of
negative transfer, i.e., the situation where source
tasks harm target tasks in a multitask setting, and
propose techniques to alleviate this phenomenon.
D’Amour et al. (2020) show that when fine-tuning
a model for a task, various random seeds can lead
to similar accuracy but different behavior. We per-
form a similar analysis in a multitask setup and
show that task embeddings are a valuable way to
visualize this phenomenon.

By contrast, we do not study the influence of
combinations of source tasks directly; we represent
each task in a latent space. Our work is the first to
evaluate the properties of tasks in the latent space
and to predict task representations in that space
instead of finding the most helpful source task.

Task embeddings in NLP have been introduced
by Pilault et al. (2021). However, this work does
not address analysis or prediction of the task em-
beddings but merely uses them as a proxy to ensure
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proper task coordination. Low-dimensional task
representations have also been used as a way to
measure the complexity of NLP tasks. Aghajanyan
et al. (2020) show that ≈ 200 trainable parameters
can guide random projections towards good approx-
imations of full fine-tuning and use the number of
trainable parameters required to achieve 90% of the
full fine-tuning accuracy as a measure of task com-
plexity. Continuous representation of a task has
also been explored in computer vision by Achille
et al. (2019), who interpret pooled Fisher infor-
mation in convolutional neural networks as task
embedding.4 However, how to transpose this tech-
nique to a transformer architecture for use in NLP
tasks is unclear.

Our work is also related to the probing of rep-
resentations, which usually targets words (Nayak
et al., 2016) or sentences. Conneau et al. (2018)
probe sentence representations for various syntacti-
cal and surface aspects. Another type of probing,
proposed for word embeddings, is the study of
stability (Pierrejean and Tanguy, 2019; Antoniak
and Mimno, 2018; Wendlandt et al., 2018). Stabil-
ity measures the similarity of word neighborhoods
across different training runs with varying random
seeds.

3 Classification Models

We now introduce the classification models and
fine-tuning techniques used in our experiments. To
perform a classification task Ti, we represent a text
x (e.g., a sentence or a sentence pair) with an en-
coded [CLS] token h[CLS] = fθ(x). Here, fθ is a
transformer text encoder. h[CLS] is used as the input
features for a classifier g. For each task, we use
a different classification head gγi , where γi repre-
sents softmax weights. To train a model for a task,
we minimize the cross-entropy H(yi, gγi(fθ(x)).

Different strategies can be used to fine-tune a
pretrained text encoder fθMLM for a set of tasks.

Full Fine-Tuning is the optimization of all pa-
rameters of the transformer architecture alongside
classifier weights, (θi, γi), independently for each
task.

Adapters are lightweight modules with new pa-
rameters α that are inserted between each attention
and feed-forward transformer layer (Houlsby et al.,

4Achille et al. (2019) work with classification and treat the
detection of each label as a task. Fisher information is a way
to measure the information carried by the convolutional filters
for each label

Multi-Head Attention

Feed-Forward Layer 

2x Feed-Forward Layer

Conditional Adapter

Conditional Adapter

Layer Norm

Layer Norm

Transformer
Layer

Task Embedding (zi)

Figure 2: A transformer layer with conditional adapter
layers.

2019). When using adapters (Aαi), we freeze the
transformer weights and represent each input text
as h[CLS] = fθMLM,Aαi

(x). During adapter fine-
tuning, we optimize only the adapter weights and
classifier weights (αi, γi) for each task.

Conditional Adapters We replace individual
adapters with a conditional adapter Aα(zi) that is
common to all tasks but conditioned on task em-
beddings zi.

Here, we train all the tasks jointly by optimiz-
ing a conditional adapter that learns to map each
task embedding to a specific adaptation of the trans-
former weights while simultaneously optimizing
the task embeddings. Figure 1 shows an overview
of our conditional adapter setup. The objective is
the following:

min(α,zi,γi)

∑
Ti∈Θ

H(yi, ŷi)

3.1 Parametrization of Adapters and
Conditional Adapters

Figure 2 illustrates two conditional adapter layers
in a transformer layer. An adapter layer is a per-
ceptron with one hidden layer and a bottleneck
of dimension dA. Each adapter layer applies the
following transformation:

h→ h+W2σA(W1h) (1)
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where σA is an activation function and W1,W2

are projection matrices. Adapter layers5 are then
residually added between fixed-weight transformer
layers to adjust the text representation for the target
task.

Conditional adapters (Pilault et al., 2021) are
an extension of adapters designed for parameter
efficiency in multitask setups. For all tasks, a single
conditional adapter is modulated by task-specific
embeddings. When using conditional adapters, we
first compute a dA-dimensional gate:

τ = sigmoid(Wgatez) (2)

Then, we multiply by the hidden layer of the
adapter.

h→ h+W2σA(τ �W1h) (3)

Each task embedding influences the gate, which
in turn controls the activated dimensions of the
conditional adapter. Tasks that are close in the task
embedding space influence the feature extraction
of the transformer in a similar way. Each layer
has distinct conditional adapter weights, but a task
embedding is shared across all layers.

4 Datasets

One of our goals is to study and leverage the task
embeddings by making use of known task aspects.
This process involves a mapping between the task
and the aspects, which requires a varied set of tasks.
The most commonly used evaluation suite, GLUE,
contains only 8 datasets, which is not sufficient for
our purpose. Therefore, we construct the largest
set of NLP classification tasks6 to date by casting
them into the HuggingFace Datasets library.

HuggingFace Datasets (Wolf et al., 2020)
is a repository containing individual tasks and
benchmarks including GLUE (Wang et al., 2019b)
and SuperGLUE (Wang et al., 2019a). We
manually select classification tasks that can be
performed from single-sentence or sentence-pair
inputs and obtain 39 tasks.

CrowdFlower (Van Pelt and Sorokin, 2012) is a
collection of datasets from the CrowdFlower plat-
form for various tasks such as sentiment analysis,
dialog act classification, stance classification, emo-
tion classification, and audience prediction.

5Each layer has its own weights.
6We concentrate on English text classification tasks due to

their widespread availability and standardized format.

Ethics (Hendrycks et al., 2021) is a set of ethi-
cal acceptability tasks containing natural language
situation descriptions associated with acceptability
judgment under 5 ethical frameworks.

PragmEval (Sileo et al., 2019) is a benchmark
for language understanding that focuses on prag-
matics and discourse-centered tasks containing 23
classification tasks.

Linguistic Probing (Conneau et al., 2018) is an
evaluation designed to assess the ability of sen-
tence embedding models to capture various linguis-
tic properties of sentences with tasks focusing on
sentence length, syntactic tree depth, word and part
of speech content, and sensibility to word substitu-
tions.

Recast (Poliak et al., 2018) reuses existing
datasets and casts them as NLI tasks. For instance,
an example in a pun detection dataset (Yang et al.,
2015) Masks have no face value is converted to a
labeled sentence pair (Kim heard masks have no
face value; Kim heard a pun y=ENTAILMENT)

TweetEval (Barbieri et al., 2020) consists of clas-
sification tasks focused on tweets. The tasks in-
clude sentiment analysis, stance analysis, emotion
detection, and emoji detection.

Blimp-Classification is a derivation of BLIMP
(Warstadt et al., 2020a), a dataset of sentence pairs
containing naturally occurring sentences and alter-
ations of these sentences according to given linguis-
tic phenomena. We recast this task as a classifica-
tion task, where the original sentence is acceptable
and the modified sentence is unacceptable.

The table in Appendix A displays an overview
of the tasks in MetaEval. When splits are not avail-
able, we use 20% of the data as the test set and use
the rest for an 80/20 training/validation split. We
will make the datasets and splits publicly available.

5 Experiments

Our first goal is to analyze the structure and reg-
ularity of task embeddings. We then propose and
evaluate a method to control models using task
aspects.

5.1 Setup

Following Pilault et al. (2021), we use a
RoBERTaBASE(Liu et al., 2020) pretrained trans-
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Fine-Tuning Method MetaEval
Test Accuracy

Trained Encoder
Parameters

Task Specific
Trained Encoder Parameters

Majority Class 42.9 - -
Full-Fine-Tuning (1 model/task) 76.9 124M 124M
Adapter 67.8 10M 10M
Conditional Adapter 79.7 10M 32

Table 1: Parameter counts and MetaEval test accuracy percentages of fine-tuning techniques.

former7 with conditional adapters of size dA =
256, a sequence length of 128, and Adam with a
learning rate of 2.10−5 as an optimizer. We sample
30k training examples per task to limit the required
computation time.

Multitask setup When multitasking, we sample
one task from among all MetaEval tasks at each
training step. We limit the loss of each task to
1.0, and sample each task at a rate proportional to
the square root of the capped size (Stickland and
Murray, 2019) to balance the mutual influence of
the tasks. We use task embeddings of dimension 32,
which was selected according to MetaEval average
validation accuracy among {2, 8, 32, 128, 512}.

5.2 Target Task Results
We first evaluate the individual model performance
for the settings described in section 3.

Table 1 compares the unweighted average of
the accuracies computed for MetaEval tasks and
the number of trainable parameters associated with
the fine-tuning strategies. The conditional adapter
model achieves comparable accuracy to that of full
fine-tuning despite having only 32 task-specific
encoder parameters per task. This ensures that task
embeddings are accurate representations of tasks.

5.3 Geometry of Task Embeddings
Figure 3 displays a 2D projection of the task embed-
dings with UMAP (McInnes et al., 2018). Some
task types, such as sentiment analysis and gram-
matical properties prediction, form distinct clusters.
Moreover, a PCA projection, which is less read-
able but provides a more faithful depiction of the
global structure, is shown in Appendix C.8 This
approach allows us to identify linguistic probing
tasks (prediction of the number of objects/subjects,
prediction of text length, prediction of constituent
patterns) as outliers. Since the task embeddings

7BERTBASE had a similar behavior in our experiments, but
with a slightly lower accuracy.

8Unlike UMAP, PCA is a linear projection of the original
space.

Task Type Position Stability

Grammar 62.0± 3.9
Acceptability 57.1± 0.0
Emotion 47.6± 2.2
Discourse 45.7± 0.0
NLI 37.5± 1.0
Other 34.8± 0.7
Paraphrase detection 31.5± 13.1
Facticity 30.0± 4.7

Random embedding 1.0± 0.5

Table 2: Task embeddings position stability within a
training run according to task types. As a reference, we
provide the expected stability that would be obtained
for randomly sampled task embedding positions.

reflect an influence on the conditional adapter, dis-
tance from the center can be seen as a way to mea-
sure task specificity. Tasks whose embeddings are
far from the center need to activate the conditional
adapter in a way that is not widely shared and are
therefore more specific.

5.4 Stability Analysis

The appeal of task embeddings relies on the hy-
pothesis that they form similar structures across
runs and that each task has a position that does not
depend excessively on randomness. In this section,
we address these concerns.

5.4.1 Stability within a Run We investigate the
sensitivity of task embeddings to initialization and
to data sampling order by running the multitask
training while assigning 3 embeddings with dif-
ferent initializations (zi,1, zi,2, zi,3) to each task in-
stead of 1. During training, one of the three em-
beddings is selected randomly in each task training
step.

Figure 4 in Appendix B displays the task em-
bedding space in this setting. Some task em-
beddings converge to nearly identical positions
(trec, rotten tomatoes, sst2, mnli), while the
embeddings of other tasks (boolq, mrpc, an-
swer selection experiments) occupy a wider por-
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Figure 3: UMAP projection of the task embeddings.

Task Type Neighborhood Stability

Emotion 26.3± 11.2
Grammar 20.2± 10.4
Acceptability 19.4± 9.1
Paraphrase detection 14.3± 10.4
NLI 14.1± 9.5
Facticity 13.1± 8.5
Discourse 11.6± 7.5
Other 10.2± 8.2

Table 3: Task embedding neighborhood stability ac-
cording to task type.

tion of the embedding space. For each task, we
compute the rate at which the 10 nearest neigh-
bors9 of an embedding zi,k contain an embedding
of the same task with a different initialization,
zi,k′ , k

′ 6= k.
The stability rates are reported in Table 2. The

standard deviations (computed across runs) show
that sensitivity to random seeds is inherent to the
task groups. Some tasks occupy specific regions
in the latent space, while other tasks can lie on
multiple positions in a manifold. However, the
variability is far from that of random positions.

5.4.2 Stability of Task Neighborhood We
study the neighborhood of each task embedding.
Following Antoniak and Mimno (2018), we define
the stability rate for a task embedding as the aver-

9According to cosine similarity.

age overlap rate (according to the Jaccard metric)
of the neighborhoods.

Given two spaces A and B from different runs
and a task Ti , we define the neighborhood of Ti in
A as the top 10 closest other tasks according to co-
sine similarity. We also compute the neighborhood
of Ti in B. We report the results according to task
type in Table 3. The results show that the global
structure of the space can change and that task type
influences the neighborhood stability.

RQ1 can be answered with a distinction on the
task type. The position of a task embedding within
a run is relatively robust to randomness. Across
runs, the organization of the task embedding space
may vary. In both cases, lower-level tasks, such as
grammar, acceptability, and emotion tasks, exhibit
the most consistent structure.

5.5 Probing Task Embeddings for Task
Aspects

We now use the task embeddings to investigate
which task aspects influence the NLP models. Prior
work developed a probing methodology to inter-
pret the content of text embeddings. Conneau et al.
(2018) selected an array of text aspects to see if
they were contained in the text embedding. These
aspects include text length, word content, the num-
ber of subjects and objects, the tense, natural word
order, and syntactic properties.

To derive analogous task aspects Lambdai, we
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Model Domain-Cluster Num-Examples Num-Text-Fields Task-Type Text-Length

Majority Class 27.8 62.3 63.3 19.8 19.8
Logistic Regression 23.8 40.3 58.3 26.7 21.8
Gradient Boosting Classifier 34.8 45.7 69.2 29.8 29.0
KNN Classifer 38.8 35.8 68.2 34.7 37.8

Table 4: Accuracy of task aspect classification from task embeddings.

Model All Domain-Cluster Num-Examples Num-Text-Fields Task-Type Text-Length

Average Task Embedding 1.000 - - - - -
KNN Regression 0.955 0.986 1.056 1.000 0.953 1.021
Ridge Regression 0.907 0.956 0.997 1.005 0.918 0.988

Table 5: Mean squared error (MSE) of embedding regression from aspects. To normalize the reported MSE values,
we divide them by the MSE of average task embedding prediction.

model a task as a collection of text examples with
labels. We propose as aspects the number of text
examples, the number of text fields per example,
and the type of task. We also include basic proper-
ties derived from the text of the examples, namely,
the median text length and the domain.

Num-Examples represents the number of train-
ing examples for a task. We discretize this value
into 4 quartiles10 computed across all tasks.

Num-Text-Fields is equal to 2 in sentence-pair
classification tasks (e.g., NLI or paraphrase detec-
tion) and equal to 1 in single-sentence classification
tasks (e.g., standard sentiment analysis).

Domain-Cluster is a representation of the do-
main of the input text of a task. Following (Sia
et al., 2020), we represent the text of each task
by the average spherical embedding (Meng et al.,
2019). The domain of each task is represented by
the average of the text embeddings of its examples.
We then perform clustering across all task domains
to reduce the dimensionality of the domain repre-
sentation. We use Gaussian mixture model soft
clustering and represent the domain by 8 cluster
activations.11

Text-Length represents the length of the input
examples (and the sum of input lengths when there
are two inputs). We discretize this value into 4
quartiles computed across all tasks.

Task-Type is the type of task, selected from {
ACCEPTABILITY, DISCOURSE, EMOTION,

10We experimented with finer quantizations, but they led to
excessive sparsity.

11The number of clusters was selected with the elbow
method.

GRAMMAR, PARAPHRASE DETECTION, OTHER

}.
Note that the above features do not rely on an-

notated data (only on the input text, sizes, and
task type). We use logistic regression, a gradi-
ent boosting classifier, and a KNN classifier with
Scikit-Learn (Pedregosa et al., 2011) default pa-
rameters12 to learn to predict the aspects from task
embeddings. Table 4 displays the classification
accuracy for each aspect obtained by performing
cross-validation with a leave-one-out split.

The number of training examples is limited to
the number of tasks, which prevents high accuracy.
However, our results address RQ2 by showing that
a simple linear probe can still capture the domain,
the task type, and the length of the input. We could
have expected a separation between classification
of relationships between sentence pairs and single-
sentence classification, but the task embeddings do
not seem to accurately capture that aspect.

5.6 Task Embedding Regression

We now address the prediction of task embeddings
from the previously defined aspects.

We use task embeddings zi trained on the MetaE-
val multitask setup and then train a regression
model to predict the task embeddings from the task
aspects ΛTi .

ẑi = Regression([a, a ∈ ΛTi ]) (4)

We propose two evaluations, intrinsic and extrinsic.
In our first evaluation, we directly measure the
regression error, which allows us to measure how
well trained task embeddings can be recovered on

12Release 0.24.1; deviation from the default parameters did
not lead to a significant improvement.
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CoLa SST2 MRPC QQP MNLI QNLI RTE AVG

Single-Task Full-Fine-Tuning (Supervised) 79.2 93.1 75.5 84.7 80.9 88.9 47.3 78.5

Same Task-Type Full Fine-Tuning (ZS) 73.5 93.6 68.8 55.3 72.7 51.5 70.2 69.4

Aspect-Aware Task Embeddings (ZS) 75.4 90.0 70.4 71.1 66.2 56.2 63.7 70.4
Offline Task Embedding Ridge Regression (ZS) 76.2 92.0 67.6 61.6 71.7 53.8 68.6 70.2
Same Task-Type Task Embeddings (ZS) 76.7 91.4 67.6 57.0 67.0 53.8 64.0 68.2

Table 6: Zero-Shot (ZS) accuracy on GLUE tasks after training on MetaEval while excluding GLUE tasks (ME\G).
As a reference, we also provide results with supervision on the evaluated task with the setup from section 5.1. The
Same-Task-Type is the baseline, where for each task, RoBERTa is fine-tuned on (ME\G) same-type tasks while
sharing label weights. The next methods use task embedding prediction via either offline or online regression, as
described in section 5.6.

the basis of aspects alone. Table 5 shows the error
with two regression models. The ridge regression
model outperforms neighborhood-based regression
(KNN), which shows that relevant aspects can be
abstracted from the embeddings even on ≈ 100
examples.

In our second evaluation, we exclude GLUE
tasks from MetaEval during the multitask condi-
tional adapter training. We now share the label
names across tasks during the multitask training to
enable zero-shot inference. Then, we estimate task
embeddings for the GLUE classification tasks from
the aspects via logistic regression. We propose two
different techniques for task embedding regression:

Offline Task Embedding Regression We first
perform multitask training, then train a regression
model to estimate task embeddings from a set of
aspects. One advantage of this technique is that it
allows the use of any aspect after multitask training.
However, the model has to learn this relationship
from only 100 examples since an example is a task.

Aspect-Aware Task Embeddings We propose
another variation, where we perform multitask
training and the regression of embeddings jointly.
Instead of having a single task embedding zi for
each task Ti, we augment it with an embedding
zai for each aspect ai of Ti. The task embedding
modulating the adapters is then:

zi +
∑

ai∈ΛTi

zai (5)

An unseen task Ti can be represented by the
sum of its aspect embeddings augmented with the
average task embedding.

These two models use only the aspects of each
GLUE task and not the annotated data.

As a baseline, we propose the Same-Task-Type
Full Fine-Tuning of a RoBERTa model. For each

GLUE task, we fine-tune the model on all MetaE-
val tasks of the same task type (Mou et al., 2016)
while excluding GLUE tasks. For instance, to de-
rive predictions on RTE, we fine-tune a RoBERTa
model on all NLI tasks of MetaEval that are not
in GLUE while sharing the labels. We also report
the results of supervised RoBERTa models trained
on each GLUE task with the hyperparameters de-
scribed in section 5.1.

Table 6 reports the GLUE accuracy under both
settings. Task embedding regression improves the
average accuracy compared to that of the Same-
Task-Type RoBERTa baseline. Learning aspect
embeddings during multitask training leads to an
improved average result, but most of the gain over
the baseline can be achieved via offline regression.
Finally, averaging the task embeddings of the same-
type tasks leads to the worst results, which confirms
the need to combine multiple aspects of a task for
task embedding prediction. This finding addresses
RQ3 and establishes task embeddings as a viable
gateway for zero-shot transfer.

6 Conclusion

We proposed a framework for the analysis and pre-
diction of task embeddings in NLP. We showed
that the task embedding space exhibits a consistent
structure but that there are individual variations ac-
cording to task type. Furthermore, we have demon-
strated that task embeddings can be predicted based
of the aspects of the tasks. Since the task embed-
ding leads to a model, model manipulation can be
performed according to desirable aspects for zero-
shot prediction. Future work can consider new task
aspects for model manipulation, for instance, the
use of unwanted features or the language of the
text.
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A List of Tasks

Dataset Labels Splits Sizes

health fact/default [false, mixture, true, unproven] 10k/1k/1k
ethics/commonsense [acceptable, unacceptable] 14k/4k/4k
ethics/deontology [acceptable, unacceptable] 18k/4k/4k
ethics/justice [acceptable, unacceptable] 22k/3k/2k
ethics/utilitarianism [acceptable, unacceptable] 14k/5k/4k
ethics/virtue [acceptable, unacceptable] 28k/5k/5k
discovery/discovery [[no-conn], absolutely,, accordingly, actually... 2M/87k/87k
ethos/binary [no hate speech, hate speech] 998
emotion/default [sadness, joy, love, anger, fear, surprise] 16k/2k/2k
hate speech18/default [noHate, hate, idk/skip, relation] 11k
pragmeval/verifiability [experiential, unverifiable, non-experiential] 6k/2k/634
pragmeval/emobank-arousal [low, high] 5k/684/683
pragmeval/switchboard [Response Acknowledgement, Uninterpretable, Or... 19k/2k/649
pragmeval/persuasiveness-eloquence [low, high] 725/91/90
pragmeval/mrda [Declarative-Question, Statement, Reject, Or-C... 14k/6k/2k
pragmeval/gum [preparation, evaluation, circumstance, soluti... 2k/259/248
pragmeval/emergent [observing, for, against] 2k/259/259
pragmeval/persuasiveness-relevance [low, high] 725/91/90
pragmeval/persuasiveness-specificity [low, high] 504/62/62
pragmeval/persuasiveness-strength [low, high] 371/46/46
pragmeval/emobank-dominance [low, high] 6k/798/798
pragmeval/squinky-implicature [low, high] 4k/465/465
pragmeval/sarcasm [notsarc, sarc] 4k/469/469
pragmeval/squinky-formality [low, high] 4k/453/452
pragmeval/stac [Comment, Contrast, Q Elab, Parallel, Explanat... 11k/1k/1k
pragmeval/pdtb [Synchrony, Contrast, Asynchronous, Conjunctio... 13k/1k/1k
pragmeval/persuasiveness-premisetype [testimony, warrant, invented instance, common... 566/71/70
pragmeval/squinky-informativeness [low, high] 4k/465/464
pragmeval/persuasiveness-claimtype [Value, Fact, Policy] 160/20/19
pragmeval/emobank-valence [low, high] 5k/644/643
hope edi/english [Hope speech, Non hope speech, not-English] 23k/3k
snli/plain text [entailment, neutral, contradiction] 550k/10k/10k
paws/labeled final [0, 1] 49k/8k/8k
imdb/plain text [neg, pos] 50k/25k/25k
crowdflower/sentiment nuclear power [Neutral / author is just sharing information,... 190
crowdflower/tweet global warming [Yes, No] 4k
crowdflower/airline-sentiment [neutral, positive, negative] 15k
crowdflower/corporate-messaging [Information, Action, Exclude, Dialogue] 3k
crowdflower/economic-news [not sure, yes, no] 8k
crowdflower/political-media-audience [constituency, national] 5k
crowdflower/political-media-bias [partisan, neutral] 5k
crowdflower/political-media-message [information, support, policy, constituency, p... 5k
crowdflower/text emotion [sadness, empty, relief, hate, worry, enthusia... 40k
emo/emo2019 [others, happy, sad, angry] 30k/6k
glue/cola [unacceptable, acceptable] 9k/1k/1k
glue/sst2 [negative, positive] 67k/2k/872
glue/mrpc [not equivalent, equivalent] 4k/2k/408
glue/qqp [not duplicate, duplicate] 391k/364k/40k
glue/mnli [entailment, neutral, contradiction] 393k/10k/10k
glue/qnli [entailment, not entailment] 105k/5k/5k
glue/rte [entailment, not entailment] 3k/2k/277
glue/wnli [not entailment, entailment] 635/146/71
glue/ax [entailment, neutral, contradiction] 1k
yelp review full/yelp review full [1 star, 2 star, 3 stars, 4 stars, 5 stars] 650k/50k
blimp classification/syntax semantics [acceptable, unacceptable] 26k
blimp classification/syntax+semantics [acceptable, unacceptable] 2k
blimp classification/morphology [acceptable, unacceptable] 36k
blimp classification/syntax [acceptable, unacceptable] 52k
blimp classification/semantics [acceptable, unacceptable] 18k
recast/recast kg relations [1, 2, 3, 4, 5, 6] 22k/2k/761
recast/recast puns [not-entailed, entailed] 14k/2k/2k
recast/recast factuality [not-entailed, entailed] 38k/5k/4k
recast/recast verbnet [not-entailed, entailed] 1k/160/143

Continued on next page
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Dataset Labels Splits Sizes

recast/recast verbcorner [not-entailed, entailed] 111k/14k/14k
recast/recast ner [not-entailed, entailed] 124k/38k/36k
recast/recast sentiment [not-entailed, entailed] 5k/600/600
recast/recast megaveridicality [not-entailed, entailed] 9k/1k/1k
ag news/default [World, Sports, Business, Sci/Tech] 120k/8k
super glue/boolq [False, True] 9k/3k/3k
super glue/cb [entailment, contradiction, neutral] 250/250/56
super glue/wic [False, True] 5k/1k/638
super glue/axb [entailment, not entailment] 1k
super glue/axg [entailment, not entailment] 356
ade corpus v2/Ade corpus v2 classification [Not-Related, Related] 24k
tweeteval/emoji [ red heart , smiling face with hearteyes , ... 50k/45k/5k
tweeteval/hate [not-hate, hate] 9k/3k/1k
tweeteval/irony [non irony, irony] 3k/955/784
tweeteval/offensive [not-offensive, offensive] 12k/1k/860
tweeteval/sentiment [negative, neutral, positive] 46k/12k/2k
tweeteval/stance [negative, neutral, positive] 3k/1k/294
trec/default [manner, cremat, animal, exp, ind, gr, title, ... 5k/500
yelp polarity/plain text [1, 2] 560k/38k
rotten tomatoes/default [neg, pos] 9k/1k/1k
anli/plain text [entailment, neutral, contradiction] 100k/45k/17k
liar/default [false, half-true, mostly-true, true, barely-t... 10k/1k/1k
linguisticprobing/subj number [NN, NNS] 82k/8k/8k
linguisticprobing/obj number [NN, NNS] 80k/8k/8k
linguisticprobing/past present [PAST, PRES] 86k/9k/9k
linguisticprobing/sentence length [0, 1, 2, 3, 4, 5] 87k/9k/9k
linguisticprobing/top constituents [ADVP NP VP ., CC ADVP NP VP ., CC NP VP ., IN... 70k/7k/7k
linguisticprobing/tree depth [depth 5, depth 6, depth 7, depth 8, depth 9, ... 85k/9k/9k
linguisticprobing/coordination inversion [I, O] 100k/10k/10k
linguisticprobing/odd man out [C, O] 83k/8k/8k
linguisticprobing/bigram shift [I, O] 100k/10k/10k
snips built in intents/default [ComparePlaces, RequestRide, GetWeather, Searc... 328
amazon polarity/amazon polarity [negative, positive] 4M/400k
winograd wsc/wsc285 [0, 1] 285
winograd wsc/wsc273 [0, 1] 273
hover/default [NOT SUPPORTED, SUPPORTED] 18k/4k/4k
dbpedia 14/dbpedia 14 [Company, EducationalInstitution, Artist, Athl... 560k/70k
onestop english/default [ele, int, adv] 567
movie rationales/default [NEG, POS] 2k/200/199
hans/plain text [entailment, non-entailment] 30k/30k
sem eval 2014 task 1/default [NEUTRAL, ENTAILMENT, CONTRADICTION] 5k/4k/500
eraser multi rc/default [False, True] 24k/5k/3k
selqa/answer selection experiments [0, 1] 66k/19k/9k
scitail/tsv format [entailment, neutral, contradiction] 23k/2k/1k
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B Task Embedding Stability
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Figure 4: UMAP Visualization of task embeddings when each task is attributed 3 task embeddings. For each task,
we position the task name at the centroid of the three embeddings and represent edges between the centroid and
the two other embeddings.
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C PCA Visualization of Task Embeddings
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Figure 5: PCA Visualization of task embeddings.


