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Abstract

Real-world image classification tasks tend to be complex, where expert labellers are some-
times unsure about the classes present in the images, leading to the issue of learning with
noisy labels (LNL). The ill-posedness of the LNL task requires the adoption of strong as-
sumptions or the use of multiple noisy labels per training image, resulting in accurate
models that work well in isolation but fail to optimise human-AI collaborative classification
(HAI-CC). Unlike such LNL methods, HAI-CC aims to leverage the synergies between hu-
man expertise and AI capabilities but requires clean training labels, limiting its real-world
applicability. This paper addresses this gap by introducing the innovative Learning to
Complement with Multiple Humans (LECOMH) approach. LECOMH is designed to learn
from noisy labels without depending on clean labels, simultaneously maximising collabora-
tive accuracy while minimising the cost of human collaboration, measured by the number
of human expert annotations required per image. Additionally, new benchmarks featur-
ing multiple noisy labels for both training and testing are proposed to evaluate HAI-CC
methods. Through quantitative comparisons on these benchmarks, LECOMH consistently
outperforms competitive HAI-CC approaches, human labellers, multi-rater learning, and
noisy-label learning methods across various datasets, offering a promising solution for ad-
dressing real-world image classification challenges.

1 Introduction

When dealing with real-world image classification problems, it is common that labellers often encounter
difficulties in accurately labelling images (Carneiro, 2024). This can occur for various reasons, such as the
difficulty of the problem (e.g., medical diagnosis (Chen et al., 2023) or fine-grained classification (Wei et al.,
2023)) or due to the labeller’s lack of experience (Kamar et al., 2012). In this paper, we primarily focus
on the challenges posed by the complexity of the classification task, assuming that labellers are experts in
classifying dataset images.

Two separate research communities have addressed this challenge by making different assumptions and
proposing quite distinct solutions. The learning with noisy-label (LNL) research community focuses on
mitigating the presence of noise in the labels with sophisticated training methods (Song et al., 2022; Carneiro,
2024; Ji et al., 2021) that aim to maximise model accuracy during testing when they operate in isolation.
Given the ill-posedness of the LNL problem (Liu et al., 2023b), current solutions either need to impose
strong assumptions (e.g., clean-label training samples tend to have smaller losses than noisy-label samples)
or they rely on multiple noisy labels per training image to build multi-rater learning (MRL) methods (Ji
et al., 2021). On the other hand, the human-AI collaborative classification (HAI-CC) community (Dafoe
et al., 2021) focuses on the development of methods that assume the presence of clean and multiple noisy
training labels to exploit the complementary performance of human experts and AI to produce a collaborative
approach that has higher accuracy than both the expert’s and the AI’s accuracy. However, HAI-CC methods
require ground truth labels in the training set, restricting their applicability in real-world scenarios that
contain exclusively noisy labels for training. Apart from the need of clean labels, another limitation of
HAI-CC methods is that they collaborate only with single users, limiting real-world deployment. There
are notable HAI-CC exceptions (Hemmer et al., 2022; Verma et al., 2023) that can learn to complement
with or defer to multiple experts, but their reliance on clean-label samples, absence of collaboration cost
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Figure 1: LECOMH is the first human-AI collaborative classification (HAI-CC) method that learns exclu-
sively from multiple noisy labels and collaborates with multiple experts. Its primary objective is to optimise
HAI-CC accuracy while concurrently minimising collaboration costs, measured by the number of human
expert annotations required for image classification. To enable the learning from multiple noisy labels, we
first train an AI model using learning with noisy label (LNL) techniques, followed by a multi-rater learn-
ing (MRL) to produce a consensus label that is then used as the ground truth label for training the two
stages of HAI-CC. The first stage is the Human-AI Selection Module that estimates the number of human
predictions needed for efficient and accurate human-AI collaborative classification, and the second stage is
the Collaboration Module that produces the final prediction.

optimisation (Hemmer et al., 2022), and lack of human-AI ensemble classification (Verma et al., 2023) restrict
their applicability in real-world scenarios. As a result, it is possible to notice a remarkable research gap,
where LNL and MRL methods can handle noisy labels in training, but they do not collaborate with users
during testing, while HAI-CC methods collaborate with users during testing, but they rely on clean labels
for training and rarely collaborate with multiple experts.

This paper addresses the research gap exposed above with the innovative Learning to Complement with
Multiple Humans (LECOMH) approach and the introduction of new HAI-CC benchmarks. LECOMH,
shown in Fig. 1, is designed to learn from multiple noisy labels per sample to maximise the HAI-CC accuracy
and minimise the multiple user collaboration costs, measured by the number of human expert annotations
in the collaborative classification of a test image. The proposed benchmarks assess HAI-CC methods with
datasets containing multiple noisy labels in training and testing. Overall, the key contributions of the paper
are:

• the first HAI-CC method, referred to as LECOMH, that can be trained exclusively from multiple
noisy labels per training image to maximise the collaborative classification accuracy of teams of AI
and multiple experts, while minimising the collaboration costs, measured by the number of human
experts used in HAI-CC, and

• new benchmarks to assess HAI-CC methods on classification problems containing multiple noisy
labels in the training and testing sets, paving the way for a more comprehensive performance eval-
uation of real-world applications.

The empirical evaluation shows that LECOMH consistently demonstrates superior performance than state-
of-the-art (SOTA) HAI-CC methods (Mozannar et al., 2023; Hemmer et al., 2022; Verma et al., 2023) in
the newly-introduced benchmarks with higher accuracy for equivalent collaboration costs. Furthermore,
LECOMH is the only HAI-CC method in our experiments that outperforms expert labellers and isolated
LNL methods across all datasets.

The rest of this work is organised as follows: Section 2 presents a brief review of previous studies on
noisy-label learning, multi-rater learning and human-AI collaborative classification. Section 3 describes the
proposed Learning to Complement with Multiple Humans approach. Section 4 introduces new benchmarks to
assess human-AI collaborative classifiers with multi-rater noisy-label datasets, including new benchmarks in
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CIFAR-10, Chaoyang, and NIH datasets. Section 5 presents and analyses the empirical evaluation. Finally,
Section 6 summarises and conclude this study.

2 Related Work

LECOMH is a new method that jointly addresses the challenges of learning with multiple noisy labels and
human-AI collaboration. Thus, in this section, we review relevant studies in learning with noisy labels,
multi-rater learning, and human-AI collaborative classification.

2.1 Learning with Noisy Labels (LNL)

LNL is a challenging problem that has received increasing attention by the machine learning community (Song
et al., 2022; Carneiro, 2024). Since learning with noisy labels is an ill-posed problem, it necessitates the im-
position of specific constraints to facilitate the discovery of a viable solution. One common constraint is the
small-loss hypothesis (Li et al., 2020; Jiang et al., 2018; Arazo et al., 2019), which posits that clean-label
training samples incur smaller losses than noisy-label samples. Another constraint, known as clusterabil-
ity (Zhu et al., 2021b), assumes that a training sample and its two nearest neighbours share the same clean
label.

The development of these constraints allowed the proposal of a vast number of LNL methods, which include:
robust loss functions (Zhang & Sabuncu, 2018; Ghosh et al., 2017), co-teaching (Jiang et al., 2018; Han et al.,
2018), label cleaning (Yuan et al., 2018; Jaehwan et al., 2019), semi-supervised learning (SSL) (Li et al.,
2020; Ortego et al., 2021), iterative label correction (Chen et al., 2021; Arazo et al., 2019), meta-learning
(Ren et al., 2018; Zhang et al., 2020; Zhang & Pfister, 2021; Xu et al., 2021), and graphical modelling (Garg
et al., 2023). Among these, SSL represents a dominant technique used in LNL (Li et al., 2020). Graphical
models also show accurate results for some specific LNL problems (e.g., instance-dependent noise) (Garg
et al., 2023; 2025).

Recent research has shown that the standard LNL with single noisy label per sample without any additional
constraints is non-identifiable (Liu et al., 2023b; Nguyen et al., 2023), unless additional noisy labels of each
sample are available. In other words, multiple noisy labels per training sample are crucial to obtain high-
performance models. Such studies also emphasise the importance of multi-rater learning which is discussed
in the following subsection.

Although much research has been developed to address the LNL problem, none of the methods above
collaborate with human during testing, even though such collaboration has the potential to improve the
LNL results (Rastogi et al., 2023).

2.2 Multi-rater learning

Multi-rater learning (MRL) is a vast field in machine learning that deals with imperfect, noisy or incomplete
label datasets. MRL aims to train models by aggregating multiple noisy labels annotated by multiple humans
to “reliable ground truth” or consensus labels. Early MRL methods focus on majority voting (Zhou, 2012),
or probabilistic modelling (e.g., ground truth as a latent random variable) and apply the Expectation -
Maximisation algorithm to estimate the ground truth (Dawid & Skene, 1979; Whitehill et al., 2009; Raykar
et al., 2010; Rodrigues et al., 2014; 2017). Another MRL approach is to investigate the variability of
annotators to improve the reliability of the ground truth estimation. Specifically, the inter-observer variability
methods focus on characterising the disagreement between annotators (Raykar et al., 2009; Guan et al., 2018;
Mirikharaji et al., 2021; Ji et al., 2021), while the intra-observer strategy studies the inconsistency in the
labelling pattern of a specific annotator (e.g., through confusion matrices) (Khetan et al., 2017; Tanno et al.,
2019; Wu et al., 2022a). A joint learning method combining both the inter- and intra-annotator strategies
is also proposed to integrate the strengths of both approaches (Wu et al., 2022a). One drawback in those
studies is the assumption of sample-independence, potentially deviating from real-world applications where
annotation error might depend on both samples and annotators. Such a challenge motivates the study by Gao
et al. (2022) to learn a sample-dependent model. Recently, UnionNet (Wei et al., 2022) has been developed
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to integrate labelling information from all annotators, leveraging this collective input to better coordinate
responses across multiple contributors. CrowdAR (Cao et al., 2023) focuses on predicting the reliability of
annotations to directly assess the quality of crowd-sourced data, which is used as a soft annotation to produce
a consensus training label. ADMoE (Zhao et al., 2023) adopts a Mixture of Experts (MoE) architecture to
foster specialised and scalable learning from multiple noisy sources, particularly targeting anomaly detection.
Furthermore, GeoCrowdNet (Ibrahim et al., 2023) introduces two identifiability-enhanced approaches for
end-to-end crowdsourcing, while BayesianIDNT (Guo et al., 2023) approximates instance-dependent noise
transition matrices using a Bayesian network with a hierarchical spike and slab prior. Zhang et al. (2024)
tackle the challenge of annotation sparsity, where annotators provide only a limited number of labels. They
propose a meta-learning-based coupled confusion correction method to refine confusion matrices derived from
two networks. CROWDLAB (Goh et al., 2022) is a state-of-the-art (SOTA) MRL method that produces
consensus labels using a combination of multiple noisy labels and the predictions by an external classifier.

Despite being widely studied, most MRL approaches do not integrate SOTA LNL methods nor introduce
a collaboration mechanism with humans during testing. Addressing these two issues has the potential to
improve the accuracy of MRL methods, as we demonstrate in this paper.

An important distinction needs to be made at this stage is crowd-sourcing which largely overlaps with
multi-rater learning, and is often used interchangeably in the literature. Here, we refer crowd-sourcing
as a paradigm that quantifies the quality or the behaviour of labellers where the end goal is to optimise
annotation processes through either data assignment or labeller reward (Vaughan, 2018). In contrast, MRL
approaches aim to infer ground truth labels from multiple noisy annotations which are most likely collected
via crowd-sourcing.

2.3 Human-AI Collaborative Classification (HAI-CC)

In machine learning, the vast majority of AI systems have been optimised in isolation, without considering
the implications of human-AI collaborative classification (Rosenfeld et al., 2018; Serre, 2019; Kamar et al.,
2012). Scientifically, the isolated development of AI systems is correct, but in practice, the influence of AI
decisions on humans is unpredictable and represents a critical point to study. Recently, Chiou & Lee (2023)
studied how AI decisions influence human experts, reaching the conclusion that the trustworthiness of AI
depends on both model confidence (Lu & Yin, 2021; Yin et al., 2019) and explainability (Shin, 2021; Weitz
et al., 2019). Nevertheless, this is a two-way lane, and while it is important to consider how AI influences
humans, we must also consider that humans can affect AI decision, which is the main study topic of HAI-
CC (Bansal et al., 2021; Agarwal et al., 2023; Vodrahalli et al., 2022; Wu et al., 2022b; Wilder et al., 2021).
In general, when classifying an image, there are three options to be considered by HAI-CC systems:

I ) AI predicts alone;

II ) AI defers decisions to human experts;

III ) AI makes a joint decision with human experts.

Below, we explain the main HAI-CC approaches being studied, relating them to these three options.

2.3.1 Learning to Defer (L2D)

L2D methods focus on HAI-CC options (I) and (II) above, meaning that the decision relies on a “single”
prediction made by the AI model or the human expert. L2D aims to learn a classifier and a rejector to
decide when a human expert prediction should replace the AI prediction (Madras et al., 2018; Keswani et al.,
2021; Narasimhan et al., 2022; Mao et al., 2023). This rejection learning (Cortes et al., 2016) approach was
generalised by considering the human expertise in the decision-making process (Madras et al., 2018). Further
investigation into L2D methods then concentrated on the development of different surrogate loss functions
that are consistent with the Bayes-optimal classifier obtained in the case of 0-1 loss (Narasimhan et al., 2022;
Charoenphakdee et al., 2021; Raghu et al., 2019; Okati et al., 2021; Mozannar & Sontag, 2020; Verma &
Nalisnick, 2022; Mozannar et al., 2023; Charusaie et al., 2022; Cao et al., 2024; Straitouri et al., 2023; Liu
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et al., 2024; Mozannar et al., 2022). Another L2D approach is the score-based triages (Raghu et al., 2019)
which introduced two error prediction algorithms for human and machine errors to optimise the decision and
reduce overall error. This was extended by the differentiable triages that utilise a deterministic threshold
rule for triage decisions, where the threshold is derived from the differences in errors between the model and
human decisions on individual instances (Okati et al., 2021). One common limitation of L2D-based methods
is the reliance on the single-expert setting, overlooking the more complex environments with the availability
of multiple experts. Hence, recent research in L2D has shifted the focus to the multiple-expert setting (Verma
et al., 2022; Mao et al., 2023; Verma et al., 2023; Keswani et al., 2021; Babbar et al., 2022; Mao et al., 2024;
Hemmer et al., 2023; Tailor et al., 2024; Leitão et al., 2022). Despite such an extensive research, current
L2D-based learning methods have not been designed to enable AI models and human experts to jointly
produce a final classification. To address this gap, “learning to complement” methods have been introduced
as explained below.

2.3.2 Learning to Complement (L2C)

L2C methods focus on HAI-CC options (I) and (III), aiming to optimise the collaboration between human
experts and the AI model to maximise the expected utility of the human-AI decision (Wilder et al., 2021;
Steyvers et al., 2022; Kerrigan et al., 2021; Liu et al., 2023a; Bansal et al., 2021; Hemmer et al., 2022;
Charusaie et al., 2024). Kerrigan et al. (2021) proposed to combine human and model predictions via
confusion matrices and model calibration. Steyvers et al. (2022) introduced a Bayesian framework for
combining the predictions and different types of confidence scores from humans and machines, demonstrating
that a hybrid combination of human and machine predictions leads to better performance than combinations
of human or machine predictions alone. Recently, Liu et al. (2023a) leverages perceptual differences between
humans and AI to make a human-AI system outperform humans or AI alone, while Hemmer et al. (2022)
introduced a model featuring an ensemble prediction involving both AI and human predictions, yet it does
not optimise the collaboration cost. Recently, Charusaie et al. (2024) introduced a method that determines
whether the AI model or the user should predict independently, or if they should collaborate on a joint
prediction, but it overlooks the cost of such collaboration.

One common assumption of existing HAI-CC methods, including both L2D- and L2C-based approaches,
is the availability of clean labels. This is, however, impractical because real-world settings typically only
contain multiple noisy labels per sample. Furthermore, although collaborative classification has been explored
(Hemmer et al., 2022), the cost produced by such a collaboration is not taken into account. In contrast, our
proposed LECOMH is designed to work with multiple noisy labels per sample in the training set by exploring
LNL and MRL methods. Furthermore, LECOMH jointly maximises human-AI classification accuracy and
minimises the collaboration cost, measured by the number of human experts annotations used to classify an
image.

3 Learning to Complement with Multiple Humans (LECOMH)

Let D = {(xi, Mi)}|D|
i=1 be the noisy-label multi-rater training set, where xi ∈ X ⊂ Rd denotes a sample

as a d-dimensional vector, and Mi = {mi,j}Mj=1 denotes the noisy annotations of M human experts for the
sample indexed by i, with mi,j ∈ Y ⊆ {0, 1}|Y| being a one-hot label.

Our methodology, as layout in Fig. 1b, consists of: 1) an AI Model pre-trained with LNL techniques to enable
the production of a training sample consensus label by the multi-rater learning approach CROWDLAB (Goh
et al., 2022), 2) a Human-AI Selection Module that predicts the collaboration format (i.e., AI alone, AI +
1 user, AI + 2 users, etc.), and 3) a Collaboration Module that aggregates the predictions selected by the
Human-AI Selection Module to produce a final prediction. Note that our training and testing, as explained
below, are designed to be unbiased to any specific labeller, so when we select AI + 1 user or AI + 2 users,
the users are randomly selected from our pool of users.
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Figure 2: The proposed LECOMH consists of two main steps: 1. (top) estimate the consensus labels by
exploiting a pre-trained LNL model coupled with an MRL module (Goh et al., 2022); and 2. (bottom) train
an LNL classifier (CLF) and a human-AI selection module by minimising both the classification error and
the collaboration cost. In particular, the training step involves: 1) building the set of AI predictions and user
labels, 2) training the Human-AI Selection Module to estimate the number of users to collaborate with the
AI classifier, and 3) training the Collaboration Module to produce a final classification using AI predictions
and selected users’ labels. Testing involves similar steps to generate the final prediction.

3.1 Training

LECOMH maximises classification accuracy and minimises collaboration costs in a human-AI collaborative
classification setting, where cost is proportional to the number of users that are asked to provide labels. Our
training has three phases (see Fig. 2): 1) pre-training the LNL AI Model, 2) generating consensus labels for
the training set using the multi-rater learning CROWDLAB method (Goh et al., 2022), and 3) training of
LECOMH’s Human-AI Selection and Collaboration Modules. We provide more details as follows:

3.1.1 LNL Pre-training and Consensus Label Generation

We use SOTA LNL techniques (Wang et al., 2023; Garg et al., 2023; Zhu et al., 2021a; Liu et al., 2022) to
train the LNL AI model fθ : X → ∆|Y|−1, where ∆|Y|−1 denotes the |Y|-dimensional probability simplex,
and θ ∈ Θ is the classifier’s parameter. This LNL training uses the training set, where the noisy label of a
sample xi is randomly selected as one of the experts’ annotations in Mi. For the consensus label generation,
we leverage the SOTA multi-rater learning method CROWDLAB (Goh et al., 2022) that takes the training
samples and experts’ labels (xi, Mi) ∈ D, together with the AI classifier’s predictions ŷi = fθ(xi) for each
sample in D to produce a consensus label ŷci ∈ Y and a quality (or confidence) score α. Formally, the
formation of the consensus label dataset can be written as:

Dc = {(xi, ŷci , Mi)|(xi, Mi) ∈ D ∧ (ŷi, αi) = CROWDLAB(xi, fθ(xi), Mi) ∧ αi > 0.5}, (1)

which is used by the LECOMH training, as explained below. We use CROWDLAB for MRL because it can
combine labels from annotators and the pre-trained LNL AI model to produce highly accurate consensus
labels (Goh et al., 2022) for the subsequent LECOMH training.
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3.1.2 LECOMH training

The proposed LECOMH comprises the Human-AI Selection Module and the Collaboration Module, as shown
in Fig. 2. The Human-AI Selection Module, represented by gϕ : X → ∆M , predicts a probability of having
either an isolated AI prediction (1st dimension) or a combined prediction between AI and multiple users
(remaining M dimensions). In other words, the j-th index of g

(j)
ϕ (x) represents selecting the AI model

and j − 1 annotators. The Collaboration Module, represented by hψ :
(
∆|Y|−1)M+1 → ∆|Y|−1, takes the

AI prediction in the first input, and the remaining user predictions selected by gϕ(.) to produce the final
classification prediction ỹi defined as follows:

ỹi = hψ (p (gϕ(xi), fθ(xi), rand(Mi))) , (2)

where:

p (gϕ(x), fθ(x), rand(M)) =



[
fθ(x) 0|Y| . . . 0|Y|

]⊤
if maxj g

(j)
ϕ (x) = g

(1)
ϕ (x)[

fθ(x) mi,1 . . . 0|Y|

]⊤
if maxj g

(j)
ϕ (x) = g

(2)
ϕ (x)

. . .[
fθ(x) mi,1 . . . mi,M

]⊤
if maxj g

(j)
ϕ (x) = g

(M+1)
ϕ (x),

(3)

with g
(j)
ϕ (.) denoting the j-th output from the Human-AI Selection Module and rand(M) representing a

function that randomly selects the experts’ annotations to avoid bias toward any specific experts’ annotations.

The Human-AI Selection Module and the Collaboration Module is trained by minimising the cross-entropy
loss ℓ(., .) between the consensus label yci and the final prediction ỹi, plus an additional term that regularises
the cost as follows:

min
ϕ,ψ

1
|Dc|

∑
(xi,ŷc

i
,Mi)∈Dc

ℓ (ŷci , ỹi) + λ × cost(gϕ(xi)), (4)

where ỹi is the consensus label of sample xi, defined in Eq. (2), λ is a hyper-parameter that weights the cost
function, and

cost(gϕ(x)) =
M+1∑
j=1

g
(j)
ϕ (x) × (j − 1). (5)

For the cost in Eq. (5), when the AI model is selected to predict alone, the selection module would out-
put a probability such that maxj g

(j)
ϕ (x) = g

(1)
ϕ (x), resulting in cost(gϕ(x)) = 0. Thus, for the case that

maxj g
(j)
ϕ (x) = g

(K)
ϕ (x) for K ∈ [2, M ], then cost(gϕ(x)) ≈ K − 1. In other words, the cost in Eq. (5)

represents the cost of one unit per expert’s annotation.

As explained above and depicted in Fig. 2 (bottom), the human-AI training has two main steps: select-
ing the collaboration format (i.e., AI and the number of experts) and making the prediction through the
collaboration module. The selection of the collaboration format is estimated by sampling from the proba-
bility vector output of the selection module gϕ(x). Naively sampling from such a categorical distribution is
non-differentiable, prohibiting the training using stochastic gradient descent. To avoid that, we employ the
concrete distribution (Maddison et al., 2017), also known as Gumbel-softmax trick (Jang et al., 2017), to
approximate such sampling, making it trainable with SGD.

3.2 Testing

Testing starts from the LNL AI prediction, followed by the human-AI selection module prediction of the
categorical distribution of the probability of the AI model running alone or collaborating with a set of
K ∈ [1, M ] users, resulting in a cost of K. Note that the human-AI selection module’s behavior poses a
challenge in determining the number of users to collaborate with the AI classifier, an argmax operation on
the module’s output tends to favor the AI model alone. Therefore, after deciding on the number of users
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to collaborate, using Gumbel-softmax on gϕ(x), we randomly select testing users, and concatenate their
predictions with the AI prediction to serve as input to the collaboration module, which outputs the final
classification, following the procedure defined in Eqs. (2) and (3).

3.3 Theoretical Analysis of the Impact of Label Noise to Consensus Label Quality

Assume that we have n annotators, one of them being the AI model and the rest representing the human
annotators. Each annotator has a probability pi of providing the correct label, where pi > 0.5 (i.e., better
than random chance). Representing the true label with y∗ and the ith annotator’s label as yi, we have
pi = Pr(yi = y∗). We assume that the consensus labelling follows the majority voting rule, where the
consensus label is determined by majority voting among annotators. Let these n annotators label a training
image, where the consensus label is represented by ŷ. Such consensus label is correct with the following
probability:

Pr(ŷ = y∗) = Pr
(

n∑
i=1

δ(yi = y∗) >
n

2

)
, (6)

where δ(yi = y∗) is equal to one if yi = y∗, and zero otherwise. Since
∑n
i=1 δ(yi = y∗) follows a Binomial

distribution, Eq. (6) can be simplified to:

Pr(ŷ = y∗) =
n∑

k=⌈n/2⌉

(
n

k

)
pk(1 − p)n−k, (7)

Using the Central Limit Theorem, as n → ∞, we can approximate the Binomial distribution with the
Normal distribution: Bin(n, p) = N (np, np(1 − p)), allowing us to simplify Eq. (7) with:

Pr(ŷ = y∗) = Pr
(

Z >
n

2 − np
)

, (8)

where Z ∼ N (np, np(1 − p)). Note in Eq. (7) that as n → ∞ and p > 0.5, the term n
2 − np becomes

increasingly negative, resulting in Pr(ŷ = y∗) → 1.

Fig. 3a illustrates an example of the consensus accuracy with three experts under varying noise levels,
assuming all three experts have the same performance. As the noise rate decreases, the accuracy of the
consensus label improves significantly, highlighting the convergence of majority voting in scenarios with
lower noise. Furthermore, we present an example of the accuracy-cost trade-off in Fig. 3b, demonstrating
the effect of increasing the number of experts, each with 80% accuracy. As the number of experts increases,
the consensus accuracy improves and eventually converges to 100%.

4 Human-AI Collaborative Benchmarks

4.1 New CIFAR-10 Benchmarks

We introduce two new benchmarks with CIFAR-10 (Krizhevsky & Hinton, 2009), which has 50K training
images and 10K testing images of size 32 × 32. The first benchmark relies on annotations produced by
people to produce CIFAR-10N (Wei et al., 2021) for training and CIFAR-10H (Peterson et al., 2019) for
testing. CIFAR-10N (Wei et al., 2021) has three noisy labels for each CIFAR-10 training image, while
CIFAR-10H (Peterson et al., 2019) provides approximately 51 noisy labels per CIFAR-10 testing image. Due
to the limitation of three labels per sample in CIFAR-10N, the testing process allows collaboration with at
most three users randomly sampled from the pool of users in CIFAR-10H. The second benchmark, named
multi-rater CIFAR10-IDN (Xia et al., 2022), is based on synthesised annotations for training and testing
with multi-rater instance-dependent noise. The label noise rates 0.2 and 0.5 for both training and testing
sets, with three distinct noisy labels generated for each noise rate to simulate varying human predictions
with similar error rates. We also present an experiment involving users with varying noisy label rates. To
achieve this, we simulate three synthetic experts with different noise levels, characterized by IDN noise rates
of 20%, 30%, and 50% (denoted as IDN{20, 30, 50}). This setup allows us to evaluate the performance of
the methods under these conditions.
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(a) Acc vs. Noise Rate for 3 experts aggregation.
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(b) Acc vs. № experts with 80% individual accuracy.

Figure 3: Theoretical analysis of the accuracy vs. noise rate for 3 experts with the same performance, and
accuracy vs. number of experts with 80% individual accuracy.

4.2 New Chaoyang Benchmark

The Chaoyang dataset has 6,160 colon slides represented as patches of size 512 × 512 (Zhu et al., 2021a),
where each patch has three noisy labels produced by real pathologists. Originally, the dataset had a training
set with 4,021 patches for training and 2,139 patches for testing. The training patches had multi-rater noisy
labels, while testing patches only contained a unanimous expert agreement on a single label. To create a
new benchmark, the dataset was restructured to ensure both training and testing sets contained multiple
noisy labels. The entire dataset was reshuffled, resulting in a partition of 4,725 patches for training and
1,435 patches for testing. In this new partition, both sets have multi-rater noisy label patches. The training
set comprises 862 patches with 2 out of 3 consensus labels and 3,862 patches with 3 out of 3 consensus
labels. The testing set includes 449 patches with 2 out of 3 consensus labels and 986 patches with 3 out of
3 consensus labels. Importantly, patches from the same slide do not appear in both the training and testing
sets. The prediction accuracy of the 3 users in the dataset is approximately 93%, 88%, 99% in training and
88.7%, 86.9%, 99% in testing.

4.3 Multi-rater NIH Dataset

The multi-rater NIH Chest X-ray dataset (Majkowska et al., 2020; Wang et al., 2017) contains an average of 3
manual labels per image for four radiographic findings on 4,374 chest X-ray images (Majkowska et al., 2020)
from the ChestX-ray8 dataset (Wang et al., 2017). We focus on the occurrence of the following clinically
important findings: airspace opacity (NIH-AO) and nodule or mass (NIH-NM). The prevalence of NIH-AO
and NIH-NM findings are close to 50% and 14%. We selected a total of 2,412 images in the validation set
for training and 1,962 images in the testing set for testing. The prediction accuracy of the three users in the
NIH-AO dataset is approximately 89%, 94%, 80% in training and 89%, 94%, 80% in testing, while in the
NIH-NM dataset, the prediction accuracy of the three users are 92%, 92%, 93% in training and 89%, 90%,
91% in testing.

5 Experiments

In this section, we first present the models used in the experiments, then we explain the training and
evaluation details, followed by an introduction of the baseline methods. We then show the results and the
ablation studies.
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5.1 Models

All methods are implemented in PyTorch (Paszke et al., 2019) and run on NVIDIA RTX A6000. LNL
with random label or majority voting produce similar results, so we decided to use random label since it is
simpler. For experiments performed on CIFAR-10N and CIFAR-10H datasets, we employ ProMix (Wang
et al., 2023) to pre-train two PreAct-ResNet-18 as the LNL AI models using the set of Rand1 annotations
in CIFAR-10N (Wei et al., 2021). For the experiments of multi-rater learning performed on CIFAR10-IDN,
we use InstanceGM (Garg et al., 2023) to pre-train two PreAct-ResNet-18 as the LNL AI models. For the
Chaoyang dataset, we follow the practice in NSHE (Zhu et al., 2021a) to pre-train two ResNet-34 using the
set of label_A annotations. The network having the highest performance is selected for the LNL AI model.
For the NIH datasets, we follow the NVUM model (Liu et al., 2022) by pre-training on the ChestXray
dataset (Wang et al., 2017) and then fine-tuning on the airspace opacity and nodule and mass classification
tasks. All the above models are selected according to their SOTA performance in the respective datasets. The
same pre-trained backbones are also used for the Human-AI Selection Module. The Collaboration Module
is designated as a two-layer multi-layer perceptron, where each hidden layer has 512 neutrons activated by
the Rectified Linear Unit (ReLU) function.

We also measure the performance of those pre-trained models as references. The pre-trained ProMix on
CIFAR-10N reaches 97.41% accuracy on the CIFAR-10 test set. In the multi-rater setting relying on CIFAR-
10 IDN, the pre-trained InstanceGM reaches an accuracy of 96.64% and 95.90% for the label noise rates at
0.2 and 0.5, respectively. The pre-trained NSHE achieves 82.44% prediction accuracy on Chaoyang, while
the pre-trained NVUM is 86.65% and 87.41% on airspace opacity and nodule or mass findings, respectively.

5.2 Training and Evaluation Details

For each dataset, the proposed human-AI system is trained for 200 epochs using SGD with a momentum of
0.9 and a weight decay of 5 × 10−4. The batch size used is 256 for CIFAR, 96 for Chaoyang and 32 for NIH.
The initial learning rate is set at 0.05 and decayed through a cosine annealing. The temperature parameter
of the Gumbel-softmax sampling is set at 5. Also, to ensure consistent data range between the LNL classifier
and users’ predictions, the LNL classifier predictions are normalised with a softmax activation before it is
concatenated with the users’ annotations. Given that we do not want to bias the performance of the system
to any particular user, the users in each collaboration format (e.g., the m users in the format of AI model
plus m users) are randomly selected during training and testing for LECOMH. For training, the ground
truth labels are set as the consensus labels obtained via CROWDLAB. For testing, the ground truth label
is either available from the dataset (e.g., for the CIFAR benchmarks) or from the consensus label obtained
from majority voting (e.g., for Chaoyang and Multi-rater NIH benchmarks). The evaluation is based on the
prediction accuracy as a function of coverage evaluated on the test sets. Coverage denotes the percentage of
examples classified by the AI model, with 100% coverage representing a classification performed exclusively
by the classifier, while 0% coverage denoting a classification performed exclusively by the users. To obtain
different levels of coverage for LECOMH, we adjust the hyper-parameter λ in Eq. (4) during training, where
the higher the hyper-parameter λ, the more emphasis on the cost, and hence, the lower the coverage. To
report the mean and standard error of the system accuracy, each run is repeated for 5 trials with different
random seeds.

5.3 Baselines

We follow (Mozannar et al., 2023) and evaluate LECOMH in the single expert human-AI collaborative
classification (SEHAI-CC) setting. We also consider several SOTA methods, such as cross-entropy surro-
gate (CE) (Mozannar & Sontag, 2020), one-vs-all-based surrogate (OvA) (Verma & Nalisnick, 2022), the
confidence method (CC) (Raghu et al., 2019), differentiable triage (DIFT) (Okati et al., 2021), mixture of
experts (MoE) (Madras et al., 2018), Realizable Surrogate (RS) (Mozannar et al., 2023), Defer and Fusion
(DaF) (Charusaie et al., 2024) as baselines. For a fair comparison, we randomly sample a single annota-
tion for each image as a way to simulate a single expert from the human annotation pools to train those
SEHAI-CC methods. To evaluate the accuracy of the system when expect deferral probability changes, we
follow previous studies (Mozannar et al., 2023; Mozannar & Sontag, 2020) and plot accuracy-coverage curves,
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(b) IDN20.
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(c) IDN50.
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(d) Chaoyang.
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(e) NIH-AO.
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(f) NIH-NM.

Figure 4: Test accuracy vs. coverage of LECOMH (Ours) and competing SEHAI-CC (Mozannar et al.,
2023) and MEHAI-CC (Hemmer et al., 2022; Verma et al., 2023) methods. The SEHAI-CC methods are
always pre-trained with LNL techniques, with the single user being simulated with aggregation (majority
voting) from the pool of three annotators. Multi_L2D can defer to one of many experts, so we select the
label corresponding to the maximum probability of 3 users for each sample to draw the curve.
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(b) IDN20.
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(f) NIH-NM.

Figure 5: Test accuracy vs. collaboration cost of LECOMH (Ours) and competing SEHAI-CC (Mozannar
et al., 2023) and MEHAI-CC (Verma et al., 2023) methods. The SEL2D methods are always pre-trained
with LNL techniques, with the single user being simulated with aggregation (majority voting) from the pool
of three annotators. Multi_L2D can defer to one of many experts, so we select the label corresponding to
the maximum probability of 3 users for each sample to draw the curve. We truncate the accuracy for all
methods at cost=10000.
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Table 1: Quantitative comparison with the SOTA SEHAI-CC (Mozannar et al., 2023; Charusaie et al.,
2024), MEHAI-CC (Hemmer et al., 2022; Verma et al., 2023) and MRL (Goh et al., 2022; Wei et al., 2022;
Zhang et al., 2024; Guo et al., 2023; Ibrahim et al., 2023; Cao et al., 2019) methods on the human-AI
collabotative classification datasets at 50% coverage. The SEHAI-CC methods are always pre-trained with
LNL techniques, with the single user being simulated with random selection from the pool of three annotators.
The MEHAI-CC methods are also pre-trained with LNL techniques. The notation * means the results are
under zero coverage (i.e., using the annotations from all human experts). CROWDLAB‡ and CROWDLAB
denote the results are from combining human experts with pre-trained vanilla ResNet18 prediction and LNL
AI model in Sec 3.1.1. The best result per benchmark is marked in bold.

Methods Type CIFAR-10H IDN20 IDN50 IDN{20,30,50} Chaoyang NIH-AO NIH-NM
AI LNL 97.39 ± 0.16 96.64 ± 0.04 95.90 ± 0.25 96.52 ± 00.11 82.44 ± 0.20 86.65 ± 0.35 87.41 ± 0.19
Human* Annotator 95.10 79.36 49.30 66.22 92.47 88.23 89.60
RS SEHAI-CC 96.65 ± 0.19 89.19 ± 0.10 73.92 ± 0.09 96.22 ± 0.04 92.33 ± 0.57 89.72 ± 0.26 90.21 ± 1.10
MoE SEHAI-CC 96.00 ± 0.07 85.28 ± 0.15 67.79 ± 0.78 95.43 ± 0.25 83.45 ± 0.82 90.03 ± 0.43 87.80 ± 1.19
LCE SEHAI-CC 96.43 ± 0.09 89.26 ± 0.08 74.32 ± 0.06 96.37 ± 0.03 92.38 ± 0.33 89.90 ± 0.29 90.96 ± 0.54
OvA SEHAI-CC 97.02 ± 0.16 89.47 ± 0.04 74.11 ± 0.06 96.36 ± 0.02 91.12 ± 0.57 90.06 ± 0.49 91.27 ± 0.15
CC SEHAI-CC 96.52 ± 0.10 89.25 ± 0.13 72.83 ± 0.11 96.26 ± 0.00 92.71 ± 0.47 89.93 ± 0.31 91.49 ± 0.33
DIFT SEHAI-CC 96.93 ± 0.06 87.77 ± 0.48 71.36 ± 0.17 95.83 ± 0.10 78.82 ± 0.54 86.63 ± 0.30 83.64 ± 0.55
DaF SEHAI-CC 97.11 ± 0.33 88.91 ± 0.12 75.02 ± 0.15 95.93 ± 0.25 92.45 ± 0.54 90.63 ± 0.78 91.66 ± 1.31
Multi_L2D MEHAI-CC 97.22 ± 0.09 89.54 ± 0.15 74.05 ± 0.30 96.47 ± 0.12 93.84 ± 0.39 90.67 ± 0.65 91.17 ± 0.19
CET* MEHAI-CC 97.76 ± 0.07 96.13 ± 0.23 95.18 ± 0.17 96.77 ± 0.02 99.20 ± 0.80 94.14 ± 0.31 90.57 ± 0.10
Majority Vote MRL 97.48 ± 0.00 92.48 ± 0.05 62.55 ± 0.44 69.83 ± 0.00 99.58 ± 0.00 94.13 ± 0.00 94.14 ± 0.00
Max-MIG MRL 84.55 ± 0.00 85.15 ± 0.00 84.26 ± 0.00 84.75 ± 0.00 70.12 ± 0.00 77.58 ± 0.00 77.69 ± 0.00
GeoCrowdNet (F) MRL 85.71 ± 0.00 86.62 ± 0.00 80.11 ± 0.00 82.32 ± 0.00 70.32 ± 0.00 79.35 ± 0.00 79.66 ± 0.00
BayesianIDNT MRL 86.64 ± 0.05 87.03 ± 0.00 87.31 ± 0.00 85.62 ± 0.40 72.09 ± 0.00 80.22 ± 0.00 81.34 ± 0.00
CCC MRL 85.52 ± 0.05 75.17 ± 0.00 44.64 ± 0.00 56.16 ± 0.00 72.33 ± 0.00 79.61 ± 0.00 80.55 ± 0.00
UnionNet-B MRL 93.34 ± 0.45 95.59 ± 0.11 93.54 ± 0.21 94.11 ± 0.00 74.08 ± 0.92 85.94 ± 0.58 87.50 ± 0.52
CROWDLAB‡ MRL 97.96 ± 0.00 92.35 ± 0.00 60.96 ± 0.00 71.22 ± 0.00 99.58 ± 0.00 94.05 ± 0.00 94.05 ± 0.00
CROWDLAB MRL 97.72 ± 0.02 92.40 ± 0.18 61.95 ± 0.31 79.00 ± 0.00 99.58 ± 0.00 94.09 ± 0.00 92.61 ± 0.00
LECOMH MEHAI-CC 98.77 ± 0.10 98.82 ± 0.15 96.05 ± 0.05 97.15 ± 0.04 99.58 ± 0.42 94.63 ± 0.12 94.19 ± 0.05

where coverage can be defined as the fraction of the test samples predicted by the AI model. To calculate the
SEHAI-CC’s collaboration coverage, we follow the procedure presented in (Mozannar et al., 2023) by sorting
the testing images based on their rejection scores and then adjusting the threshold of the quantile used for
annotating these testing cases by users. We also compare LECOMH with methods that defer to multiple
experts (MEHAI-CC), including classifier and expert team (CET) (Hemmer et al., 2022), and learning to
defer to multiple experts (Multi_L2D) (Verma et al., 2023) in our setting. For a fair comparison, all clas-
sification backbones for the {SE,ME}HAI-CC methods have the same architecture. All {SE,ME}HAI-CC
methods rely on LNL pre-training because they provide better results for all cases. For all {SE,ME}HAI-CC
methods, hyper-parameters are set as previously reported in (Mozannar et al., 2023; Hemmer et al., 2022;
Verma et al., 2023). We also provide the results of SOTA LNL approaches, such as ProMix (Wang et al.,
2023) (CIFAR-10N), InstanceGM (Garg et al., 2023) (CIFAR10-IDN), NSHE (Zhu et al., 2021a) (Chaoyang)
and NVUM (Liu et al., 2022) (NIH datasets), and SOTA MRL approaches (Wei et al., 2022; Zhang et al.,
2024; Guo et al., 2023; Ibrahim et al., 2023; Cao et al., 2019), such as majority voting, CCC (Zhang et al.,
2024), BayesianIDNT (Guo et al., 2023), GeoCrowdNet (F) (Ibrahim et al., 2023), Max-MIG (Cao et al.,
2019), UnionNet-B (Wei et al., 2022) and CROWDLAB (Goh et al., 2022). Note that when considering
CROWDLAB as an isolated baseline, its AI model is the pre-trained vanilla ResNet18 trained with early
stopping, not the LNL models mentioned in Section 5.1.

5.4 Results

Fig. 4 showcases the accuracy of LECOMH and baseline methods as a function of coverage in all benchmarks.
In these graphs, the full coverage point (i.e., coverage equals to 1, meaning only the AI model makes
prediction) represents the performance of the LNL pre-trained methods, possibly fine-tuned by the HAI-CC
method (resulting in slight variations from the original LNL accuracy). Moreover, the results with minimum
coverage (i.e., coverage equals to 0) represent the performance of experts alone.
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Table 2: Quantitative comparison of the best accuracy of the SOTA SEHAI-CC (Mozannar et al., 2023;
Charusaie et al., 2024), MEHAI-CC (Hemmer et al., 2022; Verma et al., 2023) and MRL (Goh et al., 2022;
Wei et al., 2022; Zhang et al., 2024; Guo et al., 2023; Ibrahim et al., 2023; Cao et al., 2019) methods on the
human-AI collabotative classification datasets. The SEHAI-CC methods are always pre-trained with LNL
techniques, with the single user being simulated with random selection from the pool of three annotators.
The MEHAI-CC methods are also pre-trained with LNL techniques. The notation * means the results are
under zero coverage (i.e., using the annotations from all human experts). CROWDLAB‡ and CROWDLAB
denote the results are from combining human experts with pre-trained vanilla ResNet18 prediction and LNL
AI model in Sec 3.1.1. The best result per benchmark is marked in bold.

Methods Type CIFAR-10H IDN20 IDN50 IDN{20,30,50} Chaoyang NIH-AO NIH-NM
AI LNL 97.39 ± 0.16 96.64 ± 0.04 95.90 ± 0.25 96.52 ± 00.11 82.44 ± 0.20 86.65 ± 0.35 87.41 ± 0.19
Human Annotator 95.10 79.36 49.30 66.22 92.47 88.23 89.60
RS SEHAI-CC 98.14 ± 0.10 97.18 ± 0.01 95.99 ± 0.04 96.22 ± 0.04 92.75 ± 0.51 90.30 ± 0.21 90.42 ± 0.25
MoE SEHAI-CC 97.19 ± 0.03 96.18 ± 0.12 95.64 ± 0.04 95.43 ± 0.25 92.47 ± 0.54 90.28 ± 0.23 89.60 ± 0.59
LCE SEHAI-CC 97.91 ± 0.13 96.67 ± 0.01 96.06 ± 0.02 96.37 ± 0.03 93.08 ± 0.44 90.60 ± 0.50 91.62 ± 0.35
OvA SEHAI-CC 98.11 ± 0.11 97.24 ± 0.03 95.95 ± 0.02 96.36 ± 0.02 92.61 ± 0.52 90.10 ± 0.43 91.51 ± 0.06
CC SEHAI-CC 97.58 ± 0.08 96.98 ± 0.12 96.02 ± 0.02 96.26 ± 0.00 93.03 ± 0.53 88.19 ± 0.16 91.85 ± 0.04
DIFT SEHAI-CC 96.96 ± 0.07 96.09 ± 0.21 95.58 ± 0.14 95.83 ± 0.10 92.47 ± 0.54 90.03 ± 0.43 89.60 ± 0.59
DaF SEHAI-CC 98.22 ± 0.42 97.55 ± 1.21 96.02 ± 0.01 95.93 ± 0.25 93.45 ± 0.48 90.63 ± 0.78 91.66 ± 1.31
Multi_L2D MEHAI-CC 98.17 ± 0.07 97.32 ± 0.06 95.99 ± 0.04 96.47 ± 0.12 98.14 ± 0.05 91.80 ± 1.05 91.55 ± 0.19
CET* MEHAI-CC 97.76 ± 0.07 96.13 ± 0.23 95.18 ± 0.17 96.77 ± 0.02 99.20 ± 0.80 94.14 ± 0.31 90.57 ± 0.10
Majority Vote MRL 97.48 ± 0.00 92.48 ± 0.05 62.55 ± 0.44 69.83 ± 0.00 99.58 ± 0.00 94.13 ± 0.00 94.14 ± 0.00
Max-MIG MRL 84.55 ± 0.00 85.15 ± 0.00 84.26 ± 0.00 84.75 ± 0.00 70.12 ± 0.00 77.58 ± 0.00 77.69 ± 0.00
GeoCrowdNet (F) MRL 85.71 ± 0.00 86.62 ± 0.00 80.11 ± 0.00 82.32 ± 0.00 70.32 ± 0.00 79.35 ± 0.00 79.66 ± 0.00
BayesianIDNT MRL 86.64 ± 0.05 87.03 ± 0.00 87.31 ± 0.00 85.62 ± 0.40 72.09 ± 0.00 80.22 ± 0.00 81.34 ± 0.00
CCC MRL 85.52 ± 0.05 75.17 ± 0.00 44.64 ± 0.00 56.16 ± 0.00 72.33 ± 0.00 79.61 ± 0.00 80.55 ± 0.00
UnionNet-B MRL 93.34 ± 0.45 95.59 ± 0.11 93.54 ± 0.21 94.11 ± 0.00 74.08 ± 0.92 85.94 ± 0.58 87.50 ± 0.52
CROWDLAB‡ MRL 97.96 ± 0.00 92.35 ± 0.00 60.96 ± 0.00 71.22 ± 0.00 99.58 ± 0.00 94.05 ± 0.00 94.05 ± 0.00
CROWDLAB MRL 97.72 ± 0.02 92.40 ± 0.18 61.95 ± 0.31 79.00 ± 0.00 99.58 ± 0.00 94.09 ± 0.00 92.61 ± 0.00
LECOMH MEHAI-CC 98.82 ± 0.05 98.87 ± 0.10 96.08 ± 0.02 97.31 ± 0.14 99.79 ± 0.21 94.85 ± 0.15 94.30 ± 0.09

Despite using the same backbone models trained with leading LNL methods and obtaining consensus labels
from CROWDLAB, the observed differences highlight the effectiveness of our proposed LECOMH in human-
AI collaborative classification techniques in comparison with all baseline methods. More specifically, the
results in Fig. 4 highlight LECOMH’s ability not only to minimise the impact of expert prediction errors,
but also to integrate expert information.

In fact, compared to all baselines, LECOMH is the only method that consistently achieves high human-AI
collaborative classification accuracy across different levels of coverage, surpassing human and AI accuracies
in all benchmarks.

A more fine-grained analysis of LECOMH’s results in Fig. 4 suggest that: 1) for scenarios where human
experts have relatively higher or similar accuracy as LNL methods (e.g., CIFAR-10H, Chaoyang, NIH-Aispace
opacity and NIH-Nodule/mass), HAI-CC methods can offer significant gains; but 2) for scenarios where users
have low accuracy (e.g., IDN20 and IDN50) and LNL methods provide highly accurate predictions, HAI-CC
methods offer little improvements over the LNL classifier results. Hence, as already concluded in (Rastogi
et al., 2023), it is important to study the conditions that enable HAI-CC to thrive. Nevertheless, it is
interesting to note that for LECOMH, if we set coverage at 50%, we are always guaranteed to obtain the
best possible HAI-CC performance that is usually better (or at least comparable, as in IDN50) than AI or
user alone.

In addition to the accuracy versus coverage graphs of Fig. 4, we also provide quantitative analyses in Tables 1
and 2. In particular, the results in Table 1 are the classification accuracy at a fixed coverage=50%, while the
ones in Table 2 show the best possible accuracy. The notation * denotes the results of those methods are
under the condition of zero coverage, which means that the prediction depends on the manual annotations
from all human experts. Note that LECOMH surpasses all SE- and ME-HAI-CC methods. LECOMH also
outperforms MRL, AI, and human annotators without collaborating with all of the human experts, especially
in NIH-AO and NIH-NM datasets. Notably, in CIFAR-10H, IDN20 and IDN50 benchmarks, the LNL AI
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Figure 6: Test accuracy vs coverage as a function of λ in Eq. (4) that weights the collaboration cost in our
optimisation.

model has higher accuracy than humans, while in Chaoyang, NIH-AO and NIH-NM datasets, the LNL AI
model has lower accuracy than pathologists.

Tables 3 and 4 present human-AI classification results at the coverage rates of approximately 50% on the test
set of Chaoyang and CIFAR-10H, respectively. Cases include the test image, human-provided labels (M),
LNL AI model prediction (fθ(.)), prediction probability vector by the Human-AI Selection Module (gϕ(.)),
final prediction by the Collaboration Module (hψ(.)), and ground truth (GT) label. Notably, when the AI
model or the users make individual mistakes, the final prediction tends to be correct, highlighting system
robustness. gϕ(.) often assigns high probability to the AI model when the AI model appears to be correct,
indicating reliance on AI predictions. On the other hand, when the AI model seems to be incorrect, then
gϕ(.) often assigns low probability to the AI model, and high probabilities to the human-AI collaborative
classifications, suggesting a reliance on users.

Additionally, to better demonstrate LECOMH’s effectiveness, we further evaluated the cost differences caused
by assigning one or multiple experts to collaborate on each sample. While accuracy-coverage curves have
been widely used to evaluate model performance, at the same coverage level, the cost varies depending on
whether one or multiple experts are involved in the collaboration for each sample. Therefore, we present the
accuracy-cost curve in Figure 5, which more intuitively reflects classification accuracy at different cost levels,
providing a more comprehensive evaluation of the model’s performance. We define a system cost, where a
cost of 1 denotes that a single expert provides a prediction in the decision process. For CIFAR-10, the total
cost computation is governed by Eq. (5), with the parameter λ in Eq. (4) adjusted during the training phase
to influence LECOMH’s cost considerations. This results in a minimum cost of 0 (all testing cases predicted
by AI alone) and a maximum cost of 30000 (all testing cases predicted by AI + 3 users or deferred to 3 users)
for 10K test images. For the Chaoyang and NIH datasets, the cost scale is normalized from the original span
to a broader range of [0, 3×104] to enable easier comparisons across different datasets. Single-expert methods
have a total cost in [0, 104] as only one user per image is allowed. LECOMH assesses accuracy within the cost
range of [0, 104], and for multi-expert methods, the accuracy plot is truncated at cost = 10000 for consistency
in comparative analysis when costs exceed this value. LECOMH demonstrates higher classification accuracy
than all competing HAI-CC methods across all collaboration costs and benchmarks. For most competing
methods, the accuracy at cost = 0 primarily reflects the performance of the LNL pre-trained model. Accuracy
generally increases as collaboration cost rises, peaks at some cost < 10, 000, and then gradually decreases
until it matches the accuracy of human annotators at cost = 10000. Notably, when the AI model outperforms
humans (e.g., CIFAR-10H), both LECOMH and competing methods achieve more accurate predictions than
humans or AI alone. In contrast, when human accuracy surpasses AI (e.g., Chaoyang), SEHAI-CC methods
are constrained by expert information, resulting in limited accuracy improvements. However, MEHAI-CC
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Table 3: Human-AI classification (coverage ≈ 50%) of Chaoyang test samples, where M denotes human
labels, fθ(.) is the LNL AI model’s classification, gϕ(.) represents the Human-AI Selection prediction proba-
bility vector for [AI prediction (1st value), AI + 1 User (2nd value), AI + 2 Users (3rd value), AI + 3 Users
(4th value)], hψ(.) is the final prediction from the Collaboration Module, and GT denotes the ground truth
label.

Image M fθ(.) gϕ(.) hψ(.) GT

adenocarcinoma, normal, adenocarcinoma normal [0.48, 0.04, 0.03, 0.45] adenocarcinoma adenocarcinoma

normal, normal, normal adenocarcinoma [0.45, 0.06, 0.07, 0.42] normal normal

adenoma, adenoma, adenoma adenocarcinoma [0.49, 0.07, 0.12, 0.33] adenoma adenoma

serrated, normal, serrated serrated [0.82, 0.04, 0.03, 0.10] serrated serrated

adenoma, adenoma, serrated adenoma [0.82, 0.01, 0.02, 0.14] adenoma adenoma

normal, adenocarcinoma, adenocarcinoma adenocarcinoma [0.87, 0.03, 0.03, 0.07] adenocarcinoma adenocarcinoma

methods generally outperform SEHAI-CC approaches as collaboration costs increase, though they fall short
of LECOMH’s accuracy at lower cost levels.

5.5 Ablation Studies

5.5.1 Study of each LECOMH component

In this subsection, we analyse the effect of the following LECOMH components: 1) LNL methods to pre-
train the the AI model, 2) multi-rater learning, 3) the role of multiple users for the collaboration, and 4) the
integration of the learning to complement module. Table 5 shows the results of different settings where in
each setting, one of the factors is replaced by a baseline approach.

LNL pre-training By replacing the LNL pre-training by a regular classifier pre-training with early stop-
ping using the noisy labels, we form the LECOMH‡. Note in Table 5 that this model performs poorly in
scenarios where the LNL AI model surpasses original human labels, such as CIFAR-10H, IDN20 and IDN50.
The absence of LNL pre-training is particularly more severe at high label noise rates (e.g., IDN50 with 50%
noise rate).

Multi-rater learning The replacement of MRL approaches, such as CROWDLAB, by simpler methods
to obtain consensus labels (e.g., majority voting or sampling a random label as consensus label) forms the
approach denoted as LECOMH⋄. As shown in Table 5, the absence of MRL negatively impacts LECOMH
across various cases, with a more pronounced effect at high label noise rates (e.g., IDN50) and evident even
in other lower noise rate scenarios when using a random label as consensus (e.g. Chaoyang). To further
emphasise the value of MRL, we show the accuracy of the consensus label in the training set produced by
majority vote, UnionNet (Wei et al., 2022) and CROWDLAB (Goh et al., 2022) in Table 6, where results
confirm that the MRL approaches, and in particular CROWDLAB, produce more accurate consensus label.
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Table 4: Human-AI classification (coverage ≈ 50%) of CIFAR-10H test samples, where M denotes human
labels, fθ(.) is the LNL AI model’s classification, gϕ(.) represents the Human-AI Selection prediction proba-
bility vector for [AI prediction (1st value), AI + 1 User (2nd value), AI + 2 Users (3rd value), AI + 3 Users
(4th value)], hψ(.) is the final prediction from the Collaboration Module, and GT denotes the ground truth
label.

Image M fθ(.) gϕ(.) hψ(.) GT

cat, cat, cat dog [0.57, 0.05, 0.07, 0.31] cat cat

bird, bird, bird frog [0.57, 0.05, 0.04, 0.34] bird bird

truck, car, plane plane [0.70, 0.06, 0.04, 0.20] plane plane

dog, horse, frog frog [0.71, 0.06, 0.04, 0.19] frog frog

truck, truck, car car [0.79, 0.03, 0.05, 0.13] car car

ship, deer, ship deer [0.87, 0.02, 0.02, 0.09] deer deer

Table 5: Accuracy results for the ablation experiments at 50% coverage (the best accuracy is shown inside
brackets). LNL, MRL, ME, L2C denote the utilisation of LNL pre-trained model, the introduction of
consensus label via CROWDLAB, the integration of multiple experts,and the cooperation of human experts
and AI prediction, respectively. The last row shows the final LECOMH’s results.

Methods LNL MRL ME L2C CIFAR-10H IDN20 IDN50 Chaoyang NIH-AO NIH-NM
Human* 95.10 79.36 49.30 92.47 88.23 89.60
LNL

√
✗ ✗ ✗ 97.41 96.64 95.90 82.44 86.65 87.41

LECOMH‡ ✗
√ √ √

97.71 (97.95) 96.94 (96.94) 67.39 (95.90) 97.38 (99.58) 93.56 (94.65) 93.67 (94.19)
LECOMH♢

√
✗

√ √
98.22 (98.25) 97.69 (98.01) 80.52 (95.90) 96.83 (100.00) 92.78 (94.44) 92.27 (94.12)

LECOMH†
√ √

✗
√

97.83 (97.83) 97.71 (97.80) 95.79 (95.90) 92.96 (94.15) 91.65 (92.61) 92.46 (93.27)
LECOMH§

√ √ √
✗ 86.01 (98.17) 85.93 (93.37) 54.63 (69.05) 69.34 (99.58) 85.93 (93.37) 85.32 (93.17)

LECOMH
√ √ √ √

98.77 (98.87) 98.82 (98.97) 96.05 (96.10) 99.58 (100.00) 94.63 (95.00) 94.19 (94.39)

Multiple users for the collaboration By replacing the collaboration with multiple users with a col-
laboration with a single user, we form LECOMH†. This new model highlights the crucial role of multiple
users, particularly in low-noise rate scenarios (e.g., CIFAR-10H, Chaoyang, IDN20, NIH-AO and NIH-NM).
In these cases, LECOMH with three users consistently outperforms LECOMH with a single user. However,
for IDN50, the reliance on multiple users does not significantly affect LECOMH, indicating that, for high
noise rates, the choice between the collaboration with single or multiple users does not have a significant
impact.

Integration of the learning to complement module By replacing the collaboration module by a
simpler majority voting module, we build the model LECOMH§. As shown in Table 5, the performance of
LECOMH§ is reduced significantly compared to the ones with the collaboration module, highlighting the
importance of the collaboration module when designing an human-AI system.
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Figure 7: Test accuracy vs number of experts at different coverage.

Table 6: Accuracy of the consensus label from majority vote, UnionNet (Wei et al., 2022) and CROWD-
LAB (Goh et al., 2022) in the training set.

CIFAR-10N IDN20 IDN50 Chaoyang NIH-AO NIH-NM
Majority Vote 0.91 0.94 0.69 0.99 0.94 0.94
UnionNet 0.92 0.94 0.90 0.99 0.86 0.87
CROWDLAB 0.98 0.99 0.98 0.99 0.94 0.96

5.5.2 Cost, Scalability and Training Time

Varying the weight of cost hyperparameter λ in Eq. (4) To study the contribution of the cost
hyperparameter to the performance of LECOMH, we run several experiments using different values for λ
and measuring the performance on several benchmarks. The results in Fig. 6 show the tradeoff between
coverage and accuracy when varying λ. Smaller values for λ imply higher accuracy results, as shown in
Fig. 6a, but it also leads to smaller coverage (see Fig. 6b), which is expected due to the lower cost from the
querying of human experts. On the other hand, higher values for λ show lower accuracy and larger coverage.

Scalability with many users In Fig. 7, we explore the scalability of LECOMH to a large number of
users. Instead of collaborating with a maximum of three users, as demonstrated in previous experiments, we
show in Fig. 7 the performance of LECOMH, on CIFAR-10H and IDN20, when it collaborates with between
0 and 100 users. The training with CIFAR-10N required simulating numerous users beyond the three
available, which is achieved by learning user-specific label-transition matrices and synthesising labels from
these matrices. Notably, CIFAR-10H’s performance is unsurprisingly optimised for three users, reflecting
the synthetic nature of redundant users. On the other hand, for IDN20, accuracy peaks at around 10 to
50 users, suggesting a correlation between problem difficulty and the required number of users for effective
collaboration. Also note that the run-time complexity of our optimisation has a linear increase in terms of
the number of users. In practice, the training time increases from 29s (3 users) to 30s (100 users) per epoch
for both CIFAR-10H and IDN20.

Scalability with different expert reliability An important real-world scenario occurs when users ex-
hibit varying levels of accuracy, departing from the assumption of a homogeneous noise rate used in previous
experiments. This variation is evident in the Chaoyang and NIH datasets, as shown in Figs. 4 and 5. To
further evaluate the effectiveness of our method in this challenging setting, we conducted an additional exper-
iment, illustrated in Tables 1 and 2 and Fig. 8, where varying levels of expert accuracy were simulated with
IDN noise rates of 20%, 30%, and 50%. The results demonstrate that under conditions of high coverage and
low cost, LECOMH achieves superior performance compared to competing methods. However, as coverage
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Figure 8: Collaboration with three experts showing different levels of noise with 20%, 30%, and 50% IDN.
The graphs show test accuracy vs. coverage (a) and collaboration cost (b) of LECOMH (Ours) and competing
SEHAI-CC (Mozannar et al., 2023) and MEHAI-CC (Verma et al., 2023) methods on IDN{20,30,50} dataset.
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Figure 9: Training time/epoch of LECOMH and competing methods on CIFAR-10N.

decreases and cost increases, the performance of competing methods significantly deteriorates due to the
lower average accuracy of the human experts relative to the AI classifier. In contrast, LECOMH effectively
collaborates with the users even in these scenarios, though it does so with reduced confidence levels, ensuring
more balanced performance across varying conditions.

Training time In Fig. 9, we compare the training time per epoch of LECOMH and SOTA HAI-CC
approaches on CIFAR-10N. Notice that our approach has similar training time compared to other learning
to complement approaches, but it has slightly larger training time in comparison to the simpler learning to
defer methods.
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6 Conclusion

We introduced the first human-AI collaborative classification method that can be trained exclusively from
multiple noisy labels to maximise the collaborative classification accuracy of teams of AI and multiple experts,
while minimising the collaboration costs, measured by the number of human experts used in HAI-CC.
Additionally, we introduce two new HAI-CC benchmarks that rely on multiple noisy labels in the training
and testing sets. Comparative analysis with SOTA HAI-CC methods on our benchmarks demonstrates
that LECOMH consistently outperforms the competition, showcasing increased accuracy at comparable
collaboration costs. Importantly, LECOMH stands out as the only method enhancing expert labellers and
isolated noisy-label learning methods across all benchmarks.

The major limitation of LECOMH is that it is unbiased to any labeller, which implicitly assumes that labellers
have similar performance. Even though this limitation mitigates the complexity involved in the combinatorial
selection of specific subsets of labellers, we plan to address this issue by exploring a strategy where labellers
can be characterised and selected during training and testing, so the system will be able to better adapt
to the user’s performance. A positive side effect of this issue is that LECOMH does not rely on specific
user IDs, which helps mitigate privacy concerns related to expert collaboration with the system. Another
limitation of LECOMH is its dependence on a sampling-based method in the testing phase for selecting
the number of users to collaborate with the AI classifier. Such stochastic selection is needed because the
arg max operator on the module’s output almost always favours selecting the AI model alone for predictions,
as shown in Tables 3 and 4. On the other hand, by using Gumbel-Softmax sampling from the categorical
distribution of the module’s output, we can achieve a more balanced and accurate classification. We plan to
address these issues by selecting the specific experts to collaborate with the AI model in both training and
testing phases and having a more reliable coverage constraint for training to enable a deterministic selection
of the users to collaborate with the AI classifier.

One excessive simplification of our method is that it assumes the cost of a user input to be a flat value of
“1”, representing the initial step in formulating HAI-CC methods. However, more sophisticated cost models
need to be developed to account for the impacts of false positives and false negatives, particularly in the
context of patient-specific conditions (e.g., the high cost of a false negative). We are actively collaborating
with health economists to study these factors and plan to incorporate such nuanced cost models in future
iterations of this work.

By improving the performance of users who interact with AI systems, we believe that LECOMH has a
potential benefit to society given the more accurate outcomes produced by the system and the generally im-
proved performance of labellers. Nevertheless, LECOMH may also have potential negative societal impacts.
For example, users may become overconfident on the AI model, which can de-skill some professionals (e.g.,
radiologists or pathologists). Our future work will integrate techniques to prevent such de-skilling process
from happening.
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A Appendix

A.1 Experiments on Other Real-world Dataset

MiceBone (Schmarje et al., 2019; 2022a;b) has 7,240 second-harmonic generation microscopy images, with
each image being annotated by one to five professional annotators, where the annotation consists of one
of three possible classes: similar collagen fiber orientation, dissimilar collagen fiber orientation, and not of
interest due to noise or background. Only 8 out of 79 annotators label the whole dataset. We, therefore, use
these 8 annotators to represent the experts in our experiment. Using the majority vote as the ground truth,
the accuracy of those 8 experts are from 84% to 86%. As the dataset is divided into 5 folds, we use the first
4 folds as the training set, and the remaining fold as the test set.

To further assess the effectiveness of our method in real-world scenarios, we conducted an additional exper-
iment using the Micebone dataset, as shown in Fig. 10. The results demonstrate that under conditions of
large number of specific experts, LECOMH achieves superior performance compared to competing meth-
ods. Moreover, since the accuracy gap between these experts is relatively small, performance gains from
collaborating with more experts become marginal.
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Figure 10: The graphs show test accuracy vs. coverage (a) and collaboration cost (b) of LECOMH (Ours) and
competing SEHAI-CC (Mozannar et al., 2023) and MEHAI-CC (Verma et al., 2023) methods on Micebone
dataset.
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