
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LI2: A FRAMEWORK ON DYNAMICS OF FEATURE
EMERGENCE AND DELAYED GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While the phenomenon of grokking, i.e., delayed generalization, has been studied
extensively, it remains an open problem whether there is a mathematical frame-
work that characterizes what kind of features will emerge, how and in which con-
ditions it happens, and is still closely connected with the gradient dynamics of the
training, for complex structured inputs. We propose a novel framework, named
Li2, that captures three key stages for the grokking behavior of 2-layer nonlinear
networks: (I) Lazy learning, (II) independent feature learning and (III) interactive
feature learning. At the lazy learning stage, top layer overfits to random hidden
representation and the model appears to memorize. Thanks to lazy learning and
weight decay, the backpropagated gradient GF from the top layer now carries in-
formation about the target label, with a specific structure that enables each hidden
node to learn their representation independently. Interestingly, the independent
dynamics follows exactly the gradient ascent of an energy function E , and its
local maxima are precisely the emerging features. We study whether these local-
optima induced features are generalizable, their representation power, and how
they change on sample size, in group arithmetic tasks. When hidden nodes start
to interact in the later stage of learning, we provably show how GF changes to
focus on missing features that need to be learned. Our study sheds lights on roles
played by key hyperparameters such as weight decay, learning rate and sample
sizes in grokking, leads to provable scaling laws of feature emergence, memoriza-
tion and generalization, and reveals the underlying cause why recent optimizers
such as Muon can be effective, from the first principles of gradient dynamics. Our
analysis can be extended to multi-layer architectures.

1 INTRODUCTION

While modern deep models such as Transformers have achieved impressive empirical performance,
it remains a mystery how such models acquire the knowledge during the training process. There
have been ongoing arguments on whether the models can truly generalize beyond what it is trained
on, or just memorize the dataset and performs poorly in out-of-distribution (OOD) data (Wang et al.,
2024b; Chu et al., 2025; Mirzadeh et al., 2024).

Modeling the memorization/generalization behaviors have been a goal of many works. One such
behavior, know as grokking (Power et al., 2022; Doshi et al., 2024; Nanda et al., 2023; Wang et al.,
2024a; Varma et al., 2023; Liu et al., 2023; Thilak et al., 2022), shows that the model initially overfits
to the training set, and then suddenly generalizes to unseen test samples after continuous training.
Many explanation exists, e.g., effective theory (Liu et al., 2022; Clauw et al., 2024), efficiency of
memorization and generalization circuits (Varma et al., 2023), Bayesian interpretation with weight
decay as prior (Millidge, 2022), etc. Most works focus on a direct explanation of its empirical
behaviors, or leveraging property of very wide networks (Barak et al., 2022; Mohamadi et al., 2024;
Rubin et al., 2024), but few explores the details of the grokking learning procedure by studying the
gradient dynamics on the weights.

In this work, we propose a mathematical framework Li2 that divides the grokking dynamics for
2-layer nonlinear networks into three major stages (Fig. 1). Stage I: Lazy Learning: when training
begins, the top (output) layer learns first with random features from the hidden layer, the back-
propagated gradient GF to the hidden layer is noise. Stage II: Independent feature learning: After
that, the weights of the output layer is no longer random, the backpropagated gradient GF starts

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(I) Ridge Regression on 
Random Features

Weight Initialization

Memorization

(II) Feature Learning on 
Independent Neurons

(III) Neuron Interactions

Generalization

(Sharp Optima)

(Flat Optima)

𝜂 = 0 𝐺! = 0, Memorization, no feature learning 

𝜂 small

𝜂 large 𝐺! ≈ 0, Underfitting, no feature learning 

𝐾 small 𝐾 large 𝐾 → +∞

𝐺! ≈ 0

Memorization
no feature learning

Underfitting

𝐺! ≠ 0

feature learning 
happens 

NTK regime

Weight 
Decay 𝜂 

Network Width 𝐾 

𝐺! noisy

Figure 1: Overview of our framework Li2. Left: Li2 proposes three stages of the learning process, (I)
Lazy learning, (II) independent feature learning and (III) interactive feature learning, to explain the dynamics
of grokking that shows the network first memorizes then generalizes (see Fig. ?? for details). Right: Our
analysis covers a wide range of network width K and weight decay η and demonstrates their effects on learning
dynamics, including both NTK and feature learning regime. In the feature learning regime, with the help of
the energy function E (Thm. 1), we characterize the learned features as local maxima of E (Thm. 2) and the
required sample size to maintain them (Thm. 4), establishing generalization/memorization scaling laws.

to carry information about the target in the presence of weight decay (Lemma 1), which drives the
learning of hidden representations. In this stage, the backpropagated gradient of j-th neuron (node)
only depends on its own activation, triggering independent feature learning for each node. Stage
III: Interactive feature learning: When weights in the hidden layer get updated and are no longer
independent, interactions across nodes adjust the learned feature to minimize the loss.

We study each stages in detail and provide theoretical analysis. In Stage I, GF carries target la-
bels once the top layer overfits. In Stage II, independent feature learning follows gradient ascent of
energy E (Thm. 1), a nonlinear CCA. For group arithmetic, we characterize all local maxima of E
(Thm. 2) and show how training samples determine stability and generalizability (Thm. 4), estab-
lishing scaling laws. In Stage III, we prove diversity push (Thm. 6), top-down modulation (Thm. 7),
and Muon’s effectiveness (Thm. 8). Experiments support our claims (Fig. 4).

Comparison with existing grokking frameworks. Our framework provides a theoretical founda-
tion from first principles (i.e., gradient dynamics) that explains the empirical hypothesis Varma et al.
(2023) that “generalization circuits Cgen is more efficient but learn slower than memorization cir-
cuits Cmem”. Specifically, we show that the data distribution determines the optimization landscape,
which in turn governs which local optima the weights converge into, which lead to the behavior of
memorization or generalization. We also show that the initial memorization, or lazy learning (Stage
I), has to happen before feature learning (Stage II-III), since the former provides meaningful back-
propagated gradient GF for the latter to start developing. In comparison, (Nanda et al., 2023) also
provides a three stage framework of grokking, but mostly from empirical observations.

2 RELATED WORKS

Explanation of Grokking. Multiple explanations of grokking exist, e.g., competition of generaliza-
tion and memorization circuits (Merrill et al., 2023), a shift from lazy to rich regimes Kumar et al.
(2024), etc. Dynamics of grokking is analyzed in specific circumstance, e.g., for clustering data (Xu
et al., 2023), linear network (Dominé et al., 2024), etc. In comparison, our work studies the full dy-
namics of feature emergence driven by backpropagation in group arithmetic tasks for deep nonlinear
networks, and provide a systematic mathematical framework about what and how features emerge
and a scaling law about when the transition between memorization and generalization happens.

Usage of group structure. Recent work leverages group theory to study the structure of final
grokked solutions (Tian, 2025; Morwani et al., 2023; Shutman et al., 2025). None of them tackle
the dynamics of grokking in the presence of the underlying structure of the data as we do.

Scaling laws of memorization and generalization. Previous works have identified scaling laws for
memorization/generalization (Nguyen & Reddy, 2025; Wang et al., 2024a; Abramov et al., 2025;
Doshi et al., 2023) without systematic theoretical explanation. Our work models such transitions
as whether generalizable local optima remain stable under data sampling, and provide theoretical
framework from first principles.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
sstrain_loss

test_loss

0 50 100 150 200 250 300 350 400
Epoch

0.00

0.02

0.04

0.06

0.08

M
ea

n(
|o

ff-
di

ag
|) 

/ M
ea

n(
|d

ia
g|

)

F F
P1 FF

0.005

0.010

0.015

0.020

0.025

|G
F||GF|

0 50 100 150 200 250 300
Epoch

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

co
sd

ist
(W

t,W
t+

1)

W between gradient update steps
W (hidden)
V (output)

0 50 100 150 200 250 300 350 400
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Lo
sstrain_loss

test_loss

0 50 100 150 200 250 300 350 400
Epoch

0.00

0.02

0.04

0.06

0.08

M
ea

n(
|o

ff-
di

ag
|) 

/ M
ea

n(
|d

ia
g|

)

F F
P1 FF

0.000

0.005

0.010

0.015

0.020

0.025

|G
F||GF|

0 50 100 150 200 250 300
Epoch

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

co
sd

ist
(W

t,W
t+

1)

W between gradient update steps
W (hidden)
V (output)

Figure 2: Grokking dynamics on modular addition task with M = 71, K = 2048, n = 2016 (40% training
out of 712 samples) with and without weight decay. Top: η = 0.0002 and grokking happens. Bottom: η = 0
and no grokking happens. Weight decay leads to larger |GF | around epoch 100 and induces grokking behavior.
The weights difference ∆W between consecutive weights at time t and t + 1, measured by cosine distance,
shows two-stage behaviors: first there is huge update on the output weight V , then large update on the hidden
weight W . Throughout the training, F̃⊤F̃ and P⊥

1 FF⊤ remains diagonal with up to 8% error, validating our
analysis (independent feature learning, Sec. 5). Experiments averaged over 15 seeds.

Feature learning. Previous works treats the NTK as a holistic object and study how it moves away
from lazy regime, e.g., it becomes more correlated with task-relevant directions (Kumar et al., 2024;
Ba et al., 2022; Damian et al., 2022), becomes adapted to the data (Rubin et al., 2025; Karp et al.,
2021), etc. In contrast, our work focuses on explicit learning dynamics of individual features, their
interactions, and the transition from memorization to generalization with more samples.

3 PROBLEM FORMULATION

We consider a 2-layer network Ŷ = σ(XW )V and ℓ2 loss function on n samples:

min
V,W

1

2
∥P⊥

1 (Y − Ŷ )∥2F = min
V,W

1

2
∥P⊥

1 (Y − σ(XW )V )∥2F (1)

where P⊥
1 := I − 11⊤/n is the zero-mean projection matrix along the sample dimension, Y ∈

Rn×M is a label matrix (each row is a one-hot vector), X = [x1,x2, . . . ,xn]
⊤ ∈ Rn×d is the data

matrix, V ∈ RK×M and W ∈ Rd×K are the weight matrices of the last layer and hidden layer,
respectively. σ is the nonlinear activation function.

Previous works pointed out that grokking mostly happens when there is regularization during train-
ing (e.g., weight decay (Power et al., 2022; Nanda et al., 2023), Jacobian regularization (Walker
et al., 2025), etc.). It remains a mystery why this is the case. In this work, we show that grokking is
a consequence of “leaked” backpropagated gradient due to regularization.

4 STAGE I: LAZY LEARNING (OVERFITTING)

Let F = σ(XW ) be the activation of the hidden layer and F̃ = P⊥
1 F be the zero-mean version of

it. Similarly define Ỹ = P⊥
1 Y . We first write down the backpropagated gradient GF sent to the

hidden layer:

GF = − ∂J

∂F
= P⊥

1 (Y − FV )V ⊤ (2)

At the beginning of the training, both W and V are initialized with independent zero-mean random
variables. Therefore, the backpropagated gradient GF is pure random noise. Over time, the hidden
activation F is mostly unchanged, and only the output layer learns.

In this case, F can be treated as fixed during this stage of learning, and we can write down and solve
the gradient dynamics analytically. Specifically, the gradient dynamics of V is given by:

V̇ = − ∂J

∂V
= F̃⊤Ỹ − (F̃⊤F̃ + ηI)V (3)

which has a stationary point V̇ = 0 at

Vridge = (F̃⊤F̃ + ηI)−1F̃⊤Ỹ (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The stationary point is the same as the solution of the ridge regression and it is a sharp optimum,
since the minimal eigenvalue of its Hessian ≥ η > 0. For feature learning, we check GF :

GF = PηỸ Ỹ ⊤F̃ (F̃⊤F̃ + ηI)−1 (5)

where Pη = I− F̃ (F̃⊤F̃ +ηI)−1F̃⊤ = η(F̃ F̃⊤+ηI)−1 (by Woodbury matrix formula). Note that
PηỸ = Ỹ − F̃ Vridge, which is the error of the output layer. Without weight decay (i.e., η = 0), if the
network is overparameterized and we have enough random features, then PηỸ = Ỹ − F̃ Vridge = 0
and thus GF = 0. In this case, feature learning does not happen (the bottom row of Fig. 2). Note that
this does not rule out the possibility that feature learning happens during the period that V converges
to Vridge, even if η = 0 (Kumar et al., 2024). This is possible in particular if the (hidden) weights are
initialized large (Clauw et al., 2024).

5 STAGE II: INDEPENDENT FEATURE LEARNING

5.1 THE ENERGY FUNCTION E

Now we discuss the case when we have weight decay η > 0, in which GF becomes interesting.
Lemma 1 (Structure of backpropagated gradient GF ). Assume that (1) entries of W follow standard
normal distribution N(0, 1), (2) ∥xi∥2 = 1, (3) ∥x⊤

i xi′ − ρ∥2 ≤ ϵ for all i ̸= i′ and (4) large width
K, then both F̃⊤F̃ and F̃ F̃⊤ becomes a multiple of identity and Eqn. 5 becomes:

GF =
η

(Kc1 + η)(nc2 + η)
Ỹ Ỹ ⊤F +O(K−1ϵ) (6)

where c1, c2 > 0 are constants related to nonlinearity. When η is small, we have GF ∝ ηỸ Ỹ ⊤F .
Note that the input features and/or weights can be scaled and what changes is c1 and c2.

Check Fig. 2 for verification of these observations. From Eqn. 6, it is clear that if K → +∞, then
GF → 0 and there is no feature learning (i.e., NTK regime). Here we study the case when K is
large (so that Eqn. 6 is valid) but not too large so that feature learning happens.

Let W = [w1,w2, . . . ,wK ] where wj ∈ Rd is the weight vector of j-th node, and F =
[f1, f2, . . . , fK ] where fj = σ(Xwj) ∈ Rn is the activation of j-th node. Following Eqn. 6, the
j-th column gj of GF is only dependent on j-th node wj , and thus we can decouple the dynamics
into K independent ones, each corresponding to a single node:

ẇj = X⊤Djgj , gj ∝ ηỸ Ỹ ⊤σ(Xwj) (7)

where Dj = diag(σ′(Xwj)) is the diagonal gating matrix of j-th node. A critical observation here
is that Eqn. 7 actually corresponds to the gradient ascent dynamics of the energy function E .
Theorem 1 (The energy function E for independent feature learning). The dynamics (Eqn. 7) of
independent feature learning is exactly the gradient ascent dynamics of the energy function E w.r.t.
wj , a nonlinear canonical-correlation analysis (CCA) between the input X and target Ỹ :

E(wj) =
1

2
∥Ỹ ⊤σ(Xwj)∥22 (8)

Therefore, the feature learned for each node j is the one that maximizes the energy function E(wj)
and the weight decay η now becomes the learning rate. This coincides empirical findings (Power
et al., 2022; Clauw et al., 2024) that low regularization leads to slow grokking. Since Eqn. 7 can be
unbounded, we put ∥wj∥2 = 1 due to weight decay. (Tian, 2023) also arrives at an energy function
for feature learning in contrastive loss, but its structure is obscure. Here the structure is much clearer.

5.2 GROUP ARITHMETIC TASKS

To demonstrate a concrete example, we consider group arithmetic tasks, i.e., for group H , the task
is to predict h = h1h2 given h1, h2 ∈ H . One example is the modular addition task h1h2 = h1+h2

mod M , which has been extensively studied in grokking (Power et al., 2022; Gromov, 2023; Huang
et al., 2024; Tian, 2025).

The task. We represent the group elements by one-hot vectors: each data sample xi ∈ R2M is a
concatenation of two M -dimensional one-hot vectors (eh1[i], eh2[i]) where h1[i] and h2[i] are the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

indices of the two one-hot vectors. The output is also a one-hot vector yi = eh1[i]h2[i], where
1 ≤ i ≤ n = M2. Here the class number M = |H| is the size of the group.

A crash course of group representation theory. A mapping ρ(h) : H 7→ Cd×d is called a
group representation if the group operation is compatible with matrix multiplication: ρ(h1)ρ(h2) =
ρ(h1h2) for any h1, h2 ∈ H . Let Rh ∈ RM×M be the regular representation of group element h
so that eh1h2 = Rh1eh2 for all h1, h2 ∈ H , and P ∈ RM×M be the group inverse operator so that
Peh = eh−1 . Note that P 2 = I and P⊤ = P−1 = P .

The decomposition of group representation. The representation theory of finite group (Fulton &
Harris, 2013; Steinberg, 2009) says that the regular representation Rh admits a decomposition into
complex irreducible representations (or irreps):

Rh = Q

κ(H)⊕
k=0

mk⊕
r=1

Ck(h)

Q∗ (9)

where κ(H) is the number of nontrivial irreps (i.e., not all h map to identity), Ck(h) ∈ Cdk×dk is
the k-th irrep block of Rh, Q is the unitary matrix (and Q∗ is its conjugate transpose) and mk is the
multiplicity of the k-th irrep. This means that in the decomposition of Rh, there are mk copies of
dk-dimensional irrep, and these copies are isomorphic to each other. So the k-th irrep subspace Hk

has dimension mkdk.

For regular representation {Rh}, one can prove that mk = dk for all k and thus |H| = M =
∑

k d
2
k.

For Abelian group, all complex irreps are 1d (i.e., Fourier bases). One may also choose to do the
decomposition in real domain. In this case, a pair of 1d complex irreps will become a 2d real irrep.
For example, eiθ and e−iθ becomes a 2d matrix [cos(θ),− sin(θ); sin(θ), cos(θ)].

5.3 LOCAL MAXIMA OF THE ENERGY FUNCTION

Now we study the local maxima of E . With the decomposition, we can completely characterize the
local maxima of the energy E with group inputs, even that E(w) is nonconvex.
Theorem 2 (Local maxima of E for group input). For group arithmetics tasks with σ(x) = x2,
E has multiple local maxima w∗ = [u;±Pu]. Either it is in a real irrep of dimension dk (with
E∗ = M/8dk and u ∈ Hk), or in a pair of complex irrep of dimension dk (with E∗ = M/16dk and
u ∈ Hk ⊕Hk̄). These local maxima are not connected. No other local maxima exist.

Note that our proof can be extended to more general nonlinearity σ(x) = ax+ bx2 with b > 0 since
linear part will be cancelled out due to zero-mean operators. We can show that local maxima of E
are flat, allowing moving around without changing E :
Corollary 1 (Flatness of local maxima of E for group input). Local maxima of E for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

We can apply the above theorem to the popular modular addition task which is an Abelian group.
The resulting representation is Fourier bases.
Corollary 2 (Modular addition). For modular addition with odd M , all local maxima are single
frequency uk = ak[cos(kmω)]M−1

m=0 + bk[sin(kmω)]M−1
m=0 where ω := 2π/M with E∗ = M/16. For

even M , uM/2 ∝ [(−1)m]M−1
m=0 has E∗ = M/8. Different local maxima are disconnected.

Role played by the nonlinearity. With linear activation, there is only one global maximum, which
is the maximal eigenvector of X⊤Ỹ Ỹ ⊤X . This corresponds to Linear Discriminative Analysis
(LDA) (Balakrishnama & Ganapathiraju, 1998) that finds directions that maximally separate the
class-mean vectors. For group arithmetics tasks, for each target h = h1h2, each group element
(h1 and h2) appears once and only once, the class-mean vectors are identical and thus LDA fails to
identify any meaningful directions. With nonlinearity, the learned w has clear meanings.

Meaning of the learned features. First, the learned representation can offer a more efficient re-
construction of the target (see Thm. 3) than simple memorization of all M2 pairs. Second, learned
representations naturally contain useful invariance. For example, some irreps of the cyclic group of
Z15 behave like its subgroup Z3 and Z5, by mapping its element h to div(h, 3) and div(h, 5). If we
regard h to be controlled by two hidden factors, then these features lead to focusing on one factor
and invariant to others. More importantly, they emerge automatically without explicit supervision.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Nonlinearity 𝜎(⋅) Sufficient Data

Insufficient Dataℰ!"#$%&(𝒘) ℰ(𝒘)

%ℰ(𝒘)
Figure 3: Change of the landscape of the energy function E (Thm. 1). Left: E with linear activation reduces
to simple eigen-decomposition and only have one global maxima. Middle: With nonlinearity, the energy
landscape now has multiple strict local maxima, each corresponds to a feature (Thm. 2). More importantly,
these features are more efficient than memorization in target prediction (Thm. 3). Right: With sufficient
training data, the landscape remains stable and we can recover these (generalizable) features (Thm. 4), with
insufficient data, the landscape changes substantially and local maxima becomes memorization (Thm. 5).

5.4 REPRESENTATION POWER OF LEARNED FEATURES

With Thm. 2, we know that each node of the hidden layers will learn various representations. The
question is whether they are sufficient to reconstruct the target Ỹ and how efficient they are.

Theorem 3 (Target Reconstruction). Assume (1) E is optimized in complex domain C, (2) for each
irrep k, there are m2

kd
2
k pairs of learned weights w = [u;±Pu] whose associated rank-1 matrices

{uu∗} form a complete bases for Hk and (3) the top layer V also learns with η = 0, then Ŷ = Ỹ .

From the theorem, we know that K = 2
∑

k ̸=0 m
2
kd

2
k ≤ 2

[
(M − κ(H))2 + κ(H)− 1

]
suffice. In

particular, for Abelian group, κ(H) = M − 1 and K = 2M − 2. This is much more efficient than
pure memorization that requires M2 nodes, i.e., each node memorizes a single pair (h1, h2) ∈ H2.

Assumptions of the theorem. Assumption (3) is satisfied by training both W and V . Assumption
(2) is satisfied since randomly initialized weights typically lead to non-collinear u. Assumption
(1) is necessary due to technical subtleties1. However, if we change w = [u;±Pu] slightly to
w = [u;±Pu′] in which u′ is a small perturbation of u, then Thm. 3 holds for real solutions. This
happens in the stage III when end-to-end backpropagation refines the representation.

5.5 THE SCALING LAWS OF THE BOUNDARY OF MEMORIZATION AND GENERALIZATION

While Thm. 2 shows the nice structure of local maxima (and features learned), it requires training
on all n = M2 pairs of group elements. One may ask whether these representations can still be
learned if training on a subset. The answer is yes, by checking the stability of the local maximum.

Theorem 4 (Amount of samples to maintain local optima). If we select n ≳ d2kM log(M/δ) data
sample from H ×H uniformly at random, then with probability at least 1− δ, the empirical energy
function Ê keeps local maxima for dk-dimensional irreps (Thm. 2).

The theorem above states only O(M logM) samples suffice to learn these features, which will
generalize to unseen data according to Thm. 3. Fig. 4 demonstrates that the empirical results closely
match the theoretical prediction, and there is a clear phase transition around the boundary (test
accuracy 0 → 1), where the training data ratio p := n/M2 = O(M−1 logM).

Memorization. On the other hand, we can also construct cases when memorization is the only local
maximum of E . This happens when we only collect samples for one target h but missing others, and
diversity is in question.

Theorem 5 (Memorization solution). Let ϕ(x) := σ′(x)/x and assume σ′(x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g−1h) for one target h with probability
pg . Then the global optimal of E is a memorization solution, either (1) a focused memorization w =
1√
2
(eg∗ , eg∗−1h) for g∗ = argmax pg if ϕ is nondecreasing, or (2) a spreading memorization with

w = 1
2

∑
g sg[eg, eg−1h], if ϕ is strictly decreasing. Here sg = ϕ−1(2λ/pg) and λ is determined by∑

g s
2
g = 2. No other local optima exist.

1The subspace of real orthogonal matrices is not covered by that of symmetric matrices spanned by {uu⊤}.
In contrast, the subspace of unitary matrices in complex domain C can be represented by Hermitian matrices.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120
M

0.2

0.4

0.6
tra

in
%

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

20 40 60 80 100 120
M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
in

%

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Figure 4: Generalization/memorization phase transition in modular addition tasks. When M grows, the train-
ing data ratio p = n/M2 required to achieve generalization decreases. This coincides with Thm. 4 which
predicts p ∼ M−1 logM (dotted line). We use learning rate 0.0005, weight decay 0.0002 and K = 2048.
Results averaged over 20 seeds. Top Left: Simple cyclic group ZM for prime M . Top Right: ZM for com-
posite M . For more experiments on product and non-Abelian groups, check Fig. 9.

0.00010.0005 0.001 0.005 0.01 0.05 0.1
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Modular addition (M=23)
wd=2e-4
wd=1e-4

31%
32%
33%
34%
35%
36%
37%
38%

tra
in

%

0.00010.0005 0.001 0.005 0.01 0.05 0.1
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Modular addition (M=71)
wd=2e-4
wd=1e-4

15%

16%

16%

17%

17%

18%

18%

tra
in

%

0.00010.0005 0.001 0.005 0.01 0.05 0.1
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Modular addition (M=127)
wd=2e-4
wd=1e-4

13%

14%

14%

15%

15%

16%

16%

tra
in

%

Figure 5: Phase transition from generalizable (gsol) to non-generalizable solutions (ngsol) in modular
addition tasks (M = 23, 71, 127) with K = 1024. Around this critical region, small learning rate more likely
lead to gsol, due to the fact that small learning rate keeps the trajectory staying within the basin towards
gsol, while large learning rate converges to solutions with higher E (Fig. 6). Results averaged over 15 seeds.

We can verify that power activations (e.g., σ(x) = x2) lead to focused memorization, while more
practical ones (e.g., ReLU, SiLU, Tanh and Sigmoid) lead to spreading memorization. We leave it
for future work whether this property leads to better results in large scale settings.

Boundary of generalization and memorization (semi-grokking (Varma et al., 2023)). In between
the two extreme cases, local maxima of both memorization and generalization may co-exist. In this
case, small learning rate keeps the optimization within the attractive basin and converges to gsol,
while large learning rate leads to ngsol which has better energy E (Fig. 6).

Our theory fits well with the empirical observations that there exists a critical data size/ratio (Varma
et al., 2023; Wang et al., 2024a; Abramov et al., 2025), above which the grokking suddenly leads to
generalization. The observation that memorization energy is higher than generalization (Fig. 6) also
explains the ungrokking/unlearning phenomenon: a grokked model can move back to memorization
when continues to train on a small dataset (Varma et al., 2023; Montanari & Urbani, 2025), and is
consistent with (Nguyen & Reddy, 2025) that shows task diversity is important for generalization.

= 3.27 = 3.23 = 3.34 = 2.87

= 3.32 = 3.50 = 3.29 = 3.37

= 3.27 = 3.39 = 3.20 = 3.31

= 3.16 = 3.09 = 3.39 = 3.54

= 3.39 = 4.59 = 3.35 = 3.25

= 4.16 = 3.37 = 3.41 = 3.43

= 3.84 = 2.98 = 3.67 = 3.47

= 3.41 = 3.29 = 3.37 = 3.49

= 4.72 = 4.11 = 4.40 = 4.94

= 4.33 = 4.48 = 4.00 = 5.07

= 5.47 = 3.74 = 5.54 = 4.12

= 3.57 = 4.59 = 3.89 = 4.46

Figure 6: In small data regime of modular addition with M = 127 and n = 3225 (20% training out of 1272

samples), Adam optimizer with small learning rate ((0.001, left) and (0.002, middle)) leads to generalizable so-
lutions (Fourier bases) with low E , while with large learning rate (0.005, right), Adam found non-generalizable
solutions (e.g., memorization) with much higher E .

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 STAGE III: INTERACTIVE FEATURE LEARNING

The starting point of Stage II is to simplify the exact backpropagated gradient GF = PηỸ Ỹ ⊤F̃B

(Eqn. 5) with B := (F̃⊤F̃ + ηI)−1 to GF ∝ ηỸ Ỹ ⊤F , by two approximations: (1) B ∝ I , and (2)
Pη ∝ ηI . The two approximations are valid due to Thm. 1 when the hidden weights W is randomly
initialized. When training continues, W evolves from random initialization and the conditions may
not hold anymore. In this section we put them back and study their behaviors.

6.1 REPULSION OF SIMILAR FEATURES

We first study the effect of B, which leads to interplay of hidden nodes. Over the training, the
activations of two nodes can be highly correlated and the following theorem shows that similar
features leads to repulsion.

Theorem 6 (Repulsion of similar features). The j-th column of F̃B is given by [F̃B]j = bjj f̃j +∑K
l=1 bjl f̃l, where sign(bjl) = −sign(f̃⊤j Pη,−jl f̃l) and Pη,−jl := I − F̃−jl(F̃

⊤
−jlF̃−jl + ηI)−1F̃⊤

−jl

is a projection matrix constructed from F̃−jl, which is F̃ excluding the l-th and j-th columns.

Remark. Intuitively, if f̃j and f̃l are similar, then bjl will be negative and the resulting j and l

columns of F̃B will be pushed away from each other and vise versa.

6.2 TOP-DOWN MODULATION

Over the training process, it is possible that some local optima are learned first while others learned
later. When the representations are learned partially, the backpropagation offers a mechanism to
focus on missing pieces, by changing the landscape of the energy function E .
Theorem 7 (Top-down Modulation). For group arithmetic tasks with σ(x) = x2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient GF ∝ (ΦS ⊗1M )(ΦS ⊗1M )∗F
(see proof for the definition of ΦS ), which yields a modified ES that only has local maxima on the
missing irreps k /∈ S.

6.3 DIVERSITY ENHANCEMENT WITH MUON

In addition to the mechanism above, certain optimizers (e.g., Muon optimizer (Jordan et al., 2024))
can also address such issue, by boosting the weight update direction that are underrepresented,
enforcing diversity of nodes. While evidence (Tveit et al., 2025) and analysis exist (Shen et al.,
2025) to show that Muon has advantages over other optimizers, to our best knowledge, we are the
first to analyze it in the context of feature learning.

Recall that the Muon optimizer converts the gradient GW = UGW
DV ⊤

GW
(its SVD decomposition)

to G′
W = UGW

V ⊤
GW

and update the weight W accordingly (i.e., Ẇ ∝ G′
W ). We first show that

when Muon is applied to independent feature learning on each wj to make them coupled, it still
gives the correct answers to the original optimization problems.
Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
joint energy Ejoint(W ) =

∑
j E(wj) and has critical points iff the original gradient GW vanishes.

Now we show that Muon optimizer can rebalance the gradient updates.
Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian, 2023):

ẇ = A(w)w, ∥w∥2 ≤ 1 (10)

where A(w) :=
∑

l λl(w)ζlζ
⊤
l . Assume that (1) {ζl} form orthonormal bases, (2) for w =∑

l αlζl, we have λl(w) = µlαl with µl ≤ 1, and (3) {αl} is initialized from inverse-exponential
distribution with CDF(x) = exp(−x−a) with a > 1. Then

• Independent feature learning. Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l . Then the expected

#nodes to get all local maxima is T0 ≥ max
(
1/minl pl,

∑L
l=1 1/l

)
.

• Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is Ta = 2−aT0 + (1− 2−a)L. For large a, Ta ∼ L.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The intuition here is that once some weight vectors have “occupied” a local maximum, say ζm,
their gradients point to the same direction (before projecting onto the unit sphere ∥w∥2 = 1), and
the gradient correction of Muon will discount that component from gradients of currently optimized
weight vectors, and keeping them away from ζm. In this way, Muon pressed novel gradient direc-
tions and thus encourages exploration. Fig. 7 shows that Muon is effective with limited number of
hidden nodes K.

Note that Eqn. 10 is closely related to E , under the assumption of homogeneous/reversible activation,
i.e., σ(x) = Cσ′(x)x with a constant C (Zhao et al., 2024; Tian et al., 2020). In such setting, Eqn. 7
is related to the gradient dynamics with a PSD matrix A(w) = X⊤D(w)Ỹ Ỹ ⊤D(w)X .

7 EXTENSION TO DEEPER ARCHITECTURES

The above analysis and the definition of the energy function E can be extended to deeper architec-
tures. Consider a multi-layer network with L hidden layers, Fl = σ(Fl−1Wl) with F0 = X and
Ŷ = FLV . For notation brevity, let Gl := GFl

. Let’s see how the gradient backpropagated and how
the learning fits to our framework (Fig. 1).

Stage I. Stage I does not change since FL is still a random representation. Then V starts to learn
and converges to ridge solution (Eqn. 4), the backpropagated gradient GL now carries meaningful
information: GL ∝ Ỹ Ỹ ⊤FL (Eqn. 6), which initiates Stage II.

Stage II. We assume homogeneous activation σ(x) = Cσ′(x)x. For the next layer L− 1, we have:

GL−1 = DLGLW
⊤
L = DL(Ỹ Ỹ ⊤FL)W

⊤
L = (DLỸ Ỹ ⊤DL)FL−1(WLW

⊤
L ) (11)

since WL is randomly initialized, we have WLW
⊤
L ≈ I and thus GL−1 ∝ DLỸ Ỹ ⊤DLFL−1.

Doing this iteratively gives Gl ∝
(
D̃l+1Ỹ Ỹ ⊤D̃l+1

)
Fl, where D̃l :=

∏L
m=l Dm. Note that these D

matrices are essentially reweighing/pruning samples randomly, since right now all {Wl} are random
except for V . Now the lowest layer receives meaningful backpropagated gradient G1 that is related
to the target label, and it also exposes to input X . Therefore, the learning starts from there. Once
layer l learns decent representation, layer l+ 1 receives meaningful input Fl and starts to learn, etc.
When layer l is learning, layer l′ > l do not learn since their input Fl′ remains random noise.

From this analysis, we can also see why residual connection helps. In this case, Gres,1 =
∑L

l=1 Gl,
in which GL is definitely a much cleaner and stronger signal, compared to G1 which undergoes
many random reweighing and pruning of samples.

Stage III. Once the activation Fl becomes meaningful, top-down modulation could happen (simi-
lar to Thm. 7) among nearby layers so that low-level features can be useful to support high-level
representations. We leave the detailed analysis for future work.

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

We develop a mathematical framework Li2 for grokking dynamics in 2-layer networks, identifying
three stages marked by distinct structures of backpropagated gradient GF . We clarify how various
hyperparameters shape grokking, explain the effectiveness of optimizers like Muon, and extend to
deeper networks. A few interesting implications are listed below. (1) Two kinds of memorization.
The “memorization” in grokking is due to overfitting on random features, distinct from memoriza-
tion optima due to limited data (Thm. 5). Grokking switches from overfitting to generalization, not
memorization to generalization. (2) Flat/sharp optima. Sharp optima occur when overfitting on
random features (Sec. 4). Local optima from E are flat (Corollary 1), and over-parameterization
allows multiple nodes to learn similar features, creating flatness. In contrast, Memorization from
limited data requires more nodes, appearing less flat. (3) Learning rates. Large learning rates in
Stage I quickly learn V to trigger Stage II. In Stage II, optimal rates depend on data: more data
allows larger rates; limited data needs smaller rates to stay in generalizable basins (Fig. 6).

Limitations. While the derivation of energy E is applicable to any input, analysis of its local maxima
relies on restrictive assumption of group structure of the input. We could extend it by studying
automorphism of the input, which always forms a group regardless of the input structure. Also our
analysis does not include when each learning stage happens. We leave them for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

DISCLOSURE OF LLM USAGE

We have used SoTA LLMs extensively to brainstorm ideas to prove mathematical statements pre-
sented in the paper. Specifically, we setup research directions, provide problem setup and intuitions,
proposes statements for LLM to analyze and prove, points out key issues in the generated proofs,
adjust the statements accordingly and iterate. We also have done extensive experiments to verify
the resulting statements. Many proofs proposed by LLMs are incorrect in subtle ways and requires
substantial editing and correction. We have carefully revised all the proofs presented in the work,
and take full accountability for their correctness.

ETHICS STATEMENT

This work is about investigating various theoretical and empirical properties of neural networks. We
do not rely on any sensitive or proprietary data, nor do we use any existing open source models that
may produce harmful contents.

REPRODUCIBILITY STATEMENT

All datasets used in this work can be generated synthetically. Models are pretrained from scratch
with very small amount of compute. We will release code to support full Reproducibility.

REFERENCES

Roman Abramov, Felix Steinbauer, and Gjergji Kasneci. Grokking in the wild: Data augmentation
for real-world multi-hop reasoning with transformers. arXiv preprint arXiv:2504.20752, 2025.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Suresh Balakrishnama and Aravind Ganapathiraju. Linear discriminant analysis-a brief tutorial.
Institute for Signal and information Processing, 18(1998):1–8, 1998.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Kenzo Clauw, Sebastiano Stramaglia, and Daniele Marinazzo. Information-theoretic progress mea-
sures reveal grokking is an emergent phase transition. arXiv preprint arXiv:2408.08944, 2024.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Clémentine CJ Dominé, Nicolas Anguita, Alexandra M Proca, Lukas Braun, Daniel Kunin, Pe-
dro AM Mediano, and Andrew M Saxe. From lazy to rich: Exact learning dynamics in deep
linear networks. arXiv preprint arXiv:2409.14623, 2024.

Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok: Disen-
tangling generalization and memorization on corrupted algorithmic datasets. arXiv preprint
arXiv:2310.13061, 2023.

Darshil Doshi, Tianyu He, Aritra Das, and Andrey Gromov. Grokking modular polynomials. arXiv
preprint arXiv:2406.03495, 2024.

Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Applied Mathematics, 39(3):207–229, 1992.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

William Fulton and Joe Harris. Representation theory: a first course, volume 129. Springer Science
& Business Media, 2013.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of grokking,
double descent and emergent abilities: A perspective from circuits competition. arXiv preprint
arXiv:2402.15175, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks. 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,
34:24883–24897, 2021.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the tran-
sition from lazy to rich training dynamics, 2024. URL https://arxiv.org/abs/2310.
06110.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. Advances in Neu-
ral Information Processing Systems, 35:34651–34663, 2022.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=zDiHoIWa0q1.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competi-
tion of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Beren Millidge. Grokking ’grokking’, 2022. URL https://www.beren.io/
2022-01-11-Grokking-Grokking/.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J Sutherland. Why do you grok? a
theoretical analysis of grokking modular addition. arXiv preprint arXiv:2407.12332, 2024.

Andrea Montanari and Gabriele Urbani. Dynamical decoupling of generalization and overfitting in
large two-layer networks, 2025.

Depen Morwani, Benjamin L Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. arXiv preprint
arXiv:2311.07568, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Alex Nguyen and Gautam Reddy. Differential learning kinetics govern the transition from mem-
orization to generalization during in-context learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
INyi7qUdjZ.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Noa Rubin, Inbar Seroussi, and Zohar Ringel. Grokking as a first order phase transition in two layer
networks. ICLR, 2024.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2310.06110
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://www.beren.io/2022-01-11-Grokking-Grokking/
https://www.beren.io/2022-01-11-Grokking-Grokking/
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=INyi7qUdjZ
https://openreview.net/forum?id=INyi7qUdjZ


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noa Rubin, Kirsten Fischer, Javed Lindner, David Dahmen, Inbar Seroussi, Zohar Ringel, Michael
Krämer, and Moritz Helias. From kernels to features: A multi-scale adaptive theory of feature
learning. arXiv preprint arXiv:2502.03210, 2025.

Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence
analysis of muon. arXiv preprint arXiv:2505.23737, 2025.

Maor Shutman, Oren Louidor, and Ran Tessler. Learning words in groups: fusion algebras, tensor
ranks and grokking. arXiv preprint arXiv:2509.06931, 2025.

Benjamin Steinberg. Representation theory of finite groups. Carleton University, 2009.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Yuandong Tian. Understanding the role of nonlinearity in training dynamics of contrastive learning.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=s130rTE3U_X.

Yuandong Tian. Composing global solutions to reasoning tasks via algebraic objects in neural nets.
NeurIPS, 2025.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389–434, 2012.

Amund Tveit, Bjørn Remseth, and Arve Skogvold. Muon optimizer accelerates grokking. arXiv
preprint arXiv:2504.16041, 2025.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

Thomas Walker, Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Grokalign:
Geometric characterisation and acceleration of grokking. arXiv preprint arXiv:2506.12284, 2025.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. arXiv preprint arXiv:2405.15071, 2024a.

Xinyi Wang, Antonis Antoniades, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
and William Yang Wang. Generalization vs memorization: Tracing language models’ capabilities
back to pretraining data. arXiv preprint arXiv:2407.14985, 2024b.

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in
relu networks for xor cluster data. arXiv preprint arXiv:2310.02541, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. ICML, 2024.

12

https://openreview.net/forum?id=s130rTE3U_X
https://openreview.net/forum?id=s130rTE3U_X


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A INDEPENDENT FEATURE LEARNING (SEC. 5)

Lemma 3. Let ϕn(z) := Hen(z)/
√
n! be the orthonormal Hermite system on L2(γ). If (Z1, Z2)

are standard normals with correlation ρ, then

E[ϕn(Z1)ϕm(Z2)] = ρn δnm (n,m ≥ 0).

Proof of Lemma 3. Use the generating function2 exp(tz − t2

2 ) =
∑

k≥0 ϕk(z) t
k for z ∼ N (0, 1).

Then, for correlated normals (Z1, Z2) with correlation ρ,

E
[
e tZ1− t2

2 euZ2−u2

2

]
= exp(ρ tu) =

∑
k≥0

ρ k (tu)k.

Expanding the left-hand side by the generating functions and matching coefficients of tnum yields
E[ϕn(Z1)ϕm(Z2)] = ρnδnm.

To show why E
[
e tZ1− t2

2 euZ2−u2

2

]
= exp(ρ tu) is correct, decompose (Z1, Z2) into Gaussian

independent random variables (X,Y ):

Z1 := X, Z2 := ρX +
√

1− ρ2 Y,

Then we have

E
[
e tZ1− t2

2 euZ2−u2

2

]
= E

[
e tX− t2

2 eu(ρX+
√

1−ρ2 Y )−u2

2

]
= E

[
e (t+ρu)X− t2

2

]
E
[
eu

√
1−ρ2 Y−u2

2

]
.

For G ∼ N (0, 1) we have E[eaG] = ea
2/2, hence E

[
e aG− a2

2

]
= 1 due to Lemma 4. Applying this

twice,

E
[
e (t+ρu)X− t2

2

]
= exp

(
(t+ ρu)2

2
− t2

2

)
= exp

(
ρtu+

ρ2u2

2

)
,

E
[
eu

√
1−ρ2 Y−u2

2

]
= exp

(
u2(1− ρ2)

2
− u2

2

)
= exp

(
−ρ2u2

2

)
.

Multiplying the two factors yields

exp

(
ρtu+

ρ2u2

2

)
exp

(
−ρ2u2

2

)
= exp(ρtu),

as claimed.

Lemma 4 (Moment identity). For X ∼ N (0, 1), E[etX ] = exp(t2/2). Equivalently, E[etX−t2/2] =
1.

Proof. Complete the square:

E[etX ] =
1√
2π

∫
R
etxe−x2/2 dx =

1√
2π

∫
e−(x−t)2/2 et

2/2 dx = exp

(
t2

2

)
.

Lemma 1 (Structure of backpropagated gradient GF ). Assume that (1) entries of W follow standard
normal distribution N(0, 1), (2) ∥xi∥2 = 1, (3) ∥x⊤

i xi′ − ρ∥2 ≤ ϵ for all i ̸= i′ and (4) large width
K, then both F̃⊤F̃ and F̃ F̃⊤ becomes a multiple of identity and Eqn. 5 becomes:

GF =
η

(Kc1 + η)(nc2 + η)
Ỹ Ỹ ⊤F +O(K−1ϵ) (6)

where c1, c2 > 0 are constants related to nonlinearity. When η is small, we have GF ∝ ηỸ Ỹ ⊤F .
Note that the input features and/or weights can be scaled and what changes is c1 and c2.

2https://en.wikipedia.org/wiki/Hermite_polynomials

13

https://en.wikipedia.org/wiki/Hermite_polynomials


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. In the following, we will prove that (1) F̃⊤F̃ is a multiple of identity and (2) FF⊤ ∝ αI +
β11⊤. Without loss of generality, we assume that entry of W follows standard normal distribution
N (0, 1).

F̃⊤F̃ is a multiple of identity. Since each column of F̃ is P⊥
1 σ(Xwj) a zero-mean n-dimensional

random vector and columns are i.i.d. due to the independence of columns of W . With large width
K, F̃⊤F̃ becomes a multiple of identity.

FF⊤ is a diagonal plus an all-constant matrix. Note that the i-th row of F is
[σ(w⊤

1 xi), σ(w
⊤
2 xi), . . . , σ(w

⊤
Kxi)], with large width K, the inner product between the i-th row

and j-th row of F approximates to KK(i, j) where K(i, j) is defined as follows:

K(i, j) = Ew[σ(w⊤xi)σ(w
⊤xj)] (12)

To estimate the entry K(i, j), we first do standardization by setting Z1 := w⊤xi/si and Z2 :=
w⊤xj/sj where si = ∥xi∥2 and sj = ∥xj∥2. Then (Z1, Z2) are standard normals with
Corr(Z1, Z2) = ρij , and K(i, j) = E

[
σ(siZ1)σ(sjZ2)

]
.

Let ϕl(z) := Hel(z)/
√
l! be the orthonormal Hermite system on L2(γ), where γ is the standard

Gaussian measure and Hel are the Hermite polynomials. For s ≥ 0 define fs(z) := σ(sz). By the
L2(γ) assumption, fs =

∑∞
n=0 al(s)ϕl with

al(s) = ⟨fs, ϕl⟩L2(γ) =
1√
l!
E[σ(sZ)Hel(Z)] .

Thus
σ(siZ1) =

∑
l≥0

al(si)ϕl(Z1), σ(sjZ2) =
∑
l≥0

al(sj)ϕl(Z2).

By bilinearity and Lemma 3,

K(i, j) = E

∑
l≥0

al(si)ϕl(Z1)
∑
m≥0

am(sj)ϕm(Z2)

 =
∑

l,m≥0

al(si)am(sj)E[ϕl(Z1)ϕm(Z2)]

=
∑
l≥0

al(si)al(sj) ρ
l
ij .

If si ≡ 1 and ∥ρij − ρ∥2 ≤ ϵ for i ̸= j, then

K(i, i) =
∑
l≥0

a2l (s) =: a

Let c :=
∑

l≥1 la
2
l (s) < +∞ (it is convergent due to the big factor l! in the denominator). Let

b :=
∑

l≥0 a
2
l (s) ρ

l and we have for all i ̸= j:

∥K(i, j)− b∥2 ≤
∑
l≥0

a2l (s) ∥ρ l
ij − ρl∥2 ≤

∑
l≥1

la2l (s) ϵ = cϵ

due to the fact that ∥ρ l
ij − ρl∥2 ≤ lξl−1ϵ for all l ≥ 1 and some ξ in between ρij and ρ. hence

K(i, j) = (a− b)δij + b+ O(ϵ) and thus FF⊤ = K(a− b)I +Kb11⊤ + O(Kϵ)11⊤. Note that
by Parseval’s identity, a = EZ∼N (0,1)[σ

2(sZ)].

Therefore, F̃ F̃⊤ = K(a−b+O(ϵ))P⊥
1 = K(a−b+O(ϵ))(I−11⊤/n)+O(Kϵ)11⊤ and PηỸ =

η
K(a−b)+η Ỹ . Since F̃⊤F̃ is proportional to identity matrix, (F̃⊤F̃ + ηI)−1 is also proportional to
identity matrix and the conclusion follows.

A.1 THE ENERGY FUNCTION E (SEC. 5.3)

Theorem 1 (The energy function E for independent feature learning). The dynamics (Eqn. 7) of
independent feature learning is exactly the gradient ascent dynamics of the energy function E w.r.t.
wj , a nonlinear canonical-correlation analysis (CCA) between the input X and target Ỹ :

E(wj) =
1

2
∥Ỹ ⊤σ(Xwj)∥22 (8)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Taking gradient of E w.r.t. wj , and we have ·wj = X⊤Dj Ỹ Ỹ ⊤σ(Xwj), which proves the
theorem.

Theorem 2 (Local maxima of E for group input). For group arithmetics tasks with σ(x) = x2,
E has multiple local maxima w∗ = [u;±Pu]. Either it is in a real irrep of dimension dk (with
E∗ = M/8dk and u ∈ Hk), or in a pair of complex irrep of dimension dk (with E∗ = M/16dk and
u ∈ Hk ⊕Hk̄). These local maxima are not connected. No other local maxima exist.

Proof. Following this setting, if ordered by target values, we can write down the data matrix
X = [Xh1 ;Xh2 ; . . . XhM

] (i.e., each Xh occupies M rows of X) in which each Xh = [R⊤
h , P ] ∈

RM×2M . Here Rh is the regular representation (a special case of permutation representation) of
group element h so that eh1h2

= Rh1
eh2

for all h1, h2 ∈ H , and P is the group inverse operator so
that Peh = eh−1 . This is because each row of X that corresponds to the target h can be written as
[e⊤hh1

, e⊤
h−1
1

] = [e⊤h1
R⊤

h , e
⊤
h1
P ]. Stacking the rows that lead to target h together, and order them by

h1, we get Xh = [R⊤
h , P ].

Let w = [u;Pv]. Let matrix Sij := σ(ui + vj), since Rh is a permutation matrix, then σ(Xhw) =
σ(R⊤

h u + v) is a row shuffling of S. Therefore, σ(Xhw) = diag(R⊤
h S)1M , where diag(·) is the

diagonal of a matrix. Note that in this target label ordering, we have Y = IM ⊗ 1M . So for each
column h of Y , we have yh = eh ⊗ 1M . So

zh := y⊤
h σ(Xw) = 1⊤

Mσ(Xhw) = 1⊤
Mdiag(R⊤

h S)1M = tr(R⊤
h S) = ⟨Rh, S⟩F (13)

where ⟨A,B⟩F := tr(A⊤B) is the Frobenius inner product. And the energy E can be written as:

E(w) =
1

2

∑
h

(zh − z̄)2 (14)

where z̄ := 1
M

∑
h zh = 1

M

∑
h⟨Rh, S⟩F = ⟨ 1

M

∑
h Rh, S⟩F = 1

M ⟨1M1⊤
M , S⟩F . Therefore,

using Rh1M = 1M , E(w) can be written as:

E(w) =
1

2

∑
h

⟨R̃h, S⟩2F (15)

where R̃h = RhP
⊥
1 . Now we study its property. We decompose {R̃h} into complex irreducible

representations:

R̃h = Q

⊕
k ̸=0

mk⊕
r=1

Ck(h)

Q∗ (16)

where Ck(h) is the k-th irreducible representation block of Rh, Q is the unitary matrix (and Q∗ is
the conjugate transpose of Q) and mk is the multiplicity of the k-th irreducible representation. Since
R̃h is a zero-meaned representation, we remove the trivial representation C0(h) and thus Q∗1 = 0.
Let Ŝ = Q⊤SQ. Then

⟨R̃h, S⟩F = ⟨Q

⊕
k ̸=0

mk⊕
r=1

Ck(h)

Q∗, S⟩F = ⟨
⊕
k ̸=0

mk⊕
r=1

Ck(h), Ŝ⟩F =
∑
k ̸=0

mk∑
r=1

tr(C∗
k(h)Ŝk,r)

(17)
where Ŝk,r is the (k, r)-th principle (diagonal) block of Ŝ. Therefore, we have:∑

h

⟨R̃h, S⟩2F =
∑
h

∑
(k,r),(k′,r′)

tr(C∗
k(h)Ŝk,r) tr(C

∗
k′(h)Ŝk′,r′) (18)

=
∑

(k,r),(k′,r′)

vec∗(Ŝk,r)

[∑
h

vec(Ck(h)) vec(C
∗
k′(h))

]
vec(Ŝk′,r′) (19)

Case 1. If k ̸= k′ are inequivalent irreducible representations of dimension dk and dk′ , then we can
prove that

∑
h vec(Ck(h)) vec(C

∗
k′(h)) = 0. To see this, let Ak,k′(Z) =

∑
h Ck(h)ZC−1

k′ (h), then
Ak,k′(Z) is a H-invariant linear mapping from dk to dk′ dimensional space. Thus by Schur’s lemma,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ak,k′(Z) = 0 for any Z. But since vec(Ak,k′(Z)) =
(∑

h C̄k′(h)⊗ Ck(h)
)
vec(Z), we have∑

h C̄k′(h)⊗ Ck(h) = 0. Expanding each component, we have
∑

h vec(Ck(h)) vec(C
∗
k′(h)) = 0.

Case 2. If k = k′ are equivalent irreducible representations (and both have dimension dk), then we
can prove that

∑
h vec(Ck(h)) vec(C

∗
k(h)) = M

dk
vec(Idk

) vec∗(Idk
). Then with Schur’s average

lemma, we have Akk(Z) = M
dk

tr(Z)Idk
. A vectorization leads to

(∑
h C̄k(h)⊗ Ck(h)

)
vec(Z) =

M
dk

tr(Z) vec(Idk
). Notice that vec∗(Idk

) vec(Z) = tr(Z) and we arrive at the conclusion.

Therefore, for the objective function we have:

E(w) =
1

2

∑
h

⟨R̃h, S⟩2F =
M

2

∑
k ̸=0

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 (20)

Special case of quadratic activation. If σ(x) = x2, then we have S = (u◦u)1⊤+1(v◦v)+uv⊤

and thus Ŝ = ûv̂∗, where û = Q∗u and v̂ = Q∗v. Therefore, since Q∗1 = 0, Ŝk,r = ûk,rv̂
∗
k,r and

tr(Ŝk,r) = û∗
k,rv̂k,r. Therefore, with Cauchy-Schwarz inequality, we have

E =
1

2

∑
h

⟨R̃h, S⟩2F =
M

2

∑
k ̸=0

1

dk

∣∣∣∑
r

û∗
k,rv̂k,r

∣∣∣2 ≤ M

2

∑
k ̸=0

1

dk

(∑
r

|ûk,r|2
)(∑

r

|v̂k,r|2
)
(21)

Let ak =
∑

r |ûk,r|2, bk =
∑

r |v̂k,r|2, and ck = ak + bk ≥ 0. Then we have:

E =
1

2

∑
h

⟨R̃h, S⟩2F ≤ M

2

∑
k ̸=0

akbk
dk

≤ M

8

∑
k ̸=0

c2k
dk

, subject to
∑
k ̸=0

ck = 1 (22)

which has one global maxima (i.e., ck0 = 1 for k0 = argmink dk) and multiple local maxima. The
maximum is achieved if and only if ûk0,r = ±v̂k0,r for all r and

∑
r |ûk0,r|2 =

∑
r |v̂k0,r|2 = 1/2.

Local maxima. For each irreducible representation k0, ck0
= 1 is a local maxima. This is because

for small perturbation ϵ that moves the solution from ck = I(k = k0) to c′k =

{
1− ϵ if k = k0
ϵk if k ̸= k0

with ϵk ≥ 0 and
∑

k ̸=k0
ϵk = ϵ, for E = E({ck}) and E ′ = E({c′k}) we have:

E ′ =
M

8

∑
k ̸=0

(c′k)
2

dk
=

M

8

 (ck0
− ϵ)2

dk0

+
∑

k ̸=k0,0

ϵ2k
dk

 (23)

≤ M

8

(
c2k0

dk0

− 2ϵ

dk0

)
+O(ϵ2) <

M

8

c2k0

dk0

=
M

8

∑
k ̸=0

c2k
dk

= E (24)

All local maxima are flat, since we can always move around within ûk,r and v̂k,r, while the objective
function remains the same.

Optimizing in Real domain. The above analysis uses complex irreducible representations. For real
w, Ŝk,r will be a complex conjugate of Ŝ−k,r for conjugate irreducible representations k and −k.
This means that we can partition the sum in Eqn. 20 into real and complex parts:

E(w) =
M

2

∑
k ̸=0,k real

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 +M

∑
k ̸=0,k complex, take one

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2 (25)

The above equation holds since Rg is real, and for any complex irreducible representation k, its
conjugate representation −k is also included. Therefore, to optimize E in the real domain R, we
can just optimize only on the real part plus the complex part taken one of the conjugate pair in the
complex domain C.

Zero-meaned one hot representation. Note that if we use zero-meaned one hot representation
ẽh = P⊥

1 eh, then Rh1 ẽh2 = ẽh1h2 and P ẽh = ẽh−1 still hold, and X̃h = P⊥
1 Xh = P⊥

1 [R⊤
h , P ] =

[R⊤
h , P ][P⊥

1 ;P⊥
1 ]. This means that we can still use Xh but enforce zero-meaned constraints on u

and v, which is already included since Q∗1 = 0.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Corollary 1 (Flatness of local maxima of E for group input). Local maxima of E for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

Proof. For Abelian group H with |H| = M > 2, all irreducible representations are 1-dimensional,
and at least one of it is complex. Since C is treated as 2D space in optimization, it has at least 1
degree of freedom to change without changing its function value (Eqn. 25). So the Hessian has at
least 1 zero eigenvalue. For non-Abelian group, there is at least one irreducible representation k with
dimension greater than 1, which means it has at least 1 degrees of freedom to change Ŝk,r without
changing |

∑
r tr(Ŝk,r)|2 and thus its function value (Eqn. 25). So the Hessian has at least 1 zero

eigenvalue.

A.2 RECONSTRUCTION POWER OF LEARNED FEATURES (SEC. 5.4)

Theorem 3 (Target Reconstruction). Assume (1) E is optimized in complex domain C, (2) for each
irrep k, there are m2

kd
2
k pairs of learned weights w = [u;±Pu] whose associated rank-1 matrices

{uu∗} form a complete bases for Hk and (3) the top layer V also learns with η = 0, then Ŷ = Ỹ .

Proof. For each nontrivial irrep k, let Πk be the central idempotent projector onto the isotypic
subspace Hk = Imk

⊗ Cdk (for the regular rep, mk = dk). Let End(Hk) be the space of all linear
operators that map Hk to itself. Note that the dimensionality of Hk is Dk := mkdk.

Let wj = [uj , Pvj ] be the weights learned by optimizing the energy function E with quadratic
activation σ(x) = x2. From Thm. 2, we know that at local optima, uj = ±vj and 1⊤uj = 0.
Therefore, the feature f̃j,h ∈ RM is given by (◦ denotes the Hadamard product)

f̃j,h = ±2 (R⊤
h uj) ◦ uj + (R⊤

h uj)
◦2 − 1

M

∑
h

(R⊤
h uj)

◦2

The third term u◦2 is a constant across all h and was removed in the zero-meaned projection. By
our assumption we have node j and j′ with both positive and negative signs. So 1

2

(
f̃j,h − f̃j′,h

)
=

2 (R⊤
h uj) ◦ uj . If a linear representation of {f̃j} can perfectly reconstruct the target Ỹ , so does the

original representation. So for now we just let feature f̃j,h = 2 (R⊤
h uj) ◦ uj = 2diag(R⊤

h uju
∗
j ).

Let Uj := uju
∗
j , which is Hermitian in End(Hk), then f̃j,h = 2diag(R⊤

h Uj).

Gram block diagonalization. For each irrep k, let Jk be the set of all node j that converges to the
k-th irrep. For any Hermitian operator U supported in Hk (i.e. U = ΠkUΠk), define the centered
quadratic cross-feature

cU (h) := 2 diag(R⊤
h U) ∈ CM ,

and write cUj = [cUj (h)]h∈H ∈ CM2

as a concatenated vector.

For U, V ∈ End(Hk), define G(U, V ) :=
∑

h∈H⟨cU (h), cV (h)⟩. On Hk, Rh = Imk
⊗ Ck(h), so

the map U 7→ cU (h) is linear and the bilinear form G is invariant under U 7→ (I ⊗ Ck(g))U(I ⊗
Ck(g))

∗. By Schur’s lemma, G(U, V ) = αk⟨U, V ⟩ = αk tr(UV ∗) for some scalar αk. Evaluating
on rank-one U = V (or by a direct calculation) gives αk = 4, hence∑

h

⟨cU (h), cV (h)⟩ = 4 tr(UV ∗).

For Uj = uju
∗
j and Uℓ = uℓu

∗
ℓ from Hk and Hℓ with k ̸= ℓ, we have∑

h

⟨cUj (h), cUℓ
(h)⟩ = 41⊤

∑
h

diag(R⊤
h uju

∗
j ) ◦ diag(R⊤

h ūℓū
∗
ℓ )

= 41⊤
∑
h

(R⊤
h uj) ◦ ūj ◦R⊤

h ūℓ ◦ uℓ = 41⊤

[(∑
h

Rh

)
(uj ◦ ūℓ)

]
◦ ūj ◦ uℓ

= 4|u∗
juℓ|2

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This means that ⟨f̃j , f̃ℓ⟩ = ⟨cUj
, cUℓ

⟩ = 0. And thus the Gram matrix G := F̃⊤F̃ is block diagonal
with each block Gk corresponding to an irrep subspace k. Here Gk ∈ CNk×Nk . Note that since
we sample D2

k = m2
kd

2
k weights, then {Uj}j∈Jk

becomes a complete set of bases (not necessarily
orthogonal bases) and thus Gk is invertible.

Right-hand side. For any U ∈ End(Hk),

rU (h
′) =

∑
x

cU (h
′)x = 2 tr

(
(ΠkRh′Πk)U

)
= 2 tr

(
(Imk

⊗ Ck(h
′))U

)
.

and we have [f̃⊤j Y ]h′ = [f̃⊤j Ỹ ]h′ = rUj
(h′).

Solve LS. Now we try to solve the LS problem GV = F̃⊤Ỹ . Due to the block diagonal nature, this
can be solved independently for each Gk. Consider GkVk = F̃⊤

k Ỹ . Here F̃k = [f̃j ]j∈Jk
collects the

subset column Jk from F̃ .

Therefore, Vk = G−1
k F̃⊤

k Ỹ and vj(h
′) as the (j, h′) entry of Vk, has vj(h′) =

∑
l[G

−1
k ]jlrUl

(h′) =

2
∑

l[G
−1
k ]jl tr

(
(Imk

⊗ Ck(h
′))Ul

)
. Then we have Ŷ (k) = F̃kVk:

Ŷ
(k)
(·,h), h′ =

∑
j∈Jk

vj(h
′) cUj

(h) = 4
∑
j∈Jk

∑
l

[G−1
k ]jl tr

(
(I ⊗ Ck(h

′))Ul

)
· diag(R⊤

h Uj).

By linearity in U and completeness of {Uj} (the Hermitian bases span all operators in Hk), we have
for any A ∈ End(Hk):

4
∑
jl

[G−1
k ]jl tr(AUl) diag(R⊤

h Uj) = 4diag

R⊤
h

∑
jl

[G−1
k ]jl⟨A,Ul⟩Uj

 = diag(R⊤
h A)

The last equality holds by noticing that ⟨A,Ul⟩ = vec∗(Ul) vec(A) and thus
4
∑

jl[G
−1
k ]jl⟨A,Ul⟩Uj = A. Take A = I ⊗ Ck(h

′) = ΠkRh′Πk ∈ End(Hk), and we
have:

Ŷ
(k)
(·,h), h′ = diag

(
R⊤

h ΠkRh′Πk

)
(h, h′ ∈ H).

To see why Ŷ = Ỹ , we have:

Ŷ
(k)
(·,h),h′ = diag

(
R⊤

h (ΠkRh′Πk)
)
⇒
∑
k ̸=0

Ŷ
(k)
(·,h),h′ = diag

(
R⊤

h

(∑
k ̸=0

ΠkRh′Πk

))
.

Since
∑

k Πk = I and ΠkRh′ = Rh′Πk,∑
k ̸=0

ΠkRh′Πk = Rh′ −Π0.

where Π0 = 1
M 1M1⊤

M is the central idempotent projector onto the trivial irrep. Thus

∑
k ̸=0

Ŷ
(k)
(·,h),h′ = diag(R⊤

h Rh′)− diag(R⊤
h Π0) =

{
(1− 1

M )1M , h = h′,

− 1
M 1M , h ̸= h′,

because diag(R⊤
h Rh′) = 1M iff h = h′ and 0 otherwise, while diag(R⊤

h Π0) = 1
M 1M for all h.

Hence
∑

k ̸=0 Ŷ
(k) = P⊥

1 Y = Ỹ .

Remark. The above proof also works for real w since we can always take a real decomposition of
Rh and all the above steps follow.

Property of the square term. With quadratic features the class-centered column for node j and
block h decomposes as F̃ = [A,B], where for B each column j (and block h) is bj,h := R⊤

h (u
◦2
j )−

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

∥uj∥2
2

M 1M (the “square” part) and for A each column j (and block h) is aj,h := 2 (R⊤
h uj) ◦ uj (the

“cross” part we discussed above). The vector bj is entrywise mean-zero, i.e.
∑

x bj(x) = 0 for all
h, hence it has zero correlation with any class-centered target column Ỹ(·,h′) ∝ 1: (b⊤

j,hỸ )h′ =∑
x bj,h′(x) = 0. Moreover, under 1⊤uj = 1⊤uℓ = 0 one has

∑
h⟨bj,h,aℓ,h⟩ = 0. So the normal

equation becomes

F̃⊤F̃ V =

[
A⊤A A⊤B
B⊤A B⊤B

]
V =

[
A⊤Ỹ

B⊤Ỹ

]
which gives [

A⊤A 0
0 B⊤B

]
V =

[
A⊤Ỹ
0

]
So even with the square term B in F̃ , V will still have zero coefficient on them.

A.3 SCALING LAWS OF MEMORIZATION AND GENERALIZATION (SEC. 5.5)

Theorem 4 (Amount of samples to maintain local optima). If we select n ≳ d2kM log(M/δ) data
sample from H ×H uniformly at random, then with probability at least 1− δ, the empirical energy
function Ê keeps local maxima for dk-dimensional irreps (Thm. 2).

Proof. Overview. We keep the setting and notation of the theorem in the prompt (group H , |H| =
M , quadratic activation, S as defined there, zh = ⟨Rh, S⟩ = tr(R⊤

h S), zero-mean removal already
folded into R̃h). We analyze random row subsampling and show that the empirical objective keeps
the same local-maxima structure with n ≳ M log(M/δ) retained rows.

Setup. There are M2 rows indexed by pairs (h1, h2) ∈ H × H , with target h = h1h2. For each
h ∈ H , exactly M rows map to h; we index them by j ∈ [M ] after ordering by h1 as in the proof,
and write

sh,j :=
(
R⊤

h S
)
jj
. so that zh =

M∑
j=1

sh,j = ⟨Rh, S⟩.

We subsample rows independently with keep-probability p ∈ (0, 1]. Let ξh,j ∈ {0, 1} be the keep
indicator for the row (h, j):

Pr(ξh,j = 1) = p, i.i.d. over (h, j).

The number of kept rows for target h is

m̂h :=

M∑
j=1

ξh,j ∼ Bin(M,p), E[m̂h] = pM, Var(m̂h) = Mp(1− p).

Estimator for zh. We use the linear/unbiased (Horvitz–Thompson) target-wise estimator

ẑh :=
1

p

M∑
j=1

ξh,j sh,j . ⇒ E[ẑh |S] = zh.

Define the diagonal sampling matrix

WHT
h := diag

(ξh,1
p

, . . . ,
ξh,M
p

)
, so ẑh = tr

(
R⊤

h SWHT
h

)
= ⟨RhW

HT
h , S⟩.

The empirical Gram operator. Set the normalized per-target weight

wh :=
m̂h

pM
, E[wh] = 1, Var(wh) =

1− p

pM
≤ 1

pM
.

Decompose WHT
h into its mean and zero-mean parts:

WHT
h = whI + ∆h, tr(∆h) = 0, E[∆h | m̂h] = 0.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore

ẑh = ⟨Rh(whI +∆h), S⟩ = wh zh + εh, εh := ⟨Rh∆h, S⟩, E[εh |S, m̂h] = 0.
(26)

Using the decomposition

zh =
∑
k ̸=0

mk∑
r=1

tr
(
C∗

k,h Ŝk,r

)
=
∑
k ̸=0

mk∑
r=1

vec(Ŝk,r)
∗ vec(Ck,h),

we obtain ∑
h

ẑ2h =
∑
h

(
whzh + εh

)2
=
∑
h

w2
hz

2
h︸ ︷︷ ︸

signal

+ 2
∑
h

whzhεh︸ ︷︷ ︸
mixed

+
∑
h

ε2h︸ ︷︷ ︸
noise

. (27)

The signal term can be written as a quadratic form over irrep blocks:∑
h

w2
hz

2
h =

∑
(k,r),(k′,r′)

vec(Ŝk,r)
∗
[∑

h

w2
h vec(Ck,h) vec(Ck′,h)

∗
]
vec(Ŝk′,r′). (28)

Recall that the full-data operator is

Ak,k′ :=
1

M

∑
h

Ck′,h ⊗ Ck,h.

and vec(Ck,h) vec(Ck′,h)
∗ is just a column and row reshuffling of Ck′,h ⊗ Ck,h. In the following

we will study approximation errors of Ak,k′ instead. Let

Â
(2)
k,k′ :=

1

M

∑
h

w2
h Ck′,h ⊗ Ck,h and Âk,k′ :=

1

M

∑
h

wh Ck′,h ⊗ Ck,h

the second- and first-weighted empirical Gram operators, respectively. By construction, E[Âk,k′ ] =

Ak,k′ and E[Â(2)
k,k′ ] = Ak,k′ + 1−p

pM Ak,k′ (a tiny bias of order 1/(pM)).

Error bounds for each (k, k′) block. We will control three deviations, uniformly over all (k, k′):

E1 :
∥∥∥Âk,k′ − Ak,k′

∥∥∥
op

≤ c1

√
log(M/δ)

Mp
, (29)

E2 :
∥∥∥Â(2)

k,k′ − Âk,k′

∥∥∥
op

≤ c2

√
log(M/δ)

Mp
+

c′2
Mp

, (30)

E3 :

∣∣∣∣∣∑
h

whzhεh

∣∣∣∣∣ ≤ c3∥z∥2

√
M log(M/δ)

p
,

∑
h

ε2h ≤ c4
M log(M/δ)

p
, (31)

for numerical constants ci, c′i, with probability at least 1− δ/3.

Tool: Matrix Bernstein (self-adjoint dilation form) (Tropp, 2012). Let {Xi} be independent,
mean-zero random d× d matrices with ∥Xi∥ ≤ L and ∥

∑
i E[XiX

∗
i ]∥ ≤ v. Then for all t > 0,

Pr

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ t

)
≤ 2d exp

(
− t2/2

v + Lt/3

)
,

Proof of (29). Fix (k, k′) and define Bh := Ck′,h ⊗ Ck,h (unitary, so ∥Bh∥ = 1). Consider

Xh :=
1

M
(wh − 1)Bh, E[Xh] = 0, ∥Xh∥ ≤ |wh − 1|

M
≤ 1

M
.

We have

E[XhX
∗
h] =

E[(wh − 1)2]

M2
BhB

∗
h =

Var(wh)

M2
I ⪯ 1

pM3
I.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Summing over h gives variance proxy v ≤ M · 1
pM3 = 1

pM2 . Since d ≤ M , with probability at least
1− δ/3, Matrix Bernstein yields

∥∥∥Âk,k′ − Ak,k′

∥∥∥
op

=

∥∥∥∥∥∑
h

Xh

∥∥∥∥∥ ≲

√
log(M/δ)

Mp
,

which is (29).

Proof of (30). Write

Â
(2)
k,k′ − Âk,k′ =

1

M

∑
h

(w2
h − wh)Bh =

1

M

∑
h

(
(wh − 1)2 + (wh − 1)

)
Bh︸ ︷︷ ︸

:=Σ1+Σ2

.

For Σ2 we reuse the argument of (29). For Σ1, note that E[(wh − 1)2] = Var(wh) ≤ 1/(pM),
and (wh − 1)2 is sub-exponential with scale O(1/(pM)), so matrix Bernstein again gives that with
probability at least 1− δ/3,

∥Σ1∥op ≲

√
log(M/δ)

Mp
+

1

Mp
.

Combining yields (30).

Bounds for the mixed and noise terms in (31). Conditional on S and {wh}, the {εh} are inde-
pendent, mean-zero, and

|εh| =
∣∣⟨Rh∆h, S⟩

∣∣ ≤ ∥Rh∆h∥F ∥S∥F ≤ ∥∆h∥F ∥S∥F , E[ε2h |S,wh] ≲
∥S∥2F
p

.

Hence by scalar Bernstein (and Cauchy–Schwarz for the mixed sum),∣∣∣∣∣∑
h

whzhεh

∣∣∣∣∣ ≤ ∥w∥∞ ∥z∥2 ∥ε∥2 ≲ ∥z∥2

√
M log(M/δ)

p
,

∑
h

ε2h ≲
M log(M/δ)

p
,

with probability at least 1− δ/3, which is (31).

Combine the above three bounds, we know that with probability at least 1− δ, (29)–(31) hold at the
same time.

Stability of local maxima. For the quadratic case (after mean removal), with the collinear and equal
length u and v required by local maxima, E can be written as a positive semidefinite quadratic in
the block masses ck (Eqn. 22):

E(c) =
M

8

∑
k ̸=0

c2k
dk

,
∑
k ̸=0

ck = 1, ck ≥ 0.

The empirical energy has the form

Ê(c) =
M

8
c⊤(D + E) c + (terms independent of c),

where D = diag(1/dk) and E is the symmetric perturbation induced by replacing Ak,k′ with Â
(2)
k,k′

and by the mixed/noise terms. By (29)–(31),

∥E∥op ≲

√
log(M/δ)

Mp
+

1

Mp
(32)

with probability at least 1− δ.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Directional slope at a vertex (no gap needed). Consider a pure-irrep vertex c = ea and leak ε
mass to any other coordinate b ̸= a: c′a = 1− ε, c′b = ε, others 0. Population change:

∆E =
M

8

(
(1− ε)2 − 1

da
+

ε2

db

)
= − M

4da
ε + O(ε2).

Hence every leakage direction is strictly downhill at rate M
4da

, even if multiple dk tie. Therefore, a

first-order approximation of ∆Ê is

∆Ê = ∆E +
M

8
∆
(
c⊤Ec

)
= − M

4da
ε + O(ε2) +

M

4
O
(
∥E∥op ε

)
.

Therefore ∆Ê < 0 for all sufficiently small ε > 0 provided
M

4
∥E∥op <

M

4da
⇐⇒ ∥E∥op <

1

da
.

Combining with (32), a sufficient sampling condition is√
log(M/δ)

Mp
+

1

Mp
<

1

C da
⇒ Mp ≳ d2a log

M

δ
,

for a universal numerical constant C. Since the total number of kept rows is n = pM2, this is
exactly

n ≳ M d2a log
M

δ

(up to universal constants). Under this condition, with probability at least 1 − δ, every
pure-irrep vertex remains a strict local maximum of the empirical objective (energies shift by
O(
√
log(M/δ)/(Mp))). When several irreps have the same dk (tied energies), which one is the

global maximizer may swap, but the local-maxima set is preserved.

A.4 MEMORIZATION

Setting. Fix a group element h. The admissible training pairs are (g, g−1h) for g ∈ H with
probabilities pg := pg, g−1h and a unique maximum at g∗, i.e., pg∗ > pg for all g ̸= g∗. Let
w = [u; v] ∈ R2M with budget ∥u∥22 + ∥v∥22 = 1. Define the pair-sums sg := ug + vg−1h ≥ 0.
Then

∑
g s

2
g ≤ 2 and the (single-target) objective reduces to

F (s) :=
∑
g

pg σ(sg) subject to sg ≥ 0,
∑
g

s2g ≤ 2,

where σ ∈ C1([0,∞)) is strictly increasing on (0,∞). Maximizing the energy E is equivalent (up
to a fixed positive factor) to maximizing F .
Lemma 5 (KKT characterization via ϕ = σ′/x). Assume σ′(x) > 0 for x > 0, and define ϕ(x) :=
σ′(x)/x for x > 0. Let s⋆ be an optimal solution. Then there exists λ ≥ 0 such that for each g:

pg ϕ
(
s⋆g
)

= 2λ, if s⋆g > 0, (33)

Moreover, the budget is tight:
∑

g(s
⋆
g)

2 = 2 (hence λ > 0). If ϕ is strictly monotone on (0,∞),
then for every active coordinate s⋆g > 0,

s⋆g = ϕ−1

(
2λ

pg

)
. (34)

Proof. Consider the Lagrangian L(s, λ, µ) =
∑

g pg σ(sg)−λ(
∑

g s
2
g−2)−

∑
g µgsg , with λ ≥ 0,

µg ≥ 0. Stationarity gives pg σ′(sg)−2λsg−µg = 0. If sg > 0, then µg = 0 and pg σ
′(sg) = 2λsg ,

i.e., pg ϕ(sg) = 2λ. If sg = 0, complementary slackness allows µg ≥ 0 and the stationarity
reads pg σ

′(0) − µg = 0. Interpreting ϕ(0+) := limx↓0 σ
′(x)/x (possibly +∞), the inequality

pg ϕ(0
+) ≤ 2λ encodes the fact that activating sg > 0 would violate the KKT balance. Since

σ′ > 0 and the objective is increasing in each sg , the budget must be tight at optimum, hence∑
g s

2
g = 2 and λ > 0. If ϕ is strictly monotone, (33) uniquely determines sg as in (34).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma 6 (Memorization vs. spreading by ϕ-monotonicity). Under the setup above and assuming
ϕ(x) = σ′(x)/x is continuous on (0,∞):

(A) If ϕ is nondecreasing on (0,
√
2], then the unique maximizer is the memorization (peaked)

solution
s⋆g∗ =

√
2, s⋆g ̸=g∗ = 0,

realized by u = 1√
2
eg∗ , v = 1√

2
e(g∗)−1h.

(B) If ϕ is strictly decreasing on (0,∞), then the unique maximizer spreads and is given by

s⋆g = ϕ−1
(2λ
pg

)
(for all g with 2λ/pg < ϕ(0+)),

and s⋆g = 0 for any g with 2λ/pg ≥ ϕ(0+) (if ϕ(0+) < ∞). The multiplier λ > 0 is
uniquely determined by the budget

∑
g(s

⋆
g)

2 = 2. In particular, if ϕ(0+) = ∞ (e.g., ReLU

on [0,∞): ϕ(x) = 1/x; SiLU: ϕ(x) = sigmoid(x)
x + sigmoid(x)(1 − sigmoid(x))), then

all coordinates are strictly positive and

pi > pj =⇒ s⋆i > s⋆j > 0.

Proof. (A) Peaking when ϕ is nondecreasing. Take any feasible s with two positive coordinates
si ≥ sj > 0 and pi > pj . Define a squared-mass transfer preserving

∑
s2g: si(t) :=

√
s2i + t,

sj(t) :=
√
s2j − t, and Ψ(t) := piσ(si(t)) + pjσ(sj(t)). Then

Ψ′(t) = 1
2

[
piϕ(si(t))− pjϕ(sj(t))

]
≥ 1

2

[
(pi − pj)ϕ(sj(t))

]
> 0,

because si(t) ≥ sj(t) and ϕ is nondecreasing. Hence Ψ increases with t, so any two-support point
can be strictly improved by pushing mass to the larger p. Iterating this collapse yields the single-
support boundary sg∗ =

√
2, others 0. Uniqueness follows from strict inequality and the uniqueness

of pg∗ .

(B) Spreading when ϕ is strictly decreasing. By Lemma 5, the optimal active coordinates satisfy
pgϕ(s

⋆
g) = 2λ. Since ϕ is strictly decreasing, ϕ−1 exists and is strictly decreasing, yielding s⋆g =

ϕ−1(2λ/pg) on the active set; complementary slackness gives the thresholding when ϕ(0+) < ∞.
The budget

∑
g(s

⋆
g)

2 = 2 fixes λ, and strict monotonicity implies the profile is strictly ordered by
pg .

Theorem 5 (Memorization solution). Let ϕ(x) := σ′(x)/x and assume σ′(x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g−1h) for one target h with probability
pg . Then the global optimal of E is a memorization solution, either (1) a focused memorization w =
1√
2
(eg∗ , eg∗−1h) for g∗ = argmax pg if ϕ is nondecreasing, or (2) a spreading memorization with

w = 1
2

∑
g sg[eg, eg−1h], if ϕ is strictly decreasing. Here sg = ϕ−1(2λ/pg) and λ is determined by∑

g s
2
g = 2. No other local optima exist.

Proof. The conclusion follows directly from Thm. 6.

Some discussions. We know that

• For power activations σ(x) = xq (q ≥ 2) have ϕ(x) = q xq−2 nondecreasing; Thm. 6(A)
gives memorization. In all these cases, the peaked solution is realized by even split u =
1√
2
eg∗ , v = 1√

2
e(g∗)−1h; any profile s⋆ can be realized with, e.g., ug = vg−1h = s⋆g/2.

• ReLU on [0,∞): σ(x) = x, ϕ(x) = 1/x strictly decreasing; Thm. 6(B) yields s⋆ ∝ p.

• SiLU/Swish/Tanh/Sigmoid: ϕ strictly decreasing with ϕ(0+) = ∞; Thm. 6(B) gives a
strictly ordered spread s⋆g = ϕ−1(2λ/pg).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B INTERACTIVE FEATURE LEARNING (SEC. 6)

B.1 FEATURE REPULSION (SEC. 6.1)

Theorem 6 (Repulsion of similar features). The j-th column of F̃B is given by [F̃B]j = bjj f̃j +∑K
l=1 bjl f̃l, where sign(bjl) = −sign(f̃⊤j Pη,−jl f̃l) and Pη,−jl := I − F̃−jl(F̃

⊤
−jlF̃−jl + ηI)−1F̃⊤

−jl

is a projection matrix constructed from F̃−jl, which is F̃ excluding the l-th and j-th columns.

Proof. Let Q := (F̃⊤F̃ + ηI)−1. Without loss of generality (by a column permutation similarity
that preserves signs of the corresponding inverse entries), reorder columns so that the pair (j, ℓ)
becomes (1, 2). Write the partition

F̃ =
[
f̃1 f̃2 F̃r

]
, F̃r := F̃−(1,2) ∈ Rn×(K−2).

Then the ridge Gram matrix G = F̃⊤F̃ + ηIK acquires the 2× 2 / remainder block form

G =

a b u⊤

b c v⊤

u v H

 , where
a := f̃⊤1 f̃1 + η, b := f̃⊤1 f̃2, u := F̃⊤

r f̃1,

c := f̃⊤2 f̃2 + η, v := F̃⊤
r f̃2, H := F̃⊤

r F̃r + ηI.

Because η > 0, H is positive definite and hence invertible. The inverse of a block matrix is governed
by the Schur complement. Define the 2× 2 Schur complement

S :=

[
a b
b c

]
−
[
u⊤

v⊤

]
H−1 [u v] =

[
α β
β γ

]
,

where the entries are

α = a− u⊤H−1u, β = b− u⊤H−1v, γ = c− v⊤H−1v.

A standard block inversion formula (e.g., via Schur complements) yields that the top-left 2 × 2
block of G−1 equals S−1. In particular, the off–diagonal entry of Q = G−1 for indices (1, 2) is the
off–diagonal entry of S−1. Since

S−1 =
1

αγ − β2

[
γ −β
−β α

]
with αγ − β2 > 0

(because G ≻ 0 implies S ≻ 0), we obtain

q12 = (S−1)12 = − β

αγ − β2
.

It remains to identify α, β, γ in terms of ridge residuals with respect to F̃r. Note that

H = F̃⊤
r F̃r + ηI =⇒ F̃rH

−1F̃⊤
r = In − Pη,r,

by the definition Pη,r := I − F̃rH
−1F̃⊤

r . Therefore

α = f̃⊤1 f̃1 + η − f̃⊤1 F̃rH
−1F̃⊤

r f̃1 = η + f̃⊤1

(
I − F̃rH

−1F̃⊤
r

)
f̃1 = η + f̃⊤1 Pη,r f̃1,

β = f̃⊤1 f̃2 − f̃⊤1 F̃rH
−1F̃⊤

r f̃2 = f̃⊤1

(
I − F̃rH

−1F̃⊤
r

)
f̃2 = f̃⊤1 Pη,r f̃2,

γ = η + f̃⊤2 Pη,r f̃2.

Substituting these identities into the expression for q12 gives

q12 = − f̃⊤1 Pη,r f̃2(
η + f̃⊤1 Pη,r f̃1

)(
η + f̃⊤2 Pη,r f̃2

)
−
(
f̃⊤1 Pη,r f̃2

)2 .
The denominator is strictly positive (it is the determinant of the positive definite 2 × 2 matrix S),
hence

sign(q12) = − sign
(
f̃⊤1 Pη,r f̃2

)
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Undoing the preliminary permutation shows the same formula for the original indices (j, ℓ), which
proves the sign claim.

Finally, since Q is the inverse Gram with ridge, the j-th column of F̃Q is

(F̃Q)•j =

K∑
m=1

qmj f̃m = qjj f̃j +
∑
m̸=j

qmj f̃m.

Because qmj has sign opposite to the ridge-residual similarity f̃⊤mPη,−mj f̃j , features that are (resid-
ually) similar to f̃j enter with negative coefficients and hence subtract from (F̃Q)•j along those di-
rections—“repelling” similar features and promoting specialization. This completes the proof.

B.2 TOP-DOWN MODULATION (SEC. 6.2)

Theorem 7 (Top-down Modulation). For group arithmetic tasks with σ(x) = x2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient GF ∝ (ΦS ⊗1M )(ΦS ⊗1M )∗F
(see proof for the definition of ΦS ), which yields a modified ES that only has local maxima on the
missing irreps k /∈ S.

Proof. Fix a nontrivial isotype (irrep) k and we have

Ŷ
(k)
(·,h), h′ = diag

(
R⊤

h (ΠkRh′Πk)
)
.

Since Πk is central and idempotent, it commutes with Rh′ and Π2
k = Πk, hence

ΠkRh′Πk = ΠkRh′ = Rh′Πk.

Expand the central idempotent in the group algebra using unitary irreps {Ck} and characters χk:

Πk =
dk
M

∑
g∈H

χk(g)Rg =
dk
M

∑
g∈H

χk(g
−1)Rg. (35)

Therefore
ΠkRh′ =

dk
M

∑
g∈H

χk(g)RgRh′ =
dk
M

∑
g∈H

χk(g)Rgh′ .

Taking the diagonal after the left shift by R⊤
h gives

diag
(
R⊤

h (ΠkRh′)
)
=

dk
M

∑
g∈H

χk(g) diag
(
R⊤

h Rgh′
)
.

Since R⊤
h Rgh′ = Rh−1gh′ , we have

diag(R⊤
h Rgh′) =

{
1M , h−1gh′ = e,

0, otherwise.

Only the unique term g = hh′−1 survives, so

diag
(
R⊤

h (ΠkRh′)
)
=

dk
M

χk(hh′−1)1M =
dk
M

χk(h
′−1h)1M ,

where we used χk(a) = χk(a
−1) for unitary irreps. Consequently,

Ŷ
(k)
(rows for block h), h′ =

dk
M

χk(h
′−1h)1M .

Summing over a subset S of isotypes yields

Ŷ(rows for block h), h′ =
∑
k∈S

Ŷ
(k)
(rows for block h), h′ =

1

M

∑
k∈S

dk χk(h)χk(h′)1M .

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Since summing over all k ̸= 0 leads to Ŷ = Ỹ (Thm. 3), for the residual Ŷ − Ỹ we have

[Ŷ − Ỹ ](rows for block h), h′ =
1

M

∑
k ̸=0,k/∈S

dk χk(h)χk(h′)1M .

which means that Ŷ − Ỹ = ΦSΦ
∗
S ⊗1M , where ΦS :=

[√
dk

M χk(·)
]
k ̸=0,k/∈S

∈ CM×(κ(H)−|S|−1).

Since Ỹ = P⊥
1 ⊗ 1M , we have:

GF ∝ (Ŷ − Ỹ )Ỹ ⊤F =
(
ΦSΦ

∗
S ⊗ 1M1⊤

M

)
F = (ΦS ⊗ 1M ) (ΦS ⊗ 1M )

∗
F

Therefore, the energy function E now becomes

ES =
1

2
∥(ΦS ⊗ 1M )∗F∥22 =

1

2
∥Φ∗

Sz∥22

where z = [zh] = [⟨Rh, S⟩F ] ∈ CM defined in Eqn. 13. Computing each row k in Φ∗
Sz and use the

property of projection matrix Πk (Eqn. 35), we have:

[Φ∗
Sz]k = ⟨

∑
h∈H

√
dk
M

χk(h)Rh, S⟩ =
√

M

dk
⟨Πk, S⟩

In the Q space, we have ⟨Πk, S⟩ =
∑mk

r=1 tr(Ŝk,r) and therefore

ES =
1

2

∑
k ̸=0,k/∈S

M

dk

∣∣⟨Πk, S⟩
∣∣2 =

M

2

∑
k ̸=0,k/∈S

1

dk

∣∣∣∑
r

tr(Ŝk,r)
∣∣∣2

which is exactly the same form as the decomposition (Eqn. 20) in Thm. 2 (but a much cleaner
derivation). Therefore, all the local maxima of ES are still in the same form as Thm. 2, but we just
remove those local maxima that are in isotype/irreps k ∈ S, and focus on missing ones.

B.3 MUON OPTIMIZERS LEAD TO DIVERSITY (SEC. 6.3)

Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
joint energy Ejoint(W ) =

∑
j E(wj) and has critical points iff the original gradient GW vanishes.

Proof. Let G = [∇w1
E ,∇w2

E , . . . ,∇wK
E ] be the gradient matrix. Let G = UDV ⊤ be the singu-

lar value decomposition. Then Muon direction is Ĝ = UV ⊤ and thus the inner product between Ĝ
and G is

⟨Ĝ,G⟩F = tr(Ĝ⊤G) = tr(V U⊤UDV ⊤) = tr(D) ≥ 0 (36)

So Muon always follows the gradient direction and improve the objective. Furthermore, ⟨Ĝ,G⟩F =
0 iff D = 0, which means that G = 0. So the stationary points of the Muon dynamics and the
original gradient dynamics are identical.

Lemma 7 (Proposition of Fréchet / log-Gumbel selection). Let x1, . . . , xn be i.i.d. positive random
variables with Fréchet(α) CDF

F (x) = exp
(
− x−α

)
, x > 0, α > 0,

and let w1, . . . , wn > 0 be fixed weights. Define

i∗ = arg max
1≤j≤n

wj xj .

Then

Pr
(
i∗ = i

)
=

wα
i∑n

j=1 w
α
j

, i = 1, . . . , n.

In particular, when α = 1,

Pr
(
i∗ = i

)
=

wi∑n
j=1 wj

.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. Set Yj := wjxj . For t > 0,

Pr
(
max

j
Yj ≤ t

)
=

n∏
j=1

F
( t

wj

)
= exp

(
−

n∑
j=1

(wj/t)
α
)
.

Differentiating gives the density of the maximum:

fmax(t) =
d

dt
Pr
(
max

j
Yj ≤ t

)
=
( n∑

j=1

αwα
j t−α−1

)
exp
(
−

n∑
j=1

(wj/t)
α
)
.

The density that “i achieves the maximum at level t” is

fYi
(t)
∏
j ̸=i

F
( t

wj

)
= αwα

i t−α−1 exp
(
−

n∑
j=1

(wj/t)
α
)
.

Hence the conditional probability that i is the argmax given maxj Yj = t is

Pr
(
i∗ = i | max

j
Yj = t

)
=

αwα
i t−α−1∑n

j=1 αwα
j t−α−1

=
wα

i∑n
j=1 w

α
j

,

which is independent of t. Averaging over t yields the stated result.

Lemma 8 (The properties of the dynamics in Eqn. 10). The dynamics always converges to ζl∗ for
l∗ = argmaxl µlαl(0). That is, the initial leader always win.

Proof. Note that due to orthogonality of {ζl}, the dynamics can be written as

α̇j = µjα
2
j , µj > 0,

with the constraint
∑L

j=1 α
2
j ≤ 1. Define

rj := µjαj .

Interior. In the interior, we have

ṙj = µjα̇j = µj(µjα
2
j ) = r2j .

For any pair i, k define the ratio
ρik :=

ri
rk

.

Its derivative is

ρ̇ik =
ṙi
rk

− ri
r2k

ṙk =
r2i
rk

− ri
r2k

r2k = ρik(ri − rk).

Equivalently,
d

dt
log

ri
rk

= ri − rk. (1)

Thus if rℓ(0) > rj(0), then d
dt log(rℓ/rj) > 0 and ρℓj(t) is strictly increasing. Hence a strict leader

in r cannot be overtaken in the interior.

Boundary region (
∑

j α
2
j = 1). On the unit sphere, the projected dynamics is

α̇j = µjα
2
j − λαj , λ =

L∑
k=1

µkα
3
k.

In terms of rj ,

ṙj = rj(rj − ν), ν =

L∑
k=1

α2
krk =

L∑
k=1

r2k
µ2
k

rk.

For the ratio ρik = ri/rk we again obtain

ρ̇ik = ρik(ri − rk) =⇒ d

dt
log

ri
rk

= ri − rk. (2)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Monotonicity of ratios. From (1)–(2), if rℓ(0) > rj(0) then

d

dt
log

rℓ
rj

> 0 ∀t,

so ρℓj(t) = rℓ(t)/rj(t) is strictly increasing for every j ̸= ℓ. Thus a strict leader ℓ remains the
unique leader for all time.

Convergence to the vertex. Define weights

wj := α2
j =

r2j
µ2
j

,
∑
j

wj = 1.

Their dynamics is
ẇj = 2wj(rj − ν).

Taking ratios,
d

dt
log

wi

wk
= 2(ri − rk).

In particular, wℓ

wj
is strictly increasing for every j ̸= ℓ. Therefore

wj(t)

wℓ(t)
→ 0 (j ̸= ℓ),

implying wℓ(t) → 1 and wj(t) → 0. Hence

α(t) → eℓ as t → ∞.

Lemma 9 (Muon projection). For the matrix A = [Q,v] where Q is a column orthonormal matrix
and v is a vector with small magnitude, its Muon regulated version Â = [Â1, v̂] takes the following
form:

v̂ =

(
v⊥

∥v⊥∥
+

v∥

1 + ∥v⊥∥

)
+O(∥v⊥∥2) (37)

where v∥ = QQ⊤v and v⊥ = I −QQ⊤v.

Proof. Given A = [Q,B] with Q⊤Q = Ik, write B = QC + B⊥ where C := Q⊤B ∈ Rk×m and
B⊥ := (I −QQ⊤)B.

Let T := B⊤
⊥B⊥ ≻ 0. For c > 0 define

Â(c) = A (A⊤A)−1/c, Â(c) =
[
Â

(c)
1 , Â

(c)
2

]
.

We derive a first-order (in C) formula for the last block Â
(c)
2 .

The exact Gram matrix is

G := A⊤A =

[
Ik C
C⊤ C⊤C + T

]
= G0 +H, G0 := diag(Ik, T ), H :=

[
0 C
C⊤ C⊤C

]
.

Treat C as small. To first order in C we may drop the quadratic block:

H =

[
0 C
C⊤ 0

]
+ O(∥C∥2).

Diagonalizing T . Let T = UΛU⊤ with Λ = diag(λ1, . . . , λm), λj > 0. Define the block orthogo-
nal change of basis

P := diag(Ik, U) ⇒ G̃ := P⊤GP, G̃0 := P⊤G0P = diag(Ik,Λ), H̃ := P⊤HP =

[
0 C̃

C̃⊤ 0

]
,

where C̃ := C U . All first-order statements can be done in this basis and then mapped back by P .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

First-order Taylor Expansion. Now let’s do the Taylor expansion. Write

G̃ = G̃0 + H̃ = G̃
1/2
0

(
I + G̃

−1/2
0 H̃ G̃

−1/2
0︸ ︷︷ ︸

=:E

)
G̃

1/2
0 .

Since G̃0 = diag(Ik,Λ),

E =

[
0 C̃ Λ−1/2

Λ−1/2C̃⊤ 0

]
is O(∥C∥).

For the scalar function f(x) = x−1/c,

(I + E)−1/c = I − 1

c
E + O(∥E∥2).

Therefore

G̃−1/c = G̃
−1/2
0 (I + E)−1/c G̃

−1/2
0 = G̃

−1/c
0 − 1

c
G̃

−1/2
0 E G̃

−1/2
0 + O(∥C∥2).

Compute the blocks using G̃
−1/2
0 = diag(Ik,Λ

−1/2):

G̃
−1/2
0 E G̃

−1/2
0 =

[
0 C̃ Λ−1

Λ−1C̃⊤ 0

]
.

Hence, to first order,

G̃−1/c =

[
Ik 0
0 Λ−1/c

]
− 1

c

[
0 C̃ Λ−1

Λ−1C̃⊤ 0

]
+ O(∥C∥2). (38)

Back to the original space. Now

G−1/c = P G̃−1/c P⊤.

Using (38) and P = diag(Ik, U),

G−1/c =

[
Ik 0

0 U Λ−1/c U⊤

]
− 1

c

[
0 C U Λ−1U⊤

U Λ−1U⊤ C⊤ 0

]
+ O(∥C∥2).

Since U Λ−1U⊤ = T−1 and U Λ−1/cU⊤ = T−1/c,

G−1/c =

[
Ik 0

0 T−1/c

]
− 1

c

[
0 C T−1

T−1C⊤ 0

]
+ O(∥C∥2).

Now multiply
Â(c) = [Q, QC +B⊥ ] G−1/c.

Taking the last m columns (the 2nd block) and keeping first-order terms:

Â
(c)
2 = Q

(
− 1

c
C T−1

)
+ (QC +B⊥)T

−1/c + O(∥C∥2)

= B⊥ T−1/c + Q
(
C T−1/c − 1

c
C T−1

)
+ O(∥C∥2).

Factor the Q-part columnwise via the spectral calculus of T . If T = UΛU⊤, then on each eigenvalue
λ the scalar factor is

λ−1/c − 1

c
λ−1 =

1− λ 1−1/c

1− λ
.

Thus, in matrix form,

C T−1/c − 1

c
C T−1 = C

(
I − T 1−1/c

)
(I − T )−1.

and we have

Â
(c)
2 = B⊥ T−1/c + B∥

(
I − T 1−1/c

)
(I − T )−1 + O(∥C∥2). (39)

where B∥ = QQ⊤B.

For polar case c = 2, the operator becomes (I − T 1/2)(I − T )−1. For B = v, we have T =
B⊤

⊥B⊥ = ∥v⊥∥22 and the conclusion follows.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lemma 10 (Bound of T0).

T0 ≥ max

(
L

min
l=1

1/pl, L

L∑
l=1

1/l

)
. (40)

Proof. T0 ≥ minl 1/pl since the expected time to collect all the coupons is always larger than
collecting the rarest coupon alone.

To prove T0 ≥ L
∑L

l=1 1/l, fix t > 0 and consider the function

h(p) = log
(
1− e−pt

)
, p > 0.

A direct computation shows

h′′(p) = − t2

4 sinh2(pt/2)
< 0,

so h is concave. By Jensen’s inequality and
∑

i pi = 1,

L∑
i=1

log(1− e−pit) ≤ L log
(
1− e−t/L

)
.

Exponentiating gives the pointwise bound

L∏
i=1

(1− e−pit) ≤ (1− e−t/L)L.

Therefore

E[T0] ≥
∫ ∞

0

(
1− (1− e−t/L)L

)
dt.

To evaluate the integral, set u = e−t/L, so dt = −Ldu/u and t : 0 → ∞ maps to u : 1 → 0:∫ ∞

0

(
1− (1− e−t/L)L

)
dt = L

∫ 1

0

1− (1− u)L

u
du = L

∫ 1

0

L−1∑
l=0

(1− u)ldu = L

L−1∑
l=0

1

l + 1

Thus the conclusion holds. Equality holds if and only if p1 = · · · = pL = 1/L, since that is the
case of equality in Jensen.

Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian, 2023):

ẇ = A(w)w, ∥w∥2 ≤ 1 (10)

where A(w) :=
∑

l λl(w)ζlζ
⊤
l . Assume that (1) {ζl} form orthonormal bases, (2) for w =∑

l αlζl, we have λl(w) = µlαl with µl ≤ 1, and (3) {αl} is initialized from inverse-exponential
distribution with CDF(x) = exp(−x−a) with a > 1. Then

• Independent feature learning. Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l . Then the expected

#nodes to get all local maxima is T0 ≥ max
(
1/minl pl,

∑L
l=1 1/l

)
.

• Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is Ta = 2−aT0 + (1− 2−a)L. For large a, Ta ∼ L.

Proof. From Lemma 8, we know that the final mode ζl that the nodes converge into is the one with
largest initial αl:

Pr[w → ζl] = Pr[l = argmax
l′

µl′αl′(0)] (41)

By Lemma 7, we have Pr[w → ζl] = pl := µa
l /
∑

l µ
a
l .

Independent feature learning. In this case, getting all local modes {ζl} is identical to the coupon
collector problem with L coupons. With the property of the distribution (Lemma 7), we know that
the probability of getting l-th local maxima is pl := µa

l /
∑

l µ
a
l .

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Therefore, the expected number of trials to collect all local maxima is (Flajolet et al., 1992):

T0 =

∫ +∞

0

(
1−

L∏
l=1

(1− e−plt)

)
dt (42)

Note that T0 ≥ max
(
1/minl pl, L

∑L
l=1 1/l

)
(Lemma 40). Since each node is independently

optimized, we need K ∼ T0 to collect all local maxima in K hidden nodes with high probability.

Muon guiding. Consider the following setting that we optimize the hidden nodes “incrementally”.
When learning the weights of node j, we assume all the previous nodes (node 1 to node j − 1)
have been learned, i.e., they have converged to one of the ground truth bases {ζl}, but still keep the
gradients of them (after deduplication) in the Muon update. Let Sj−1 ⊆ [L] = {1, . . . , L} be the
subset of local maxima that have been collected.

By Lemma 9, we know that

ĝj =
1

∥gj,⊥∥

(
gj,⊥ +

∥gj,⊥∥
1 + ∥gj,⊥∥

gj,∥

)
+O(∥gj,⊥∥2) (43)

where gj,∥ = Pj−1P
⊤
j−1gj and gj,⊥ = gj − gj,∥. Here Pj−1 = [ζs]s∈Sj−1 is the projection matrix

formed by the previous j − 1 nodes. Since

∥gj,⊥∥ ≤ ∥gj∥ = ∥
∑
l

λl(αl)αlζl∥ = |
∑
l

(λl(αl)αl)
2| ≤ |

∑
l

α2
l | ≤ 1 (44)

We have ∥gj,⊥∥
1+∥gj,⊥∥ ≤ 1/2. Therefore, this means that the parallel components, i.e., the components

that are duplicated with the previous j − 1 nodes in the gradient was suppressed by at least 1/2,
compared to the orthogonal components (i.e., the directions towards new local maxima). This is
equivalent to dividing µl for all ls that appear in Pj−1 by (at least) 2. By Lemma 7, for the node j,
the probability of converging to a new local maximum other than Sj−1 is

pnew,Sj−1
≥

∑
l/∈Sj−1

pl

2−a
∑

l∈Sj−1
pl +

∑
l/∈Sj−1

pl
(45)

We do this sequentially starting from node j, then node j + 1, etc. Let m = |Sj−1| be the number
of discovered local maxima. Then the expected time that we find a new local maxima is:

E[T̃m→m+1] =
1

pnew,Sj−1

≤ 2−aE[Tm→m+1] + 1− 2−a (46)

where E[Tm→m+1] = 1/
∑

l/∈Sj−1
pl is the expected time for the original coupon collector problem

to pick a new local maximum, given Sj−1 known ones. Adding the expected time together, we have

Ta =

L−1∑
m=0

E[T̃m→m+1] ≤ 2−aT0 + (1− 2−a)L (47)

Note that all the expected time are conditioned on the sequence of known local maxima. But since
these values are independent of the specific sequence, they are also the expected time overall.

C MORE EXPERIMENTS

C.1 USE GROUPS ALGORITHMS PROGRAMMING (GAP) TO GET NON-ABELIAN GROUPS

GAP (https://www.gap-system.org/) is a programming language with a library of thou-
sands of functions to create and manipulate group. Using GAP, one can easily enumerate all non-
abelian group of size M ≤ 127 and create their multiplication tables, which is what we have done
here. From these non-Abelian groups, for each group size M , we pick one for our scaling law
experiments (Fig. 4 bottom right) with maxk dk = 2.

31

https://www.gap-system.org/


1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 lo
ss

train%: 0.9, wd=0.0001
adam
muon

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.8, wd=0.0001

adam
muon

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.6, wd=0.0001

adam
muon

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 lo
ss

train%: 0.9, wd=0.0002
adam
muon

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.8, wd=0.0002

adam
muon

60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.6, wd=0.0002

adam
muon

60 80 100 120
Hidden size K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 lo
ss

train%: 0.9, wd=5e-05
adam
muon

60 80 100 120
Hidden size K

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.8, wd=5e-05

adam
muon

60 80 100 120
Hidden size K

0.1

0.2

0.3

0.4

0.5

0.6
train%: 0.6, wd=5e-05

adam
muon

Figure 7: Adam versus Muon optimizers in modular addition tasks with M = 71, when the number of hidden
nodes K is relatively small compared to M . Muon optimizer achieves lower test loss compared to Adam.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

2-layer network
train_loss
test_loss

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

3-layer network
train_loss
test_loss

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Lo
ss

4-layer network
train_loss
test_loss

Figure 8: Training modular addition tasks with 2, 3 and 4 layer network with ReLU activations. Left: Training
accuracy and losses. Right: Learned features at the lowest layer. With more layers, the training takes longer
and grokking (delayed generalization) becomes more prominant. However, features at the lowest layer remain
(distorted version) of Fourier bases, which are consistent with the analysis in Sec. 7.

40 60 80 100 120 140
M

0.1

0.2

0.3

0.4

tra
in

%

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

40 60 80 100 120
M

0.10

0.15

0.20

0.25

0.30

0.35

tra
in

%

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Figure 9: Generalization/memorization phase transition in product and non-Abelian tasks. Left: Product
group Z4 ⊗ Z7, Z5 ⊗ Z6, Z2 ⊗ Z2 ⊗ Z9, Z13 ⊗ Z11, Z5 ⊗ Z2 ⊗ Z2 ⊗ Z2, Z6 ⊗ Z4 ⊗ Z2, Z3 ⊗ Z2 ⊗ Z17,
Z2⊗Z3⊗Z3⊗Z5. Right: Non-Abelian groups with maxk dk = 2 (maximal irreducible dimension 2). These
non-Abelian groups are generated from GAP programs (See Appendix Sec. C.1).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.00

0.25

0.50

0.75

1.00

1.25

Lo
ss

M=23

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

M=41

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=89

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=127

train_loss
test_loss

Figure 10: Training modular addition tasks with real weights (M = 23, 41, 89, 127). Learning rate is 0.005,
weight decay is 5e − 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M2. Using
Adam optimizer. Averaged over 5 seeds. This is a baseline.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

M=23

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=41

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=89

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=127

train_loss
test_loss

Figure 11: Training modular addition tasks with complex weights (M = 23, 41, 89, 127). Learning rate is
0.005, weight decay is 5e − 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M2.
Using Adam optimizer. Averaged over 5 seeds. Compared with the real case (Fig. 10), models with complex
weights seem to grok faster.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.5

1.0

1.5

2.0

Lo
ss

M=23

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ss

M=41

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=89

train_loss
test_loss

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.2

0.4

0.6

0.8

1.0

Lo
ss

M=127

train_loss
test_loss

Figure 12: Training modular addition tasks with real weights (M = 23, 41, 89, 127). Instead of using
gradient descent to update the top layer V , in every gradient update we use ridge regression solution Vridge with
respect to the current F (Eqn. 4). Learning rate is 0.005, weight decay is 5e − 5. Number of hidden nodes
K = 256. Test sample is 20% of the full set of M2. Using Adam optimizer. Averaged over 5 seeds. The
grokking still happens (for M = 23 check Fig. 13 for completeness). It is slower for M = 23 but actually
faster for M = 41, 89, 127, compared to the baseline (Fig. 10).

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc

0.0

0.5

1.0

1.5

2.0

Lo
ss

M=23

train_loss
test_loss

Figure 13: Training modular addition tasks with real weights M = 23 for 500 epochs, using Vridge as the
top layer weight. The grokking still happens but slower than the baseline (Fig. 10) for M = 23.

35


	Introduction
	Related Works
	Problem formulation
	Stage I: Lazy Learning (Overfitting)
	Stage II: Independent feature learning
	The energy function E
	Group Arithmetic Tasks
	Local maxima of the energy function
	Representation power of learned features
	The Scaling Laws of the boundary of memorization and generalization

	Stage III: Interactive feature learning
	Repulsion of similar features
	Top-down Modulation
	Diversity enhancement with Muon

	Extension to deeper architectures
	Conclusion, Limitations and Future Work
	Independent Feature Learning (Sec. 5)
	The energy function E (Sec. 5.3)
	Reconstruction power of learned features (Sec. 5.4)
	Scaling laws of memorization and generalization (Sec. 5.5)
	Memorization

	Interactive Feature Learning (Sec. 6)
	Feature Repulsion (Sec. 6.1)
	Top-down Modulation (Sec. 6.2)
	Muon optimizers lead to diversity (Sec. 6.3)

	More Experiments
	Use Groups Algorithms Programming (GAP) to get non-Abelian groups


