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ABSTRACT

Improving fairness between privileged and less-privileged sensitive attribute groups
(e.g, race, gender) has attracted lots of attention. To enhance the model performs
uniformly well in different sensitive attributes, we propose a principled Robust
Adversarial Attribute Neighbourhood (RAAN) loss to debias the classification
head and to promote a fairer representation distribution across different sensitive
attribute groups. The key idea of RAAN is to mitigate the differences of biased
representations between different sensitive attribute groups by assigning each
sample an adversarial robust weight, which is defined on the representations of
adversarial attribute neighbors, i.e, the samples from different protected groups. To
provide efficient optimization algorithms, we cast the RAAN into a sum of coupled
compositional functions and propose a stochastic adaptive (Adam-style) and non-
adaptive (SGD-style) algorithm framework SCRAAN with provable theoretical
guarantee. Extensive empirical studies on fairness-related benchmark datasets
verify the effectiveness of the proposed method.

1 INTRODUCTION

With the excellent performance, machine learning methods have penetrated into many fields and
brought impact into our daily lifes, such as the recommendation (Lin et al., 2022; Zhang, 2021),
sentiment analysis (Kiritchenko & Mohammad, 2018; Adragna et al., 2020) and facial detection
systems (Buolamwini & Gebru, 2018). Due to the existing bias and confounding factors in the
training data (Fabbrizzi et al., 2022; Torralba & Efros, 2011), model predictions are often correlated
with sensitive attributes, e.g, race, gender, which leads to undesirable outcomes. Hence, fairness
concern has become an increasingly prominent issue. For example, the job recommendation system
recommends lower wage jobs more likely to women than men (Zhang, 2021). Buolamwini & Gebru
(2018) proposed an intersectional approach that quantitatively show that three commercial gender
classifiers, proposed by Microsoft, IBM and Face++, have higher error rate for the darker-skinned
populations.

To alleviate the effect of spurious correlations1 between the sensitive attribute groups and prediction,
many bias mitigation methods have been proposed to learn a debiased representation distribution at
encoder level by taking the advantage of the adversarial learning (Wang et al., 2019; Wadsworth et al.,
2018; Edwards & Storkey, 2015; Elazar & Goldberg, 2018), causal inference (Singh et al., 2020; Kim
et al., 2019) and invariant risk minimization (Adragna et al., 2020; Arjovsky et al., 2019). Recently, in
order to further improve the performance and reduce computational costs for large-scale data training,
learning a classification head using the representation of pretrained models have been widely used
for different tasks. Taking image classification for example, the downstream tasks are trained by
finetuning the classification head of ImageNet pretrained ResNet (He et al., 2016) model (Qi et al.,
2020b; Kang et al., 2019). However, the pretrained model may introduce the undesiarable bias for
the down steaming tasks. Debiasing the encoder of pretrained models to have fairer representations
by retraining is time-consuming and compuatational expensive. Hence, debiasing the classification
head on biased representations is also of great importance.

In this paper, we raise two research questions: Can we improve the fairness of the classification
head on a biased representation space? Can we further debias the representation space? We
give affirmative answers by proposing a Robust Adversarial Attribute Neighborhood (RAAN) loss.

1misleading heuristics that work for most training examples but do not always hold.
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Figure 1: The influence of different protected group distributions on the classification head. The
colors ({red, blue}) represent the sensitive attributes and shapes ({triangle, circle}) represent the
ground truth class labels. Figures (a), (b) are optimized using vanilla CE loss, while the figure (c) is
optimized using the proposed RAAN loss defined on the adversarial attributes neighborhood. The
yellow and green background denotes the predicted classification space.

Our work is inspired by the RNF method (Du et al., 2021), which averages the representation of
sample pairs from different protected groups to alleviate the undesirable correlation between fairness
sensitive information and specific class labels. But unlike RNF, RAAN obtains fairness-promoting
adversarial robust weights by exploring the AAN representation structure for each sample to mitigate
the differences of biased sensitive attribute representations. To be more specific, the adversarial robust
weight for each sample is the aggregation of the pairwise robust weights defined on the representation
similarity between the sample and its AAN. Hence, the greater the representation similarity, the more
uniform the distribution of protected groups in the representation space. Therefore, by promoting
higher pairwise weights for larger similarity pairs, RAAN is able to mitigate the discrimination
from the biased senstive attribute representations and promote a fairer classification head. When the
representation is fixed, RAAN is also applicable to debiasing the classification head only.

We use a toy example of binary classification to express the advantages of RAAN over standard
cross-entropy (CE) training on biased the sensitive attribute group distributions in Figure 1. Figure 1
(a) represents a uniform/fair distribution across different sensitive attributes while a biased distribution
that the red attribute samples are more aggregated in the top left area than the blue attribute is depicted
in Figure 1 (b), (c). Then with the vanilla CE training, Figure 1 (a) ends up with a fair classifier
determined by the ground truth task labels (shapes) while a biased classification head determined by
sensitive attributes (colors) is generated in Figure 1 (b). Instead, our RAAN method generates a fair
classifier in Figure 1 (c), the same as a classifier learned from the Figure 1 (a) generated from a fair
distribution. To this end, the main contributions of our work are summarized below:

• We propose a robust loss RAAN to debias the classification head by assigning adversarial
robust weights defined on the top of biased representation space. When the representation is
parameterized by trainable encoders such as convolutional layers in ResNets, RAAN is able
to further debiase the representation distribution.

• We propose an efficient StochastiC algorithm framework for RAAN (SCRAAN), which
includes the SGD-style and Adam-style updates with theoretical guarantee.

• Empirical studies on fairness-related datasets verify the supreme performance of the pro-
posed SCRAAN on two fairness, Equalized Odd difference (∆EO), Demographic Parity
difference (∆DP) and worst group accuracy.

2 RELATED WORK

Bias Mitigation To address the social bias towards certain demographic groups in deep neural
network (DNN) models (Lin et al., 2022; Zhang, 2021; Kiritchenko & Mohammad, 2018; Adragna
et al., 2020; Buolamwini & Gebru, 2018), many efficient methods have been proposed to reduce the
model discrimination (Wang et al., 2019; Wadsworth et al., 2018; Edwards & Storkey, 2015; Kim
et al., 2019; Elazar & Goldberg, 2018; Singh et al., 2020; Zunino et al., 2021; Rieger et al., 2020; Liu
& Avci, 2019; Kusner et al., 2017; Kilbertus et al., 2017; Cheng et al., 2021; Kang et al., 2019). Most
methods in the above literature mainly focus on improving the fairness of representation. The authors
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of (Wang et al., 2019; Wadsworth et al., 2018; Edwards & Storkey, 2015; Elazar & Goldberg, 2018)
took the advantage of the adversarial training to reduce the group discrimination information. Rieger
et al. (2020); Zunino et al. (2021) made use of the model explainability to remove subset features
that incurs bias, while Singh et al. (2020); Kim et al. (2019) concentrated on the causal fairness
features to get rid of undesirable bias correlation in the training. Bechavod & Ligett (2017) used the
surrogate functions of fairness metric as the regularizer to penalizing unfairness. However, directly
working on a biased representation to improves classification-head remains rare. Recently, the RNF
method (Du et al., 2021) averages the representation of sample pairs from different protected groups
in the biased representation space to remove the bias in the classification head. In this paper, we
propose a principled RAAN objective that is able to debiasing both the representation distribution
and classification head.

Robust Loss Several robust loss has been proposed to improve the model robustness for different
tasks. The general cross entropy (GCE) loss was proposed to solve the noisy label problem which
emphasizes more on the clean samples (Zhang & Sabuncu, 2018). For the data imbalanced problem,
distributionally robust learning (DRO) (Qi et al., 2020b; Li et al., 2020; Sagawa et al., 2019) and class
balance loss (Cui et al., 2019; Cao et al., 2019) use instance-level and class-level robust information
from losses to pay more attention on underrepresented groups, respectively. Recently, Sagawa et al.
(2019) shows that group DRO is able to prevent the models learning the specific spurious correlations.
The above robust objective are defined on the loss space with the assistance of label information.
Exploiting useful information from feature representation to further benefit the specific task training
remains under-explored.

Invariant Risk Minimization (IRM) IRM (Arjovsky et al., 2019) is a novel paradigm to enhance
model generalization in domain adaptation by learning the invariant feature representations of samples
across different "domains" or "environments". By optimizing a practical version of IRM in the toxicity
classification use case study, Adragna et al. (2020) shows the strength of IRM over ERM in improving
the fairness of classifiers that are trained on biased data and tested on unbiased data. To elicit an
invariant feature representation, IRM is casted into a constrained (bi-level) optimization problem
where the classifier wc is constrained on a optimal uncertainty set. Instead, the RAAN objective
constrains the adversarial robust weights p for each sample in pairwise representation similarity space
penalized by KL divergence as we show in section 3.2. When the embedding z is parameterized
by trainable features wf , RAAN generates a more uniform representation space across different
sensitive groups.

Stochastic Optimization Recently, several stochastic optimization technique has been leveraged to
design efficient stochastic algorithms with provable theoretical convergence for the robust surrogate
objectives, such as F-measure (Zhang et al., 2018b), average precision (AP) (Qi et al., 2021), and
area under curves (AUC) (Liu et al., 2019; 2018; Yuan et al., 2021). In this paper, we cast the
fairness promoting RAAN loss as a two-level stochastic coupled compositional function with a
general formulation of Eξ[f(Eζg(w; ζ, ξ))], where ξ, ζ are independent and ξ has a finite support. By
exploring the advanced stochastic compositional optimization technique (Wang et al., 2017; Qi et al.,
2020a), a stochastic algorithm SCRANN with both SGD-style and Adam-style updates is proposed
to solve the RAAN with provable convergence.

3 ROBUST ADVERSARIAL ATTRIBUTE NEIGHBOURHOOD (RAAN) LOSS

3.1 NOTATIONS

We first introduce some notations in this subsection. The collected data is denoted by D = {d}ni=1 =
{(xi, yi, ai)}ni=1, where xi ∈ X is the feature, yi ∈ Y is the label, ai ∈ A is the corresponding
attribute (e.g., race, gender), and n is the number of samples. Then we can divide the data into
different subsets based on labels and attributes. For any label c ∈ Y and attribute a ∈ A, we
denote Dca = {(xi, yi, ai)|ai = a ∧ yi = c }ni=1 and Dc = {(xi, yi, ai)|yi = c }ni=1. Then we have

Dc = ∪{Dca}
|A|
a=1. Given a deep neural network, the model weights w can be decomposed into

two parts, the Feature presentation parameters wf and the Classification head parameters wc, i.e,
w = [wf ,wc]. For example, wf and wc are mapped into the convolutions layers and fully connected
layers in ResNets, respectively. Let zi(wf ) = F (wf ,xi)/‖F (wf ,xi)‖ denotes the embedding
representations of the sample di. H(wc, F (wf ,xi)) represents the output of the classification head.
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The key idea of RAAN is to assigns an fairness-promoting adversarial robust weight for each sample
by exploring the AAN representation structure to improve the fairness accross different sensitive
attributes. We denote adversarial robust weight as pAAN

i ,∀ di ∼ D. pAAN
i is an aggregation of

the pairwise weights between the sample di = (xi, yi = c, ai = a) and its Adversarial Attribute
Neighbours (AAN), i.e, the samples from the same class but with different attributes, Pca = Dc\Dca.
The AAN of sample di is represented as Pi = Pca. For example, we consider a binary attributes
{male, female} and a sample belonging to the male protected group, then its AAN is the collection
of the female attribute samples with the same class label yi = c. Next, we denote the pairwise robust
weights between the sample di and dj ∈ Pi in the representation space as pAAN

ij . And we abuse the
notations by using pAAN

i = [pAAN
i1 , · · · , pAAN

ij , · · · ] ∈ R|Pi| to represents the pairwise robust weights
vector defined in Pi, the AAN of di.

3.2 RAAN OBJECTIVE

To explore the AAN representation structure and obtain the pairwise robust weights, we define the
following robust constrained objective for ∀di ∼ D,

`AAN
i =

∑
j∈Pi

pAAN
ij `(w;xj , yj , aj) (1)

s.t. max
pAAN
i ∈∆|Pi|

∑
j∈Pi

pAAN
ij zi(wf )>zj(wf )− τKL

(
pAAN
i ,

1

|Pi|

)
, 1 ∈ R|Pi| (2)

where ∆ is a simplex that
∑|Pi|
j=1 pij = 1. The robust loss (1) is a weighted average combination of

the AAN loss. The robust constraint (2) is defined in the pairwise representation similarity between
the sample i and its AAN penalized by the KL divergence regularizer, which has been extensively
studied in distributionally robust learning objective (DRO) to improve the robustness of the model in
the loss space (Qi et al., 2020b). Here, we adopt the DRO with KL divergence to the representation
space to generate a uniform distribution across different sensitive attributes.

Controlled by the hyperparameter τ , the close form solution of pAAN
i in (2) guarantees that the larger

the pairwise similarity z>i (wf )zj(wf ) is, the higher the pAAN
ij will be. When τ = 0, the close form

solution of (2)is 1 for the pair with the largest similarity and 0 on others. When τ > 0, due to the
strong convexity in terms of pAAN

i , the close form solution of (2) for each pair weight between di
and dj ∈ Pi is:

pAAN
ij =

exp(
z>i (wf )zj(wf )

τ )∑
k∈Pi

exp(
z>i (wf )zk(wf )

τ )
. (3)

Hence the larger the τ is, the more uniform of pAAN
i will be. And it is apparent to see that the robust

objective generates equal weights for every pair such that pAAN
ij = 1

|Pi| for every dj ∈ Pi when τ
approaches to the infinity in Eqn (3). When we have a fair representation, the embeddings of different
protected groups are uniform distributed in the representation space. The vanilla average loss training
is good enough to have a fair classification head, which equals to RAAN with τ goes to infinity.
When we have biased representations, we use a smaller τ to emphasize on the similar representations
that shared invariant feature from two different protected groups to reduce the bias introduced from
difference of the two protected group distributions.

To this end, after having the close form solution for every pairwise robust weights pAAN
ij (3) in `AAN

i
(1) given an arbitrary sample i ∼ D, the overall RAAN objective is defined as:

RAAN(w) :=
1

C

C∑
c=1

1

A

A∑
a=1

1

|Dca|

|Dca|∑
i=1

`AAN
i =

1

AC

n∑
j=1

pAAN
j `(w;xj , yj , aj), (4)

where C = |Y|, A = |A|, `AAN
i =

∑
j∈Pi

pAAN
ij `(w;xj , yj , aj) is defined in (1) and pAAN

ij is defined

in (3), and pANN
j = 1

|Pj |
∑
i∈Pj

exp(
z>i (wf )zj(wf )

τ )∑
k∈Pi

exp(
z>
i

(wf )zk(wf )

τ )
is obtained by we aggregating all the pairwise
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Figure 2: Improvement of Representation Fairness
Figure 3: Overview of RAAN

robust weights. Hence, the adversarial robust weights pAAN
j for each sample dj ∈ D encodes the

intrinsic representation neighbourhood structure between the sample and its AAN samples di ∈ Pj
(the numerator) and normalized by the similarity pairs from the same protected groups dk ∈ Pi (the
denominator). Due to the limitation of space, we put the second equality derivation of equation (4) in
Appendix.

3.3 REPRESENTATION LEARNING ROBUST ADVERSARIAL ATTRIBUTE NEIGHBOURHOOD
(RL-RAAN)

AANs are defined over the encoder representation outputs, z(wf ). By default, the RAAN is designed
to promote a fairer classification head with a fixed representation encoder, i.e, wf (recall that
w = [wf ,wc]) is not trainable in Eqn (4). Here, we extend the RAAN to the Representation
Learnining RAAN (RL-RAAN) by parameterizing the AANs with trainable encoder parameters,
i.e, wf is trainable. The red dashed arrow in Figure 3 represents the optional gradient backwards
depending on whether wf is trainable. Hence, RAAN optimizes the wc while RL-RAAN jointly
optimizes [wf ,wc]. To design efficient stochastic algorithms, RL-RAAN requires more sophisticated
stochastic estimators than RAAN, which we will discuss later in Section 4.

Here, we show that RL-RAAN is able to generate a more uniform representation distribution for
different sensitive groups in Figure 2. To achieve this, we visualize the representation distribution of
vanilla CE and RL-RAAN methods at the end of training using Kernel-PCA dimensionality reduction
method with radial basis function (rbf) kernel. The left plot is the representation distribution learned
using standard vanilla CE training and the right plot is the representation distribution at the end of
RL-RAAN training. It is clear to see that white-sensitive attribute samples are more clustered in
the upper left corner in CE while both the white and non-white sensitive attributes samples are both
uniformly distributed in the representation space.

4 STOCHASTIC COMPOSITIONAL OPTIMIZATION FOR RAAN
In this section, we provide a general Stochastic Compositional optimization algorithm framework
for RAAN (SCRAAN). The SCRAAN applies to both RAAN and RL-RAAN objective. We first
show that (RL)-RAAN is a two-level stochastic coupled compositional function and then design
stochastic algorithms under the framework of stochastic gradient descent, SGD and Adam (Kingma
& Ba, 2014) updates with theorectical guarantee in Algorithm 1.

Let I(c) denotes the indicator function that equals to 1 when c is true and equals to 0 otherwise.

g(w;xi,xj) = [g1(w;xi,xj), g2(w;xi,xj)]
> = n

AC [exp(
zi(wf )>zj(wf )

τ )`j(w;xj , cj , aj)I(xj ∈
Pi), exp(

zi(wf )>zj(wf )
τ )I(xj ∈ Pi)]> : Rd → R2, gxi(w) = E[g(w;xi)] = Exj∈Pi [g(w;xi,xj)],

f(g) = g1
g2
, g = [g1, g2] and f(s) = s1

s2
: R2 → R. Then the (RL)-RAAN objectiv (4) can be written

as

R(w) =
1

n

∑
xi∈D

f(gxi(w)) = Exi∈D[f(gxi(w))] (5)

where g denotes the inner objective and f denotes the outer objective. The equivalence between (4)
and (5) is shown in Appendix 6.5. In the following, we use w̃ to unify the trainable parameter notation
of RAAN and RL-RAAN. Recall that w = [wf ,wc], w̃ = wc when R(w) represents the RAAN,
and w̃ = w when R(w) represents RL-RAAN. Then according to the chain rule, the gradient of
R(w) is
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Algorithm 1: SCRAAN
1: Input: Initialize w1 = [w1

f ,w
1
c ].

2: while first stage do
3: Train the whole model w with standard CE

loss
4: end while
5: while second stage do
6: for t = 1, . . . , T − 1 do
7: Draw a batch samples {(xi, yi, ai)}Bi=1
8: u = UG(B,u,wt, u0)
9: Compute (biased) Stochastic Gradient

Estimator G(wt) by Equation (9)
10: Update wt+1 with a SGD-style method

or by a Adam-style method
wt+1 = UW(wt, G(wt))

11: end for
12: end while
13: Return: wR, R is a index sampled from

1 · · ·T .

Algorithm 2: UG(B,u,wt, γ, u0)
1: for each xi ∈ B do
2: Construct P̂i = Pi ∩ B and compute

[ĝxi(wt)]1, [ĝxi(wt)]2 by Equation (8)
3: Compute u1

xi = (1− γ)u1
xi + γ[ĝxi(wt)]1

u2
xi = max((1−γ)u2

xi +γ[ĝxi(wt)]2, u0)
4: end for
5: Return u

Algorithm 3: UW(wt, G(wt))
1: Option 1: SGD-style update (paras: α)

wt+1 = wt − αG(wt)
2: Option 2: Adam-style update (paras:
α, ε, η1, η2) ht+1 = η1ht + (1− η1)G(wt)
vt+1 = η2v̂t + (1− η2)(G(wt))

2

wt+1 = wt − α ht+1√
ε+v̂t+1

where v̂t = vt (Adam) or v̂t = max(v̂t−1, vt)
(AMSGrad)

3: Return: wt+1

∇w̃R(w) =
1

n

∑
xi∈D

∇w̃gxi(w)>∇f(gxi(w)) =
1

n

∑
xi∈D

([∇w̃gxi(w)]>1 , [∇w̃gxi(w)]>2 )

( 1
[gxi (w)]2

− [gxi (w)]1
[gxi (w)]22

)

)
(6)

In Algorithms 1, we approximate the gradients of ∇R(w) with the stochastic estimators. Let
B denotes a B sample set randomly generated from D. For each sample xi ∈ B, we ap-
proximate the ∇w̃gxi(w) using the stochastic gradient on the current batch, ∇w̃ĝxi(w), i.e,
([∇w̃ĝxi(w)]>1 , [∇w̃ĝxi(w)]>2 ). Denotes the stochastic AAN samples in current batch B for the

sample i is denoted as P̂i = Pi ∩ B and expτij(w
t
f ) = exp(

zi(w
t
f )>zj(w

t
f )

τ ), then stochastic estima-
tors for (RL)-RAAN are represented as:

[∇w̃ĝxi(wt)]
>
1 =


n

AC

1

|P̂i|

∑
xj∈P̂i

expτij(w
t
f )∇wc`j(wt)

> RAAN

n

AC

1

|P̂i|

∑
xj∈P̂i

expτij(w
t
f )(∇w`j(wt)

> + (zi(w
t
f ) + zj(w

t
f ))>`j(wt)) RL-RAAN

(7)

[∇w̃ĝxi(w)]>2 is a 0 vector for RAAN and the dimension of 0 equals to the dimension of wc. For
RL-RAAN, equals to [∇w̃ĝxi(w)]>2 = n

AC|P̂i|

∑
xj∈P̂i expτij(wf )(zi(w

t
f ) + zj(w

t
f )).

To estimate gxi(w), however, the stochastic objective ĝxi(w) is not enough to control the approxima-
tion error such that the convergence of Algorithm 1 can be guaranteed. We borrow a technique from
the stochastic compositional optimization literature (Wang et al., 2017) by using a moving average
estimator to estimate gxi(w) for all samples. We maintain a matrix u = [u1,u2] and each of a
column is indexed by a sample xi ∼ D corresponding to the the moving average stochastic estimator
of gxi(w). The Step 3 of Algorithm 2 describes the updates of u, in which u0 is a small constant
to address the numeric issue that does not influence the convergence analysis and the stochastic
estimator ĝxi(w) for sample i is

[ĝxi(wt)]1 =
n

AC

1

|P̂i|

∑
j∈P̂i

expτij(w
t
f )`j(wt), [ĝxi(wt)]2 =

n

AC

1

|P̂i|

∑
j∈P̂i

expτij(w
t
f ) (8)

To sum up, the overall stochastic estimator G(w) for ∇R(w) in a batch where the stochastic inner
objective gradient estimator for (RL)-RAAN:

G(w) =
1

B

B∑
i=1

∇w̃ĝxi(w)>

 1
u2

xi

− u1
xi

[u2
xi

]2 )

 (9)
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Finally, we apply both the SGD-style and Adam-style updates for w in Algorithm 3 . Next we provide
the theoretical analysis for SCRAAN.
Theorem 1 Suppose Assumption 2 holds, ∀ t ∈ 1, · · · , T , and T > n, let the parameters be 1)
α = 1

n2/5T 3/5 ,γ = n2/5

T 2/5 for the SGD updates; 2) η1 ≤
√
η2 ≤ 1, α = 1

n2/5T 3/5 ,γ = n2/5

T 2/5 for the
AMSGrad updates. Then after running T iterations, SCRAAN with SGD-style updates or Adam-style
update satisfies

E

[
1

T

T∑
t=1

‖∇R(wt)‖2
]
≤ O

(
n2/5

T 2/5

)
,

where O suppresses constant numbers.
Remark: Even though RAAN and RL-RAAN enjoys the same iteration complexity in Theorem 1,
the stochastic estimator [∇w̃ĝxi(w)]>2 is 0 leads to a simpler optimization for RAAN such that we
only need to maintain and update u2

xi to calculate G(wt) = 1/|B|
∑|B|
i=1[∇wcgxi(w)]1/u

2
xi . There

are other more sophisticated optimizers, such as MOAP (Wang et al., 2022), BSGD (Hu et al., 2020),
can also be applied to solve (4), which we leave as a future exploration direction. The derivation of
Theorem 1 is provided in Appendix 6.6

5 EMPIRICAL STUDIES

In this section, we conduct empirical studies on fourdatasets: Adult (Kohavi et al., 1996), Medical
Expenditure (MEPS)(Cohen, 2003), CelebA (Liu et al., 2015), and Civil Comments2 dataset in the
NLP. We compare the proposed methods with: 1) bias mitigation methods: RNF (Du et al., 2021),
Adversarial learning (Zhang et al., 2018a), regularization method (Bechavod & Ligett, 2017) 2)
robust optimization methods: Empirical Risk Minimization (ERM) and Invariant Risk Minimization
(IRM)(Adragna et al., 2020; Arjovsky et al., 2019).

Datasets: For the two benchmark tabular datasets, the Adult dataset used to predict whether a
person’s annual income higher than 50K while the goal of MEPS is to predict whether a patient could
have a high utilization. For the CelebA image dataset, we want to predict whether a person has wavy
hair or not. Civil Comments dataset is an NLP dataset aims to predict the binary toxicity label for
online comments. Accordingly, the protected sensitive attribute is gender ∈ {female,male} 3on
the Adult and CelebA datasets, and the protected sensitive attribute is race ∈ {white, nonwhite}
on MEPS. We consider four different types of demographic sensitive attributes for each comments
belonging to {Black, Muslim, LGBTQ, NeuroDiverse} on the Civil Comments dataset. The
training data size varies from 11362 in MEPS, 33120 in Adult to 194599 in CelebA. Civil Comments
Dataset contains 2 million online news articles comments that are annotated by toxicity. Following
the setting in (Adragna et al., 2020), subsets of 450,000 comments for each sensitive attribute are
constructed.

Metrics: In the experiments, we compare two fairness metric equalized odd difference (∆EO),
demographic parity difference (∆DP) between different methods given the same accuracy and worst
group accuracy in terms of {Class × Attribute}. ∆DP measures the difference in probability of
favorable outcomes between unprivileged and privileged groups ∆DP = (PR0 − PR1), where
PR0 = p(ŷ = 1|a = 0), and PR1 = p(ŷ = 1|a = 1). ∆EO requires favorable outcomes to be
independent of the protected class attribute a, conditioned on the ground truth label y. ∆EO =
(TPR0 − TPR1) + (FPR0 − FPR1), where TPR0 = p(ŷ = 1|a = 0, y = 1), TPR1 = p(ŷ = 1|a =
1, y = 1), FPR0 = p(ŷ = 1|a = 0, y = 0), and FPR1 = p(ŷ = 1|a = 1, y = 0).

5.1 COMPARISON WITH BIAS MITIGATION METHODS

Baselines In this section we compare RAAN and RL-RAAN optimized by Adam-style SCRAAN
with baselines optimized by Adam optimizer on Adult, MEPS and CelebA datasets. Correspondingly,
the experimental results of the SGD-style optimizer including SCRAAN and other baselines are
provided in Appendix 6.3. Among the baselines, Vanilla refers to the standard CE training with
cross entropy loss, RNF represents the representation neutralization method in (Du et al., 2021),
Adversarial denotes the adversarial training method (Zhang et al., 2018a) that mitigates biases by

2https://www.tensorflow.org/datasets/catalog/civil_comments
3For the gender attribute, there are more than binary attributes. For example, it contains but not limited to

female, male and transgender are included to name a few. Here, due to the limited size of the datasets, we only
consider female and male attributes in this paper.
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Figure 4: ∆DP and ∆EO experimental results of different methods optimized by Adam-style
SCRAAN on Adult, MEPS and CELEBA, respectively. The results are reported over 5 runs.

simultaneously learning a predictor and an adversary, (RL-)EOR (Bechavod & Ligett, 2017) is a
regularization method that uses a surrogate function of ∆ EO as the regularizer. The comparison of
baselines are described in Table 1. We report two version of experiments for the regularization method
and our proposed method for debiasing the representation encoder and debiasing the classification
head, i.e, RL-EOR and EOR, RL-RAAN and RAAN, respectively.

Table 1: Comparison of baseline methods
Debiasing

Representation Encoder
Debiasing

Classification Head
Vanilla × ×

Adversarial X ×
(RL-)EOR X X

RNF × X
(RL-)RAAN X X

Models and Parameter settings Following the exper-
imental setting in (Du et al., 2021), we train a three
layer MLP for Adult and MEPS datasets and ResNet-
18 for CelebA. The details of the MLP networks are
provided in the Appendix 6.1. We adopt the two stage
bias mitigation training scheme such that we apply the
vanilla CE method in the first stage and then debias the
representation encoder wf or classification head wc in
the second stage. The representation encoder is fixed
when we debias the classification head wc. We train 10 epochs per stage for MEPS and Adult datasets,
and 5 epochs per stage for the CelebA. We report the final ∆OD, ∆DP and worst group accuracy
in terms of {attribute× label} on the test data at the end of the training. The batch size of MEPS
and Adult is 64 by default, and the batch size of celebA is 190. We use the Adam-style/SGD-style
SCRAAN optimize RAAN, and Adam/SGD optimizer for other baselines. For all the methods, the
learning rate α is tuned in {1e-2, 1e-3, 1e-4} and τ ∈ {0.1 : 0.2 : 2}. For the RAAN, we tune
γ ∈ {0.1, 0.5, 0.9}. The regularizer hyperparameter of RNF α′ is tuned in {0, 1e-4, 2e-4, 3e-4, 4e-
4}. And the regularizer parameter in Adversarial and EOR is tuned ∈ {0.01 : 0.02 : 0.1}. The
learning rate for the adversarial head αAdv in Adversarial is tuned in {1e-2, 1e-3, 1e-4}.
Experimental results We present the Accuracy vs ∆ DP, Accuracy vs ∆ EO results for different
methods in Figure 4. And the worst group accuracy are reported in Table 2. For the same accuracy,
the smaller the value of ∆ DP and ∆ EO is, the better the method will be. It is worth to notice that
we can not have a valid result for when replicating RNF method using SGD optimizer. By balancing
between accuracy and ∆ DP, ∆ EO, RL-RAAN has the best results on all datasets. For the RAAN
method, it has smallest ∆ DP and ∆ EO among the methods that debias on the classification head
(the dashed lines). Besides the Vanilla method, EOR has the worst ∆ DP and ∆EO in Adult, while
Adversarial method has the worst ∆ DP and ∆EO in MEPS and CelebA. When it comes to the worst

8
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Table 2: Worst group accuracy over 5 independent runs.

MEPS Adult CelebA
Optimizer SGD-style Adam-style SGD-style Adam-style SGD-style Adam-style

Vanilla 27.61 ± 0.12 32.80 ± 0.15 55.49 ± 0.11 53.96 ± 0.14 41.32 ± 0.92 40.65 ± 0.85
EOR 27.82 ± 0.15 30.23 ± 0.15 51.01 ± 0.51 52.74 ± 0.21 46.02 ± 0.97 45.31 ± 1.58
RNF - 31.91 ± 0.23 - 58.85 ± 0.41 - 50.23 ± 0.69

RAAN 28.01 ± 0.17 33.10 ± 0.10 58.23 ± 0.13 59.76 ± 0.31 53.47 ± 1.24 55.81 ± 1.12
Adversarial 28.31 ± 0.14 32.76 ± 0.13 54.72 ± 0.76 55.49 ±0.31 41.51 ± 0.98 40.15 ± 0.69

RL-EOR 29.52 ± 0.21 32.00 ± 0.23 59.15 ± 0.11 57.41 ± 0.41 44.61 ± 0.83 46.89 ± 1.51
RL-RAAN 30.00 ± 0.45 35.21 ± 0.33 65.94 ± 0.86 68.10 ± 0.39 58.61 ± 1.01 66.44 ± 0.72

group accuracy, RAAN and RL-RAAN achieve the best performance in debiasing the classification
and representation encoder, respectively. In addition we provide ablation studies in the Apendx 6.2.

5.2 COMPARISON WITH STOCHASTIC OPTIMIZATION METHODS

In this section, we compare RAAN with stochastic optimization methods including ERM, Group
DRO, and IRM on the subsets of Civil Comments dataset. IRM and Group DRO have been proved
to prevent models from learning prespecified spurious correlations (Adragna et al., 2020; Sagawa
et al., 2019). We consider three different enviroments for training and testing (Adragna et al.,
2020). We set the sample size to be the same for the three environments. For each environment,
we have a balanced number of comments for each class and each attribute, i.e, half are non-toxic
(y = 0) and half are toxic comments (y = 0). Similarly, for each sensitive demographic attribute in
{Black, Muslim, LGBTQ, NeuroDiverse}, half of the comments are about the sensitive demographic
attribute (a = 1) and half are not (a = 0). We define the label switching probability pe = p(a =
z|y = 1− z),∀z ∈ {0, 1} to introduce the spurious correlations between the sensitive attributes and
class labels and quantify the difference between different environments. The training datasets include
two enviorments with pe = 0.1 and 0.2, while pe = 0.9 in testing data environment.

Baselines For the ERM, we optimizes vanilla CE using Adam optimizer. IRM optimize a practical
variant objective for the linear invariant predictor, i.e, Equation (IRMv1), proposed in (Arjovsky et al.,
2019) using Adam optimizer. Group DRO (Sagawa et al., 2019) aims to minimize the worst group
accuracy. For proposed methods, we optimize the RAAN using the Adam-style SCRAAN. SCRAAN
and Group DRO explicitly make use of the sensitive attributes information to construct AAN and
calculate group loss, respectively.

Model and Parameter Settings We train a logistic regression with l2 regularization as the toxicity
classification model (Adragna et al., 2020) by converting each comment into a sentence embedding
representing its semantic content using a pre-trained Sentence-BERT model (Reimers & Gurevych,
2019). All the learning rates are finetuned using grid search between {0.0001, 0.01}. The hyper
parameter of RAAN follows previous section. For the Group DRO the temperature parameter η is
tuned in {1 : 0.2 : 2}. The hyperparemeter for IRM are tuned following (Adragna et al., 2020).

Experimental Results The experimental results are reported in Table 3. We can see that SCRAAN
and Group DRO have a significant improvement over ERM and IRM on all three evaluation metric,
which implies the effectiveness of sensitive attributes information to reduce model bias. When
compared with Group DRO the SCRAAN and Group DRO, SCRAAN has comparable results in
terms of group accuracy while performs better on ∆EO. This makes sense as the objective of Group
DRO aims to minimize the worst group loss, while RAAN focuses on improving the fairness of
different groups.

Table 3: Experimental results on the testing environments over 5 independent runs.
Accuracy Worst Group Accuracy ∆EO

Sens Att ERM IRM Group DRO SCRAAN ERM IRM Group DRO SCRAAN ERM IRM Group DRO SCRAAN
Black 47.04 ± 0.9 55.31 ± 1.2 67.32 ± 1.0 71.29 ± 1.0 35.01 ± 0.7 45.01± 0.9 64.91± 1.0 64.23 ± 0.9 52.23 ± 3.4 30.90 ± 4.1 12.82 ± 2.7 4.77 ± 2.1

Muslim 49.23 ± 0.9 59.08 ± 1.4 66.37± 1.2 71.82 ± 1.0 36.92 ± 0.8 55.92 ± 1.7 62.45 ± 1.1 62.51 ± 0.9 47.44 ± 2.1 25.93 ± 4.1 11.79 ± 2.2 7.47 ± 1.9
NeuroDiv 65.18 ± 1.0 63.60 ± 1.3 68.03 ± 1.1 68.17 ± 1.2 56.26 ± 1.0 45.75 ± 0.8 63.76 ±0.9 64.06 ± 1.1 26.53 ± 1.7 26.26 ± 2.1 10.75 ± 1.6 4.94 ± 0.9
LGBTQ 56.67 ± 1.1 61.99 ± 1.5 66.76 ± 1.3 69.54 ± 1.1 42.58 ± 0.7 52.74 ± 1.2 63.10 ± 0.9 67.31 ± 1.0 37.53 ± 2.1 25.00 ± 1.9 18.56 ± 2.1 7.65 ± 1.3

6 CONCLUSION

In this paper, we propose a robust loss RAAN that is able to reduce the bias of the classification head
and improve the fairness of representation encoder. Then an optimization framework SCRAAN has
been developed for handling RAAN with provable theoretical convergence guarantee. Comprehensive
studies on several fairness-related benchmark datasets verify the effectiveness of the proposed
methods.
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APPENDIX

6.1 MLP NETWORK STRUCTURES

To gain the feature representations, we use a three layer MLP for both Adult and MEPS datasets.
The input and hidden layers are following up with a ReLU activation layer and a 0.2 drop out layer,
respectively. The input size is 120 for Adult dataset and 138 for the MEPS dataset. The hidden size is
50 for both datasets. After that, we use a two layer classification head with a ReLU and 0.2 drop out
layer for the second stage training prediction.

6.2 ABLATION STUIDES OF SCRAAN

γ and τ are two key paramters for SCRAAN. τ is the key hyperparameter to control the pairwise
robust weights aggregation for RAAN. γ is designed for the stability and theoretical guarantees of
Algorithm 1. We provide ablation studies for the two parameters independently.

To analyze the robustness of Algorithm 1 in terms of γ, we report ∆EO, ∆DP given the accuracy 85.3
for the Adam-style SCRAAN and 84.95 for the SGD-style SCRAAN on Adult dataset in Figure 5 by
varing γ ∈ {0.1 : 0.1 : 0.9} and fixing τ = 0.9. It is obvious to see that both SGD-style SCRAAN
and Adam-style SCRAAN are robust enough to have valid fairness evaluations.

Similarly, for the parameter τ , we report ∆EO, ∆DP of Adam-style SCRAAN to achieve accuracy
85.3 on Adult dataset by varing τ = {0.1 : 0.2 : 1.9} with γ = 0.5. We can see that by hypertuning
τ in a reason range, we are able to find a τ achieves lowest ∆EO and ∆DP at the same time.

Figure 5: Robustness of γ. Figure 6: Influence of τ

6.3 MORE EXPERIMENTAL RESULTS OF SGD-STYLE SCRAAN

Here we provide the SGD-style SCRAAN experimental results on the Adult dataset. We can see that
our methods are better than the baselines which is consistent with Adam-style SCRAAN.

Figure 7: The ∆DP and ∆EO on the Adult dataset optimized by SGD-Style SCRAAN.
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Table 4: We report class wise accuracy for y ∈ {0, 1} and True Positive Rate and False Positive Rate
for each group a ∈ {0, 1}, i.e, TPR_0, FPR_0, TPR_1 and FPR_1, for {Black, Muslim, LGBTQ,
NeuroDiv} attributes respectively.

Black Class 0 Class 1 TPR_0 FPR_0 TPR_1 FPR_1
ERM 41.23 52.69 48.77 4.74 92.98 64.99
IRM 62.57 47.85 45.40 7.37 73.68 40.88

Group DRO 66.59 67.79 67.12 19.47 77.19 35.01
SCRAAN 72.84 69.47 70.60 26.84 61.40 27.20

Muslim Class 0 Class 1 TPR_0 FPR_0 TPR_1 FPR_1
ERM 42.49 55.5 52.37 8.11 92.05 63.31
IRM 59.13 58.26 57.05 12.43 77.27 44.07

Group DRO 64.29 67.58 67.90 19.46 73.30 37.55
SCRAAN 73.94 72.02 74.40 29.19 59.09 25.70

LGBTQ Class 0 Class 1 TPR_0 FPR_0 TPR_1 FPR_1
ERM 50.33 61.68 88.12 54.48 60.43 0.071
IRM 52.19 70.33 88.13 51.07 70.26 18.93

Group DRO 65.59 63.36 66.71 12.43 79.38 36.90
SCRAAN 71.53 66.97 68.89 19.52 65.62 21.43

NeuroDiv Class 0 Class 1 TPR_0 FPR_0 TPR_1 FPR_1
ERM 59.55 70.18 68.69 12.61 90.82 43.54
IRM 60.81 65.77 64.24 11.71 86.24 42.24

Group DRO 65.04 70.36 70.20 23.42 78.90 36.24
SCRAAN 66.31 69.37 69.80 27.93 72.48 34.33

6.4 MORE EXPERIMENTAL RESULTS ON CIVIL COMMENTS

6.5 THE DERIVATION OF RAAN OBJECTIVE, EQUATION (4), IN SECTION 4

Given the pairwise weights between each sample i ∼ D and its ANN, i.e, equation (1), (2). We have
the following loss by averaging over all samples within the same protected groups, attributes and
classes, wee have the following average neighbourhood robust loss.

Rewriting equation (4)

1

C

C∑
c=1

1

|A|

|A|∑
a=1

1

|Dca|

|Dca|∑
i=1

∑
j∈Pi

pAAN
ij `(w;xj , c, aj)︸ ︷︷ ︸

`AAN
i

where pAAN
ij =

exp(
z>i (wf )zj(wf )

τ )∑
k∈Pi

exp(
z>
i

(wf )zk(wf )

τ )
. To start with, pAAN

ij is derived from the constraint robust

pairwise objective in Equation (2),

max
pAAN
i ∈∆|Pi|

∑
j∈Pi

pAAN
ij zi(wf )>zj(wf )− τKL(pAAN

i ‖ 1

|Pi|
),1 ∈ R|Pi|

where ∆|Pi| = {pAAN
i ∈ R|Pi|,

∑
j p

AAN
ij = 1, 0 ≤ pAAN

ij ≤ 1}. Note the expression of
KL(pAAN

i ‖ 1
|Pi| ) =

∑
j pij log(|Pi|pij) =

∑
j pij log(pij) + log(|Pi|). There are three constrains to

handle, i.e.,
∑
j p

AAN
ij = 1, pAAN

ij ≥ 0, and pAAN
ij ≤ 1. Note that the constraint pAAN

ij ≥ 0 is enforced
by the term pAAN

ij log(pAAN
ij ), otherwise the above objective will become infinity. As a result, the

constraint pAAN
ij < 1 is automatically satisfied due to

∑
j p

AAN
ij = 1 and pAAN

ij ≥ 0. Hence, we only
need to explicitly tackle the constraint

∑
j p

AAN
ij = 1. To this end, we define the following Lagrangian
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function,

τL(pAAN
i , µ) = −
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pijzi(wf )>zj(wf ) + τ(log |Pi|+
|Pi|∑
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∑
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where µ is the Lagrangian multiplier for the constraint
∑
j p

AAN
ij = 1. The optimal solutions satisfy

the KKT conditions:
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From the first equation, we can derive pAAN
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Next, we derive the second equivalence in the robust objective, Equation (4).
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We finish the derivation. Therefore, RAAN combines the information from the embedding space
pAAN
j to promote a more uniform embedding of the classification head.

6.6 THEORETICAL ANALYSIS

To derive the theoretical analysis, we write the pairwise RAAN(w), i.e, the first equivalence in
Equation (4)
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)
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objective as a general compositional form R(w),

R(w) =
1

n

∑
xi∈D

f(gxi(w)) = Exi∈D[f(gxi(w))]

where f(g) = g1
g2

, and gxi(w) = n
ACExj∈D[exp(

zi(wf )>zj(wf )
τ )`j(w)I(xj ∈

Pi), exp(
zi(wf )>zj(wf )

τ )I(xj ∈ Pi)]> = n
ACExj∈Pi [exp(

zi(wf )>zj(wf )
τ )`j(w), exp(

zi(wf )>zj(wf )
τ )]>,

∀ τ 6= 0, and `j(w) = `j(w;xj , yj , aj).

Our theoretical analysis follows the same framework as SOAP in (Qi et al., 2021). To make sure
the analysis are applicable for both RAAN and RL-RAAN, similar to Equation (7) in section 4, we
provide the stochastic gradient estimator for the inner objective for RL-RAAN:

Next, we first introduce the assumptions and provide a lemma to guarantee that R(·) is smooth.

Assumption 1 Assume that (a) there exists ∆1 such that R(w1) − minw R(w) ≤ ∆1; (b) there
exist M > 0 such that `(w;xj , yj , aj) ≤ M and `(w;xj , yj , aj) is Cl-Lipscthiz continuous and
Ll-smooth with respect to w for any xj ∈ D; (c) there exists V > 0 such that Exj∼D[‖g(w;xi,xj)−
gxi(w)‖2] ≤ V , and Exj∼D[‖∇g(w;xi,xj)−∇gxi(w)‖2] ≤ V for any xi.

Lemma 1 Suppose Assumption 2 holds, τ ≥ τ0, maxE = max{exp(1/τ0), exp(−1/τ0)},minE =
min{exp(1/τ0), exp(−1/τ0)}, there exists u0 ≥ n·minE

|Pi|AC , u1 = nM ·maxE
AC and u2 = n·maxE

AC such that
gxi(w) ∈ Ω = {u ∈ R2, 0 ≤ [u]1 ≤ u1, u0 ≤ [u]2 ≤ u2}, ∀xi ∈ D. In addition, there exists L > 0
such that R(·) is L-smooth.

We first prove the first part gi(w) ∈ Ω. Due to the definition of gxi(w) =
n
ACExj∈D[exp(

zi(wf )>zj(wf )
τ )`j(w)I(xj ∈ Pi), exp(

zi(wf )>zj(wf )
τ )I(xj ∈ Pi)]>. As zi(wf ) =

F (wf ,xi)
‖F (wf ,xi)‖ , −1 ≤ zi(wf )>zj(wf ) ≤ 1, min{(exp(−1

τ ), exp( 1
τ )} ≤ exp(

zi(wf )>zj(wf )
τ ) ≤

max{(exp(−1
τ ), exp( 1

τ )} Therefore, 0 ≤ [gxi(w)]1 ≤ nmax{exp(1/τ0),exp(−1/τ0)}M
AC and

nmin{exp(1/τ0),exp(−1/τ0)}
|Pi|AC ≤ [gxi(w)]2 ≤ nmax{exp(1/τ0),exp(−1/τ0)}

AC ∀i, j. To this end, we
need to use the following Lemma 2 and the proof will be presented.

Assumption 2 Assume that (a) there exists ∆1 such that R(w1) − minw R(w) ≤ ∆1; (b) there
exist M > 0 such that `(w;xj , yj , aj) ≤ M and `(w;xj , yj , aj) is Cl-Lipscthiz continuous and
Ll-smooth with respect to w for any xj ∈ D; (c) there exists V > 0 such that Exj∼D[‖g(w;xi,xj)−
gxi(w)‖2] ≤ V , and Exj∼D[‖∇g(w;xi,xj)−∇gxi(w)‖2] ≤ V for any xi.

Lemma 2 Let Lf = 4(u0+u1)
u3
0

, Cf = u0+u1

u2
0
, Lg = 10nmaxE

AC (Cl + Ll) =, Cg = nmaxE
AC (C` + 2M),

then f(u) is a Lf -smooth, Cf -Lipschit continuous function for any u ∈ Ω, and ∀i ∈ [1, · · · , n], gxi
is a Lg-smooth, Cg-Lipschitz continuous function.

f(u) =
[u]1
[u]2

,∇uf(u) =

(
1

[u]2
,− [u]1

([u]2)2

)>
, ∇2

uf(u) =

(
0,− 1

([u]2)2

− 1
([u]2)2 ,

2[u]1
([u]2)3

)
(10)
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Due to the assumption that `(w;xi) is a Ll-smooth, Cl-Lipschitz continuous function, and
‖zi(wf )‖2 = 1,−1 ≤ z>i (wf )z(wf ) ≤ 1, we have

‖∇2
wgi(w)‖ = ‖ n

AC|Pi|

|Pi|∑
j=1

[exp(
zi(wf )>zj(wf )

τ
)∇2

w`j(w;xj , cj , aj)

+ 2(zi(wf ) + zj(wf )) exp(
zi(wf )>zj(wf )

τ
)∇w`j(w;xj , cj , aj)

+ ((zi(wf ) + zj(wf ))2 + 2) exp(
zi(wf )>zj(wf )

τ
)`j(w;xj , cj , aj)‖]

(a)

≤ n

AC

1

|Pi|

|Pi|∑
j=1

‖[exp(
zi(wf )>zj(wf )

τ
)∇2

w`j(w;xj , cj , aj)

+ 2(zi(wf ) + zj(wf )) exp(
zi(wf )>zj(wf )

τ
)∇w`j(w;xj , cj , aj)

+ ((zi(wf ) + zj(wf ))2 + 2) exp(
zi(wf )>zj(wf )

τ
)`j(w;xj , cj , aj)‖

≤ nmaxE
AC

(Ll + 10Cl) ≤
10nmaxE
AC

(Cl + Ll) = Lg

(11)

where (a) applies the convexity of ‖ · ‖ and ‖a+ b‖ ≤ ‖a‖+ ‖b‖. Similarly, the following equations
hold in terms of the continuous of inner objective gxi ,

‖∇wgxi(w)‖ = ‖ n

AC|Pi|

|Pi|∑
j=1

[exp(
zi(wf )>zj(wf )

τ
)∇w`j(w;xj , cj , aj)

+ (zi(wf ) + zj(wf )) exp(
zi(wf )>zj(wf )

τ
)`j(w;xj , cj , aj)‖]

≤ n

AC
(maxEC` + 2maxEM)) =

nmaxE
AC

(C` + 2M) = Cg

(12)

‖∇f(u)‖ ≤

√
1

[u]22
+

[u]21
[u]42

≤ u0 + u1

u2
0

= Cf

‖∇2f(u)‖ ≤

√
2

[u]42
+ 4

[u]21
[u]62

≤ 4(u0 + u1)

u3
0

= Lf

(13)

Since P (w) = 1
n

∑
xi∈D f(gi(w)). We first show Ri(w) = f(gi(w)) is smooth. To see this,

‖∇Ri(w)−∇Ri(w′)‖ = ‖∇gi(w)>∇f(gi(w))−∇gi(w′)>∇f(gi(w
′))‖

≤ ‖∇gi(w)>∇f(gi(w))−∇gi(w′)>∇f(gi(w))‖
+ ‖∇gi(w′)>∇f(gi(w))−∇gi(w′)>∇f(gi(w

′))‖
≤ CfLg‖w −w′‖+ CgLfCg‖w −w′‖ = (CfLg + LfC

2
g )‖w −w′‖.

Hence R(w) is also L = (CfLg + LfC
2
g )-smooth.

6.7 PROOF OF THEOREM 1 (SCRAAN WITH SGD-STYLE UPDATE)

Lemma 3 With α ≤ 1/2, running T iterations of SCRAAN (SGD-style) updates, we have

α

2
E[

T∑
t=1

‖∇R(wt)‖2] ≤ E[
∑
t

(R(wt)−R(wt+1))] +
αC1

2
E[

T∑
t=1

‖git(wt)− uit‖2] + α2TC2,

where it denotes the index of the sampled positive data at iteration t, C1 and C2 are proper constants.
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Our key contribution is the following lemma that bounds the second term in the above upper bound.

Lemma 4 Suppose Assumption 2 holds, with u initialized inner objective stochastic estimator for
every xi ∈ D we have

E[

T∑
t=1

‖git(wt)− uit‖2] ≤ nV

γ
+ γV T + 2

n2α2TC3

γ2
, (14)

where C3 is a proper constant.
Remark: The innovation of proving the above lemma is by grouping uit , t = 1, . . . , T into n groups
corresponding to the n samples AAN, and then establishing the recursion of the error ‖git(wt)−uit‖2
within each group, and then summing up these recursions together.

6.7.1 PROOF OF LEMMA 3

[Proof of Lemma 3] To make the proof clear, we write ∇git(w; ξ) = ∇g(wt;xit , ξ), ξ ∼ Pit . Let
uit denote the updated u vector at the t-th iteration for the selected positive data it.

R(wt+1)−R(wt) ≤ ∇R(wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2

= −α‖∇R(wt)‖2 + α∇R(wt)
>(∇R(wt)−∇g>it (wt; ξ)∇f(uit)) +

α2‖G(wt)‖2L
2

≤ −α‖∇R(wt)‖2 + α∇R(wt)
>(∇R(wt)−∇g>it (wt; ξ)∇f(uit)) + α2C2

where C2 = ‖G(wt)‖2L/2 ≤ C2
gC

2
fL/2.

Taking expectation on both sides, we have

Et[R(wt+1)] ≤ Et[R(wt) +∇R(wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2]

= Et[R(wt)− α‖∇R(wt)‖2 + α∇R(wt)
>(∇R(wt)−∇git(wt; ξ)

>∇f(uit))] + α2C2

= R(wt)− α‖∇R(wt)‖2 + α∇R(wt)
>(Et[∇R(wt)−∇git(wt; ξ)

>∇f(uit)]) + α2C2

where Et means taking expectation over it, ξ given wt.
Noting that∇R(wt) = Eit,ξ[∇git(wt; ξ)

>∇f(git(wt))], where it and ξ are independent.
Et[R(wt+1)]−R(wt)

≤ −α‖∇R(wt)‖2 + α∇R(wt)
>(Et[∇git(wt; ξ)

>∇f(git(wt))]− Et[∇git(wt; ξ)
>∇f(uit)]) + α2C2

= −α‖∇R(wt)‖2 + Et[α∇R(wt)
>(∇git(wt; ξ)

>∇f(git(wt))−∇git(wt; ξ)
>∇f(uit))] + α2C2

(a)

≤ −α‖∇R(wt)‖2 + Et[
α

2
‖∇R(wt)‖2 +

α

2
‖∇git(wt; ξ)

>∇f(git(wt))−∇git(wt; ξ)
>∇f(uit))‖2 + α2C2

(b)

≤ −α‖∇R(wt)‖2 + Et[
α

2
‖∇R(wt)‖2 +

αC1

2
‖git(wt)− uit‖2 + α2C2

= −(α− α

2
)‖∇R(wt)‖2 +

αC1

2
Et[‖git(wt)− uit‖2] + α2C2

where the equality (a) is due to ab ≤ a2/2 + b2/2 and the inequality (b) uses the factor
‖∇git(wt; ξ)‖ ≤ Cl and ∇f is Lf -Lipschitz continuous for u, gi(w) ∈ Ω and C1 = C2

l C
2
f .

Hence we have,
α

2
‖∇R(wt)‖2 ≤ R(wt)− Et[R(wt+1)] +

αC1

2
Et[‖git(wt)− uit‖2] + α2C2

Taking summation and expectation over all randomness, we have

α

2
E[

T∑
t=1

‖∇R(wt)‖2] ≤ E[
∑
t

(R(wt)−R(wt+1))] +
αC1

2
E[

T∑
t=1

‖git(wt)− uit‖2] + α2C2T
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6.7.2 PROOF OF LEMMA 4

Let it denote the selected data it at t-th iteration. We will divide {1, . . . , T} into n groups with the
i-th group given by Ti = {ti1, . . . , tik . . . , }, where tik denotes the iteration that the i-th index data is
selected at the k-th time for updating u. Let us define φ(t) : [T ]→ [n]× [T ] that maps the selected
data into its group index and within group index, i.e, there is an one-to-one correspondence between
index t and selected data i and its index within Ti. Below, we use notations aki to denote atik . Let
Ti = |Ti|. Hence,

∑n+

i=1 Ti = T .

[Proof of Lemma 4] To prove Lemma 4, we first introduce another lemma that establishes a recursion
for ‖uit − git(wt)‖2, whose proof is presented later.

Lemma 5 By the updates of SCRAAN Adam-style or SGD-style with a sample xi ∈ D, and, ξ ∈ Pi,
the following equation holds for ∀ t ∈ 1, · · · , T

Et[‖uit − git(wt)‖2]
φ(t)
= Et[‖uki − gi(wk

i )‖2]

≤ (1− γ)‖uk−1
i − gi(wk−1

i )‖2 + γ2V + γ−1α2n2C3

(15)

where Et denotes the conditional expectation conditioned on history before tik−1.

Then, by mapping every it to its own group and make use of Lemma 5, we have

E[

Ki∑
k=0

‖uki − gki (wk
i )‖2] ≤ E

[
[‖u0

i − gi(w0
i )‖2]

γ
+ γV Ti + γ−2n2C3α

2Ti

]
(16)

where u0
i is the initial vector for ui, which can be computed by a mini-batch averaging estimator of

gi(w0). Thus

E[

T∑
t=1

‖git(wt)− uit‖2]
φ(t)
= E[

n∑
i=1

Ki∑
k=0

‖uki − gki (wk
i )‖2]

≤
n∑
i=1

{ [‖u0
i − g0

i (w0
i )‖2]

γ
+ γV E[Ti] + γ−2n2C3α

2E[Ti]
}

≤ nV

γ
+ γV T +

n2α2TC3

γ2

6.7.3 PROOF OF LEMMA 5

We first introduce the following lemma, whose proof is presented later.

Lemma 6 Suppose the sequence generated in the training process using the positive sample i
is {wi

i1
,wi

i2
, .. ..,wi

iTi
}, where 0 < i1 < i2 < · · · < iTi ≤ T , then E|ik [ik+1 − ik] ≤

n+, and,E|ik [(ik+1 − ik)2] ≤ 2n2,∀k.

Define g̃it(wt) = g(wt,xit , ξ). Let
∏

Ω(·) : R2 → Ω denotes the projection operator. By the
updates of uit , we have uit = uki =

∏
Ω[(1− γ)uk−1

i + γg̃it(wt)].
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Et[‖uit − git(wt)‖2]
φ(t)
= E[‖uki − gi(wk

i )‖2]

= Et[‖
∏
Ω

((1− γ)uk−1
i + γg̃i(w

k
i ))−

∏
Ω

(gi(wt))‖2]

≤ Et[‖((1− γ)uk−1
i + γg̃i(w

k
i )− gi(wt)‖2]

≤ Et[‖((1− γ)(uk−1
i − gi(wk−1

i )) + γ(g̃i(w
k
i )− gi(wk

i )) + (1− γ)(gi(w
k−1
i )− gi(wk

i ))‖2]

≤ Et[‖((1− γ)(uk−1
i − gi(wk−1

i )) + (1− γ)(gi(w
k−1
i )− gi(wk

i ))‖2] + γ2V

≤ [(1− γ)2(1 + γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V +
(1 + γ)(1− γ)2

γ
CgE[‖wk

i −wk−1
i ‖2]

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2CgEt[‖
tik−1∑
t=tik−1

∇git(wt; ξ)∇f(uit)‖2]

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2CgEt[(tik − tik−1)2]C2
gC

2
f )]

(a)

≤ E[(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + 2γ−1α2n2C3
gC

2
f

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2n2C3

where the inequality (a) is due to that tik − tik−1 is a geometric distribution random variable with
p = 1/n, i.e., E|tik−1

[(tik − tik−1)2] ≤ 2/p2 = 2n2, by Lemma 6. The last equality hold by defining
C3 = 2C3

gC
2
f .

6.7.4 PROOF OF LEMMA 6

Proof of Lemma 6. Denote the random variable ∆k = ik+1 − ik that represents the iterations that the
ith positive sample has been randomly selected for the k + 1-th time conditioned on ik. Then ∆k

follows a Geometric distribution such that Pr(∆k = j) = (1−p)j−1p, where p = 1
n , j = 1, 2, 3, · · · .

As a result, E[∆k|ik] = 1/p = n. E[∆2
k|ik] = Var(∆k) + E[∆k|ik]2 = 1−p

p2 + 1
p2 ≤

2
p2 = 2n2.

6.8 PROOF OF THEOREM 1 (SCRAAN WITH ADAM-STYLE UPDATE)

We first provide two useful lemmas, whose proof are presented later.

Lemma 7 Assume assumption 2 holds

‖wt+1 −wt‖2 ≤ α2d(1− η2)−1(1− τ)−1 (17)

where d is the dimension of w, η1 <
√
η2 < 1, and τ := η2

1/η2.

Lemma 8 With c = (1+(1−η1)−1)ε−
1
2C2

gL
2
f , running T iterations of SOAP (Adam-style) updates,

we have

T∑
t=1

α(1− η1)(ε+ C2
gC

2
f )−1/2

2
‖∇R(wt)‖2 ≤ E[V1]− E[VT+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + Lα2Td(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

0 )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

(18)

where Vt+1 = P (wt+1)− ct+1〈∇P (wt), Dt+1ht+1〉.
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According to Lemma 8 and plugging Lemma 4 into equation (18), we have
T∑
t=1

α(1− η1)(ε+ C2
gC

2
f )−1/2

2
‖∇R(wt)‖2

≤ E[V1]− E[VT+1] + 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + Lα2dT (1− η2)−1(1− τ)−1

+ 2cαC2
gC

2
f

d∑
i′=1

(ε+ v̂i
′

0 )−1/2 + cα(
nV

γ
+ 2γV T +

2Cgn
2C3α

2T

γ2
)

(19)

Let η′ = (1 − η2)−1(1 − τ)−1, η
′′

= (1 − η1)−1(1 − η2)−1(1 − τ)−1, and η̃ = (1 − η1)−2(1 −
η2)−1(1− τ)−1. As (1− η1)−1 ≥ 1, (1− η2)−1 ≥ 1, then η̃ ≥ η′′ ≥ η′ ≥ 1.

Then by rearranging terms in Equation (19), dividing αT (1 + η1)(ε+ C2
gC

2
f )−1/2 on both sides and

suppress constants, Cg, Lg, C3, L, Cf , Lf , V, ε into big O, we get

1

T

T∑
t=1

‖∇R(wt)‖2 ≤
1

αT (1− η1)
O
(
E[V1]− E[VT+1] + η

′′
η1α

2Td+ η
′
α2Td+ α

d∑
i′=1

(ε+ v̂i
′

0 )−1/2

+
cαn

γ
+ cαγT +

cα3n2T

γ2

)
(a)

≤ 1

αT (1− η1)
O
(
E[V1]− E[VT+1] + η

′′
η1α

2Td+ η
′
α2Td+ αd(ε+ CfCg)

−1/2

+
cαn

γ
+ cαγT +

cα3n2T

γ2

)
(b)

≤ η̃

αT
O
(
E[V1]− [VT+1] + (1 + η1)α2Td+ αd+

cαn

γ
+ cαγT +

cα3n2T

γ2

)
(20)

where the inequality (a) is due to v̂i
′

0 = Gi
′
(w0)2 ≤ ‖G(w0)‖2 ≤ C2

fC
2
g . The last inequality (b) is

due to η̃ ≥ η′′ ≥ η′ ≥ 1.

Moreover, by the definition of V and w0 = w1, we have

E[V1] = R(w1)− c1〈∇R(w0), D1h1〉 ≤ R(w1) + c1‖∇R(w0)‖‖w1 −w0‖
1

α
= R(w1)

−E[VT+1] ≤ −R(wT+1) + cT+1〈∇R(wT ), DThT 〉

≤ −min
w

R(w) + cT+1‖∇R(wt−1)‖‖wt+1 −wt‖
1

α
(a)

≤ −min
w

R(w) + (1− η1)−1α
√
d(1− η2)−1/2(1− τ)−1/2

(b)

≤ −min
w

R(w) + η̃
√
dα

(21)
where the inequality (a) is due to Lemma 7 and cT+1 ≤ (1−η1)−1α in equation (34). The inequality
(b) is due to (1− η1)−1(1− η2)−1/2(1− τ)−1/2 ≤ (1− η1)−1(1− η2)−1(1− τ)−1 ≤ η′′ ≤ η̃.
Thus E[V1]−E[VT+1] ≤ P (w1)−minw P (w)+ η̃

√
dα ≤ ∆1 + η̃

√
dα by combining equation (20)

and (21).
Then we have

1

T

T∑
t=1

‖∇R(wt)‖2 ≤ η̃O
(∆1 + η̃

√
dα

αT
+ (1 + η1)αd+

d

T
+
nc

Tγ
+ cγ +

α2n2

γ2

)
(a)

≤ η̃O
(∆1n

2/5

T 2/5
+
η̃
√
d

T
+

(1 + η1)d

n2/5T 3/5
+

d

T
+
cn3/5

T 3/5
+ 2

cn2/5

T 2/5

)
(b)

≤ O(
n2/5

T 2/5
)

(22)
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The inequality (a) is due to γ = n2/5

T 2/5 , α = 1
n2/5T 3/5 . In inequality (b), we further compress the ∆1,

η1, η̃, c into big O and γ ≤ 1→ n2/5 ≤ T 2/5.

6.8.1 PROOF OF LEMMA 7

This proof is following the proof of Lemma 4 in (Chen et al., 2021).

Choosing η1 < 1 and defining τ =
η21
η2

, with the Adam-style (Algorithm 3) updates of SOAP that
ht+1 = η1ht + (1− η1)G(wt), we can verify for every dimension l,

|hlt+1| = |η1h
l
t + (1− η1)Gl(wt)| ≤ η1|hlt|+ |Gl(wt)|

≤ η1(η1|hlt−1|+ |Gl(wt−1)|) + |Gl(wt)|

≤
t∑

p=0

ηt−p1 |Gl(wp)| =
t∑

p=0

√
τ
t−p√

η2
t−p|Gl(wp)|

≤
( t∑
p=0

τ t−p
) 1

2
( t∑
p=0

ηt−p2 (Gl(wp))
2
) 1

2

≤ (1− τ)−
1
2

( t∑
p=0

ηt−p2 (Gl(wt))
2
) 1

2

(23)

where wl is the lth dimension of w, the third inequality follows the Cauchy-Schwartz inequality. For
the lth dimension of v̂, v̂lt, first we have v̂l1 ≥ (1− η2)(Gl(w1)2). Then since

v̂lt+1 ≥ ηtv̂lt + (1− η2)(Gl(wt))
2

by induction we have

v̂lt+1 ≥ (1− η2)

t∑
p=0

ηt−p2 (Gl(wt))
2 (24)

Using equation (23) and equation (24), we have

|hlt+1|2 ≤ (1− τ)−1
( t∑
p=0

ηt−p2 (Gl(wt))
2
)

≤ (1− η2)−1(1− τ)−1v̂lt+1

(25)

Then follow the Adam-style update in Algorithm 3, we have

‖wt+1 −wt‖2 = α2
d∑
l=1

(ε+ v̂lt+1)−1|hlt+1|2 ≤ α2d(1− η2)−1(1− τ)−1 (26)

which completes the proof.

6.8.2 PROOF OF LEMMA 8

To make the proof clear, we make some definitions the same as the proof of Lemma 3. Denote by
∇git(wt; ξ) = ∇g(wt;xit , ξ), ξ ∼ Pit , where it is a positive sample randomly generated from D at
t-th iteration, and ξ is a random sample that generated from D at t-th iteration. It is worth to notice
that it and ξ are independent. uit denote the updated u vector at the t-th iteration for the selected
positive data it.

R(wt+1) ≤ R(wt) +∇R(wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2

≤ R(wt)− α∇R(wt)
>(Dt+1ht+1) + α2d(1− η2)−1(1− τ)−1L/2
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where Dt+1 = 1√
εI+v̂t+1

, ht+1 = η1ht + (1− η1)∇g>it (wt; ξ)∇f(uit) and the second inequality

is due to Lemma 7. Taking expectation on both sides, we have

Et[R(wt+1)] ≤ R(wt)−Et[∇R(wt)
>(Dt+1ht+1)]︸ ︷︷ ︸
Υ

α+ α2d(1− η2)−1(1− τ)−1L

where Et[·] = E[·|t] implies taking expectation over it, ξ given wt. In the following analysis, we
decompose Υ into three parts and bound them one by one:

Υ = −〈∇R(wt), Dt+1ht+1〉 = −〈∇R(wt), Dtht+1〉 − 〈∇R(wt), (Dt+1 −Dt)ht+1〉
= −(1− η1)〈∇R(wt), Dt∇git(wt; ξ)

>∇f(uit)〉 − η1〈∇R(wt), Dtht〉
− 〈∇R(wt), (Dt+1 −Dt)ht+1〉
= It1 + It2 + It3

Let us first bound It1,

Et[It1]
(a)
= −(1− η1)〈∇R(wt),Et[Dt∇git(wt; ξ)

>∇f(uit)]〉
= −(1− η1)〈∇R(wt),Et[Dt∇git(wt; ξ)

>∇f(git(wt))]〉
+ (1− η1)〈∇R(wt),Et[Dt∇git(wt; ξ)

>(∇f(uit)−∇f(git(wt))]〉
≤ −(1− η1)‖∇R(wt)‖2Dt
+ (1− η1)‖D−1/2

t ∇R(wt)‖Et[‖D−1/2
t ∇git(wt; ξ)

>(∇f(uit)−∇f(git(wt)))‖]
(b)

≤ −(1− η1)‖∇R(wt)‖2Dt +
(1− η1)‖∇R(wt)‖2Dt

2

+
(1− η1)Et[‖D−1/2

t ∇git(wt; ξ)
>(∇f(uit)−∇f(git(wt)))‖2]

2

≤ − (1− η1)

2
‖∇R(wt)‖2Dt +

(1− η1)

2
Et[‖∇git(wt; ξ)

>(∇f(uit)−∇f(git(wt))‖2Dt ]

(c)

≤ − (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2 +

1

2
ε−1/2C2

gL
2
fE[‖git(wt)− uit‖2]

(27)
where equality (a) is due to ∇R(wt) = Eit,ξ[∇git(wt; ξ)

>∇f(git(wt))], where it and ξ are
independent. The inequality (b) is according to ab ≤ a2/2 + b2/2. The last inequality (c) is due to
ε−1/2I ≥ ‖DtI‖ = ‖ 1√

εI+v̂t+1

‖ ≥ ‖(εI + C2
gC

2
f )−1/2‖ = (ε+ C2

gC
2
f )−1/2I, (1− η1) ≤ 1 and

Et[‖∇git(wt; ξ)
>(∇f(uit)−∇f(git(wt)))‖2Dt ]

≤ ε−1/2C2
gEt[‖∇f(uit)−∇f(git(wt))‖2I ]

≤ ε−1/2C2
gL

2
fEt[‖git(wt)− uit‖2]

(28)

For It2 and It3, we have

Et[It2] = −η1〈∇R(wt)−∇R(wt−1), Dtht〉 − η1〈∇R(wt−1), Dtht〉
≤ η1Lα

−1‖wt −wt−1‖2 − η1〈∇R(wt−1), Dtht〉
= η1Lα

−1‖wt −wt−1‖2 + η1(It−1
1 + It−1

2 + It−1
3 )

≤ η1Lαd(1− η2)−1(1− τ)−1 + η1(It−1
1 + It−1

2 + It−1
3 )

(29)

where the last equation applies Lemma 7.
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Et[It3] = −〈∇R(wt), (Dt+1 −Dt)ht+1〉 = −
d∑

i′=1

∇i′R(wt)((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)hi
′

t+1

≤ ‖∇R(wt)‖‖ht+1‖
d∑

i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

≤ C2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

(30)
By combining Equation (28), (29) and (30) together,

Et[It1 + It2 + It3] ≤ − (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2 +

1

2
ε−1/2C2

gL
2
fEt[‖git(wt)− uit‖2]

+ η1Lαd(1− η2)−1(1− τ)−1 + η1(It−1
1 + It−1

2 + It−1
3 )

+ C2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

(31)

Define the Lyapunov function

Vt = R(wt)− ct〈∇R(wt−1), Dtht〉 (32)

where ct and c will be defined later.

Et[Vt+1 − Vt]
= R(wt+1)−R(wt)− ct+1〈∇R(wt), Dt+1ht+1〉+ ct〈∇R(wt−1), Dtht〉

≤ −(ct+1 + α)〈∇R(wt), Dt+1ht+1〉+
L

2
‖wt+1 −wt‖2 + ct〈∇R(wt−1), Dtht〉

= (ct+1 + α)(It1 + It2 + It3) +
L

2
‖wt+1 −wt‖2 − ct(It−1

1 + It−1
2 + It−1

3 )

Eqn (31) and Lemma 7

≤ −(α+ ct+1)
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2

+ (α+ ct+1)η1Lαd(1− η2)−1(1− τ)−1 + η1(α+ ct+1)(It−1
1 + It−1

2 + It−1
3 )

+ (α+ ct+1)C2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2)

+
L

2
α2d(1− η2)−1(1− τ)−1 − ct(It−1

1 + It−1
2 + It−1

3 ) +
ε−1/2C2

gL
2
f (α+ ct+1)

2
‖git(wt)− uit‖2

(33)

By setting αt+1 ≤ αt = α, ct =
∞∑
p=t

(
p∏
j=t

η1)αj , and c = (1 + (1− η1)−1)ε−
1
2C2

gL
2
f , we have

ct ≤ (1− η1)−1αt,
2(α+ ct+1)

α
βε−1/2C2

gL
2
f ≤ cβ, η1(α+ ct+1) = ct (34)
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As a result, η1(α+ ct+1)(It−1
1 + It−1

2 + It−1
3 )− ct(It−1

1 + It−1
2 + It−1

3 ) = 0

Et[Vt+1 − Vt] ≤ −(α+ ct+1)
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2

+ (α+ ct+1)η1Lαd(1− η2)−1(1− τ)−1 +
L

2
α2d(1− η2)−1(1− τ)−1

+ (α+ ct+1)C2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2)

+
(α+ ct+1)

2
ε−1/2C2

gL
2
f‖git(wt)− uit‖2

≤ −α (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 +

L

2
Tα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2) +
cα

4

T∑
t=1

Et[‖git(wt)− uit‖2]

(35)
where the last inequality is due to equation (34) such that we have 2(α + ct+1)ε−1/2C2

gL
2
f ≤ cα,

and α+ ct+1 ≤ 2(1− η1)−1α.
Then by rearranging terms, and taking summation from 1, · · · , T of equation (35), we have

T∑
t=1

α
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇R(wt)‖2 ≤

T∑
t=1

Et[Vt − Vt+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + LTα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

T∑
t=1

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

≤ E[V1]− E[VT+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + LTα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

0 )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

(36)

By combing with Lemma 4, We finish the proof.
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