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Abstract

Quantifying dependence between high-dimensional random variables is central to
statistical learning and inference. Two classical methods are canonical correlation
analysis (CCA), which identifies maximally correlated projected versions of the
original variables, and Shannon’s mutual information, which is a universal depen-
dence measure that also captures high-order dependencies. However, CCA only
accounts for linear dependence, which may be insufficient for certain applications,
while mutual information is often infeasible to compute/estimate in high dimen-
sions. This work proposes a middle ground in the form of a scalable information-
theoretic generalization of CCA, termed max-sliced mutual information (mSMI).
mSMI equals the maximal mutual information between low-dimensional projec-
tions of the high-dimensional variables, which reduces back to CCA in the Gaussian
case. It enjoys the best of both worlds: capturing intricate dependencies in the data
while being amenable to fast computation and scalable estimation from samples.
We show that mSMI retains favorable structural properties of Shannon’s mutual
information, like variational forms and identification of independence. We then
study statistical estimation of mSMI, propose an efficiently computable neural
estimator, and couple it with formal non-asymptotic error bounds. We present
experiments that demonstrate the utility of mSMI for several tasks, encompassing
independence testing, multi-view representation learning, algorithmic fairness, and
generative modeling. We observe that mSMI consistently outperforms competing
methods with little-to-no computational overhead.

1 Introduction

Dependence measures between random variables are fundamental in statistics and machine learning
for tasks spanning independence testing [1–3], clustering [4, 5], representation learning [6, 7], and
self-supervised learning [8–10]. There is a myriad of measures quantifying different notions of
dependence, with varying statistical and computational complexities. The simplest is the Pearson cor-
relation coefficient [11], which only captures linear dependencies. At the other extreme is Shannon’s
mutual information [12], which is a universal dependence measure that is able to identify arbitrar-
ily intricate dependencies. Despite its universality and favorable properties, accurately estimating
mutual information from data is infeasible in high-dimensional settings. First, mutual information
estimation rates suffers from the curse of dimensionality, whereby convergence rates deteriorate
exponentially with dimension [13]. Additionally, computing mutual information requires integrating
a log-likelihood ratio over a high-dimensional space, which is generally intractable.

Between these two extremes is the popular canonical correlation analysis (CCA) [14], which identifies
maximally correlated linear projections of variables. Nevertheless, classical CCA still only captures
linear dependence, which has inspired nonlinear extensions such as Hirschfeld–Gebelein–Rényi
(HGR) maximum correlation [15–17], kernel CCA [18, 19], deep CCA [20, 7], and various other
generalizations [21–24]. However, HGR is computationally infeasible, while kernel and deep CCA
can be burdensome in high dimensions, as they require optimization over reproducing kernel Hilbert
spaces or deep neural networks, respectively. To overcome these shortcomings, this work proposes
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max-sliced mutual information (mSMI)—a scalable information-theoretic extension of CCA that
captures the full dependence structure while only requiring optimization over linear projections.

1.1 Contributions

The mSMI is defined as the maximal mutual information between linear projections of the variables.
Namely, the k-dimensional mSMI between X and Y with values in Rdx and Rdy , respectively, is1

SIk(X;Y ) := sup
(A,B)∈St(k,dx)×St(k,dy)

I(A⊺X; B⊺Y ),

where St(k, d) is the Stiefel manifold of d × k matrices with orthonormal columns. Unlike the
nonlinear CCA variants that use nonlinear feature extractors in the high-dimensional ambient spaces,
mSMI retains the linear projections of CCA and captures nonlinear structures in the low-dimensional
feature space. This is done by using the mutual information between the projected variables,
rather than correlation, as the optimization objective. Beyond being considerably simpler from
a computational standpoint, this crucial difference allows mSMI to identify the full dependence
structure, akin to classical mutual information. mSMI can also be viewed as the maximized version
of the average-sliced mutual information (aSMI) [25, 26], which averages I(A⊺X; B⊺Y ) with respect
to (w.r.t.) the Haar measure over St(k, dx)× St(k, dy). However, we demonstrate that compared to
aSMI, mSMI benefits from improved neural estimation error bounds and a clearer interpretation.

We show that mSMI inherits important properties of mutual information, including identification of
independence, tensorization, and variational forms. For jointly Gaussian (X,Y ), the optimal mSMI
projections coincide with those of k-dimensional CCA [27], posing mSMI as a natural information-
theoretic generalization. Beyond the Gaussian case, the solutions differ and mSMI may yield more
effective representations for downstream tasks due to the intricate dependencies captured by mutual
information. We demonstrate this superiority empirically for multi-view representation learning.

For efficient computation, we propose an mSMI neural estimator based on the Donsker-Varadhan
(DV) variational form [28]. Neural estimators have seen a surge in interest due to their scalability
and compatibility with gradient-based optimization [29–36]. Our estimator employs a single model
that composes the projections with the neural network approximation of the DV critic, and then
jointly optimizes them. This results in both the estimated mSMI value and the optimal projection
matrices. Building on recent analysis of neural estimation of f -divergences [37, 38], we establish
non-asymptotic error bounds that scale as O

(
k1/2(ℓ−1/2 + kn−1/2)

)
, where ℓ and n are the numbers

of neurons and (X,Y ) samples, respectively. Equating ℓ and n results in the (minimax optimal)
parametric estimation rate, which highlights the scalability of mSMI and its compatibility to modern
learning settings.

In our empirical investigation, we first demonstrate that our mSMI neural estimator converges orders
of magnitude faster than that of aSMI [26]. This is because the latter requires (parallel) training of
many neural estimators corresponding to different projection directions, while the mSMI estimator
optimizes a single combined model. Notwithstanding the reduction in computational overhead, we
show that mSMI outperforms average-slicing for independence testing. Next, we compare mSMI
with deep CCA [20, 7] by examining downstream classification accuracy based on representations
obtained from both methods in a multi-view learning setting. Remarkably, we observe that even the
linear mSMI projections outperform nonlinear representations obtained from deep CCA. We also
consider an application to algorithmic fairness under the infomin framework [39]. Replacing their
generalized Pearson correlation objective with mSMI, we again observe superior performance in
the form of more fair representations whose utility remains on par with the fairness-agnostic model.
Lastly, we devise a max-sliced version of the InfoGAN by replacing the classic mutual information
regularizer with its max-sliced analog. We show that despite the low-dimensional projections, the
max-sliced InfoGAN successfully learns to disentangle the latent space and generates quality samples.

2 Background and Preliminaries

Notation. For a, b ∈ R, we use the notation a ∧ b = min{a, b} and a ∨ b = max{a, b}. For d ≥ 1,
∥ · ∥ is the Euclidean norm in Rd. The Stiefel manifold of d× k matrices with orthonormal columns

1The parameter k is fixed and small compared to the ambient dimensions dx, dy , often simply set as k = 1.
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is denoted by St(k, d). For a d× k matrix A, we use pA : Rd → Rk for the orthogonal projection
onto the row space of A. For A ∈ Rd×k with rank(A) = r ≤ k ∧ d, we write σ1(A), . . . , σr(A)
for its non-zero singular values, and assume without loss of generality (w.l.o.g.) that they are
arranged in descending order. Similarly, the eigenvalues of a square matrix Σ ∈ Rd×d are denoted
by λ1(Σ), . . . , λd(Σ). Let P(Rd) denote the space of Borel probability measures on Rd. For
µ, ν ∈ P(Rd), we use µ ⊗ ν to denote a product measure, while spt(µ) designates the support of
µ. All random variables throughout are assumed to be continuous w.r.t. the Lebesgue measure. For
a measurable map f , the pushforward of µ under f is denoted by f♯µ = µ ◦ f−1, i.e., if X ∼ µ
then f(X) ∼ f♯µ. For a jointly distributed pair (X,Y ) ∼ µXY ∈ P(Rdx × Rdy ), we write ΣX and
ΣXY for covariance matrix of X and cross-covariance matrix of (X,Y ), respectively.

Canonical correlation analysis. CCA is a classical method for devising maximally correlated
linear projections of a pair of random variables (X,Y ) ∼ µXY ∈ P(Rdx × Rdy ) via [14]

(θCCA, ϕCCA) = argmax
(ϕ,θ)∈Rdx×Rdy

θ⊺ΣXY ϕ
T√

θ⊺ΣXXθϕTΣY Y ϕ
= argmax

(θ,ϕ)∈Rdx×Rdy :

θ⊺ΣXθ=ϕ
TΣY ϕ=1

θ⊺ΣXY ϕ, (1)

where the former objective is the correlation coefficient ρ(θ⊺X,ϕTY ) between the projected variables
and the equality follows from invariance of ρ to scaling. The global optimum has an analytic form as
(θCCA, ϕCCA) = (Σ

−1/2
X θ1,Σ

−1/2
Y ϕ1), where (θ1, ϕ1) is the (unit-length) top left- and right-singular

vector pair associated with the largest singular value of TXY := Σ
−1/2
X ΣXY Σ

−1/2
Y ∈ Rdx×dy .

This solution is efficiently computable in O((dx ∨ dy)3) time, given that the population correlation
matrices are known. CCA extends to k-dimensional projections via the optimization [27]

max
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

tr(A⊺ΣXY B), (2)

with the optimal CCA matrices being (ACCA,BCCA) = (Σ
−1/2
X Uk,Σ

−1/2
Y Vk), where Uk and Vk are

the matrices of the first k left- and right-singular vectors of TXY . The optimal objective value then
becomes the sum of the top k singular values of TXY (namely, its Ky Fan k-norm).

Divergences and information measures. Let µ, ν ∈ P(Rd) satisfy µ≪ ν, i.e., µ is absolutely con-
tinuous w.r.t. ν. The Kullback-Leibler (KL) divergence is defined as D(µ∥ν) :=

∫
Rd log(dµ/dν)dµ.

We have D(µ∥ν) ≥ 0, with equality if and only if (iff) µ = ν. Mutual information and differential
entropy are defined from the KL divergence as follows. Let (X,Y ) ∼ µXY ∈ P(Rdx × Rdy ) and
denote the corresponding marginal distributions by µX and µY . The mutual information between X
and Y is given by I(X;Y ) := D(µXY ∥µX ⊗ µY ) and serves as a measure of dependence between
those random variables. The differential entropy ofX is defined as h(X) = h(µX) := −D(µX∥Leb).
Mutual information between (jointly) continuous variables and differential entropy are related via
I(X;Y ) = h(X) + h(Y ) − h(X,Y ); decompositions in terms of conditional entropies are also
available [40].

3 Max-Sliced Mutual Information

We now define the k-dimensional mSMI, establish structural properties thereof, and explore the
Gaussian setting and its connections to CCA. We focus here on the case of (linear) k-dimensional
projections and discuss extensions to nonlinear slicing in Section 3.3.
Definition 1 (Max-sliced mutual information). For 1 ≤ k ≤ dx ∧ dy, the k-dimensional mSMI
between (X,Y ) ∼ µXY ∈ P(Rdx × Rdy ) is

SIk(X;Y ) := sup
(A,B)∈St(k,dx)×St(k,dy)

I(A⊺X; B⊺Y ), (3)

where St(k, d) is the Stiefel manifold of d× k matrices with orthonormal columns.

The mSMI measures Shannon’s mutual information between the most informative k-dimensional
projections of X and Y . It can be viewed as a maximized version of the aSMI SIk(X;Y ) from
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[25, 26], defined as the integral of I(A⊺X; B⊺Y ) w.r.t. the Haar measure over St(k, dx)× St(k, dy).
For d = dx = dy, we have SId(X;Y ) = SId(X;Y ) = I(X;Y ) due to invariance of mutual
information to bijections. The supremum in mSMI is achieved since the Stiefel manifold is compact
and the function (A,B) 7→ I(A⊺X; B⊺Y ) is Lipschitz and thus continuous (Lemma 2 of [26]).
Remark 1 (Multivariate and conditional mSMI). The mSMI definition above extends to the mul-
tivariate and conditional cases as follows. Let (X,Y, Z) ∼ µXY Z ∈ P(Rdx × Rdy × Rdz ). The
k-dimensional multivariate and conditional mSMI functionals are, respectively, SIk(X,Y ;Z) :=
maxA,B,C I(A⊺X,B⊺Y ; C⊺Z) and SIk(X;Y |Z) := maxA,B,C I(A⊺X; B⊺Y |C⊺Z). Connections
between SIk(X;Y ) and its multivariate and conditional versions are given in the proposition to
follow. We also note that one may generalize the definition of SIk(X;Y ) to allow for projections into
feature spaces of different dimensions, i.e., A ∈ St(kx, dx) and B ∈ St(ky, dy), for kx ̸= ky. We
expect our theory to extend to that case, but leave further exploration for future work.

In the spirit of mSMI, we define the max-sliced differential entropy.
Definition 2 (Max-sliced entropy). The k-dimensional max-sliced (differential) entropy of X ∼
µX ∈ P(Rd) is shk(X) := shk(µ) := supA∈St(k,d) h(A

⊺X).

An important property of classical differential entropy is the maximum entropy principle [40], which
finds the highest entropy distribution within given class. In Appendix B, we study the max-sliced
entropy maximizing distribution in several common scenarios. For instance, we show that shk is
maximized by the Gaussian distribution under a fixed (mean and) covariance constraint. Namely,
letting P1(m,Σ) :=

{
µ ∈ P(Rd) : spt(µ) = Rd , Eµ[X] = m, Eµ

[
(X −m)(X −m)⊺

]
= Σ

}
,

we have argmaxµ∈P1(µ,Σ) shk(µ) = N (m,Σ). An intimate connection between max-sliced entropy
and PCA is established in the sequel, under the Gaussian setting.
Remark 2 (Sliced divergences). The slicing technique has originated as a means to address scalabil-
ity issues concerning statistical divergences. Significant attention was devoted to sliced Wasserstein
distances as discrepancy measures between probability distributions [41–47]. As such, the sliced
Wasserstein distance differs from mutual information and its sliced variants, which quantify de-
pendence between random variables, rather than discrepancy per se. Additionally, as Wasserstein
distances are rooted in optimal transport theory, they heavily depend on the geometry of the underly-
ing data space. Mutual information, on the other hand, is induced by the KL divergence, which only
depends on the log-likelihood of the considered distributions and overlooks geometry.

3.1 Structural Properties

The following proposition lists useful properties of the mSMI, which are similar to those of the
average-sliced variant (cf. [26, Proposition 1]) as well as Shannon’s mutual information itself.
Proposition 1 (Structural properties). The following properties hold:

1. Bounds: For any integers k1 < k2: SIk1(X;Y ) ≤ SIk1(X;Y ) ≤ SIk2(X;Y ) ≤ I(X;Y ).

2. Identification of independence: SIk(X;Y ) ≥ 0 with equality iff (X,Y ) are independent.

3. KL divergence representation: We have

SIk(X;Y ) = sup
(A,B)∈St(k,dx)×St(k,dy)

D
(
(pA, pB)#µXY

∥∥(pA, pB)#µX ⊗ µY
)
,

4. Sub-chain rule: For any random variables X1, . . . , Xn, Y , we have

SIk(X1, . . . , Xn;Y ) ≤ SIk(X1;Y ) +

n∑
i=2

SIk(Xi;Y |X1, . . . , Xi−1).

5. Tensorization: For mutually independent {(Xi,Yi)}ni=1, SIk
(
{Xi}ni=1;{Yi}ni=1

)
=

n∑
i=1

SIk(Xi;Yi).

The proof follows by similar arguments to those in the average-sliced case, but is given for com-
pleteness in Supplement A.1. Of particular importance are Properties 2 and 3. The former renders
mSMI sufficient for independence testing despite being significantly less complex than the classical
mutual information between the high-dimensional variables. The latter, which represent mSMI as a
supremized KL divergence, is the basis for neural estimation techniques explored in Section 4.
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Remark 3 (Relation to average-SMI). Beyond the inequality relationship in Property 1 above, Propo-
sition 4 in [25] (paraphrased) shows that for matrices Wx,Wy and vectors bx, by of appropriate
dimensions, we have supWx,Wy,bx,by SI1(W

⊺
xX + bx;W

⊺
yY + by) = SI1(X;Y ), and the relation

readily extends to projection dimension k > 1. In words, optimizing the aSMI over linear transforma-
tions of the high-dimensional data vectors coincides with the max-sliced version. This further justifies
the interpretation of SIk(X;Y ) as the information between the two most informative representations
of X,Y in a k-dimensional feature space. It also suggests that mSMI is compatible for feature
extraction tasks, as explored in Section 5.3 ahead.

3.2 Gaussian Max-SMI versus CCA

The mSMI is an information-theoretic extension of the CCA coefficient ρCCA(X,Y ), which is able to
capture higher order dependencies. Interestingly, when (X,Y ) are jointly Gaussian, the two notions
coincide. We next state this relation and provide a closed-form expression for the Gaussian mSMI.

Proposition 2 (Gaussian mSMI). Let X ∼ N (mX ,ΣX) and Y ∼ N (mY ,ΣY ) be dx– and dy–
dimensional jointly Gaussian vectors with nonsingular covariance matrices and cross-covariance
ΣXY . For any k ≤ dx ∧ dy , we have

SIk(X;Y ) = I(A⊺
CCAX; B⊺

CCAY ) = −1

2

k∑
i=1

log
(
1− σi(TXY )

2
)
, (4)

where (ACCA,BCCA) are the CCA solutions from (2), TXY = Σ
−1/2
X ΣXY Σ

−1/2
Y ∈ Rdx×dy , and

σk(TXY ) ≤ . . . ≤ σ1(TXY ) ≤ 1 are the top k singular values of TXY (ordered).

This proposition is proven in Supplement A.2. We first show that the optimization domain of
SIk(X;Y ) can be switched from the product of Stiefel manifolds to the space of all matrices subject
to a unit variance constraint (akin to (2)), without changing the mSMI value. This implies that the
CCA solutions (ACCA,BCCA) from (2) are feasible for mSMI and we establish their optimality using
a generalization of the Poincaré separation theorem [48, Theorem 2.2]. Specializing Proposition 2
to one-dimensional projections, i.e., when k = 1, the mSMI is given in terms of the canonical
correlation coefficient ρCCA(X,Y ) := sup(ϕ,θ)∈Rdx×Rdy ρ(θ⊺X,ϕTY ). Namely,

SI1(X;Y ) = I(θ⊺CCAX;ϕ⊺CCAY ) = −0.5 log
(
1− ρCCA(X,Y )2

)
,

where (θCCA, ϕCCA) are the global optimizers of ρCCA(X,Y ).

Remark 4 (Beyond Gaussian data). While the mSMI solution coincides with that of CCA in the
Gaussian case, this is no longer expected to hold for non-Gaussian distributions. CCA is designed
to maximize correlation, while mSMI has Shannon’s mutual information between the projected
variables as the optimization objective. Unlike correlation, mutual information captures higher order
dependencies between the variables, and hence the optimal mSMI matrices will not generally coincide
with (ACCA,BCCA). Furthermore, the intricate dependencies captured by mutual information suggest
that the optimal mSMI projections may yield representations that are more effective for downstream
tasks. We empirically verify this observation in Section 5 on several tasks, including classification,
multi-view representation learning, and algorithmic fairness.

Similarly to the above, the Gaussian max-sliced entropy is related to PCA [49, 14]. In Supplement
A.3, we prove the following.

Proposition 3 (Gaussian max-sliced entropy). For a d-dimensional Gaussian variable X ∼
N (m,Σ), we have shk(X) = supA∈St(k,d) h(A

⊺X) = h(A⊺
PCAX) = 0.5

∑k
i=1 log

(
2πeλi(Σ)

)
,

where APCA is optimal PCA matrix and λ1(Σ), . . . λk(Σ) are the top k eigenvalues of Σ.

Note that the eigenvalues λ1(Σ), . . . λk(Σ) are non-negative since Σ is a covariance matrix. Ex-
trapolating beyond the Gaussian case, this poses max-sliced entropy as an information-theoretic
generalization of PCA for unsupervised dimensionality reduction. An analogous extension using the
Rényi entropy of order 2 was previously considered in [50] for the purpose of binary classification.
In that regard, shk(X) can be viewed as the α-Rényi variant when α→ 1.
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3.3 Generalizations Beyond Linear Slicing

The notion of mSMI readily generalizes beyond linear slicing. Fix dx, dy ≥ 1, k ≤ dx ∧ dy, and
consider two (nonempty) function classes G ⊆ {g : Rdx → Rk} and H ⊆ {h : Rdy → Rk}.

Definition 3 (Generalized mSMI). The generalized mSMI between (X,Y ) ∼ µXY ∈ P(Rdx ×Rdy )
w.r.t. the classes G and H is SIG,H(X;Y ) := sup(g,h)∈G×H I

(
g(X);h(Y )

)
.

The generalized variant reduces back to SIk(X;Y ) by taking G = Gproj := {pA : A ∈ St(k, dx)}
and H = Hproj := {pB : B ∈ St(k, dy)}, but otherwise allows more flexibility in the way (X,Y ) are
mapped into Rk. We also have that if G ⊆ G′ and H ⊆ H′, then SIG,H(X;Y ) ≤ SIG′,H′(X;Y ) ≤
I(X;Y ), which corresponds to Property 1 from Proposition 1. Further observations are as follows.

Proposition 4 (Properties). For any classes G,H, we have that SIG,H always satisfies Properties 3-5
from Proposition 1. If further Gproj ⊆ G and Hproj ⊆ H, then SIG,H also satisfies Property 2.

We omit the proof as it follows by the same argument as Proposition 1, up to replacing the linear
projections with the functions (g, h) ∈ G × H. In practice, the classes G and H are chosen to
be parametric, typically realized by artificial neural networks. As discussed in Remark 5 ahead,
this is well-suited to the neural estimation framework for mSMI (both standard and generalized).
Lastly, note that SIG,H(X;Y ) corresponds to the objective of multi-view representation learning [51],
which considers the maximization of the mutual information between NN-based representation of the
considered variables. We further investigate this relation in Section 5.3.

4 Neural Estimation of Max-SMI

We study estimation of mSMI from data, seeking an efficiently computable and scalable approach
subject to formal performance guarantees. Towards that end, we observe that the mSMI is compatible
with neural estimation [29, 38] due to its convenient variational form. In what follows we derive the
neural estimator, describe the algorithm to compute it, and provide non-asymptotic error bounds.

4.1 Estimator and Algorithm

Fix dx, dy ≥ 1, k ≤ dx ∧ dy, and µXY ∈ P(Rdx × Rdy ); we suppress k, dx, dy from our notation
of the considered function classes. Neural estimation is based on the DV variational form:2

I(X;Y ) = sup
f∈F

LDV(f ; µXY ), LDV(f ; µXY ) := E[f(X,Y )]− log
(
eE[f(X̃,Ỹ )]

)
,

where (X,Y ) ∼ µXY , (X̃, Ỹ ) ∼ µX ⊗ µY , and F is the class of all measurable functions f :
Rdx × Rdy → R (often referred to as DV potentials) for which the expectations above are finite. As
mSMI is the maximal mutual information between projections of X,Y , we have

SIk(X;Y ) = sup
(A,B)∈St(k,dx)×St(k,dy)

sup
f∈F

LDV

(
f ; (pA, pB)♯µXY

)
= sup
f∈F proj

LDV(f ;µXY ),

where F proj :=
{
f ◦ (pA, pB) : f ∈ F , (A,B) ∈ St(k, dx) × St(k, dy)

}
. The RHS above is

given by optimizing the DV objective LDV over the composed class F proj, which first projects
(X,Y ) 7→ (A⊺X,B⊺Y ) and then applies a DV potential f : Rk×Rk → R to the projected variables.

Neural estimator. Neural estimators parametrize the DV potential by neural nets, approximate
expectations by sample means, and optimize the resulting empirical objective over parameter space.
Let Fnn be a class of feedforward networks with input space Rk × Rk and real-valued outputs.3
Given i.i.d. samples (X1, Y1), . . . , (Xn, Yn) from µXY , we first generate negative samples (i.e.,
from µX ⊗ µY ) by taking (X1, Yσ(1)), . . . , (Xn, Yσ(n)), where σ ∈ Sn is a permutation such that

2One may instead use the form that stems from convex duality: I(U ;V )= supf E[f(U, V )]−E
[
ef(Ũ,Ṽ )−1

]
.

3For now, we leave the architecture (number of layers/neurons, parameter bounds, nonlinearity) implicit to
allow flexibility of implementation; we will specialize to a concrete class when providing theoretical guarantees.
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σ(i) ̸= i, for all i = 1, . . . , n. The neural estimator of SIk(X;Y ) is now given by

ŜI
Fnn

k (Xn, Y n) := sup
f∈Fproj

nn

1

n

n∑
i=1

f(Xi, Yi)− log

(
1

n

n∑
i=1

ef(Xi,Yσ(i))

)
, (5)

where Fproj
nn :=

{
f ◦ (pA, pB) : f ∈ Fnn, (A,B) ∈ St(k, dx)×St(k, dy)

}
is the composition of the

neural network class with the projection maps. The projection maps can be absorbed into the network
architecture as a first linear layer that maps the (dx + dy)-dimensional input to a 2k-dimensional
feature vector, which is then further processed by the original f ∈ Fnn network. Note that projection
onto the Stiefel manifold can be efficiently and differentiably computed via QR decomposition.
Hence, the Stiefel manifold constraint can be easily enforced by setting A,B to be the projections of
unconstrained d× k matrices. Further details on the implementation are given in Supplement C.
Remark 5 (Nonlinear slicing). For learning tasks that may need more expressive representations
of (X,Y ), one may employ the nonlinear mSMI variant from Section 3.3. In practice, the classes
G = {gθ} and H = {hϕ} are taken to be parametric, realized by neural networks. These networks
naturally compose with the DV critic fψ , resulting in a single compound model fψ ◦ (gθ, hϕ).

4.2 Performance Guarantees

Neural estimation involves three sources of error: (i) function approximation of the DV potential; (ii)
empirical estimation of the means; and (iii) optimization, which comes from employing suboptimal
(e.g., gradient-based) routines. Our analysis provides sharp non-asymptotic bounds for errors of
type (i) and (ii), leaving the account of the optimization error for future work. We focus on a class
of ℓ-neuron shallow ReLU networks, although the ideas extend to other nonlinearities and deep
architectures. Define Fℓ

nn as the class of all f : Rk × Rk → R, f(z) =
∑ℓ
i=1 βiϕ (⟨wi, z⟩+ bi) +

⟨w0, z⟩ + b0, whose parameters satisfy max1≤i≤ℓ ∥wi∥1 ∨ |bi| ≤ 1, max1≤i≤ℓ |βi| ≤ aℓ
2ℓ , and

|b0|, ∥w0∥1 ≤ aℓ, where ϕ(z) = z ∨ 0 is the ReLU activation and aℓ = log log ℓ ∨ 1.

Consider the neural mSMI estimator ŜI
n,ℓ

k := ŜI
Fℓ

nn

k (Xn, Y n) (see (5)). We provide convergence rates
for it over an appropriate distribution class, drawing upon the results of [37] for neural estimation
of f -divergences. For compact X ⊂ Rdx and Y ⊂ Rdy , let Pac(X × Y) be the set of all Lebesgue
absolutely continuous joint distribution µXY with spt(µXY ) ⊆ X ×Y . Denote the Lebesgue density
of µXY by fXY . The distribution class of interest is4

Pk(M, b) :=

{
µXY ∈ Pac(X × Y) :

∃ r ∈ Ck+3
b (U) for some open set U ⊃ X × Y

s.t. log fXY = r|X×Y , I(X;Y ) ≤M

}
, (6)

which, in particular, contains distributions whose densities are bounded from above and below on
X × Y with a smooth extension to an open set covering X × Y . This includes uniform distributions,
truncated Gaussians, truncated Cauchy distributions, etc. The following theorem provides the
convergence rate for the mSMI neural estimator, uniformly over Pk(M, b).
Theorem 1 (Neural estimation error). For any M, b ≥ 0, we have

sup
µX,Y ∈Pk(M,b)

E
[∣∣∣SIk(X;Y )− ŜI

n,ℓ

k

∣∣∣] ≤ Ck
1
2

(
ℓ−

1
2 + kn−

1
2

)
.

whereC depends onM , b, k, and the radius of the ambient space ∥X×Y∥ := sup(x,y)∈X×Y ∥(x, y)∥.

The theorem is proven in Supplement A.4 by adapting the error bound from [38, Proposition 2] to
hold for I(A⊺X; B⊺Y ), uniformly over (A,B) ∈ St(k, dx)× St(k, dy). To that end, we show that
for any µXY ∈ Pk(b,M), the log-density of (A⊺X,B⊺Y ) ∼ (pA, pB)♯µXY admits an extension (to
an open set containing the support) with k + 3 continuous and uniformly bounded derivatives.
Remark 6 (Parametric rate and optimality). Taking ℓ ≍ n, the resulting rate in Theorem 1 is
parametric, and hence minimax optimal. This result implicitly assumes thatM is known when picking
the neural net parameters. This assumption can be relaxed to mere existence of (an unknown) M ,
resulting in an extra polylog(ℓ) factor multiplying the n−1/2 term.

4Here, Cs
b (U) := {f ∈ Cs(U) : maxα:∥α∥1≤s ∥Dαf∥∞,U ≤ b}, where Dα, α = (α1, . . . , αd) ∈ Zd

≥0, is
the partial derivative operator of order

∑d
i=1 αi. The restriction of f : Rd → R to X ⊆ Rd is f |X .
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Remark 7 (Comparison to average-SMI). Neural estimation of classic mutual information under
the framework of [38] requires the density to have Hölder smoothness s ≥ ⌊(dx + dy)/2⌋+ 3. For
SIk(X;Y ), smoothness of k + 3 is sufficient (even though the ambient dimension is the same), which
means it can be estimated over a larger distribution class. Similar gains in terms of smoothness levels
were observed for aSMI in [26]. Nevertheless, we note that mSMI is more compatible with neural
estimation than average-slicing [25, 26]. The mSMI neural estimator integrates the max-slicing into
the neural network architecture and optimizes a single objective. The aSMI neural estimator from
[26] requires an additional Monte Carlo integration step to approximate the integral over the Steifel
manifolds. This results in an extra k1/2m−1/2 term in the error bound, where m is the number of
Monte Carlo samples, introducing a burdensome computational overhead (see Section 5.1).
Remark 8 (Non-ReLU networks). Theorem 1 employs the neural estimation bound from [38], which
relies on [52] to control the approximation error. As noted in [38], their bound extends to any other
sigmoidal bounded activation with limz→−∞ σ(z) = 0 and limz→∞ σ(z) = 1 by appealing to the
approximation bound from [53] instead. Doing so would allow relaxing the smoothness requirement
on the extension to r ∈ Ck+2

b in (6), but at the expense of scaling the hidden layer parameters as
ℓ1/2 log ℓ (as opposed to the ReLU-based bound, where the parameter scale is independent of ℓ).

5 Experiments

5.1 Neural Estimation
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Figure 1: Neural estimation performance with
ρ = 0.5. Convergence vs. n in upper figures
and average epoch time vs. n in lower figure.

We compare the performance of neural estimation
methods for mSMI and aSMI on a synthetic dataset
of correlated Gaussians. Let X,Z ∼ N (0, 1) be i.i.d.
and set Y = ρX +

√
1− ρ2Z, for ρ ∈ (0, 1). The

goal is to estimate the k-dimensional mSMI and aSMI
between (X,Y ). We train our mSMI neural estimator
and the aSMI neural estimator from [26, Section 4.2]
based on n i.i.d. samples, and compare their perfor-
mance as a function of n. Both average and max-
sliced algorithms converge at similar rates; however,
aSMI has significantly higher time complexity due to
the need to train multiple neural estimators (one for
each projection direction). This is shown in Figure 1,
where we compare the average epoch time for each
algorithm against the dataset size. Implementation
details are given in Supplement C.

5.2 Independence Testing

In this experiment, we compare mSMI and aSMI for independence testing. We follow the setting from
[26, Section 5], generating d-dimensional samples correlated in a latent d′-dimensional subspace and
estimating the information measure to determine dependence. We estimate the aSMI with the method
from [26], using m = 1000 Monte Carlo samples and the Kozachenko-Leonenko estimator for the
mutual information between the projected variables [54]. We then compute AUC-ROC over 100 trials,
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Figure 2: ROC-AUC comparison. Dashed and solid lines show results for aSMI [26] and mSMI (ours),
respectively. Blue plots correspond to (d, d′) = (10, 4), while red correspond to (d, d′) = (20, 6).
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considering various ambient and projected dimensions. For mSMI, as we cannot differentiate through
the Kozachenko-Leonenko estimator, we resort to gradient-free methods. We employ the LIPO
algorithm from [55] with a stopping criterion of 1000 samples. This choice is motivated by the
Lipschitzness of (A,B) 7→ I(A⊺X; B⊺Y ) w.r.t. the Frobenius norm on St(k, dx) × St(k, dy) (cf.
[26, Lemma 2]). Figure 2 shows that when k > 2, mSMI captures independence better than aSMI,
particularly in the lower sample regime. We hypothesize that this is due to the fact that the shared
signal lies in a low-dimensional subspace, which mSMI can isolate and perhaps better exploit than
aSMI, which averages over all subspaces. When k is much smaller than the shared signal dimension
d′, mSMI fails to capture all the information and aSMI, which takes all slices into account, may be
preferable. Results are averaged over 10 seeds. Further implementation details are in Supplement C.

5.3 Multi-View Representation Learning k Linear CCA Linear mSMI MLP DCCA MLP mSMI
1 0.261±0.03 0.274±0.02 0.284±0.03 0.291±0.02
2 0.32±0.02 0.346±0.02 0.314±0.03 0.417±0.02
4 0.42±0.01 0.478±0.02 0.441±0.04 0.546±0.01
8 0.553±0.03 0.666±0.01 0.645±0.02 0.665±0.01
12 0.614±0.02 0.751±0.01 0.697±0.01 0.753±0.01
16 0.673±0.02 0.775±0.01 0.730±0.02 0.779±0.01
20 0.704±0.007 0.79±0.006 0.774±0.01 0.798±0.01

Table 1: Downstream classification accuracy from
MNIST representations by CCA and mSMI.

We next explore mSMI as an information-
theoretic generalization of CCA by examining
its utility in multi-view representation learning—
a popular CCA application. Without using class
labels, we obtain mSMI-based k-dimensional
representations of the top and bottom halves
of MNIST images (considered as two separate
views of the digit image). This is done by com-
puting the k-dimensional mSMI between the views and using the maximizing projected variables
as the representations. We compare to similarly obtained CCA-based representations, following the
method of [20]. Both linear and nonlinear (parameterized by an MLP neural network) slicing models
are optimized with similar initialization and data but different loss functions. Performance is evaluated
via downstream 10-class classification accuracy, utilizing the learned top-half representations. Results
are averaged over 10 seeds. As shown in Table 1, mSMI outperforms CCA for learning meaningful
representations. Interestingly, linear representations learned by mSMI outperform nonlinear represen-
tations from the CCA methodology, demonstrating the potency of mSMI. Full implementation details
and additional results are given in Supplements C and D, respectively.

The aSMI is not considered for this experiment since it does not provide a concrete latent space
representation (as it is an averaged quantity). Moreover, if one were to maximize aSMI as an objective
to derive such representations, this would simply lead back to computing mSMI; cf. Remark 3.

5.4 Learning Fair Representations

Table 2: Learning a fair representation of the US Census Demographic
dataset, following the setup of [39]. Results are shown as the median
over 10 runs with random data splits. The fairest result is k = 6.

N/A Slice [39] mSMI (ours)
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

ρHGR(Z, Y ) ↑ 0.949 0.967 0.955 0.958 0.952 0.942 0.940 0.957 0.933
ρHGR(Z,A) ↓ 0.795 0.116 0.220 0.099 0.067 0.048 0.029 0.026 0.047

Another common applica-
tion of dependence mea-
sures is learning fair rep-
resentations of data. We
seek a data transformation
Z = f(X) that is useful for
predicting some outcome or
label Y , while being statis-
tically independent of some sensitive attribute A (e.g., gender, race, or religion of the subject). In
other words, a fair representation is one that is not affected by the subjects’ protected attributes so that
downstream predictions are not biased against protected groups, even if the training data may have
been biased. Following the setup of [39], we measure utility and fairness using the HGR maximal
correlation ρHGR(·, ·) = suph,g ρ

(
h(·), g(·)

)
, seeking large ρHGR(Z, Y ) and small ρHGR(Z,A) where

h and g are parameterized by neural networks. As solving this minimax problem directly is difficult in
practice, following [39] we learn Z by optimizing the bottleneck equation ρHGR(Z, Y )−βSIk(Z,A),
where we use a neural estimator for the mSMI and β, k are hyperparameters.

Table 2 shows results on the US Census Demographic dataset extracted from the 2015 American
Community Survey, which has 37 features collected over 74,000 census tracts. Here Y is the fraction
of children below the poverty line in a tract, and A is the fraction of women in the tract. Following the
same experimental setup as [39], the learned Z is 80-dimensional. As [39] showed that their “Slice”
approach significantly outperformed all other baselines on this experiments under a computational
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(a) FashionMNIST (b) MNIST, k = 5 (c) MNIST, k = 10

Figure 3: MNIST images generated via the max-sliced InfoGAN.

constraint5, we apply the same computational constraint to our approach and compare only to Slice
and to the “N/A” fairness-agnostic model trained on the bottleneck objective with β = 0. Note that
for k > 1, mSMI learns a more fair representation Z (lower ρHGR(Z,A)) than Slice, while retaining
a utility ρHGR(Z, Y ) on par with the fairness agnostic N/A model. We emphasize that due to the
reasons outlined in Section 5.3, aSMI is not suitable for the considered task and is thus not included
in the comparison. Results on the Adult dataset are shown in Supplement E.

5.5 Max-Sliced InfoGAN

We present an application of max-slicing to generative modeling under the InfoGAN framework [56].
The InfoGAN learns a disentangled latent space by maximizing the mutual information between
a latent code variable and the generated data. We revisit this architecture but replace the classical
mutual information regularizer in the InfoGAN objective with mSMI. Our max-sliced InfoGAN
is tested on the MNIST and Fashion-MNIST datasets. Figure 3 presents the generated samples
for several projection dimensions. We consider 3 latent codes (C1, C2, C3), which automatically
learn to encode different features of the data. We vary the values of C1, which is a 10-state discrete
variable, along the column (and consider random values of (C2, C3) along the rows). Evidently, C1

successfully disentangles the 10 class labels and the quality of generated samples is on par with
past implementations [56, 26]. We stress that since mSMI relies on low-dimensional projections,
the resulting InfoGAN mutual information estimator uses a reduced number of parameters (at the
negligible cost of optimizing over linear projections). Additional details are given in Supplement C.

6 Conclusion

This paper proposed mSMI, an information theoretic generalization of CCA. mSMI captures the
full dependence structure between two high dimensional random variables, while only requiring
an optimized linear projection of the data. We showed that mSMI inherits important properties of
Shannon’s mutual information and that when the random variables are Gaussian, the mSMI optimal
solutions coincide with classic k-dimensional CCA. Moving beyond Gaussian distributions, we
present a neural estimator of mSMI and establish non-asymptotic error bounds.

Through several experiments we demonstrate the utility of mSMI for tasks spanning independence test-
ing, multi-view representation learning, algorithmic fairness and generative modeling, showing it
outperforms popular methodologies. Possible future directions include an investigation of an opera-
tional meaning of mSMI, either in information theoretic or physical terms, extension of the proposed
formal guarantees to the nonlinear setting, and the extension of the neural estimation convergence
guarantees to deeper networks. Additionally, mSMI can provide a mathematical foundation to mutual
information-based representation learning, a popular area of self-supervised learning [10, 57].

In addition to the above, we plan to develop a rigorous theory for the choice of k, which is currently
devised empirically and is treated as a hyperparameter. When the support of the distributions lies
in some d′ < d dimensional subspace, the choice of k = d′ is sufficient to recover the classical
mutual information, and therefore it characterizes the full dependence structure. Extrapolating from
this point, we conjecture that the optimal value of k is related to the intrinsic dimension of the data
distribution, even when it is not strictly supported on a low-dimensional subset.

5Runtime per iteration not to exceed the runtime of Slice per iteration. We used an NVIDIA V100 GPU.
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