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ABSTRACT

While the phenomenon of grokking, i.e., delayed generalization, has been studied
extensively, it remains an open problem whether there is a mathematical frame-
work that characterizes what kind of features will emerge, how and in which con-
ditions it happens, and is still closely connected with the gradient dynamics of the
training, for complex structured inputs. We propose a novel framework, named
Li2, that captures three key stages for the grokking behavior of 2-layer nonlinear
networks: (I) Lazy learning, (II) independent feature learning and (III) interactive
feature learning. At the lazy learning stage, top layer overfits to random hidden
representation and the model appears to memorize. Thanks to lazy learning and
weight decay, the backpropagated gradient GF from the top layer now carries in-
formation about the target label, with a specific structure that enables each hidden
node to learn their representation independently. Interestingly, the independent
dynamics follows exactly the gradient ascent of an energy function E , and its
local maxima are precisely the emerging features. We study whether these local-
optima induced features are generalizable, their representation power, and how
they change on sample size, in group arithmetic tasks. When hidden nodes start
to interact in the later stage of learning, we provably show how GF changes to
focus on missing features that need to be learned. Our study sheds lights on roles
played by key hyperparameters such as weight decay, learning rate and sample
sizes in grokking, leads to provable scaling laws of feature emergence, memoriza-
tion and generalization, and reveals the underlying cause why recent optimizers
such as Muon can be effective, from the first principles of gradient dynamics. Our
analysis can be extended to multi-layer architectures.

1 INTRODUCTION

While modern deep models such as Transformers have achieved impressive empirical performance,
it remains a mystery how such models acquire the knowledge during the training process. There
have been ongoing arguments on whether the models can truly generalize beyond what it is trained
on, or just memorize the dataset and performs poorly in out-of-distribution (OOD) data (Wang et al.,
2024b; Chu et al., 2025; Mirzadeh et al., 2024).

Modeling the memorization/generalization behaviors have been a goal of many works. One such
behavior, know as grokking (Power et al., 2022; Doshi et al., 2024; Nanda et al., 2023; Wang et al.,
2024a; Varma et al., 2023; Liu et al., 2023; Thilak et al., 2022), shows that the model initially overfits
to the training set, and then suddenly generalizes to unseen test samples after continuous training.
Many explanation exists, e.g., effective theory (Liu et al., 2022; Clauw et al., 2024), efficiency of
memorization and generalization circuits (Varma et al., 2023), Bayesian interpretation with weight
decay as prior (Millidge, 2022), etc. Most works focus on a direct explanation of its empirical
behaviors, or leveraging property of very wide networks (Barak et al., 2022; Mohamadi et al., 2024;
Rubin et al., 2024), but few explores the details of the grokking learning procedure by studying the
gradient dynamics on the weights.

In this work, we propose a mathematical framework Li2 that divides the grokking dynamics for
2-layer nonlinear networks into three major stages (Fig. 1). Stage I: Lazy Learning: when training
begins, the top (output) layer learns first with random features from the hidden layer, the back-
propagated gradient GF to the hidden layer is noise. Stage II: Independent feature learning: After
that, the weights of the output layer is no longer random, the backpropagated gradient GF starts

1
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Figure 1: Overview of our framework Li2. Left: Li2 proposes three stages of the learning process, (I)
Lazy learning, (II) independent feature learning and (III) interactive feature learning, to explain the dynamics
of grokking that shows the network first memorizes then generalizes (see Fig. ?? for details). Right: Our
analysis covers a wide range of network width K and weight decay η and demonstrates their effects on learning
dynamics, including both NTK and feature learning regime. In the feature learning regime, with the help of
the energy function E (Thm. 1), we characterize the learned features as local maxima of E (Thm. 2) and the
required sample size to maintain them (Thm. 4), establishing generalization/memorization scaling laws.

to carry information about the target in the presence of weight decay (Lemma 1), which drives the
learning of hidden representations. In this stage, the backpropagated gradient of j-th neuron (node)
only depends on its own activation, triggering independent feature learning for each node. Stage
III: Interactive feature learning: When weights in the hidden layer get updated and are no longer
independent, interactions across nodes adjust the learned feature to minimize the loss.

We study each stages in detail and provide theoretical analysis. In Stage I, GF carries target la-
bels once the top layer overfits. In Stage II, independent feature learning follows gradient ascent of
energy E (Thm. 1), a nonlinear CCA. For group arithmetic, we characterize all local maxima of E
(Thm. 2) and show how training samples determine stability and generalizability (Thm. 4), estab-
lishing scaling laws. In Stage III, we prove diversity push (Thm. 6), top-down modulation (Thm. 7),
and Muon’s effectiveness (Thm. 8). Experiments support our claims (Fig. 4).

Comparison with existing grokking frameworks. Our framework provides a theoretical founda-
tion from first principles (i.e., gradient dynamics) that explains the empirical hypothesis Varma et al.
(2023) that “generalization circuits Cgen is more efficient but learn slower than memorization cir-
cuits Cmem”. Specifically, we show that the data distribution determines the optimization landscape,
which in turn governs which local optima the weights converge into, which lead to the behavior of
memorization or generalization. We also show that the initial memorization, or lazy learning (Stage
I), has to happen before feature learning (Stage II-III), since the former provides meaningful back-
propagated gradient GF for the latter to start developing. In comparison, (Nanda et al., 2023) also
provides a three stage framework of grokking, but mostly from empirical observations.

2 RELATED WORKS

Explanation of Grokking. Multiple explanations of grokking exist, e.g., competition of generaliza-
tion and memorization circuits (Merrill et al., 2023), a shift from lazy to rich regimes Kumar et al.
(2024), etc. Dynamics of grokking is analyzed in specific circumstance, e.g., for clustering data (Xu
et al., 2023), linear network (Dominé et al., 2024), etc. In comparison, our work studies the full dy-
namics of feature emergence driven by backpropagation in group arithmetic tasks for deep nonlinear
networks, and provide a systematic mathematical framework about what and how features emerge
and a scaling law about when the transition between memorization and generalization happens.

Usage of group structure. Recent work leverages group theory to study the structure of final
grokked solutions (Tian, 2025; Morwani et al., 2023; Shutman et al., 2025). None of them tackle
the dynamics of grokking in the presence of the underlying structure of the data as we do.

Scaling laws of memorization and generalization. Previous works have identified scaling laws for
memorization/generalization (Nguyen & Reddy, 2025; Wang et al., 2024a; Abramov et al., 2025;
Doshi et al., 2023) without systematic theoretical explanation. Our work models such transitions
as whether generalizable local optima remain stable under data sampling, and provide theoretical
framework from first principles.

2
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Figure 2: Grokking dynamics on modular addition task with M = 71, K = 2048, n = 2016 (40% training
out of 712 samples) with and without weight decay. Top: η = 0.0002 and grokking happens. Bottom: η = 0
and no grokking happens. Weight decay leads to larger |GF | around epoch 100 and induces grokking behavior.
The weights difference ∆W between consecutive weights at time t and t + 1, measured by cosine distance,
shows two-stage behaviors: first there is huge update on the output weight V , then large update on the hidden
weight W . Throughout the training, F̃⊤F̃ and P⊥

1 FF⊤ remains diagonal with up to 8% error, validating our
analysis (independent feature learning, Sec. 5). Experiments averaged over 15 seeds.

Feature learning. Previous works treats the NTK as a holistic object and study how it moves away
from lazy regime, e.g., it becomes more correlated with task-relevant directions (Kumar et al., 2024;
Ba et al., 2022; Damian et al., 2022), becomes adapted to the data (Rubin et al., 2025; Karp et al.,
2021), etc. In contrast, our work focuses on explicit learning dynamics of individual features, their
interactions, and the transition from memorization to generalization with more samples.

3 PROBLEM FORMULATION

We consider a 2-layer network Ŷ = σ(XW )V and ℓ2 loss function on n samples:

min
V,W

1

2
∥P⊥

1 (Y − Ŷ )∥2F = min
V,W

1

2
∥P⊥

1 (Y − σ(XW )V )∥2F (1)

where P⊥
1 := I − 11⊤/n is the zero-mean projection matrix along the sample dimension, Y ∈

Rn×M is a label matrix (each row is a one-hot vector), X = [x1,x2, . . . ,xn]
⊤ ∈ Rn×d is the data

matrix, V ∈ RK×M and W ∈ Rd×K are the weight matrices of the last layer and hidden layer,
respectively. σ is the nonlinear activation function.

Previous works pointed out that grokking mostly happens when there is regularization during train-
ing (e.g., weight decay (Power et al., 2022; Nanda et al., 2023), Jacobian regularization (Walker
et al., 2025), etc.). It remains a mystery why this is the case. In this work, we show that grokking is
a consequence of “leaked” backpropagated gradient due to regularization.

4 STAGE I: LAZY LEARNING (OVERFITTING)

Let F = σ(XW ) be the activation of the hidden layer and F̃ = P⊥
1 F be the zero-mean version of

it. Similarly define Ỹ = P⊥
1 Y . We first write down the backpropagated gradient GF sent to the

hidden layer:

GF = − ∂J

∂F
= P⊥

1 (Y − FV )V ⊤ (2)

At the beginning of the training, both W and V are initialized with independent zero-mean random
variables. Therefore, the backpropagated gradient GF is pure random noise. Over time, the hidden
activation F is mostly unchanged, and only the output layer learns.

In this case, F can be treated as fixed during this stage of learning, and we can write down and solve
the gradient dynamics analytically. Specifically, the gradient dynamics of V is given by:

V̇ = − ∂J

∂V
= F̃⊤Ỹ − (F̃⊤F̃ + ηI)V (3)

which has a stationary point V̇ = 0 at

Vridge = (F̃⊤F̃ + ηI)−1F̃⊤Ỹ (4)

3
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The stationary point is the same as the solution of the ridge regression and it is a sharp optimum,
since the minimal eigenvalue of its Hessian ≥ η > 0. For feature learning, we check GF :

GF = PηỸ Ỹ ⊤F̃ (F̃⊤F̃ + ηI)−1 (5)

where Pη = I− F̃ (F̃⊤F̃ +ηI)−1F̃⊤ = η(F̃ F̃⊤+ηI)−1 (by Woodbury matrix formula). Note that
PηỸ = Ỹ − F̃ Vridge, which is the error of the output layer. Without weight decay (i.e., η = 0), if the
network is overparameterized and we have enough random features, then PηỸ = Ỹ − F̃ Vridge = 0
and thus GF = 0. In this case, feature learning does not happen (the bottom row of Fig. 2). Note that
this does not rule out the possibility that feature learning happens during the period that V converges
to Vridge, even if η = 0 (Kumar et al., 2024). This is possible in particular if the (hidden) weights are
initialized large (Clauw et al., 2024).

5 STAGE II: INDEPENDENT FEATURE LEARNING

5.1 THE ENERGY FUNCTION E

Now we discuss the case when we have weight decay η > 0, in which GF becomes interesting.
Lemma 1 (Structure of backpropagated gradient GF ). Assume that (1) entries of W follow standard
normal distribution N(0, 1), (2) ∥xi∥2 = 1, (3) ∥x⊤

i xi′ − ρ∥2 ≤ ϵ for all i ̸= i′ and (4) large width
K, then both F̃⊤F̃ and F̃ F̃⊤ becomes a multiple of identity and Eqn. 5 becomes:

GF =
η

(Kc1 + η)(nc2 + η)
Ỹ Ỹ ⊤F +O(K−1ϵ) (6)

where c1, c2 > 0 are constants related to nonlinearity. When η is small, we have GF ∝ ηỸ Ỹ ⊤F .
Note that the input features and/or weights can be scaled and what changes is c1 and c2.

Check Fig. 2 for verification of these observations. From Eqn. 6, it is clear that if K → +∞, then
GF → 0 and there is no feature learning (i.e., NTK regime). Here we study the case when K is
large (so that Eqn. 6 is valid) but not too large so that feature learning happens.

Let W = [w1,w2, . . . ,wK ] where wj ∈ Rd is the weight vector of j-th node, and F =
[f1, f2, . . . , fK ] where fj = σ(Xwj) ∈ Rn is the activation of j-th node. Following Eqn. 6, the
j-th column gj of GF is only dependent on j-th node wj , and thus we can decouple the dynamics
into K independent ones, each corresponding to a single node:

ẇj = X⊤Djgj , gj ∝ ηỸ Ỹ ⊤σ(Xwj) (7)

where Dj = diag(σ′(Xwj)) is the diagonal gating matrix of j-th node. A critical observation here
is that Eqn. 7 actually corresponds to the gradient ascent dynamics of the energy function E .
Theorem 1 (The energy function E for independent feature learning). The dynamics (Eqn. 7) of
independent feature learning is exactly the gradient ascent dynamics of the energy function E w.r.t.
wj , a nonlinear canonical-correlation analysis (CCA) between the input X and target Ỹ :

E(wj) =
1

2
∥Ỹ ⊤σ(Xwj)∥22 (8)

Therefore, the feature learned for each node j is the one that maximizes the energy function E(wj)
and the weight decay η now becomes the learning rate. This coincides empirical findings (Power
et al., 2022; Clauw et al., 2024) that low regularization leads to slow grokking. Since Eqn. 7 can be
unbounded, we put ∥wj∥2 = 1 due to weight decay. (Tian, 2023) also arrives at an energy function
for feature learning in contrastive loss, but its structure is obscure. Here the structure is much clearer.

5.2 GROUP ARITHMETIC TASKS

To demonstrate a concrete example, we consider group arithmetic tasks, i.e., for group H , the task
is to predict h = h1h2 given h1, h2 ∈ H . One example is the modular addition task h1h2 = h1+h2

mod M , which has been extensively studied in grokking (Power et al., 2022; Gromov, 2023; Huang
et al., 2024; Tian, 2025).

The task. We represent the group elements by one-hot vectors: each data sample xi ∈ R2M is a
concatenation of two M -dimensional one-hot vectors (eh1[i], eh2[i]) where h1[i] and h2[i] are the

4
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indices of the two one-hot vectors. The output is also a one-hot vector yi = eh1[i]h2[i], where
1 ≤ i ≤ n = M2. Here the class number M = |H| is the size of the group.

A crash course of group representation theory. A mapping ρ(h) : H 7→ Cd×d is called a
group representation if the group operation is compatible with matrix multiplication: ρ(h1)ρ(h2) =
ρ(h1h2) for any h1, h2 ∈ H . Let Rh ∈ RM×M be the regular representation of group element h
so that eh1h2 = Rh1eh2 for all h1, h2 ∈ H , and P ∈ RM×M be the group inverse operator so that
Peh = eh−1 . Note that P 2 = I and P⊤ = P−1 = P .

The decomposition of group representation. The representation theory of finite group (Fulton &
Harris, 2013; Steinberg, 2009) says that the regular representation Rh admits a decomposition into
complex irreducible representations (or irreps):

Rh = Q

κ(H)⊕
k=0

mk⊕
r=1

Ck(h)

Q∗ (9)

where κ(H) is the number of nontrivial irreps (i.e., not all h map to identity), Ck(h) ∈ Cdk×dk is
the k-th irrep block of Rh, Q is the unitary matrix (and Q∗ is its conjugate transpose) and mk is the
multiplicity of the k-th irrep. This means that in the decomposition of Rh, there are mk copies of
dk-dimensional irrep, and these copies are isomorphic to each other. So the k-th irrep subspace Hk

has dimension mkdk.

For regular representation {Rh}, one can prove that mk = dk for all k and thus |H| = M =
∑

k d
2
k.

For Abelian group, all complex irreps are 1d (i.e., Fourier bases). One may also choose to do the
decomposition in real domain. In this case, a pair of 1d complex irreps will become a 2d real irrep.
For example, eiθ and e−iθ becomes a 2d matrix [cos(θ),− sin(θ); sin(θ), cos(θ)].

5.3 LOCAL MAXIMA OF THE ENERGY FUNCTION

Now we study the local maxima of E . With the decomposition, we can completely characterize the
local maxima of the energy E with group inputs, even that E(w) is nonconvex.
Theorem 2 (Local maxima of E for group input). For group arithmetics tasks with σ(x) = x2,
E has multiple local maxima w∗ = [u;±Pu]. Either it is in a real irrep of dimension dk (with
E∗ = M/8dk and u ∈ Hk), or in a pair of complex irrep of dimension dk (with E∗ = M/16dk and
u ∈ Hk ⊕Hk̄). These local maxima are not connected. No other local maxima exist.

Note that our proof can be extended to more general nonlinearity σ(x) = ax+ bx2 with b > 0 since
linear part will be cancelled out due to zero-mean operators. We can show that local maxima of E
are flat, allowing moving around without changing E :
Corollary 1 (Flatness of local maxima of E for group input). Local maxima of E for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

We can apply the above theorem to the popular modular addition task which is an Abelian group.
The resulting representation is Fourier bases.
Corollary 2 (Modular addition). For modular addition with odd M , all local maxima are single
frequency uk = ak[cos(kmω)]M−1

m=0 + bk[sin(kmω)]M−1
m=0 where ω := 2π/M with E∗ = M/16. For

even M , uM/2 ∝ [(−1)m]M−1
m=0 has E∗ = M/8. Different local maxima are disconnected.

Role played by the nonlinearity. With linear activation, there is only one global maximum, which
is the maximal eigenvector of X⊤Ỹ Ỹ ⊤X . This corresponds to Linear Discriminative Analysis
(LDA) (Balakrishnama & Ganapathiraju, 1998) that finds directions that maximally separate the
class-mean vectors. For group arithmetics tasks, for each target h = h1h2, each group element
(h1 and h2) appears once and only once, the class-mean vectors are identical and thus LDA fails to
identify any meaningful directions. With nonlinearity, the learned w has clear meanings.

Meaning of the learned features. First, the learned representation can offer a more efficient re-
construction of the target (see Thm. 3) than simple memorization of all M2 pairs. Second, learned
representations naturally contain useful invariance. For example, some irreps of the cyclic group of
Z15 behave like its subgroup Z3 and Z5, by mapping its element h to div(h, 3) and div(h, 5). If we
regard h to be controlled by two hidden factors, then these features lead to focusing on one factor
and invariant to others. More importantly, they emerge automatically without explicit supervision.

5
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Figure 3: Change of the landscape of the energy function E (Thm. 1). Left: E with linear activation reduces
to simple eigen-decomposition and only have one global maxima. Middle: With nonlinearity, the energy
landscape now has multiple strict local maxima, each corresponds to a feature (Thm. 2). More importantly,
these features are more efficient than memorization in target prediction (Thm. 3). Right: With sufficient
training data, the landscape remains stable and we can recover these (generalizable) features (Thm. 4), with
insufficient data, the landscape changes substantially and local maxima becomes memorization (Thm. 5).

5.4 REPRESENTATION POWER OF LEARNED FEATURES

With Thm. 2, we know that each node of the hidden layers will learn various representations. The
question is whether they are sufficient to reconstruct the target Ỹ and how efficient they are.

Theorem 3 (Target Reconstruction). Assume (1) E is optimized in complex domain C, (2) for each
irrep k, there are m2

kd
2
k pairs of learned weights w = [u;±Pu] whose associated rank-1 matrices

{uu∗} form a complete bases for Hk and (3) the top layer V also learns with η = 0, then Ŷ = Ỹ .

From the theorem, we know that K = 2
∑

k ̸=0 m
2
kd

2
k ≤ 2

[
(M − κ(H))2 + κ(H)− 1

]
suffice. In

particular, for Abelian group, κ(H) = M − 1 and K = 2M − 2. This is much more efficient than
pure memorization that requires M2 nodes, i.e., each node memorizes a single pair (h1, h2) ∈ H2.

Assumptions of the theorem. Assumption (3) is satisfied by training both W and V . Assumption
(2) is satisfied since randomly initialized weights typically lead to non-collinear u. Assumption
(1) is necessary due to technical subtleties1. However, if we change w = [u;±Pu] slightly to
w = [u;±Pu′] in which u′ is a small perturbation of u, then Thm. 3 holds for real solutions. This
happens in the stage III when end-to-end backpropagation refines the representation.

5.5 THE SCALING LAWS OF THE BOUNDARY OF MEMORIZATION AND GENERALIZATION

While Thm. 2 shows the nice structure of local maxima (and features learned), it requires training
on all n = M2 pairs of group elements. One may ask whether these representations can still be
learned if training on a subset. The answer is yes, by checking the stability of the local maximum.

Theorem 4 (Amount of samples to maintain local optima). If we select n ≳ d2kM log(M/δ) data
sample from H ×H uniformly at random, then with probability at least 1− δ, the empirical energy
function Ê keeps local maxima for dk-dimensional irreps (Thm. 2).

The theorem above states only O(M logM) samples suffice to learn these features, which will
generalize to unseen data according to Thm. 3. Fig. 4 demonstrates that the empirical results closely
match the theoretical prediction, and there is a clear phase transition around the boundary (test
accuracy 0 → 1), where the training data ratio p := n/M2 = O(M−1 logM).

Memorization. On the other hand, we can also construct cases when memorization is the only local
maximum of E . This happens when we only collect samples for one target h but missing others, and
diversity is in question.

Theorem 5 (Memorization solution). Let ϕ(x) := σ′(x)/x and assume σ′(x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g−1h) for one target h with probability
pg . Then the global optimal of E is a memorization solution, either (1) a focused memorization w =
1√
2
(eg∗ , eg∗−1h) for g∗ = argmax pg if ϕ is nondecreasing, or (2) a spreading memorization with

w = 1
2

∑
g sg[eg, eg−1h], if ϕ is strictly decreasing. Here sg = ϕ−1(2λ/pg) and λ is determined by∑

g s
2
g = 2. No other local optima exist.

1The subspace of real orthogonal matrices is not covered by that of symmetric matrices spanned by {uu⊤}.
In contrast, the subspace of unitary matrices in complex domain C can be represented by Hermitian matrices.
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Figure 4: Generalization/memorization phase transition in modular addition tasks. When M grows, the train-
ing data ratio p = n/M2 required to achieve generalization decreases. This coincides with Thm. 4 which
predicts p ∼ M−1 logM (dotted line). We use learning rate 0.0005, weight decay 0.0002 and K = 2048.
Results averaged over 20 seeds. Top Left: Simple cyclic group ZM for prime M . Top Right: ZM for com-
posite M . For more experiments on product and non-Abelian groups, check Fig. 9.
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Figure 5: Phase transition from generalizable (gsol) to non-generalizable solutions (ngsol) in modular
addition tasks (M = 23, 71, 127) with K = 1024. Around this critical region, small learning rate more likely
lead to gsol, due to the fact that small learning rate keeps the trajectory staying within the basin towards
gsol, while large learning rate converges to solutions with higher E (Fig. 6). Results averaged over 15 seeds.

We can verify that power activations (e.g., σ(x) = x2) lead to focused memorization, while more
practical ones (e.g., ReLU, SiLU, Tanh and Sigmoid) lead to spreading memorization. We leave it
for future work whether this property leads to better results in large scale settings.

Boundary of generalization and memorization (semi-grokking (Varma et al., 2023)). In between
the two extreme cases, local maxima of both memorization and generalization may co-exist. In this
case, small learning rate keeps the optimization within the attractive basin and converges to gsol,
while large learning rate leads to ngsol which has better energy E (Fig. 6).

Our theory fits well with the empirical observations that there exists a critical data size/ratio (Varma
et al., 2023; Wang et al., 2024a; Abramov et al., 2025), above which the grokking suddenly leads to
generalization. The observation that memorization energy is higher than generalization (Fig. 6) also
explains the ungrokking/unlearning phenomenon: a grokked model can move back to memorization
when continues to train on a small dataset (Varma et al., 2023; Montanari & Urbani, 2025), and is
consistent with (Nguyen & Reddy, 2025) that shows task diversity is important for generalization.

= 3.27 = 3.23 = 3.34 = 2.87

= 3.32 = 3.50 = 3.29 = 3.37

= 3.27 = 3.39 = 3.20 = 3.31

= 3.16 = 3.09 = 3.39 = 3.54

= 3.39 = 4.59 = 3.35 = 3.25

= 4.16 = 3.37 = 3.41 = 3.43

= 3.84 = 2.98 = 3.67 = 3.47

= 3.41 = 3.29 = 3.37 = 3.49

= 4.72 = 4.11 = 4.40 = 4.94

= 4.33 = 4.48 = 4.00 = 5.07

= 5.47 = 3.74 = 5.54 = 4.12

= 3.57 = 4.59 = 3.89 = 4.46

Figure 6: In small data regime of modular addition with M = 127 and n = 3225 (20% training out of 1272

samples), Adam optimizer with small learning rate ((0.001, left) and (0.002, middle)) leads to generalizable so-
lutions (Fourier bases) with low E , while with large learning rate (0.005, right), Adam found non-generalizable
solutions (e.g., memorization) with much higher E .
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6 STAGE III: INTERACTIVE FEATURE LEARNING

The starting point of Stage II is to simplify the exact backpropagated gradient GF = PηỸ Ỹ ⊤F̃B

(Eqn. 5) with B := (F̃⊤F̃ + ηI)−1 to GF ∝ ηỸ Ỹ ⊤F , by two approximations: (1) B ∝ I , and (2)
Pη ∝ ηI . The two approximations are valid due to Thm. 1 when the hidden weights W is randomly
initialized. When training continues, W evolves from random initialization and the conditions may
not hold anymore. In this section we put them back and study their behaviors.

6.1 REPULSION OF SIMILAR FEATURES

We first study the effect of B, which leads to interplay of hidden nodes. Over the training, the
activations of two nodes can be highly correlated and the following theorem shows that similar
features leads to repulsion.

Theorem 6 (Repulsion of similar features). The j-th column of F̃B is given by [F̃B]j = bjj f̃j +∑K
l=1 bjl f̃l, where sign(bjl) = −sign(f̃⊤j Pη,−jl f̃l) and Pη,−jl := I − F̃−jl(F̃

⊤
−jlF̃−jl + ηI)−1F̃⊤

−jl

is a projection matrix constructed from F̃−jl, which is F̃ excluding the l-th and j-th columns.

Remark. Intuitively, if f̃j and f̃l are similar, then bjl will be negative and the resulting j and l

columns of F̃B will be pushed away from each other and vise versa.

6.2 TOP-DOWN MODULATION

Over the training process, it is possible that some local optima are learned first while others learned
later. When the representations are learned partially, the backpropagation offers a mechanism to
focus on missing pieces, by changing the landscape of the energy function E .
Theorem 7 (Top-down Modulation). For group arithmetic tasks with σ(x) = x2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient GF ∝ (ΦS ⊗1M )(ΦS ⊗1M )∗F
(see proof for the definition of ΦS ), which yields a modified ES that only has local maxima on the
missing irreps k /∈ S.

6.3 DIVERSITY ENHANCEMENT WITH MUON

In addition to the mechanism above, certain optimizers (e.g., Muon optimizer (Jordan et al., 2024))
can also address such issue, by boosting the weight update direction that are underrepresented,
enforcing diversity of nodes. While evidence (Tveit et al., 2025) and analysis exist (Shen et al.,
2025) to show that Muon has advantages over other optimizers, to our best knowledge, we are the
first to analyze it in the context of feature learning.

Recall that the Muon optimizer converts the gradient GW = UGW
DV ⊤

GW
(its SVD decomposition)

to G′
W = UGW

V ⊤
GW

and update the weight W accordingly (i.e., Ẇ ∝ G′
W ). We first show that

when Muon is applied to independent feature learning on each wj to make them coupled, it still
gives the correct answers to the original optimization problems.
Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
joint energy Ejoint(W ) =

∑
j E(wj) and has critical points iff the original gradient GW vanishes.

Now we show that Muon optimizer can rebalance the gradient updates.
Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian, 2023):

ẇ = A(w)w, ∥w∥2 ≤ 1 (10)

where A(w) :=
∑

l λl(w)ζlζ
⊤
l . Assume that (1) {ζl} form orthonormal bases, (2) for w =∑

l αlζl, we have λl(w) = µlαl with µl ≤ 1, and (3) {αl} is initialized from inverse-exponential
distribution with CDF(x) = exp(−x−a) with a > 1. Then

• Independent feature learning. Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l . Then the expected

#nodes to get all local maxima is T0 ≥ max
(
1/minl pl,

∑L
l=1 1/l

)
.

• Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is Ta = 2−aT0 + (1− 2−a)L. For large a, Ta ∼ L.
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The intuition here is that once some weight vectors have “occupied” a local maximum, say ζm,
their gradients point to the same direction (before projecting onto the unit sphere ∥w∥2 = 1), and
the gradient correction of Muon will discount that component from gradients of currently optimized
weight vectors, and keeping them away from ζm. In this way, Muon pressed novel gradient direc-
tions and thus encourages exploration. Fig. 7 shows that Muon is effective with limited number of
hidden nodes K.

Note that Eqn. 10 is closely related to E , under the assumption of homogeneous/reversible activation,
i.e., σ(x) = Cσ′(x)x with a constant C (Zhao et al., 2024; Tian et al., 2020). In such setting, Eqn. 7
is related to the gradient dynamics with a PSD matrix A(w) = X⊤D(w)Ỹ Ỹ ⊤D(w)X .

7 EXTENSION TO DEEPER ARCHITECTURES

The above analysis and the definition of the energy function E can be extended to deeper architec-
tures. Consider a multi-layer network with L hidden layers, Fl = σ(Fl−1Wl) with F0 = X and
Ŷ = FLV . For notation brevity, let Gl := GFl

. Let’s see how the gradient backpropagated and how
the learning fits to our framework (Fig. 1).

Stage I. Stage I does not change since FL is still a random representation. Then V starts to learn
and converges to ridge solution (Eqn. 4), the backpropagated gradient GL now carries meaningful
information: GL ∝ Ỹ Ỹ ⊤FL (Eqn. 6), which initiates Stage II.

Stage II. We assume homogeneous activation σ(x) = Cσ′(x)x. For the next layer L− 1, we have:

GL−1 = DLGLW
⊤
L = DL(Ỹ Ỹ ⊤FL)W

⊤
L = (DLỸ Ỹ ⊤DL)FL−1(WLW

⊤
L ) (11)

since WL is randomly initialized, we have WLW
⊤
L ≈ I and thus GL−1 ∝ DLỸ Ỹ ⊤DLFL−1.

Doing this iteratively gives Gl ∝
(
D̃l+1Ỹ Ỹ ⊤D̃l+1

)
Fl, where D̃l :=

∏L
m=l Dm. Note that these D

matrices are essentially reweighing/pruning samples randomly, since right now all {Wl} are random
except for V . Now the lowest layer receives meaningful backpropagated gradient G1 that is related
to the target label, and it also exposes to input X . Therefore, the learning starts from there. Once
layer l learns decent representation, layer l+ 1 receives meaningful input Fl and starts to learn, etc.
When layer l is learning, layer l′ > l do not learn since their input Fl′ remains random noise.

From this analysis, we can also see why residual connection helps. In this case, Gres,1 =
∑L

l=1 Gl,
in which GL is definitely a much cleaner and stronger signal, compared to G1 which undergoes
many random reweighing and pruning of samples.

Stage III. Once the activation Fl becomes meaningful, top-down modulation could happen (simi-
lar to Thm. 7) among nearby layers so that low-level features can be useful to support high-level
representations. We leave the detailed analysis for future work.

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

We develop a mathematical framework Li2 for grokking dynamics in 2-layer networks, identifying
three stages marked by distinct structures of backpropagated gradient GF . We clarify how various
hyperparameters shape grokking, explain the effectiveness of optimizers like Muon, and extend to
deeper networks. A few interesting implications are listed below. (1) Two kinds of memorization.
The “memorization” in grokking is due to overfitting on random features, distinct from memoriza-
tion optima due to limited data (Thm. 5). Grokking switches from overfitting to generalization, not
memorization to generalization. (2) Flat/sharp optima. Sharp optima occur when overfitting on
random features (Sec. 4). Local optima from E are flat (Corollary 1), and over-parameterization
allows multiple nodes to learn similar features, creating flatness. In contrast, Memorization from
limited data requires more nodes, appearing less flat. (3) Learning rates. Large learning rates in
Stage I quickly learn V to trigger Stage II. In Stage II, optimal rates depend on data: more data
allows larger rates; limited data needs smaller rates to stay in generalizable basins (Fig. 6).

Limitations. While the derivation of energy E is applicable to any input, analysis of its local maxima
relies on restrictive assumption of group structure of the input. We could extend it by studying
automorphism of the input, which always forms a group regardless of the input structure. Also our
analysis does not include when each learning stage happens. We leave them for future work.
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DISCLOSURE OF LLM USAGE

We have used SoTA LLMs extensively to brainstorm ideas to prove mathematical statements pre-
sented in the paper. Specifically, we setup research directions, provide problem setup and intuitions,
proposes statements for LLM to analyze and prove, points out key issues in the generated proofs,
adjust the statements accordingly and iterate. We also have done extensive experiments to verify
the resulting statements. Many proofs proposed by LLMs are incorrect in subtle ways and requires
substantial editing and correction. We have carefully revised all the proofs presented in the work,
and take full accountability for their correctness.

ETHICS STATEMENT

This work is about investigating various theoretical and empirical properties of neural networks. We
do not rely on any sensitive or proprietary data, nor do we use any existing open source models that
may produce harmful contents.

REPRODUCIBILITY STATEMENT

All datasets used in this work can be generated synthetically. Models are pretrained from scratch
with very small amount of compute. We will release code to support full Reproducibility.
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A INDEPENDENT FEATURE LEARNING (SEC. 5)

Lemma 3. Let ϕn(z) := Hen(z)/
√
n! be the orthonormal Hermite system on L2(γ). If (Z1, Z2)

are standard normals with correlation ρ, then

E[ϕn(Z1)ϕm(Z2)] = ρn δnm (n,m ≥ 0).

Proof of Lemma 3. Use the generating function2 exp(tz − t2

2 ) =
∑

k≥0 ϕk(z) t
k for z ∼ N (0, 1).

Then, for correlated normals (Z1, Z2) with correlation ρ,

E
[
e tZ1− t2

2 euZ2−u2

2

]
= exp(ρ tu) =

∑
k≥0

ρ k (tu)k.

Expanding the left-hand side by the generating functions and matching coefficients of tnum yields
E[ϕn(Z1)ϕm(Z2)] = ρnδnm.

To show why E
[
e tZ1− t2

2 euZ2−u2

2

]
= exp(ρ tu) is correct, decompose (Z1, Z2) into Gaussian

independent random variables (X,Y ):

Z1 := X, Z2 := ρX +
√

1− ρ2 Y,

Then we have

E
[
e tZ1− t2

2 euZ2−u2

2

]
= E

[
e tX− t2

2 eu(ρX+
√

1−ρ2 Y )−u2

2

]
= E

[
e (t+ρu)X− t2

2

]
E
[
eu

√
1−ρ2 Y−u2

2

]
.

For G ∼ N (0, 1) we have E[eaG] = ea
2/2, hence E

[
e aG− a2

2

]
= 1 due to Lemma 4. Applying this

twice,

E
[
e (t+ρu)X− t2

2

]
= exp

(
(t+ ρu)2

2
− t2

2

)
= exp

(
ρtu+

ρ2u2

2

)
,

E
[
eu

√
1−ρ2 Y−u2

2

]
= exp

(
u2(1− ρ2)

2
− u2

2

)
= exp

(
−ρ2u2

2

)
.

Multiplying the two factors yields

exp

(
ρtu+

ρ2u2

2

)
exp

(
−ρ2u2

2

)
= exp(ρtu),

as claimed.

Lemma 4 (Moment identity). For X ∼ N (0, 1), E[etX ] = exp(t2/2). Equivalently, E[etX−t2/2] =
1.

Proof. Complete the square:

E[etX ] =
1√
2π

∫
R
etxe−x2/2 dx =

1√
2π

∫
e−(x−t)2/2 et

2/2 dx = exp

(
t2

2

)
.

Lemma 1 (Structure of backpropagated gradient GF ). Assume that (1) entries of W follow standard
normal distribution N(0, 1), (2) ∥xi∥2 = 1, (3) ∥x⊤

i xi′ − ρ∥2 ≤ ϵ for all i ̸= i′ and (4) large width
K, then both F̃⊤F̃ and F̃ F̃⊤ becomes a multiple of identity and Eqn. 5 becomes:

GF =
η

(Kc1 + η)(nc2 + η)
Ỹ Ỹ ⊤F +O(K−1ϵ) (6)

where c1, c2 > 0 are constants related to nonlinearity. When η is small, we have GF ∝ ηỸ Ỹ ⊤F .
Note that the input features and/or weights can be scaled and what changes is c1 and c2.

2https://en.wikipedia.org/wiki/Hermite_polynomials
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Proof. In the following, we will prove that (1) F̃⊤F̃ is a multiple of identity and (2) FF⊤ ∝ αI +
β11⊤. Without loss of generality, we assume that entry of W follows standard normal distribution
N (0, 1).

F̃⊤F̃ is a multiple of identity. Since each column of F̃ is P⊥
1 σ(Xwj) a zero-mean n-dimensional

random vector and columns are i.i.d. due to the independence of columns of W . With large width
K, F̃⊤F̃ becomes a multiple of identity.

FF⊤ is a diagonal plus an all-constant matrix. Note that the i-th row of F is
[σ(w⊤

1 xi), σ(w
⊤
2 xi), . . . , σ(w

⊤
Kxi)], with large width K, the inner product between the i-th row

and j-th row of F approximates to KK(i, j) where K(i, j) is defined as follows:

K(i, j) = Ew[σ(w⊤xi)σ(w
⊤xj)] (12)

To estimate the entry K(i, j), we first do standardization by setting Z1 := w⊤xi/si and Z2 :=
w⊤xj/sj where si = ∥xi∥2 and sj = ∥xj∥2. Then (Z1, Z2) are standard normals with
Corr(Z1, Z2) = ρij , and K(i, j) = E

[
σ(siZ1)σ(sjZ2)

]
.

Let ϕl(z) := Hel(z)/
√
l! be the orthonormal Hermite system on L2(γ), where γ is the standard

Gaussian measure and Hel are the Hermite polynomials. For s ≥ 0 define fs(z) := σ(sz). By the
L2(γ) assumption, fs =

∑∞
n=0 al(s)ϕl with

al(s) = ⟨fs, ϕl⟩L2(γ) =
1√
l!
E[σ(sZ)Hel(Z)] .

Thus
σ(siZ1) =

∑
l≥0

al(si)ϕl(Z1), σ(sjZ2) =
∑
l≥0

al(sj)ϕl(Z2).

By bilinearity and Lemma 3,

K(i, j) = E

∑
l≥0

al(si)ϕl(Z1)
∑
m≥0

am(sj)ϕm(Z2)

 =
∑

l,m≥0

al(si)am(sj)E[ϕl(Z1)ϕm(Z2)]

=
∑
l≥0

al(si)al(sj) ρ
l
ij .

If si ≡ 1 and ∥ρij − ρ∥2 ≤ ϵ for i ̸= j, then

K(i, i) =
∑
l≥0

a2l (s) =: a

Let c :=
∑

l≥1 la
2
l (s) < +∞ (it is convergent due to the big factor l! in the denominator). Let

b :=
∑

l≥0 a
2
l (s) ρ

l and we have for all i ̸= j:

∥K(i, j)− b∥2 ≤
∑
l≥0

a2l (s) ∥ρ l
ij − ρl∥2 ≤

∑
l≥1

la2l (s) ϵ = cϵ

due to the fact that ∥ρ l
ij − ρl∥2 ≤ lξl−1ϵ for all l ≥ 1 and some ξ in between ρij and ρ. hence

K(i, j) = (a− b)δij + b+ O(ϵ) and thus FF⊤ = K(a− b)I +Kb11⊤ + O(Kϵ)11⊤. Note that
by Parseval’s identity, a = EZ∼N (0,1)[σ

2(sZ)].

Therefore, F̃ F̃⊤ = K(a−b+O(ϵ))P⊥
1 = K(a−b+O(ϵ))(I−11⊤/n)+O(Kϵ)11⊤ and PηỸ =

η
K(a−b)+η Ỹ . Since F̃⊤F̃ is proportional to identity matrix, (F̃⊤F̃ + ηI)−1 is also proportional to
identity matrix and the conclusion follows.

A.1 THE ENERGY FUNCTION E (SEC. 5.3)

Theorem 1 (The energy function E for independent feature learning). The dynamics (Eqn. 7) of
independent feature learning is exactly the gradient ascent dynamics of the energy function E w.r.t.
wj , a nonlinear canonical-correlation analysis (CCA) between the input X and target Ỹ :

E(wj) =
1

2
∥Ỹ ⊤σ(Xwj)∥22 (8)
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Proof. Taking gradient of E w.r.t. wj , and we have ·wj = X⊤Dj Ỹ Ỹ ⊤σ(Xwj), which proves the
theorem.

Theorem 2 (Local maxima of E for group input). For group arithmetics tasks with σ(x) = x2,
E has multiple local maxima w∗ = [u;±Pu]. Either it is in a real irrep of dimension dk (with
E∗ = M/8dk and u ∈ Hk), or in a pair of complex irrep of dimension dk (with E∗ = M/16dk and
u ∈ Hk ⊕Hk̄). These local maxima are not connected. No other local maxima exist.

Proof. Following this setting, if ordered by target values, we can write down the data matrix
X = [Xh1 ;Xh2 ; . . . XhM

] (i.e., each Xh occupies M rows of X) in which each Xh = [R⊤
h , P ] ∈

RM×2M . Here Rh is the regular representation (a special case of permutation representation) of
group element h so that eh1h2

= Rh1
eh2

for all h1, h2 ∈ H , and P is the group inverse operator so
that Peh = eh−1 . This is because each row of X that corresponds to the target h can be written as
[e⊤hh1

, e⊤
h−1
1

] = [e⊤h1
R⊤

h , e
⊤
h1
P ]. Stacking the rows that lead to target h together, and order them by

h1, we get Xh = [R⊤
h , P ].

Let w = [u;Pv]. Let matrix Sij := σ(ui + vj), since Rh is a permutation matrix, then σ(Xhw) =
σ(R⊤

h u + v) is a row shuffling of S. Therefore, σ(Xhw) = diag(R⊤
h S)1M , where diag(·) is the

diagonal of a matrix. Note that in this target label ordering, we have Y = IM ⊗ 1M . So for each
column h of Y , we have yh = eh ⊗ 1M . So

zh := y⊤
h σ(Xw) = 1⊤

Mσ(Xhw) = 1⊤
Mdiag(R⊤

h S)1M = tr(R⊤
h S) = ⟨Rh, S⟩F (13)

where ⟨A,B⟩F := tr(A⊤B) is the Frobenius inner product. And the energy E can be written as:

E(w) =
1

2

∑
h

(zh − z̄)2 (14)

where z̄ := 1
M

∑
h zh = 1

M

∑
h⟨Rh, S⟩F = ⟨ 1

M

∑
h Rh, S⟩F = 1

M ⟨1M1⊤
M , S⟩F . Therefore,

using Rh1M = 1M , E(w) can be written as:

E(w) =
1

2

∑
h

⟨R̃h, S⟩2F (15)

where R̃h = RhP
⊥
1 . Now we study its property. We decompose {R̃h} into complex irreducible

representations:

R̃h = Q

⊕
k ̸=0

mk⊕
r=1

Ck(h)

Q∗ (16)

where Ck(h) is the k-th irreducible representation block of Rh, Q is the unitary matrix (and Q∗ is
the conjugate transpose of Q) and mk is the multiplicity of the k-th irreducible representation. Since
R̃h is a zero-meaned representation, we remove the trivial representation C0(h) and thus Q∗1 = 0.
Let Ŝ = Q⊤SQ. Then

⟨R̃h, S⟩F = ⟨Q

⊕
k ̸=0

mk⊕
r=1

Ck(h)

Q∗, S⟩F = ⟨
⊕
k ̸=0

mk⊕
r=1

Ck(h), Ŝ⟩F =
∑
k ̸=0

mk∑
r=1

tr(C∗
k(h)Ŝk,r)

(17)
where Ŝk,r is the (k, r)-th principle (diagonal) block of Ŝ. Therefore, we have:∑

h

⟨R̃h, S⟩2F =
∑
h

∑
(k,r),(k′,r′)

tr(C∗
k(h)Ŝk,r) tr(C

∗
k′(h)Ŝk′,r′) (18)

=
∑

(k,r),(k′,r′)

vec∗(Ŝk,r)

[∑
h

vec(Ck(h)) vec(C
∗
k′(h))

]
vec(Ŝk′,r′) (19)

Case 1. If k ̸= k′ are inequivalent irreducible representations of dimension dk and dk′ , then we can
prove that

∑
h vec(Ck(h)) vec(C

∗
k′(h)) = 0. To see this, let Ak,k′(Z) =

∑
h Ck(h)ZC−1

k′ (h), then
Ak,k′(Z) is a H-invariant linear mapping from dk to dk′ dimensional space. Thus by Schur’s lemma,

15
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Ak,k′(Z) = 0 for any Z. But since vec(Ak,k′(Z)) =
(∑

h C̄k′(h)⊗ Ck(h)
)
vec(Z), we have∑

h C̄k′(h)⊗ Ck(h) = 0. Expanding each component, we have
∑

h vec(Ck(h)) vec(C
∗
k′(h)) = 0.

Case 2. If k = k′ are equivalent irreducible representations (and both have dimension dk), then we
can prove that

∑
h vec(Ck(h)) vec(C

∗
k(h)) = M

dk
vec(Idk

) vec∗(Idk
). Then with Schur’s average

lemma, we have Akk(Z) = M
dk

tr(Z)Idk
. A vectorization leads to

(∑
h C̄k(h)⊗ Ck(h)

)
vec(Z) =

M
dk

tr(Z) vec(Idk
). Notice that vec∗(Idk

) vec(Z) = tr(Z) and we arrive at the conclusion.

Therefore, for the objective function we have:

E(w) =
1

2

∑
h

⟨R̃h, S⟩2F =
M

2

∑
k ̸=0

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 (20)

Special case of quadratic activation. If σ(x) = x2, then we have S = (u◦u)1⊤+1(v◦v)+uv⊤

and thus Ŝ = ûv̂∗, where û = Q∗u and v̂ = Q∗v. Therefore, since Q∗1 = 0, Ŝk,r = ûk,rv̂
∗
k,r and

tr(Ŝk,r) = û∗
k,rv̂k,r. Therefore, with Cauchy-Schwarz inequality, we have

E =
1

2

∑
h

⟨R̃h, S⟩2F =
M

2

∑
k ̸=0

1

dk

∣∣∣∑
r

û∗
k,rv̂k,r

∣∣∣2 ≤ M

2

∑
k ̸=0

1

dk

(∑
r

|ûk,r|2
)(∑

r

|v̂k,r|2
)
(21)

Let ak =
∑

r |ûk,r|2, bk =
∑

r |v̂k,r|2, and ck = ak + bk ≥ 0. Then we have:

E =
1

2

∑
h

⟨R̃h, S⟩2F ≤ M

2

∑
k ̸=0

akbk
dk

≤ M

8

∑
k ̸=0

c2k
dk

, subject to
∑
k ̸=0

ck = 1 (22)

which has one global maxima (i.e., ck0 = 1 for k0 = argmink dk) and multiple local maxima. The
maximum is achieved if and only if ûk0,r = ±v̂k0,r for all r and

∑
r |ûk0,r|2 =

∑
r |v̂k0,r|2 = 1/2.

Local maxima. For each irreducible representation k0, ck0
= 1 is a local maxima. This is because

for small perturbation ϵ that moves the solution from ck = I(k = k0) to c′k =

{
1− ϵ if k = k0
ϵk if k ̸= k0

with ϵk ≥ 0 and
∑

k ̸=k0
ϵk = ϵ, for E = E({ck}) and E ′ = E({c′k}) we have:

E ′ =
M

8

∑
k ̸=0

(c′k)
2

dk
=

M

8

 (ck0
− ϵ)2

dk0

+
∑

k ̸=k0,0

ϵ2k
dk

 (23)

≤ M

8

(
c2k0

dk0

− 2ϵ

dk0

)
+O(ϵ2) <

M

8

c2k0

dk0

=
M

8

∑
k ̸=0

c2k
dk

= E (24)

All local maxima are flat, since we can always move around within ûk,r and v̂k,r, while the objective
function remains the same.

Optimizing in Real domain. The above analysis uses complex irreducible representations. For real
w, Ŝk,r will be a complex conjugate of Ŝ−k,r for conjugate irreducible representations k and −k.
This means that we can partition the sum in Eqn. 20 into real and complex parts:

E(w) =
M

2

∑
k ̸=0,k real

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 +M

∑
k ̸=0,k complex, take one

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 (25)

The above equation holds since Rg is real, and for any complex irreducible representation k, its
conjugate representation −k is also included. Therefore, to optimize E in the real domain R, we
can just optimize only on the real part plus the complex part taken one of the conjugate pair in the
complex domain C.

Zero-meaned one hot representation. Note that if we use zero-meaned one hot representation
ẽh = P⊥

1 eh, then Rh1 ẽh2 = ẽh1h2 and P ẽh = ẽh−1 still hold, and X̃h = P⊥
1 Xh = P⊥

1 [R⊤
h , P ] =

[R⊤
h , P ][P⊥

1 ;P⊥
1 ]. This means that we can still use Xh but enforce zero-meaned constraints on u

and v, which is already included since Q∗1 = 0.
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Corollary 1 (Flatness of local maxima of E for group input). Local maxima of E for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

Proof. For Abelian group H with |H| = M > 2, all irreducible representations are 1-dimensional,
and at least one of it is complex. Since C is treated as 2D space in optimization, it has at least 1
degree of freedom to change without changing its function value (Eqn. 25). So the Hessian has at
least 1 zero eigenvalue. For non-Abelian group, there is at least one irreducible representation k with
dimension greater than 1, which means it has at least 1 degrees of freedom to change Ŝk,r without
changing |

∑
r tr(Ŝk,r)|2 and thus its function value (Eqn. 25). So the Hessian has at least 1 zero

eigenvalue.

A.2 RECONSTRUCTION POWER OF LEARNED FEATURES (SEC. 5.4)

Theorem 3 (Target Reconstruction). Assume (1) E is optimized in complex domain C, (2) for each
irrep k, there are m2

kd
2
k pairs of learned weights w = [u;±Pu] whose associated rank-1 matrices

{uu∗} form a complete bases for Hk and (3) the top layer V also learns with η = 0, then Ŷ = Ỹ .

Proof. For each nontrivial irrep k, let Πk be the central idempotent projector onto the isotypic
subspace Hk = Imk

⊗ Cdk (for the regular rep, mk = dk). Let End(Hk) be the space of all linear
operators that map Hk to itself. Note that the dimensionality of Hk is Dk := mkdk.

Let wj = [uj , Pvj ] be the weights learned by optimizing the energy function E with quadratic
activation σ(x) = x2. From Thm. 2, we know that at local optima, uj = ±vj and 1⊤uj = 0.
Therefore, the feature f̃j,h ∈ RM is given by (◦ denotes the Hadamard product)

f̃j,h = ±2 (R⊤
h uj) ◦ uj + (R⊤

h uj)
◦2 − 1

M

∑
h

(R⊤
h uj)

◦2

The third term u◦2 is a constant across all h and was removed in the zero-meaned projection. By
our assumption we have node j and j′ with both positive and negative signs. So 1

2

(
f̃j,h − f̃j′,h

)
=

2 (R⊤
h uj) ◦ uj . If a linear representation of {f̃j} can perfectly reconstruct the target Ỹ , so does the

original representation. So for now we just let feature f̃j,h = 2 (R⊤
h uj) ◦ uj = 2diag(R⊤

h uju
∗
j ).

Let Uj := uju
∗
j , which is Hermitian in End(Hk), then f̃j,h = 2diag(R⊤

h Uj).

Gram block diagonalization. For each irrep k, let Jk be the set of all node j that converges to the
k-th irrep. For any Hermitian operator U supported in Hk (i.e. U = ΠkUΠk), define the centered
quadratic cross-feature

cU (h) := 2 diag(R⊤
h U) ∈ CM ,

and write cUj = [cUj (h)]h∈H ∈ CM2

as a concatenated vector.

For U, V ∈ End(Hk), define G(U, V ) :=
∑

h∈H⟨cU (h), cV (h)⟩. On Hk, Rh = Imk
⊗ Ck(h), so

the map U 7→ cU (h) is linear and the bilinear form G is invariant under U 7→ (I ⊗ Ck(g))U(I ⊗
Ck(g))

∗. By Schur’s lemma, G(U, V ) = αk⟨U, V ⟩ = αk tr(UV ∗) for some scalar αk. Evaluating
on rank-one U = V (or by a direct calculation) gives αk = 4, hence∑

h

⟨cU (h), cV (h)⟩ = 4 tr(UV ∗).

For Uj = uju
∗
j and Uℓ = uℓu

∗
ℓ from Hk and Hℓ with k ̸= ℓ, we have∑

h

⟨cUj (h), cUℓ
(h)⟩ = 41⊤

∑
h

diag(R⊤
h uju

∗
j ) ◦ diag(R⊤

h ūℓū
∗
ℓ )

= 41⊤
∑
h

(R⊤
h uj) ◦ ūj ◦R⊤

h ūℓ ◦ uℓ = 41⊤

[(∑
h

Rh

)
(uj ◦ ūℓ)

]
◦ ūj ◦ uℓ

= 4|u∗
juℓ|2
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This means that ⟨f̃j , f̃ℓ⟩ = ⟨cUj
, cUℓ

⟩ = 0. And thus the Gram matrix G := F̃⊤F̃ is block diagonal
with each block Gk corresponding to an irrep subspace k. Here Gk ∈ CNk×Nk . Note that since
we sample D2

k = m2
kd

2
k weights, then {Uj}j∈Jk

becomes a complete set of bases (not necessarily
orthogonal bases) and thus Gk is invertible.

Right-hand side. For any U ∈ End(Hk),

rU (h
′) =

∑
x

cU (h
′)x = 2 tr

(
(ΠkRh′Πk)U

)
= 2 tr

(
(Imk

⊗ Ck(h
′))U

)
.

and we have [f̃⊤j Y ]h′ = [f̃⊤j Ỹ ]h′ = rUj
(h′).

Solve LS. Now we try to solve the LS problem GV = F̃⊤Ỹ . Due to the block diagonal nature, this
can be solved independently for each Gk. Consider GkVk = F̃⊤

k Ỹ . Here F̃k = [f̃j ]j∈Jk
collects the

subset column Jk from F̃ .

Therefore, Vk = G−1
k F̃⊤

k Ỹ and vj(h
′) as the (j, h′) entry of Vk, has vj(h′) =

∑
l[G

−1
k ]jlrUl

(h′) =

2
∑

l[G
−1
k ]jl tr

(
(Imk

⊗ Ck(h
′))Ul

)
. Then we have Ŷ (k) = F̃kVk:

Ŷ
(k)
(·,h), h′ =

∑
j∈Jk

vj(h
′) cUj

(h) = 4
∑
j∈Jk

∑
l

[G−1
k ]jl tr

(
(I ⊗ Ck(h

′))Ul

)
· diag(R⊤

h Uj).

By linearity in U and completeness of {Uj} (the Hermitian bases span all operators in Hk), we have
for any A ∈ End(Hk):

4
∑
jl

[G−1
k ]jl tr(AUl) diag(R⊤

h Uj) = 4diag

R⊤
h

∑
jl

[G−1
k ]jl⟨A,Ul⟩Uj

 = diag(R⊤
h A)

The last equality holds by noticing that ⟨A,Ul⟩ = vec∗(Ul) vec(A) and thus
4
∑

jl[G
−1
k ]jl⟨A,Ul⟩Uj = A. Take A = I ⊗ Ck(h

′) = ΠkRh′Πk ∈ End(Hk), and we
have:

Ŷ
(k)
(·,h), h′ = diag

(
R⊤

h ΠkRh′Πk

)
(h, h′ ∈ H).

To see why Ŷ = Ỹ , we have:

Ŷ
(k)
(·,h),h′ = diag

(
R⊤

h (ΠkRh′Πk)
)
⇒
∑
k ̸=0

Ŷ
(k)
(·,h),h′ = diag

(
R⊤

h

(∑
k ̸=0

ΠkRh′Πk

))
.

Since
∑

k Πk = I and ΠkRh′ = Rh′Πk,∑
k ̸=0

ΠkRh′Πk = Rh′ −Π0.

where Π0 = 1
M 1M1⊤

M is the central idempotent projector onto the trivial irrep. Thus

∑
k ̸=0

Ŷ
(k)
(·,h),h′ = diag(R⊤

h Rh′)− diag(R⊤
h Π0) =

{
(1− 1

M )1M , h = h′,

− 1
M 1M , h ̸= h′,

because diag(R⊤
h Rh′) = 1M iff h = h′ and 0 otherwise, while diag(R⊤

h Π0) = 1
M 1M for all h.

Hence
∑

k ̸=0 Ŷ
(k) = P⊥

1 Y = Ỹ .

Remark. The above proof also works for real w since we can always take a real decomposition of
Rh and all the above steps follow.

Property of the square term. With quadratic features the class-centered column for node j and
block h decomposes as F̃ = [A,B], where for B each column j (and block h) is bj,h := R⊤

h (u
◦2
j )−

18
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∥uj∥2
2

M 1M (the “square” part) and for A each column j (and block h) is aj,h := 2 (R⊤
h uj) ◦ uj (the

“cross” part we discussed above). The vector bj is entrywise mean-zero, i.e.
∑

x bj(x) = 0 for all
h, hence it has zero correlation with any class-centered target column Ỹ(·,h′) ∝ 1: (b⊤

j,hỸ )h′ =∑
x bj,h′(x) = 0. Moreover, under 1⊤uj = 1⊤uℓ = 0 one has

∑
h⟨bj,h,aℓ,h⟩ = 0. So the normal

equation becomes

F̃⊤F̃ V =

[
A⊤A A⊤B
B⊤A B⊤B

]
V =

[
A⊤Ỹ

B⊤Ỹ

]
which gives [

A⊤A 0
0 B⊤B

]
V =

[
A⊤Ỹ
0

]
So even with the square term B in F̃ , V will still have zero coefficient on them.

A.3 SCALING LAWS OF MEMORIZATION AND GENERALIZATION (SEC. 5.5)

Theorem 4 (Amount of samples to maintain local optima). If we select n ≳ d2kM log(M/δ) data
sample from H ×H uniformly at random, then with probability at least 1− δ, the empirical energy
function Ê keeps local maxima for dk-dimensional irreps (Thm. 2).

Proof. Overview. We keep the setting and notation of the theorem in the prompt (group H , |H| =
M , quadratic activation, S as defined there, zh = ⟨Rh, S⟩ = tr(R⊤

h S), zero-mean removal already
folded into R̃h). We analyze random row subsampling and show that the empirical objective keeps
the same local-maxima structure with n ≳ M log(M/δ) retained rows.

Setup. There are M2 rows indexed by pairs (h1, h2) ∈ H × H , with target h = h1h2. For each
h ∈ H , exactly M rows map to h; we index them by j ∈ [M ] after ordering by h1 as in the proof,
and write

sh,j :=
(
R⊤

h S
)
jj
. so that zh =

M∑
j=1

sh,j = ⟨Rh, S⟩.

We subsample rows independently with keep-probability p ∈ (0, 1]. Let ξh,j ∈ {0, 1} be the keep
indicator for the row (h, j):

Pr(ξh,j = 1) = p, i.i.d. over (h, j).

The number of kept rows for target h is

m̂h :=

M∑
j=1

ξh,j ∼ Bin(M,p), E[m̂h] = pM, Var(m̂h) = Mp(1− p).

Estimator for zh. We use the linear/unbiased (Horvitz–Thompson) target-wise estimator

ẑh :=
1

p

M∑
j=1

ξh,j sh,j . ⇒ E[ẑh |S] = zh.

Define the diagonal sampling matrix

WHT
h := diag

(ξh,1
p

, . . . ,
ξh,M
p

)
, so ẑh = tr

(
R⊤

h SWHT
h

)
= ⟨RhW

HT
h , S⟩.

The empirical Gram operator. Set the normalized per-target weight

wh :=
m̂h

pM
, E[wh] = 1, Var(wh) =

1− p

pM
≤ 1

pM
.

Decompose WHT
h into its mean and zero-mean parts:

WHT
h = whI + ∆h, tr(∆h) = 0, E[∆h | m̂h] = 0.
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Therefore

ẑh = ⟨Rh(whI +∆h), S⟩ = wh zh + εh, εh := ⟨Rh∆h, S⟩, E[εh |S, m̂h] = 0.
(26)

Using the decomposition

zh =
∑
k ̸=0

mk∑
r=1

tr
(
C∗

k,h Ŝk,r

)
=
∑
k ̸=0

mk∑
r=1

vec(Ŝk,r)
∗ vec(Ck,h),

we obtain ∑
h

ẑ2h =
∑
h

(
whzh + εh

)2
=
∑
h

w2
hz

2
h︸ ︷︷ ︸

signal

+ 2
∑
h

whzhεh︸ ︷︷ ︸
mixed

+
∑
h

ε2h︸ ︷︷ ︸
noise

. (27)

The signal term can be written as a quadratic form over irrep blocks:∑
h

w2
hz

2
h =

∑
(k,r),(k′,r′)

vec(Ŝk,r)
∗
[∑

h

w2
h vec(Ck,h) vec(Ck′,h)

∗
]
vec(Ŝk′,r′). (28)

Recall that the full-data operator is

Ak,k′ :=
1

M

∑
h

Ck′,h ⊗ Ck,h.

and vec(Ck,h) vec(Ck′,h)
∗ is just a column and row reshuffling of Ck′,h ⊗ Ck,h. In the following

we will study approximation errors of Ak,k′ instead. Let

Â
(2)
k,k′ :=

1

M

∑
h

w2
h Ck′,h ⊗ Ck,h and Âk,k′ :=

1

M

∑
h

wh Ck′,h ⊗ Ck,h

the second- and first-weighted empirical Gram operators, respectively. By construction, E[Âk,k′ ] =

Ak,k′ and E[Â(2)
k,k′ ] = Ak,k′ + 1−p

pM Ak,k′ (a tiny bias of order 1/(pM)).

Error bounds for each (k, k′) block. We will control three deviations, uniformly over all (k, k′):

E1 :
∥∥∥Âk,k′ − Ak,k′

∥∥∥
op

≤ c1

√
log(M/δ)

Mp
, (29)

E2 :
∥∥∥Â(2)

k,k′ − Âk,k′

∥∥∥
op

≤ c2

√
log(M/δ)

Mp
+

c′2
Mp

, (30)

E3 :

∣∣∣∣∣∑
h

whzhεh

∣∣∣∣∣ ≤ c3∥z∥2

√
M log(M/δ)

p
,

∑
h

ε2h ≤ c4
M log(M/δ)

p
, (31)

for numerical constants ci, c′i, with probability at least 1− δ/3.

Tool: Matrix Bernstein (self-adjoint dilation form) (Tropp, 2012). Let {Xi} be independent,
mean-zero random d× d matrices with ∥Xi∥ ≤ L and ∥

∑
i E[XiX

∗
i ]∥ ≤ v. Then for all t > 0,

Pr

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ t

)
≤ 2d exp

(
− t2/2

v + Lt/3

)
,

Proof of (29). Fix (k, k′) and define Bh := Ck′,h ⊗ Ck,h (unitary, so ∥Bh∥ = 1). Consider

Xh :=
1

M
(wh − 1)Bh, E[Xh] = 0, ∥Xh∥ ≤ |wh − 1|

M
≤ 1

M
.

We have

E[XhX
∗
h] =

E[(wh − 1)2]

M2
BhB

∗
h =

Var(wh)

M2
I ⪯ 1

pM3
I.
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Summing over h gives variance proxy v ≤ M · 1
pM3 = 1

pM2 . Since d ≤ M , with probability at least
1− δ/3, Matrix Bernstein yields

∥∥∥Âk,k′ − Ak,k′

∥∥∥
op

=

∥∥∥∥∥∑
h

Xh

∥∥∥∥∥ ≲

√
log(M/δ)

Mp
,

which is (29).

Proof of (30). Write

Â
(2)
k,k′ − Âk,k′ =

1

M

∑
h

(w2
h − wh)Bh =

1

M

∑
h

(
(wh − 1)2 + (wh − 1)

)
Bh︸ ︷︷ ︸

:=Σ1+Σ2

.

For Σ2 we reuse the argument of (29). For Σ1, note that E[(wh − 1)2] = Var(wh) ≤ 1/(pM),
and (wh − 1)2 is sub-exponential with scale O(1/(pM)), so matrix Bernstein again gives that with
probability at least 1− δ/3,

∥Σ1∥op ≲

√
log(M/δ)

Mp
+

1

Mp
.

Combining yields (30).

Bounds for the mixed and noise terms in (31). Conditional on S and {wh}, the {εh} are inde-
pendent, mean-zero, and

|εh| =
∣∣⟨Rh∆h, S⟩

∣∣ ≤ ∥Rh∆h∥F ∥S∥F ≤ ∥∆h∥F ∥S∥F , E[ε2h |S,wh] ≲
∥S∥2F
p

.

Hence by scalar Bernstein (and Cauchy–Schwarz for the mixed sum),∣∣∣∣∣∑
h

whzhεh

∣∣∣∣∣ ≤ ∥w∥∞ ∥z∥2 ∥ε∥2 ≲ ∥z∥2

√
M log(M/δ)

p
,

∑
h

ε2h ≲
M log(M/δ)

p
,

with probability at least 1− δ/3, which is (31).

Combine the above three bounds, we know that with probability at least 1− δ, (29)–(31) hold at the
same time.

Stability of local maxima. For the quadratic case (after mean removal), with the collinear and equal
length u and v required by local maxima, E can be written as a positive semidefinite quadratic in
the block masses ck (Eqn. 22):

E(c) =
M

8

∑
k ̸=0

c2k
dk

,
∑
k ̸=0

ck = 1, ck ≥ 0.

The empirical energy has the form

Ê(c) =
M

8
c⊤(D + E) c + (terms independent of c),

where D = diag(1/dk) and E is the symmetric perturbation induced by replacing Ak,k′ with Â
(2)
k,k′

and by the mixed/noise terms. By (29)–(31),

∥E∥op ≲

√
log(M/δ)

Mp
+

1

Mp
(32)

with probability at least 1− δ.
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Directional slope at a vertex (no gap needed). Consider a pure-irrep vertex c = ea and leak ε
mass to any other coordinate b ̸= a: c′a = 1− ε, c′b = ε, others 0. Population change:

∆E =
M

8

(
(1− ε)2 − 1

da
+

ε2

db

)
= − M

4da
ε + O(ε2).

Hence every leakage direction is strictly downhill at rate M
4da

, even if multiple dk tie. Therefore, a

first-order approximation of ∆Ê is

∆Ê = ∆E +
M

8
∆
(
c⊤Ec

)
= − M

4da
ε + O(ε2) +

M

4
O
(
∥E∥op ε

)
.

Therefore ∆Ê < 0 for all sufficiently small ε > 0 provided
M

4
∥E∥op <

M

4da
⇐⇒ ∥E∥op <

1

da
.

Combining with (32), a sufficient sampling condition is√
log(M/δ)

Mp
+

1

Mp
<

1

C da
⇒ Mp ≳ d2a log

M

δ
,

for a universal numerical constant C. Since the total number of kept rows is n = pM2, this is
exactly

n ≳ M d2a log
M

δ

(up to universal constants). Under this condition, with probability at least 1 − δ, every
pure-irrep vertex remains a strict local maximum of the empirical objective (energies shift by
O(
√
log(M/δ)/(Mp))). When several irreps have the same dk (tied energies), which one is the

global maximizer may swap, but the local-maxima set is preserved.

A.4 MEMORIZATION

Setting. Fix a group element h. The admissible training pairs are (g, g−1h) for g ∈ H with
probabilities pg := pg, g−1h and a unique maximum at g∗, i.e., pg∗ > pg for all g ̸= g∗. Let
w = [u; v] ∈ R2M with budget ∥u∥22 + ∥v∥22 = 1. Define the pair-sums sg := ug + vg−1h ≥ 0.
Then

∑
g s

2
g ≤ 2 and the (single-target) objective reduces to

F (s) :=
∑
g

pg σ(sg) subject to sg ≥ 0,
∑
g

s2g ≤ 2,

where σ ∈ C1([0,∞)) is strictly increasing on (0,∞). Maximizing the energy E is equivalent (up
to a fixed positive factor) to maximizing F .
Lemma 5 (KKT characterization via ϕ = σ′/x). Assume σ′(x) > 0 for x > 0, and define ϕ(x) :=
σ′(x)/x for x > 0. Let s⋆ be an optimal solution. Then there exists λ ≥ 0 such that for each g:

pg ϕ
(
s⋆g
)

= 2λ, if s⋆g > 0, (33)

Moreover, the budget is tight:
∑

g(s
⋆
g)

2 = 2 (hence λ > 0). If ϕ is strictly monotone on (0,∞),
then for every active coordinate s⋆g > 0,

s⋆g = ϕ−1

(
2λ

pg

)
. (34)

Proof. Consider the Lagrangian L(s, λ, µ) =
∑

g pg σ(sg)−λ(
∑

g s
2
g−2)−

∑
g µgsg , with λ ≥ 0,

µg ≥ 0. Stationarity gives pg σ′(sg)−2λsg−µg = 0. If sg > 0, then µg = 0 and pg σ
′(sg) = 2λsg ,

i.e., pg ϕ(sg) = 2λ. If sg = 0, complementary slackness allows µg ≥ 0 and the stationarity
reads pg σ

′(0) − µg = 0. Interpreting ϕ(0+) := limx↓0 σ
′(x)/x (possibly +∞), the inequality

pg ϕ(0
+) ≤ 2λ encodes the fact that activating sg > 0 would violate the KKT balance. Since

σ′ > 0 and the objective is increasing in each sg , the budget must be tight at optimum, hence∑
g s

2
g = 2 and λ > 0. If ϕ is strictly monotone, (33) uniquely determines sg as in (34).
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Lemma 6 (Memorization vs. spreading by ϕ-monotonicity). Under the setup above and assuming
ϕ(x) = σ′(x)/x is continuous on (0,∞):

(A) If ϕ is nondecreasing on (0,
√
2], then the unique maximizer is the memorization (peaked)

solution
s⋆g∗ =

√
2, s⋆g ̸=g∗ = 0,

realized by u = 1√
2
eg∗ , v = 1√

2
e(g∗)−1h.

(B) If ϕ is strictly decreasing on (0,∞), then the unique maximizer spreads and is given by

s⋆g = ϕ−1
(2λ
pg

)
(for all g with 2λ/pg < ϕ(0+)),

and s⋆g = 0 for any g with 2λ/pg ≥ ϕ(0+) (if ϕ(0+) < ∞). The multiplier λ > 0 is
uniquely determined by the budget

∑
g(s

⋆
g)

2 = 2. In particular, if ϕ(0+) = ∞ (e.g., ReLU

on [0,∞): ϕ(x) = 1/x; SiLU: ϕ(x) = sigmoid(x)
x + sigmoid(x)(1 − sigmoid(x))), then

all coordinates are strictly positive and

pi > pj =⇒ s⋆i > s⋆j > 0.

Proof. (A) Peaking when ϕ is nondecreasing. Take any feasible s with two positive coordinates
si ≥ sj > 0 and pi > pj . Define a squared-mass transfer preserving

∑
s2g: si(t) :=

√
s2i + t,

sj(t) :=
√
s2j − t, and Ψ(t) := piσ(si(t)) + pjσ(sj(t)). Then

Ψ′(t) = 1
2

[
piϕ(si(t))− pjϕ(sj(t))

]
≥ 1

2

[
(pi − pj)ϕ(sj(t))

]
> 0,

because si(t) ≥ sj(t) and ϕ is nondecreasing. Hence Ψ increases with t, so any two-support point
can be strictly improved by pushing mass to the larger p. Iterating this collapse yields the single-
support boundary sg∗ =

√
2, others 0. Uniqueness follows from strict inequality and the uniqueness

of pg∗ .

(B) Spreading when ϕ is strictly decreasing. By Lemma 5, the optimal active coordinates satisfy
pgϕ(s

⋆
g) = 2λ. Since ϕ is strictly decreasing, ϕ−1 exists and is strictly decreasing, yielding s⋆g =

ϕ−1(2λ/pg) on the active set; complementary slackness gives the thresholding when ϕ(0+) < ∞.
The budget

∑
g(s

⋆
g)

2 = 2 fixes λ, and strict monotonicity implies the profile is strictly ordered by
pg .

Theorem 5 (Memorization solution). Let ϕ(x) := σ′(x)/x and assume σ′(x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g−1h) for one target h with probability
pg . Then the global optimal of E is a memorization solution, either (1) a focused memorization w =
1√
2
(eg∗ , eg∗−1h) for g∗ = argmax pg if ϕ is nondecreasing, or (2) a spreading memorization with

w = 1
2

∑
g sg[eg, eg−1h], if ϕ is strictly decreasing. Here sg = ϕ−1(2λ/pg) and λ is determined by∑

g s
2
g = 2. No other local optima exist.

Proof. The conclusion follows directly from Thm. 6.

Some discussions. We know that

• For power activations σ(x) = xq (q ≥ 2) have ϕ(x) = q xq−2 nondecreasing; Thm. 6(A)
gives memorization. In all these cases, the peaked solution is realized by even split u =
1√
2
eg∗ , v = 1√

2
e(g∗)−1h; any profile s⋆ can be realized with, e.g., ug = vg−1h = s⋆g/2.

• ReLU on [0,∞): σ(x) = x, ϕ(x) = 1/x strictly decreasing; Thm. 6(B) yields s⋆ ∝ p.

• SiLU/Swish/Tanh/Sigmoid: ϕ strictly decreasing with ϕ(0+) = ∞; Thm. 6(B) gives a
strictly ordered spread s⋆g = ϕ−1(2λ/pg).
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B INTERACTIVE FEATURE LEARNING (SEC. 6)

B.1 FEATURE REPULSION (SEC. 6.1)

Theorem 6 (Repulsion of similar features). The j-th column of F̃B is given by [F̃B]j = bjj f̃j +∑K
l=1 bjl f̃l, where sign(bjl) = −sign(f̃⊤j Pη,−jl f̃l) and Pη,−jl := I − F̃−jl(F̃

⊤
−jlF̃−jl + ηI)−1F̃⊤

−jl

is a projection matrix constructed from F̃−jl, which is F̃ excluding the l-th and j-th columns.

Proof. Let Q := (F̃⊤F̃ + ηI)−1. Without loss of generality (by a column permutation similarity
that preserves signs of the corresponding inverse entries), reorder columns so that the pair (j, ℓ)
becomes (1, 2). Write the partition

F̃ =
[
f̃1 f̃2 F̃r

]
, F̃r := F̃−(1,2) ∈ Rn×(K−2).

Then the ridge Gram matrix G = F̃⊤F̃ + ηIK acquires the 2× 2 / remainder block form

G =

a b u⊤

b c v⊤

u v H

 , where
a := f̃⊤1 f̃1 + η, b := f̃⊤1 f̃2, u := F̃⊤

r f̃1,

c := f̃⊤2 f̃2 + η, v := F̃⊤
r f̃2, H := F̃⊤

r F̃r + ηI.

Because η > 0, H is positive definite and hence invertible. The inverse of a block matrix is governed
by the Schur complement. Define the 2× 2 Schur complement

S :=

[
a b
b c

]
−
[
u⊤

v⊤

]
H−1 [u v] =

[
α β
β γ

]
,

where the entries are

α = a− u⊤H−1u, β = b− u⊤H−1v, γ = c− v⊤H−1v.

A standard block inversion formula (e.g., via Schur complements) yields that the top-left 2 × 2
block of G−1 equals S−1. In particular, the off–diagonal entry of Q = G−1 for indices (1, 2) is the
off–diagonal entry of S−1. Since

S−1 =
1

αγ − β2

[
γ −β
−β α

]
with αγ − β2 > 0

(because G ≻ 0 implies S ≻ 0), we obtain

q12 = (S−1)12 = − β

αγ − β2
.

It remains to identify α, β, γ in terms of ridge residuals with respect to F̃r. Note that

H = F̃⊤
r F̃r + ηI =⇒ F̃rH

−1F̃⊤
r = In − Pη,r,

by the definition Pη,r := I − F̃rH
−1F̃⊤

r . Therefore

α = f̃⊤1 f̃1 + η − f̃⊤1 F̃rH
−1F̃⊤

r f̃1 = η + f̃⊤1

(
I − F̃rH

−1F̃⊤
r

)
f̃1 = η + f̃⊤1 Pη,r f̃1,

β = f̃⊤1 f̃2 − f̃⊤1 F̃rH
−1F̃⊤

r f̃2 = f̃⊤1

(
I − F̃rH

−1F̃⊤
r

)
f̃2 = f̃⊤1 Pη,r f̃2,

γ = η + f̃⊤2 Pη,r f̃2.

Substituting these identities into the expression for q12 gives

q12 = − f̃⊤1 Pη,r f̃2(
η + f̃⊤1 Pη,r f̃1

)(
η + f̃⊤2 Pη,r f̃2

)
−
(
f̃⊤1 Pη,r f̃2

)2 .
The denominator is strictly positive (it is the determinant of the positive definite 2 × 2 matrix S),
hence

sign(q12) = − sign
(
f̃⊤1 Pη,r f̃2

)
.
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Undoing the preliminary permutation shows the same formula for the original indices (j, ℓ), which
proves the sign claim.

Finally, since Q is the inverse Gram with ridge, the j-th column of F̃Q is

(F̃Q)•j =

K∑
m=1

qmj f̃m = qjj f̃j +
∑
m̸=j

qmj f̃m.

Because qmj has sign opposite to the ridge-residual similarity f̃⊤mPη,−mj f̃j , features that are (resid-
ually) similar to f̃j enter with negative coefficients and hence subtract from (F̃Q)•j along those di-
rections—“repelling” similar features and promoting specialization. This completes the proof.

B.2 TOP-DOWN MODULATION (SEC. 6.2)

Theorem 7 (Top-down Modulation). For group arithmetic tasks with σ(x) = x2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient GF ∝ (ΦS ⊗1M )(ΦS ⊗1M )∗F
(see proof for the definition of ΦS ), which yields a modified ES that only has local maxima on the
missing irreps k /∈ S.

Proof. Fix a nontrivial isotype (irrep) k and we have

Ŷ
(k)
(·,h), h′ = diag

(
R⊤

h (ΠkRh′Πk)
)
.

Since Πk is central and idempotent, it commutes with Rh′ and Π2
k = Πk, hence

ΠkRh′Πk = ΠkRh′ = Rh′Πk.

Expand the central idempotent in the group algebra using unitary irreps {Ck} and characters χk:

Πk =
dk
M

∑
g∈H

χk(g)Rg =
dk
M

∑
g∈H

χk(g
−1)Rg. (35)

Therefore
ΠkRh′ =

dk
M

∑
g∈H

χk(g)RgRh′ =
dk
M

∑
g∈H

χk(g)Rgh′ .

Taking the diagonal after the left shift by R⊤
h gives

diag
(
R⊤

h (ΠkRh′)
)
=

dk
M

∑
g∈H

χk(g) diag
(
R⊤

h Rgh′
)
.

Since R⊤
h Rgh′ = Rh−1gh′ , we have

diag(R⊤
h Rgh′) =

{
1M , h−1gh′ = e,

0, otherwise.

Only the unique term g = hh′−1 survives, so

diag
(
R⊤

h (ΠkRh′)
)
=

dk
M

χk(hh′−1)1M =
dk
M

χk(h
′−1h)1M ,

where we used χk(a) = χk(a
−1) for unitary irreps. Consequently,

Ŷ
(k)
(rows for block h), h′ =

dk
M

χk(h
′−1h)1M .

Summing over a subset S of isotypes yields

Ŷ(rows for block h), h′ =
∑
k∈S

Ŷ
(k)
(rows for block h), h′ =

1

M

∑
k∈S

dk χk(h)χk(h′)1M .
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Since summing over all k ̸= 0 leads to Ŷ = Ỹ (Thm. 3), for the residual Ŷ − Ỹ we have

[Ŷ − Ỹ ](rows for block h), h′ =
1

M

∑
k ̸=0,k/∈S

dk χk(h)χk(h′)1M .

which means that Ŷ − Ỹ = ΦSΦ
∗
S ⊗1M , where ΦS :=

[√
dk

M χk(·)
]
k ̸=0,k/∈S

∈ CM×(κ(H)−|S|−1).

Since Ỹ = P⊥
1 ⊗ 1M , we have:

GF ∝ (Ŷ − Ỹ )Ỹ ⊤F =
(
ΦSΦ

∗
S ⊗ 1M1⊤

M

)
F = (ΦS ⊗ 1M ) (ΦS ⊗ 1M )

∗
F

Therefore, the energy function E now becomes

ES =
1

2
∥(ΦS ⊗ 1M )∗F∥22 =

1

2
∥Φ∗

Sz∥22

where z = [zh] = [⟨Rh, S⟩F ] ∈ CM defined in Eqn. 13. Computing each row k in Φ∗
Sz and use the

property of projection matrix Πk (Eqn. 35), we have:

[Φ∗
Sz]k = ⟨

∑
h∈H

√
dk
M

χk(h)Rh, S⟩ =
√

M

dk
⟨Πk, S⟩

In the Q space, we have ⟨Πk, S⟩ =
∑mk

r=1 tr(Ŝk,r) and therefore

ES =
1

2

∑
k ̸=0,k/∈S

M

dk

∣∣⟨Πk, S⟩
∣∣2 =

M

2

∑
k ̸=0,k/∈S

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2

which is exactly the same form as the decomposition (Eqn. 20) in Thm. 2 (but a much cleaner
derivation). Therefore, all the local maxima of ES are still in the same form as Thm. 2, but we just
remove those local maxima that are in isotype/irreps k ∈ S, and focus on missing ones.

B.3 MUON OPTIMIZERS LEAD TO DIVERSITY (SEC. 6.3)

Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
joint energy Ejoint(W ) =

∑
j E(wj) and has critical points iff the original gradient GW vanishes.

Proof. Let G = [∇w1
E ,∇w2

E , . . . ,∇wK
E ] be the gradient matrix. Let G = UDV ⊤ be the singu-

lar value decomposition. Then Muon direction is Ĝ = UV ⊤ and thus the inner product between Ĝ
and G is

⟨Ĝ,G⟩F = tr(Ĝ⊤G) = tr(V U⊤UDV ⊤) = tr(D) ≥ 0 (36)

So Muon always follows the gradient direction and improve the objective. Furthermore, ⟨Ĝ,G⟩F =
0 iff D = 0, which means that G = 0. So the stationary points of the Muon dynamics and the
original gradient dynamics are identical.

Lemma 7 (Proposition of Fréchet / log-Gumbel selection). Let x1, . . . , xn be i.i.d. positive random
variables with Fréchet(α) CDF

F (x) = exp
(
− x−α

)
, x > 0, α > 0,

and let w1, . . . , wn > 0 be fixed weights. Define

i∗ = arg max
1≤j≤n

wj xj .

Then

Pr
(
i∗ = i

)
=

wα
i∑n

j=1 w
α
j

, i = 1, . . . , n.

In particular, when α = 1,

Pr
(
i∗ = i

)
=

wi∑n
j=1 wj

.
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Proof. Set Yj := wjxj . For t > 0,

Pr
(
max

j
Yj ≤ t

)
=

n∏
j=1

F
( t

wj

)
= exp

(
−

n∑
j=1

(wj/t)
α
)
.

Differentiating gives the density of the maximum:

fmax(t) =
d

dt
Pr
(
max

j
Yj ≤ t

)
=
( n∑

j=1

αwα
j t−α−1

)
exp
(
−

n∑
j=1

(wj/t)
α
)
.

The density that “i achieves the maximum at level t” is

fYi
(t)
∏
j ̸=i

F
( t

wj

)
= αwα

i t−α−1 exp
(
−

n∑
j=1

(wj/t)
α
)
.

Hence the conditional probability that i is the argmax given maxj Yj = t is

Pr
(
i∗ = i | max

j
Yj = t

)
=

αwα
i t−α−1∑n

j=1 αwα
j t−α−1

=
wα

i∑n
j=1 w

α
j

,

which is independent of t. Averaging over t yields the stated result.

Lemma 8 (The properties of the dynamics in Eqn. 10). The dynamics always converges to ζl∗ for
l∗ = argmaxl µlαl(0). That is, the initial leader always win.

Proof. Note that due to orthogonality of {ζl}, the dynamics can be written as

α̇j = µjα
2
j , µj > 0,

with the constraint
∑L

j=1 α
2
j ≤ 1. Define

rj := µjαj .

Interior. In the interior, we have

ṙj = µjα̇j = µj(µjα
2
j ) = r2j .

For any pair i, k define the ratio
ρik :=

ri
rk

.

Its derivative is

ρ̇ik =
ṙi
rk

− ri
r2k

ṙk =
r2i
rk

− ri
r2k

r2k = ρik(ri − rk).

Equivalently,
d

dt
log

ri
rk

= ri − rk. (1)

Thus if rℓ(0) > rj(0), then d
dt log(rℓ/rj) > 0 and ρℓj(t) is strictly increasing. Hence a strict leader

in r cannot be overtaken in the interior.

Boundary region (
∑

j α
2
j = 1). On the unit sphere, the projected dynamics is

α̇j = µjα
2
j − λαj , λ =

L∑
k=1

µkα
3
k.

In terms of rj ,

ṙj = rj(rj − ν), ν =

L∑
k=1

α2
krk =

L∑
k=1

r2k
µ2
k

rk.

For the ratio ρik = ri/rk we again obtain

ρ̇ik = ρik(ri − rk) =⇒ d

dt
log

ri
rk

= ri − rk. (2)
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Monotonicity of ratios. From (1)–(2), if rℓ(0) > rj(0) then

d

dt
log

rℓ
rj

> 0 ∀t,

so ρℓj(t) = rℓ(t)/rj(t) is strictly increasing for every j ̸= ℓ. Thus a strict leader ℓ remains the
unique leader for all time.

Convergence to the vertex. Define weights

wj := α2
j =

r2j
µ2
j

,
∑
j

wj = 1.

Their dynamics is
ẇj = 2wj(rj − ν).

Taking ratios,
d

dt
log

wi

wk
= 2(ri − rk).

In particular, wℓ

wj
is strictly increasing for every j ̸= ℓ. Therefore

wj(t)

wℓ(t)
→ 0 (j ̸= ℓ),

implying wℓ(t) → 1 and wj(t) → 0. Hence

α(t) → eℓ as t → ∞.

Lemma 9 (Muon projection). For the matrix A = [Q,v] where Q is a column orthonormal matrix
and v is a vector with small magnitude, its Muon regulated version Â = [Â1, v̂] takes the following
form:

v̂ =

(
v⊥

∥v⊥∥
+

v∥

1 + ∥v⊥∥

)
+O(∥v⊥∥2) (37)

where v∥ = QQ⊤v and v⊥ = I −QQ⊤v.

Proof. Given A = [Q,B] with Q⊤Q = Ik, write B = QC + B⊥ where C := Q⊤B ∈ Rk×m and
B⊥ := (I −QQ⊤)B.

Let T := B⊤
⊥B⊥ ≻ 0. For c > 0 define

Â(c) = A (A⊤A)−1/c, Â(c) =
[
Â

(c)
1 , Â

(c)
2

]
.

We derive a first-order (in C) formula for the last block Â
(c)
2 .

The exact Gram matrix is

G := A⊤A =

[
Ik C
C⊤ C⊤C + T

]
= G0 +H, G0 := diag(Ik, T ), H :=

[
0 C
C⊤ C⊤C

]
.

Treat C as small. To first order in C we may drop the quadratic block:

H =

[
0 C
C⊤ 0

]
+ O(∥C∥2).

Diagonalizing T . Let T = UΛU⊤ with Λ = diag(λ1, . . . , λm), λj > 0. Define the block orthogo-
nal change of basis

P := diag(Ik, U) ⇒ G̃ := P⊤GP, G̃0 := P⊤G0P = diag(Ik,Λ), H̃ := P⊤HP =

[
0 C̃

C̃⊤ 0

]
,

where C̃ := C U . All first-order statements can be done in this basis and then mapped back by P .
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First-order Taylor Expansion. Now let’s do the Taylor expansion. Write

G̃ = G̃0 + H̃ = G̃
1/2
0

(
I + G̃

−1/2
0 H̃ G̃

−1/2
0︸ ︷︷ ︸

=:E

)
G̃

1/2
0 .

Since G̃0 = diag(Ik,Λ),

E =

[
0 C̃ Λ−1/2

Λ−1/2C̃⊤ 0

]
is O(∥C∥).

For the scalar function f(x) = x−1/c,

(I + E)−1/c = I − 1

c
E + O(∥E∥2).

Therefore

G̃−1/c = G̃
−1/2
0 (I + E)−1/c G̃

−1/2
0 = G̃

−1/c
0 − 1

c
G̃

−1/2
0 E G̃

−1/2
0 + O(∥C∥2).

Compute the blocks using G̃
−1/2
0 = diag(Ik,Λ

−1/2):

G̃
−1/2
0 E G̃

−1/2
0 =

[
0 C̃ Λ−1

Λ−1C̃⊤ 0

]
.

Hence, to first order,

G̃−1/c =

[
Ik 0
0 Λ−1/c

]
− 1

c

[
0 C̃ Λ−1

Λ−1C̃⊤ 0

]
+ O(∥C∥2). (38)

Back to the original space. Now

G−1/c = P G̃−1/c P⊤.

Using (38) and P = diag(Ik, U),

G−1/c =

[
Ik 0

0 U Λ−1/c U⊤

]
− 1

c

[
0 C U Λ−1U⊤

U Λ−1U⊤ C⊤ 0

]
+ O(∥C∥2).

Since U Λ−1U⊤ = T−1 and U Λ−1/cU⊤ = T−1/c,

G−1/c =

[
Ik 0

0 T−1/c

]
− 1

c

[
0 C T−1

T−1C⊤ 0

]
+ O(∥C∥2).

Now multiply
Â(c) = [Q, QC +B⊥ ] G−1/c.

Taking the last m columns (the 2nd block) and keeping first-order terms:

Â
(c)
2 = Q

(
− 1

c
C T−1

)
+ (QC +B⊥)T

−1/c + O(∥C∥2)

= B⊥ T−1/c + Q
(
C T−1/c − 1

c
C T−1

)
+ O(∥C∥2).

Factor the Q-part columnwise via the spectral calculus of T . If T = UΛU⊤, then on each eigenvalue
λ the scalar factor is

λ−1/c − 1

c
λ−1 =

1− λ 1−1/c

1− λ
.

Thus, in matrix form,

C T−1/c − 1

c
C T−1 = C

(
I − T 1−1/c

)
(I − T )−1.

and we have

Â
(c)
2 = B⊥ T−1/c + B∥

(
I − T 1−1/c

)
(I − T )−1 + O(∥C∥2). (39)

where B∥ = QQ⊤B.

For polar case c = 2, the operator becomes (I − T 1/2)(I − T )−1. For B = v, we have T =
B⊤

⊥B⊥ = ∥v⊥∥22 and the conclusion follows.
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Lemma 10 (Bound of T0).

T0 ≥ max

(
L

min
l=1

1/pl, L

L∑
l=1

1/l

)
. (40)

Proof. T0 ≥ minl 1/pl since the expected time to collect all the coupons is always larger than
collecting the rarest coupon alone.

To prove T0 ≥ L
∑L

l=1 1/l, fix t > 0 and consider the function

h(p) = log
(
1− e−pt

)
, p > 0.

A direct computation shows

h′′(p) = − t2

4 sinh2(pt/2)
< 0,

so h is concave. By Jensen’s inequality and
∑

i pi = 1,

L∑
i=1

log(1− e−pit) ≤ L log
(
1− e−t/L

)
.

Exponentiating gives the pointwise bound

L∏
i=1

(1− e−pit) ≤ (1− e−t/L)L.

Therefore

E[T0] ≥
∫ ∞

0

(
1− (1− e−t/L)L

)
dt.

To evaluate the integral, set u = e−t/L, so dt = −Ldu/u and t : 0 → ∞ maps to u : 1 → 0:∫ ∞

0

(
1− (1− e−t/L)L

)
dt = L

∫ 1

0

1− (1− u)L

u
du = L

∫ 1

0

L−1∑
l=0

(1− u)ldu = L

L−1∑
l=0

1

l + 1

Thus the conclusion holds. Equality holds if and only if p1 = · · · = pL = 1/L, since that is the
case of equality in Jensen.

Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian, 2023):

ẇ = A(w)w, ∥w∥2 ≤ 1 (10)

where A(w) :=
∑

l λl(w)ζlζ
⊤
l . Assume that (1) {ζl} form orthonormal bases, (2) for w =∑

l αlζl, we have λl(w) = µlαl with µl ≤ 1, and (3) {αl} is initialized from inverse-exponential
distribution with CDF(x) = exp(−x−a) with a > 1. Then

• Independent feature learning. Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l . Then the expected

#nodes to get all local maxima is T0 ≥ max
(
1/minl pl,

∑L
l=1 1/l

)
.

• Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is Ta = 2−aT0 + (1− 2−a)L. For large a, Ta ∼ L.

Proof. From Lemma 8, we know that the final mode ζl that the nodes converge into is the one with
largest initial αl:

Pr[w → ζl] = Pr[l = argmax
l′

µl′αl′(0)] (41)

By Lemma 7, we have Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l .

Independent feature learning. In this case, getting all local modes {ζl} is identical to the coupon
collector problem with L coupons. With the property of the distribution (Lemma 7), we know that
the probability of getting l-th local maxima is pl := µa

l /
∑

l µ
a
l .
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Therefore, the expected number of trials to collect all local maxima is (Flajolet et al., 1992):

T0 =

∫ +∞

0

(
1−

L∏
l=1

(1− e−plt)

)
dt (42)

Note that T0 ≥ max
(
1/minl pl, L

∑L
l=1 1/l

)
(Lemma 40). Since each node is independently

optimized, we need K ∼ T0 to collect all local maxima in K hidden nodes with high probability.

Muon guiding. Consider the following setting that we optimize the hidden nodes “incrementally”.
When learning the weights of node j, we assume all the previous nodes (node 1 to node j − 1)
have been learned, i.e., they have converged to one of the ground truth bases {ζl}, but still keep the
gradients of them (after deduplication) in the Muon update. Let Sj−1 ⊆ [L] = {1, . . . , L} be the
subset of local maxima that have been collected.

By Lemma 9, we know that

ĝj =
1

∥gj,⊥∥

(
gj,⊥ +

∥gj,⊥∥
1 + ∥gj,⊥∥

gj,∥

)
+O(∥gj,⊥∥2) (43)

where gj,∥ = Pj−1P
⊤
j−1gj and gj,⊥ = gj − gj,∥. Here Pj−1 = [ζs]s∈Sj−1 is the projection matrix

formed by the previous j − 1 nodes. Since

∥gj,⊥∥ ≤ ∥gj∥ = ∥
∑
l

λl(αl)αlζl∥ = |
∑
l

(λl(αl)αl)
2| ≤ |

∑
l

α2
l | ≤ 1 (44)

We have ∥gj,⊥∥
1+∥gj,⊥∥ ≤ 1/2. Therefore, this means that the parallel components, i.e., the components

that are duplicated with the previous j − 1 nodes in the gradient was suppressed by at least 1/2,
compared to the orthogonal components (i.e., the directions towards new local maxima). This is
equivalent to dividing µl for all ls that appear in Pj−1 by (at least) 2. By Lemma 7, for the node j,
the probability of converging to a new local maximum other than Sj−1 is

pnew,Sj−1
≥

∑
l/∈Sj−1

pl

2−a
∑

l∈Sj−1
pl +

∑
l/∈Sj−1

pl
(45)

We do this sequentially starting from node j, then node j + 1, etc. Let m = |Sj−1| be the number
of discovered local maxima. Then the expected time that we find a new local maxima is:

E[T̃m→m+1] =
1

pnew,Sj−1

≤ 2−aE[Tm→m+1] + 1− 2−a (46)

where E[Tm→m+1] = 1/
∑

l/∈Sj−1
pl is the expected time for the original coupon collector problem

to pick a new local maximum, given Sj−1 known ones. Adding the expected time together, we have

Ta =

L−1∑
m=0

E[T̃m→m+1] ≤ 2−aT0 + (1− 2−a)L (47)

Note that all the expected time are conditioned on the sequence of known local maxima. But since
these values are independent of the specific sequence, they are also the expected time overall.

C MORE EXPERIMENTS

C.1 USE GROUPS ALGORITHMS PROGRAMMING (GAP) TO GET NON-ABELIAN GROUPS

GAP (https://www.gap-system.org/) is a programming language with a library of thou-
sands of functions to create and manipulate group. Using GAP, one can easily enumerate all non-
abelian group of size M ≤ 127 and create their multiplication tables, which is what we have done
here. From these non-Abelian groups, for each group size M , we pick one for our scaling law
experiments (Fig. 4 bottom right) with maxk dk = 2.
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Figure 7: Adam versus Muon optimizers in modular addition tasks with M = 71, when the number of hidden
nodes K is relatively small compared to M . Muon optimizer achieves lower test loss compared to Adam.
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Figure 8: Training modular addition tasks with 2, 3 and 4 layer network with ReLU activations. Left: Training
accuracy and losses. Right: Learned features at the lowest layer. With more layers, the training takes longer
and grokking (delayed generalization) becomes more prominant. However, features at the lowest layer remain
(distorted version) of Fourier bases, which are consistent with the analysis in Sec. 7.
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Figure 9: Generalization/memorization phase transition in product and non-Abelian tasks. Left: Product
group Z4 ⊗ Z7, Z5 ⊗ Z6, Z2 ⊗ Z2 ⊗ Z9, Z13 ⊗ Z11, Z5 ⊗ Z2 ⊗ Z2 ⊗ Z2, Z6 ⊗ Z4 ⊗ Z2, Z3 ⊗ Z2 ⊗ Z17,
Z2⊗Z3⊗Z3⊗Z5. Right: Non-Abelian groups with maxk dk = 2 (maximal irreducible dimension 2). These
non-Abelian groups are generated from GAP programs (See Appendix Sec. C.1).
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Figure 10: Training modular addition tasks with real weights (M = 23, 41, 89, 127). Learning rate is 0.005,
weight decay is 5e − 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M2. Using
Adam optimizer. Averaged over 5 seeds. This is a baseline.
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Figure 11: Training modular addition tasks with complex weights (M = 23, 41, 89, 127). Learning rate is
0.005, weight decay is 5e − 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M2.
Using Adam optimizer. Averaged over 5 seeds. Compared with the real case (Fig. 10), models with complex
weights seem to grok faster.
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Figure 12: Training modular addition tasks with real weights (M = 23, 41, 89, 127). Instead of using
gradient descent to update the top layer V , in every gradient update we use ridge regression solution Vridge with
respect to the current F (Eqn. 4). Learning rate is 0.005, weight decay is 5e − 5. Number of hidden nodes
K = 256. Test sample is 20% of the full set of M2. Using Adam optimizer. Averaged over 5 seeds. The
grokking still happens (for M = 23 check Fig. 13 for completeness). It is slower for M = 23 but actually
faster for M = 41, 89, 127, compared to the baseline (Fig. 10).
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Figure 13: Training modular addition tasks with real weights M = 23 for 500 epochs, using Vridge as the
top layer weight. The grokking still happens but slower than the baseline (Fig. 10) for M = 23.
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