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ABSTRACT

While the phenomenon of grokking, i.e., delayed generalization, has been studied
extensively, it remains an open problem whether there is a mathematical frame-
work that characterizes what kind of features will emerge, how and in which con-
ditions it happens, and is still closely connected with the gradient dynamics of the
training, for complex structured inputs. We propose a novel framework, named
Lig, that captures three key stages for the grokking behavior of 2-layer nonlinear
networks: (I) Lazy learning, (II) independent feature learning and (III) interactive
feature learning. At the lazy learning stage, top layer overfits to random hid-
den representation and the model appears to memorize. During lazy learning,
the backpropagated gradient G from the top layer carries information about
the target label, with a specific structure that enables each hidden node to learn
their representation independently. Interestingly, the independent dynamics fol-
lows exactly the gradient ascent of an energy function &, and its local maxima
are precisely the emerging features. We study whether these local-optima induced
features are generalizable, their representation power, and how they change on
sample size, in group arithmetic tasks. When hidden nodes start to interact in the
later stage of learning, we provably show how G changes to focus on missing
features that need to be learned. Our study sheds lights on roles played by key hy-
perparameters such as weight decay, learning rate and sample sizes in grokking,
leads to provable scaling laws of feature emergence, memorization and general-
ization, and reveals the underlying cause why recent optimizers such as Muon can
be effective, from the first principles of gradient dynamics. Our analysis can be
extended to multi-layer architectures.

1 INTRODUCTION

While modern deep models such as Transformers have achieved impressive empirical performance,
it remains a mystery how such models acquire the knowledge during the training process. There
have been ongoing arguments on whether the models can truly generalize beyond what it is trained
on, or just memorize the dataset and performs poorly in out-of-distribution (OOD) data (Wang et al.,
2024b; |Chu et al., [2025; [Mirzadeh et al., [2024).

Modeling the memorization/generalization behaviors have been a goal of many works. One such
behavior, know as grokking (Power et al.,|2022; Doshi et al.,|2024; Nanda et al., 2023} Wang et al.|
2024a;|Varma et al.,[2023;; |Liu et al., 2023 Thilak et al.,[2022)), shows that the model initially overfits
to the training set, and then suddenly generalizes to unseen test samples after continuous training.
Many explanation exists, e.g., effective theory (Liu et al.|, 2022} (Clauw et al.| [2024), efficiency of
memorization and generalization circuits (Varma et al., [2023), Bayesian interpretation with weight
decay as prior (Millidge|, 2022), etc. Most works focus on a direct explanation of its empirical
behaviors, or leverage property of very wide networks (Barak et al.| 2022 Mohamadi et al.| [2024;
Rubin et al., 2024), but few explores the details of the grokking learning procedure by studying the
gradient dynamics on the weights.

In this work, we propose a mathematical framework Lis that divides the grokking dynamics for
2-layer nonlinear networks into three major stages (Fig.[I). Stage I: Lazy Learning: when training
begins, the top (output) layer learns first with random features from the hidden layer, the backprop-
agated gradient G to the hidden layer is noise. Stage II: Independent feature learning: After that,
the weights of the output layer is no longer random, the backpropagated gradient G starts to carry
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Figure 1: Overview of our framework Lis. Left: Lio proposes three stages of the learning process, (I) Lazy
learning, (II) independent feature learning and (III) interactive feature learning, to explain the dynamics of
grokking that shows the network first memorizes then generalizes. Right: Our analysis covers a wide range of
network width K and weight decay 7 and demonstrates their effects on learning dynamics, including both NTK
and feature learning regime. In the feature learning regime, with the help of the energy function £ (Thm. [I)),
we characterize the learned features as local maxima of £ (Thm. [2)) and the required sample size to maintain
them (Thm. [d), establishing generalization/memorization scaling laws.

information about the target in the presence of weight decay (Lemma [I)), which drives the learn-
ing of hidden representations. In this stage, the backpropagated gradient of the j-th neuron (node)
only depends on its own activation, triggering independent feature learning for each node. Stage
III: Interactive feature learning: when weights in the hidden layer get updated and are no longer
independent, interactions across nodes adjust the learned feature to minimize the loss.

We study each stages in detail and provide theoretical analysis. In Stage I, G carries target la-
bels once the top layer overfits. In Stage 11, independent feature learning follows gradient ascent of
energy £ (Thm. [I)), a nonlinear CCA. For group arithmetic, we characterize all local maxima of £
(Thm. [2) and show how training samples determine stability and generalizability (Thm. [, estab-
lishing scaling laws. In Stage III, we prove diversity push (Thm. [6), top-down modulation (Thm.[7),
and Muon’s effectiveness (Thm. [§). Experiments support our claims (Fig. ).

Comparison with existing grokking frameworks. Our framework provides a theoretical founda-
tion from first principles (i.e., gradient dynamics) that explains the empirical hypothesis|Varma et al.
(2023) that “generalization circuits Cyep, is more efficient but learn slower than memorization cir-
cuits Cpem”. Specifically, we show that the data distribution determines the optimization landscape,
which in turn governs which local optima the weights converge into, which lead to the behavior of
memorization or generalization. We also show that the initial memorization, or lazy learning (Stage
I), has to happen before feature learning (Stage II-III), since the former provides meaningful back-
propagated gradient G for the latter to start developing. In comparison, (Nanda et al, [2023) also
provides a three stage framework of grokking, but mostly from empirical observations.

2 RELATED WORKS

Explanation of Grokking. Multiple explanations of grokking exist, e.g., competition of generaliza-
tion and memorization circuits (Merrill et al., [2023)), a shift from lazy to rich regimes Kumar et al.
(2024), etc. Dynamics of grokking is analyzed in specific circumstance, e.g., for clustering data (Xu
et al.,[2023)), linear network (Dominé et al., 2024), etc. In comparison, our work studies the full dy-
namics of feature emergence driven by backpropagation in group arithmetic tasks for deep nonlinear
networks, and provide a systematic mathematical framework about what and how features emerge
and a scaling law about when the transition between memorization and generalization happens.

Usage of group structure. Recent work leverages group theory to study the structure of final
grokked solutions (Tian, 2025; Morwani et al., 2023} Shutman et al., [2025). None of them tackle
the dynamics of grokking in the presence of the underlying structure of the data as we do.

Scaling laws of memorization and generalization. Previous works have identified scaling laws for
memorization/generalization (Nguyen & Reddyl 2025; [Wang et al.| [2024a; |Abramov et al., 2025;
Doshi et al.| 2023) without systematic theoretical explanation. Our work models such transitions
as whether generalizable local optima remain stable under data sampling, and provide theoretical
framework from first principles.
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Figure 2: Grokking dynamics on modular addition task with M = 71, K = 2048, n = 2016 (40% training
out of 712 samples) with and without weight decay. Top: 7 = 0.0002 and grokking happens. Bottom: 1 = 0
and no grokking happens. Weight decay leads to larger |G| around epoch 100 and induces grokking behavior.
The weights difference AW between consecutive weights at time ¢ and ¢ + 1, measured by cosine distance,
shows two-stage behaviors: first there is huge update on the output weight V/, then large update on the hidden

weight W. Throughout the training, F'' F and Pi- FF " remains diagonal with up to 8% error, validating our
analysis (independent feature learning, Sec.[3). Experiments averaged over 15 seeds.

Feature learning. Previous works treats the NTK as a holistic object and study how it moves away
from lazy regime, e.g., it becomes more correlated with task-relevant directions (Kumar et al.,2024;
Ba et al., |[2022; Damian et al.| |2022)), becomes adapted to the data (Rubin et al., 2025} |[Karp et al.,
2021), etc. In contrast, our work focuses on explicit learning dynamics of individual features, their
interactions, and the transition from memorization to generalization with more samples.

3  PROBLEM FORMULATION

We consider a 2-layer network ¥ = o(XW)V and /5 loss function on n samples:

1 - .1
I‘}}gvlgl\Pﬁ(Y—Y)llfwZg};{,ﬁIIPf(Y—U(XW)V)II% (D)
where Pj- := I — 11" /n is the zero-mean projection matrix along the sample dimension, Y &
R™*M 5 a label matrix (each row is a one-hot vector), X = [x1,X2,...,X,]| € R"*% s the data

matrix, V € REXM and W € R¥*X are the weight matrices of the last layer and hidden layer,
respectively. o is the nonlinear activation function.

In the following, we show that grokking is a consequence of “leaked” backpropagated gradient G .

4  STAGE I: LAZY LEARNING (OVERFITTING)

Let F' = (X W) be the activation of the hidden layer and F= Pi- F be the zero-mean version of
it. Similarly define Y = P;"Y. We first write down the backpropagated gradient G sent to the
hidden layer:

oJ

—o5 =

At the beginning of the training, both W and V" are initialized with independent zero-mean random
variables. Therefore, the backpropagated gradient G is pure random noise. Over time, the hidden
activation F' is mostly unchanged, and only the output layer learns. In this case, F' can be treated as
fixed during this stage of learning, and we can prove the following properties of G (Sec. [C):

Gr = PHY —-FV)VT 2

Proposition 1. If Fis fixed and is full column rank, entries of V(0) is initialized from normal
distribution N(0,02) with 0 < a < 1, then ||Gr(0)||r = O(ev'KM) and the backpropagated
gradient G- is dominated by the term Y'Y ' F at initial time stamps:

Gr(t) =tYY T F 4+ O(a) + O(at) + O(t?) (3)
and converges exponentially to the following fixed point when V' = Vo0 = (F TF + nl )_1F Ty
Gp(+o0) =n(FET + ) 'YYTF(FTF +nI)~* (4)
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G r at initial phase. The proposition suggests that for small top layer initialization (measured by
@), ||Gr| will first increase from O(«) to O(1) and then converge exponentially to O(n). Fig.
shows that this is indeed the case for ||G r||, regardless whether grokking happens or not.

G'r at later phase. The structure of G p(+00) is revealed by the following lemma:

Lemma 1 (Structure of backpropagated gradient G r). Assume that (1) entries of W follow standard
normal distribution N(0,1), (2) ||x:||2 = const, (3) |x] xis — pll2 < e for all i # i' and (4) large
width K, then both FT F and FF'T becomes a multiple of identity and Eqn. becomes:

_ 0 T -1
Gr(+00) = Ker 7 m)(nea +77)YY F+O(K “e) %)

where c1,co > 0 are constants related to nonlinearity. When 1 is small, we have G 77175~/TF .
Note that the input features and/or weights can be scaled and what changes is c; and c,.

Interestingly, in both the initial and converging phases, we see that G'r» contains a key term YY T I,
As we will see, it plays a critical role in feature learning. From Eqn.[3 it is clear that if K’ — o0,
then Gr(+00) — 0 and there is no feature learning (i.e., NTK regime). Here we study the case
when K is large (so that Eqn. [3]is valid) but not too large so that feature learning happens.

5 STAGE II: INDEPENDENT FEATURE LEARNING
5.1 THE ENERGY FUNCTION &

Now let us explore the feature learning process with the help of Gp. Let W = [wy, wa, ..., Wk]|
where w; € R? is the weight vector of j-th node, and F = [f}, s, ..., fx]| where f; = o(Xw;) €
R™ is the activation of j-th node. For Gp YY TF, as the structure shown in both initial stage
(Eqn. EI) and later stage (Eqn. EI) the j-th column g; of G’ is only dependent on j-th node w;, and
thus we can decouple the dynamics into K independent ones, each corresponding to a single node:

w; = X'Djg;, g x YY o(Xw;) (6)

where D; = diag(o’(Xwy)) is the diagonal gating matrix of j-th node. Note that Y F = Y T F
since Pj- is idempotent. A critical observation here is that Eqn. E] actually corresponds to the gradi-
ent ascent dynamics of the energy function £.

Theorem 1 (The energy function £ for independent feature learning). The dynamics (Eqn. [6) of
independent feature learning is exactly the gradient ascent dynamics of the energy function & w.r.t.
W, a nonlinear canonical-correlation analysis (CCA) between the input X and targetY :

1 .
E(w;) = §||YT0(XW]')II§ (7)

Therefore, the feature learned for each node j is the one that maximizes the energy function £(w;).
Since Eqn. @ can be unbounded, in the following, we put an additional constraint that ||w|l» = 1
(e.g., because of weight decay). Note that (Tianl 2023) also arrives at an energy function when
studying feature learning in the context of contrastive loss, the resulting function is abstract and
difficult to interpret its structure of its local maxima. Here the structure is much clearer, which we
will explore below.

5.2 GROUP ARITHMETIC TASKS

To demonstrate a concrete example, we consider group arithmetic tasks, i.e., for group H, the task
is to predict h = hyho given hy, ho € H. One example is the modular addition task h1ho = hy + ho
mod M, which has been extensively studied in grokking (Power et al.,|2022; (Gromov}, 2023} Huang
et al.| [2024; Tian, [2025)).

The task. We represent the group elements by one-hot vectors: each data sample x; € R?M is a
concatenation of two )M -dimensional one-hot vectors (€, (], €x,[;)) Where h1[i] and ho[i] are the
indices of the two one-hot vectors. The output is also a one-hot vector y; = e, [;]n,[;, Where

1 <i < n = M?2 Here the class number M = |H| is the size of the group.
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A crash course of group representation theory. A mapping p(h) : H +— C%*? is called a
group representation if the group operation is compatible with matrix multiplication: p(hy)p(he) =
p(hiho) for any hy, ho € H. Let Ry, € RM*M be the regular representation of group element h
so that ey, n, = Ry, ep, forall hy, ho € H, and P € RM*M be the group inverse operator so that
Pej, = ep-1. Note that P2 =T and PT = P~ = P.

The decomposition of group representation. The representation theory of finite group (Fulton &
Harris| 2013 |Steinberg), |2009) says that the regular representation Rj, admits a decomposition into
complex irreducible representations (or irreps):

k(H) my,

Rn=Q| P Pcih | ®)

k=0 r=1

where #(H) is the number of nontrivial irreps (i.e., not all 4 map to identity), Cx(h) € C% > js
the k-th irrep block of Ry, @ is the unitary matrix (and Q* is its conjugate transpose) and my, is the
multiplicity of the k-th irrep. This means that in the decomposition of R}, there are my copies of
dj-dimensional irrep, and these copies are isomorphic to each other. So the k-th irrep subspace H;
has dimension m,dy,.

For regular representation { R, }, one can prove that my, = dy, forall k and thus |H| = M =), d3.
For Abelian group, all complex irreps are 1d (i.e., Fourier bases). One may also choose to do the
decomposition in real domain. In this case, a pair of 1d complex irreps will become a 2d real irrep.
For example, ¢! and e 1% becomes a 2d matrix [cos(6), — sin(6); sin(6), cos(8)].

5.3 LOCAL MAXIMA OF THE ENERGY FUNCTION

Now we study the local maxima of £. With the decomposition, we can completely characterize the
local maxima of the energy £ with group inputs, even that £(w) is nonconvex.

Theorem 2 (Local maxima of £ for group input). For group arithmetics tasks with o(z) = 2,

& has multiple local maxima w* = [u;+Pul. Either it is in a real irrep of dimension dj, (with
E* = M/8dy and u € Hy), or in a pair of complex irrep of dimension dy, (with E* = M /16dy, and
u € Hy, ® Hy). These local maxima are not connected. No other local maxima exist.

Note that our proof can be extended to more general nonlinearity o(x) = ax + bx? with b > 0 since
linear part will be cancelled out due to zero-mean operators. We can show that local maxima of £
are flat, allowing moving around without changing &:

Corollary 1 (Flatness of local maxima of £ for group input). Local maxima of € for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

We can apply the above theorem to the popular modular addition task which is an Abelian group.
The resulting representation is Fourier bases.

Corollary 2 (Modular addition). For modular addition with odd M, all local maxima are single
frequency uy, = ay[cos(kmw)|M 2} + by [sin(kmw)| M2} where w = 21 /M with £ = M /16. For

m=0
even M, uy; /o o [(—=1)™MZ3 has £ = M /8. Different local maxima are disconnected.

Role played by the nonlinearity. With linear activation, there is only one global maximum, which
is the maximal eigenvector of X TYYTX. This corresponds to Linear Discriminative Analysis
(LDA) (Balakrishnama & Ganapathirajul [1998)) that finds directions that maximally separate the
class-mean vectors. For group arithmetics tasks, for each target h = hjhs, each group element
(h1 and ho) appears once and only once, the class-mean vectors are identical and thus LDA fails to
identify any meaningful directions. With nonlinearity, the learned w has clear meanings.

Meaning of the learned features. First, the learned representation can offer a more efficient re-
construction of the target (see Thm. [3)) than simple memorization of all M2 pairs. Second, learned
representations naturally contain useful invariance. For example, some irreps of the cyclic group of
Z15 behave like its subgroup Z3 and Zs, by mapping its element A to div(h, 3) and div(h, 5). If we
regard h to be controlled by two hidden factors, then these features lead to focusing on one factor
and invariant to others. More importantly, they emerge automatically without explicit supervision.
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Figure 3: Change of the landscape of the energy function £ (Thm. . Left: £ with linear activation reduces
to simple eigen-decomposition and only have one global maxima. Middle: With nonlinearity, the energy
landscape now has multiple strict local maxima, each corresponds to a feature (Thm. 2). More importantly,
these features are more efficient than memorization in target prediction (Thm. [3). Right: With sufficient
training data, the landscape remains stable and we can recover these (generalizable) features (Thm. @), with
insufficient data, the landscape changes substantially and local maxima becomes memorization (Thm. [5).

5.4 REPRESENTATION POWER OF LEARNED FEATURES

With Thm. 2} we know that each node of the hidden layers will learn various representations. The
question is whether they are sufficient to reconstruct the target Y and how efficient they are.

Theorem 3 (Target Reconstruction). Assume (1) £ is optimized in complex domain C, (2) for each
irrep k, there are midi pairs of learned weights w = [u; +=Pu] whose associated rank-1 matrices

{uu*} form a complete bases for Hy, and (3) the top layer V also learns with n) = 0, then Y =Y.

From the theorem, we know that K = 23", mid;, < 2 [(M — k(H))? + x(H) — 1] suffice. In

particular, for Abelian group, k(H) = M — 1 and K = 2M — 2. This is much more efficient than
pure memorization that requires M2 nodes, i.e., each node memorizes a single pair (h1, ho) € H>.

Assumptions of the theorem. Assumption (3) is satisfied by training both W and V. Assumption
(2) is satisfied since randomly initialized weights typically lead to non-collinear u. Assumption
(1) is necessary due to technical subtletieﬂ However, if we change w = [u; £ Pu] slightly to
w = [u; £Pu’] in which u’ is a small perturbation of u, then Thm. [3|holds for real solutions. This
happens in the stage III when end-to-end backpropagation refines the representation.

5.5 THE SCALING LAWS OF THE BOUNDARY OF MEMORIZATION AND GENERALIZATION

While Thm. 2] shows the nice structure of local maxima (and features learned), it requires training
on all n = M? pairs of group elements. One may ask whether these representations can still be
learned if training on a subset. The answer is yes, by checking the stability of the local maximum.

Theorem 4 (Amount of samples to maintain local optima). If we select n > di M log(M/§) data
sample from H x H uniformly at random, then with probability at least 1 — 0, the empirical energy

Sfunction & keeps local maxima for dy-dimensional irreps (Thm.

The theorem above states only O(M log M) samples suffice to learn these features, which will
generalize to unseen data according to Thm. [3] Fig.[d]demonstrates that the empirical results closely
match the theoretical prediction, and there is a clear phase transition around the boundary (test
accuracy 0 — 1), where the training data ratio p := n/M? = O(M ~!log M).

Memorization. On the other hand, we can also construct cases when memorization is the only local
maximum of £. This happens when we only collect samples for one target h but missing others, and
diversity is in question.

Theorem 5 (Memorization solution). Let ¢(x) := o'(z)/x and assume o' (x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g~ ' h) for one target h with probability
pg- Then the global optimal of € is a memorization solution, either (1) a focused memorization w =

%f( ,€g«—1p) for g* = argmaxp, if ¢ is nondecreasing, or (2) a spreading memorization with
W= 2 Z sgleg, eg-14), if ¢ is strictly decreasing. Here sq = ¢~ '(2)\/pgy) and X is determined by
Z = 2. No other local optima exist.

I'The subspace of real orthogonal matrices is not covered by that of symmetric matrices spanned by {uu—r }.
In contrast, the subspace of unitary matrices in complex domain C can be represented by Hermitian matrices.
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Figure 4: Generalization/memorization phase transition in modular addition tasks. When M grows, the train-
ing data ratio p = n/M? required to achieve generalization decreases. This coincides with Thm. E which
predicts p ~ M~ !log M (dotted line). We use learning rate 0.0005, weight decay 0.0002 and K = 2048.
Results averaged over 20 seeds. Top Left: Simple cyclic group Zs for prime M. Top Right: Z,; for com-
posite M. For more experiments on product and non-Abelian groups, check Fig. [0}
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Figure 5: Phase transition from generalizable (gsol) to non-generalizable solutions (ngsol) in modular
addition tasks (M = 23,71, 127) with K = 1024. Around this critical region, small learning rate more likely
lead to gsol, due to the fact that small learning rate keeps the trajectory staying within the basin towards
gsol, while large learning rate converges to solutions with higher £ (Fig. |§|) Results averaged over 15 seeds.

We can verify that power activations (e.g., o(z) = x?) lead to focused memorization, while more
practical ones (e.g., ReLU, SiLU, Tanh and Sigmoid) lead to spreading memorization. We leave it
for future work whether this property leads to better results in large scale settings.

Boundary of generalization and memorization (semi-grokking (Varma et al.,2023)). In between
the two extreme cases, local maxima of both memorization and generalization may co-exist. In this
case, small learning rate keeps the optimization within the attractive basin and converges to gsol,
while large learning rate leads to ngsol which has better energy & (Fig. [6).

Our theory fits well with the empirical observations that there exists a critical data size/ratio (Varma
et alll 2023} [Wang et al}, [2024a; [Abramov et al.} 2023), above which the grokking suddenly leads to
generalization. The observation that memorization energy is higher than generalization (Fig.[6) also
explains the ungrokking/unlearning phenomenon: a grokked model can move back to memorization
when continues to train on a small dataset (Varma et al.| 2023 Montanari & Urbanil [2023)), and is
consistent with (Nguyen & Reddy, [2025)) that shows task diversity is important for generalization.
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Figure 6: In small data regime of modular addition with M = 127 and n = 3225 (20% training out of 1272
samples), Adam optimizer with small learning rate ((0.001, left) and (0.002, middle)) leads to generalizable so-
lutions (Fourier bases) with low £, while with large learning rate (0.005, right), Adam found non-generalizable
solutions (e.g., memorization) with much higher €.
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6 STAGE III: INTERACTIVE FEATURE LEARNING

The starting point of Stage II is to simplify the exact backpropagated gradient G = Pn)})}Tﬁ' B
(Eqn.4) with B := (FTF +nI)~' to Gp x nYY T F, by two approximations: (1) B I, and (2)
P, o< nI. The two approximations are valid due to Thm. [T|when the hidden weights W is randomly
initialized. When training continues, W evolves from random initialization and the conditions may
not hold anymore. In this section we put them back and study their behaviors.

6.1 REPULSION OF SIMILAR FEATURES

We first study the effect of B, which leads to interplay of hidden nodes. Over the training, the

activations of two nodes can be highly correlated and the following theorem shows that similar

features leads to repulsion.

Theorem 6 (Repulsion of similar features). The j-th column of FB is given by [FB]; = bj;f; +
K F: . N : - ~T = S8

> 101 bjfi, where sign(bj;) = —s1gn(fJTP,,),jlfl) and Py, _j; =1 — F,jl(F;'—le,jl +nlI) 1Fjjl

is a projection matrix constructed from F_ ji, which is F excluding the I-th and j-th columns.

Remark. Intuitively, if f'j and f; are similar, then bj; will be negative and the resulting j and [
columns of F'B will be pushed away from each other and vise versa.

6.2 TOP-DOWN MODULATION

Over the training process, it is possible that some local optima are learned first while others learned
later. When the representations are learned partially, the backpropagation offers a mechanism to
focus on missing pieces, by changing the landscape of the energy function £.

Theorem 7 (Top-down Modulation). For group arithmetic tasks with o(x) = 2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient Gp x (Ps @ 1y)(Ps @1y )*F
(see proof for the definition of ®g), which yields a modified Es that only has local maxima on the
missing irreps k ¢ S.

6.3 DIVERSITY ENHANCEMENT WITH MUON

In addition to the mechanism above, certain optimizers (e.g., Muon optimizer (Jordan et al., 2024))
can also address such issue, by boosting the weight update direction that are underrepresented,
enforcing diversity of nodes. While evidence (Tveit et al., [2025) and analysis exist (Shen et al.,
20235)) to show that Muon has advantages over other optimizers, to our best knowledge, we are the
first to analyze it in the context of feature learning.

Recall that the Muon optimizer converts the gradient Gy = UGWDVGTW (its SVD decomposition)

to Gy, = Uy, Vg, and update the weight 1 accordingly (i.e., W o GYy). We first show that
when Muon is applied to independent feature learning on each w; to make them coupled, it still
gives the correct answers to the original optimization problems.

Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
joint energy Eioins (W) = >_,; E(W;) and has critical points iff the original gradient Gy vanishes.
Now we show that Muon optimizer can rebalance the gradient updates.

Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian||2023):

w = A(w)w, w2 <1 )
where A(w) = ), N(W)C ¢ Assume that (1) {¢,} form orthonormal bases, (2) for w =
Yo uCy, we have Nj(w) = oy with py < 1, and (3) {cy} is initialized from inverse-exponential
distribution with CDF(x) = exp(—x~%) with a > 1. Then

* Independent feature learning. Prjw — ;| = p; = pf'/ >, uf'. Then the expected

#nodes to get all local maxima is Ty > max (1/ miny py, Zlel 1/l).

* Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is T, = 27Ty + (1 — 27%) L. For large a, T, ~ L.
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The intuition here is that once some weight vectors have “occupied” a local maximum, say ¢,,,,
their gradients point to the same direction (before projecting onto the unit sphere ||w||2 = 1), and
the gradient correction of Muon will discount that component from gradients of currently optimized
weight vectors, and keeping them away from ¢,,,. In this way, Muon pressed novel gradient direc-
tions and thus encourages exploration. Fig.[/| shows that Muon is effective with limited number of
hidden nodes K.

Note that Eqn. [J]is closely related to £, under the assumption of homogeneous/reversible activation,
ie., o(z) = Co’(z)x with a constant C (Zhao et al., 2024} Tian et al} 2020). In such setting, Eqn. [6]

is related to the gradient dynamics with a PSD matrix A(w) = X ' D(w)YY " D(w)X.

7 EXTENSION TO DEEPER ARCHITECTURES

The above analysis and the definition of the energy function £ can be extended to deeper architec-
tures. Consider a multi-layer network with L hidden layers, F; = o(F;_1W;) with Fy = X and
Y = F. V. For notation brevity, let G; := G ,. Let’s see how the gradient backpropagated and how
the learning fits to our framework (Fig.[T).

Stage 1. Stage I does not change since FI, is still a random representation. Then when V' starts to
learn and converges, the backpropagated gradient G;, now carries meaningful information: G

YY T Fy, (Eqn.[5), which initiates Stage I1.

Stage I1. We assume homogeneous activation o (z) = C'o’(x)z. For the next layer L — 1, we have:
Gr1=DrGLW, =D (YYTFL )W, =(DYY " Dy)F_ (W, W) (10)

since W, is randomly initialized, we have I/VLI/Vir ~ I and thus G _1 DLYY/TDLFL_L

Doing this iteratively gives G o (DZH?YTDZ_H) F;, where [)l = H#:l D,,,. Note that these D
matrices are essentially reweighing/pruning samples randomly, since right now all {W;} are random
except for V. Now the lowest layer receives meaningful backpropagated gradient GG; that is related
to the target label, and it also exposes to input X. Therefore, the learning starts from there. Once
layer [ learns decent representation, layer [ + 1 receives meaningful input F; and starts to learn, etc.

When layer [ is learning, layer I’ > [ do not learn since their input F}s remains random noise.

From this analysis, we can also see why residual connection helps. In this case, Gyes;1 = Zle Gy,
in which G, is definitely a much cleaner and stronger signal, compared to (G; which undergoes
many random reweighing and pruning of samples.

Stage II1. Once the activation F; becomes meaningful, top-down modulation could happen (simi-
lar to Thm. [7) among nearby layers so that low-level features can be useful to support high-level
representations. We leave the detailed analysis for future work.

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

We develop a mathematical framework Lis for grokking dynamics in 2-layer networks, identifying
three stages marked by distinct structures of backpropagated gradient G . We clarify how various
hyperparameters shape grokking, explain the effectiveness of optimizers like Muon, and extend to
deeper networks. A few interesting implications are listed below. (1) Two kinds of memorization.
The “memorization” in grokking is due to overfitting on random features, distinct from memoriza-
tion optima due to limited data (Thm. [5). Grokking switches from overfitting to generalization, not
memorization to generalization. (2) Flat/sharp optima. Sharp optima occur when overfitting on
random features (Sec. ). Local optima from £ are flat (Corollary [I), and over-parameterization
allows multiple nodes to learn similar features, creating flatness. In contrast, Memorization from
limited data requires more nodes, appearing less flat. (3) Learning rates. Large learning rates in
Stage I quickly learn V' to trigger Stage II. In Stage II, optimal rates depend on data: more data
allows larger rates; limited data needs smaller rates to stay in generalizable basins (Fig.[6).

Limitations. While the derivation of energy £ is applicable to any input, analysis of its local maxima
relies on restrictive assumption of group structure of the input. Also our analysis does not include
the transition time between consecutive learning stages. We leave them for future work.
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DISCLOSURE OF LLM USAGE

We have used SoTA LLMs extensively to brainstorm ideas to prove mathematical statements pre-
sented in the paper. Specifically, we setup research directions, provide problem setup and intuitions,
proposes statements for LLM to analyze and prove, points out key issues in the generated proofs,
adjust the statements accordingly and iterate. We also have done extensive experiments to verify
the resulting statements. Many proofs proposed by LLMs are incorrect in subtle ways and requires
substantial editing and correction. We have carefully revised all the proofs presented in the work,
and take full accountability for their correctness.

ETHICS STATEMENT

This work is about investigating various theoretical and empirical properties of neural networks. We
do not rely on any sensitive or proprietary data, nor do we use any existing open source models that
may produce harmful contents.

REPRODUCIBILITY STATEMENT

All datasets used in this work can be generated synthetically. Models are pretrained from scratch
with very small amount of compute. We will release code to support full Reproducibility.
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A INDEPENDENT FEATURE LEARNING (SEC.[3))

Lemma 3. Let ¢,,(z) := He,(z)/v/n! be the orthonormal Hermite system on L (v). If (Z1, Zs)
are standard normals with correlation p, then

E[¢n(Z1) ¢m(Z2)] = p" dm (n,m >0).

Proof of Lemma[3] Use the generating functlo exp(tz — ) > ko P (2) tF for z ~ N(0,1).
Then, for correlated normals (Z;, Z5) with correlation p,

2 “2
IE{etZlJ7 e“ZTT} =exp(ptu) = Zp (tu)*
k>0

Expanding the left-hand side by the generating functions and matching coefficients of t"u"™" yields
E[pn(Z21)bm(Z2)] = p"nm-

ng -

42 2 . . .
To show why ]E{e tZi-F e T} = exp(ptu) is correct, decompose (71, Z,) into Gaussian

independent random variables (X, Y):

7y =X, Zy = pX ++/1—p2Y,

Then we have
2 2 2 2
E[etzl—% euzz—%} _ E[etX—% o u(pX + 1_,,2Y)—u7}

_ E[G(Hpu)X—g} E[eu 1—p2 }L%} '

For G ~ N(0,1) we have E[e*“] = ¢2°/2, hence E {e “G’g] = 1 due to LemmaH Applying this

twice,
2 t 2 t2 2,,2
E[e(t—&-pu)x—%} = eXp((—FpU) _ ) = exp(ptu+ P > )
2

2
“ay_u? w?(1—p* p?u?
E|: uy/1—p2Y :| _ . _ .
e Tl=ewp| —H -5 ) =ew 5

Multiplying the two factors yields

2,2 2,2
exp<ptu+ p2u) exp(p Y ) = exp(ptu),

2
as claimed.
O
Lemma 4 (Moment identity). For X ~ N(0,1), E[e!X] = exp(t2/2). Equivalently, E[e'X ~**/2] =
1.
Proof. Complete the square:
1 2 1 2 2 t2
EletX] = 7/67:1672 12 dy = —/ef(‘r*t) 12et°/2 4y = ex <) .
[ ] vV 2 R vV 2 P 2
O

Lemma 1 (Structure of backpropagated gradient G ). Assume that (1) entries of W follow standard
normal distribution N (0,1), (2) ||x;[|2 = const, (3) lx xir — plla < € foralli # i and (4) large

width K, then both FT F and FF" becomes a multiple of identity and Eqn. Ibecomes

n T _
YYTF+0O(K 5
Fetnmaty ¥ FHOET )

where c1,co > 0 are constants related to nonlinearity. When 1 is small, we have G 77}7)7—'—1:" .
Note that the input features and/or weights can be scaled and what changes is c1 and co.

GF(+OO) =

https://en.wikipedia.org/wiki/Hermite_polynomials
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Proof. In the following, we will prove that (1) T F is a multiple of identity and (2) FF T « ol +
(11 7. Without loss of generality, we assume that entry of W follows standard normal distribution

N(0,1).

FTF is a multiple of identity. Since each column of F is Pito(Xw;) a zero-mean n-dimensional
random vector and columns are i.i.d. due to the independence of columns of W. With large width
K, F'TF becomes a multiple of identity.

FFT is a diagonal plus an all-constant matrix. Note that the i-th row of F is
[o(w]x;),0(W3 X;),...,0(Wkx;)], with large width K, the inner product between the i-th row
and j-th row of F approximates to KK (i, j) where KC(i, j) is defined as follows:

K(i,j) = Ewlo(w x;)o(w ' x;)] (11)
To estimate the entry KC(i, j), we first do standardization by setting Z; := w'x;/s; and Z :=

w'x;/s; where s; = ||x;|l2 and s; = ||x;|l2. Then (Z1,Z,) are standard normals with
Corr(Zy, Z) = pij. and K(i, j) = E[o(s;Z1)0(s; Z5)].

Let ¢;(z) := Hey(z)/V/1! be the orthonormal Hermite system on L?(vy), where ~ is the standard
Gaussian measure and He; are the Hermite polynomials. For s > 0 define f;(z) := o(sz). By the

L?(y) assumption, fs = >, a;(s) ¢; with
1
al(s) = <fs, ¢l>L2('y) = W E[O’(SZ) Hel(Z)] .
Thus

o(5:21) = Y a(si) di(Z1),  o(s;Z2) =Y als;) du(Za).

1>0 1>0

By bilinearity and Lemma 3]

=B as)oi(Z1) Y am(s)dm(Z2)| = D ai(si)am(s;) Eld1(Z1)dm(Z2)]

>0 m>0 I,m>0

= E al al SJ p”

>0

If s; = 1 and ||p;; — p|l2 < efori # j, then
i)=> aj(s) =
1>0

Letc =3, la?(s) < oo (it is convergent due to the big factor I! in the denominator). Let
b:=3,500;(s) p' and we have for all i # j:
1K, 5) = bllz < D ai(s)llply = plla < Y lai(s)e = ce
1>0 I>1

due to the fact that Hpilj — plll2 < 1€ e for all I > 1 and some & in between p;; and p. hence
K(i,j) = (a = b)di; + b+ O(e) and thus FFT = K(a — b)I + Kb11T + O(Ke)11T. Note that
by Parseval’s identity, a = Ex(0,1)[0%(sZ)].

Therefore FEFT = K(a—b+0(€))Pi- = K(a—b+0(e))(I - 11T/n)+O(Ke)11T and P,Y =
Y. Since F'T F is proportional to identity matrix, (FTF + nI)~! is also proportional to

K(a— b) +n
identity matrix and the conclusion follows. O

A.1 THE ENERGY FUNCTION & (SEC.

Theorem 1 (The energy function £ for independent feature learning). The dynamics (Eqn. [6) of
independent feature learning is exactly the gradient ascent dynamics of the energy function & w.r.t.

W, a nonlinear canonical-correlation analysis (CCA) between the input X and targetY :

1 -
E(wj) = §IIYTU(XWj)||§ (7)
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Proof. Taking gradient of € w.r.t. w;, and we have -w; = X " D;YY To(Xw;), which proves the
theorem. O

Theorem 2 (Local maxima of £ for group input). For group arithmetics tasks with o(x) = 2,

& has multiple local maxima w* = [u;+Pul. Either it is in a real irrep of dimension dj, (with
E* = M/8dy, and u € Hy,), or in a pair of complex irrep of dimension dy, (with £ = M /16dy, and
u € Hy @ Hy). These local maxima are not connected. No other local maxima exist.

Proof. Following this setting, if ordered by target values, we can write down the data matrix
X = [Xpn,; Xnys ... X, (ie., each X;, occupies M rows of X) in which each X}, = R}, P] €
RM>2M " Here Ry, is the regular representation (a special case of permutation representation) of
group element A so that ey, = Ry, e, forall hy, ho € H, and P is the group inverse operator so
that Pey, = ej,—1. This is because each row of X that corresponds to the target h can be written as
AP e;l] = [e} R, e, P]. Stacking the rows that lead to target h together, and order them by

hy, we get Xp, = [R;,P}.

Let w = [u; Pv]. Let matrix S;; := o(u; + vj), since Ry, is a permutation matrix, then o (X, w) =
o(RJu + v) is a row shuffling of S. Therefore, o(X;,w) = diag(R,] S)1,/, where diag(-) is the
diagonal of a matrix. Note that in this target label ordering, we have Y = Iy ® 15,. So for each
column h of Y, we have y;, = e;, ® 1. So

zn =y 0(Xw) = 13,0(Xpw) = 1,diag(R, S)1y = tr(R, S) = (Ru,S)r  (12)
where (A, B)p := tr(AT B) is the Frobenius inner product. And the energy & can be written as:

1

E(w) = 3 Z(zh —2)? (13)
h

where z := L3 2, = &3 (Re, S)r = (3 >, Bu, S)r = 2:(1m1},,S)p. Therefore,
using Ry 1y, = 1,7, E(W) can be written as:

E(w) = %Z@,L,S)% (14)

h

where R;, = Ry, Pi-. Now we study its property. We decompose {Rh} into complex irreducible
representations:

Ry=Q (PP | Q (15)

k#0 r=1

where Cy(h) is the k-th irreducible representation block of Ry, @ is the unitary matrix (and Q* is
the conjugate transpose of (J) and my, is the multiplicity of the k-th irreducible representation. Since
Ry, is a zero-meaned representation, we remove the trivial representation Co(h) and thus Q*1 = 0.
Let S = Q7 SQ. Then

(Bn, S)r = (Q @éck(h) Q*,8)r = ( @@Ck ZZter )Sk.r)

k#0 r=1 k#0 r=1 k#0r=1
) R (16)
where Sy, , is the (k, r)-th principle (diagonal) block of S. Therefore, we have:

ZRh, Y= Y tx(Cr(h)Sky) tr(Chi (h) Sk ) (17)

b (k) (K 1)

= Y vec (k) | Y vee(Cr(h)) vece(Chi(h)) | vee(Sp ) (18)
h

(k) (K r")
Case 1. If k # k' are inequivalent irreducible representations of dimension dj, and dy/, then we can

prove that >, vec(Cy(h)) vec(C}, (h)) = 0. To see this, let Ay 1 (Z) = 3, Cr(h)ZCy' (h), then
Ay i (Z) is a H-invariant linear mapping from dj, to dj dimensional space. Thus by Schur’s lemma,

15
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Ay (Z) = 0 for any Z. But since vec(Ay 1 (Z)) = (3, Cr(h) ® Ci(h)) vec(Z), we have
>, Cir (h) ® Ci(h) = 0. Expanding each component, we have Y, vec(Cy(h)) vec(C;, (h)) = 0.
Case 2. If k = k' are equivalent irreducible representations (and both have dimension dy), then we
can prove that ), vec(Cx(h)) vec(Ci(h)) = gi vec(lg, ) vec*(1g4, ). Then with Schur’s average
lemma, we have Ay (Z) = % tr(Z)Ig,. A vectorization leads to (3=, Ci(h) ® Ci(h)) vec(Z) =

% tr(Z) vec(Iq, ). Notice that vec* (I, ) vec(Z) = tr(Z) and we arrive at the conclusion.
Therefore, for the objective function we have:

ew) = 3 SRS = 5 3 L Y e8|
h 0 T

ket

19)

Special case of quadratic activation. If o(x) = 22, then we have S = (uo u)l—r +1(vov)+uv’
and thus S = GV, where it = Q*uand v = Q*v Therefore, since Q*1 = 0, Sk r =0,V - and

tr(Sk,T) ;. Vi, Therefore, with Cauchy-Schwarz inequality, we have

= %Z Rh7 = d ’Zuk Tvk7 S %Zdlik <Zﬁk,r|2> (Z |‘A’k,r|2>
0 r k#0 T I

h k#
(20)
Letay = 2 by = | and ¢ = ay. + by, 2 0. Then we have:
P EZ<R Z akbk subject to Z o =1 (21)
9 h7 d J k
h k#£0 k#£0

which has one global maxima (i.e., ¢, = 1 for kg = argminy, d) and multiple local maxima. The
maximum is achieved if and only if G, , = £V, , forallrand > [Gg, +|> = 3, [Vier[? = 1/2.

Local maxima. For each irreducible representation kg, c, = 1 is a local maxima. This is because

. . 1—€¢ ifk=k
for small perturbation e that moves the solution from ¢, = I(k = ko) to ¢}, = . if ke £ kg
witheg > 0and 3, € =¢, for & = E({cy}) and " = E({c}, }) we have:

M () M ck €
! k \ko  ~) —k
- = 22
=32 0 =3 Y 22)
k#£0 k#ko,0
M (G 2 Mci, M c?
< | E_ 4o <c =2 =N k¢ (23)
8 (dko dk0> (€) <3 di, 8 s

All local maxima are flat, since we can always move around within G, , and Vv, ,-, while the objective
function remains the same. O

Optimizing in Real domain. The above analysis uses complex irreducible representations. For real
w, Si,» will be a complex conjugate of S_j, , for conjugate irreducible representations k and —k.
This means that we can partition the sum in Eqn. [[9]into real and complex parts:

RS D ) SO ST SR D]

k#0,k rcal k#0,k complex, take one

(24)

The above equation holds since R, is real, and for any complex irreducible representation k, its
conjugate representation —k is also included. Therefore, to optimize £ in the real domain R, we
can just optimize only on the real part plus the complex part taken one of the conjugate pair in the
complex domain C.

Zero-meaned one hot representation. Note that if we use zero-meaned one hot representation
&, = Pi-ey, then Ry, &4, = &5, and P&, = &, -1 still hold, and X), = Pi-X}, = P{*[R;, P] =
[R)], P][Pi-; Pi]. This means that we can still use X}, but enforce zero-meaned constraints on u
and v, which is already included since Q*1 = 0.

16
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Corollary 1 (Flatness of local maxima of £ for group input). Local maxima of £ for group arith-
metics tasks with |H| = M > 2 are flat, i.e., at least one eigenvalue of its Hessian is zero.

Proof. For Abelian group H with |H| = M > 2, all irreducible representations are 1-dimensional,
and at least one of it is complex. Since C is treated as 2D space in optimization, it has at least 1
degree of freedom to change without changing its function value (Eqn. 24). So the Hessian has at
least 1 zero eigenvalue. For non-Abelian group, there is at least one irreducible representation k with

dimension greater than 1, which means it has at least 1 degrees of freedom to change S'k,r without

changing | > tr(Sk.,)|? and thus its function value (Eqn. . So the Hessian has at least 1 zero
eigenvalue. O

A.2 RECONSTRUCTION POWER OF LEARNED FEATURES (SEC.[5.4)

Theorem 3 (Target Reconstruction). Assume (1) £ is optimized in complex domain C, (2) for each
irrep k, there are mid; pairs of learned weights w = [u; +=Pu] whose associated rank-1 matrices

{uu*} form a complete bases for Hy, and (3) the top layer V also learns with n = 0, then Y =Y.

Proof. For each nontrivial irrep k, let II;, be the central idempotent projector onto the isotypic
subspace Hy, = I, ® C% (for the regular rep, my, = di). Let End(#},) be the space of all linear
operators that map 7y, to itself. Note that the dimensionality of Hj, is Dy := mydy.

Let w;, = [uj, Pv]] be the weights learned by optimizing the energy function £ with quadratic
activation o(z) = z?. From Thm. 2 I we know that at local optima, u; = +v; and 1 u; = 0.
Therefore, the feature fj, n€RM g given by (o denotes the Hadamard product)

s o 1 o
£ =£2 (R ;) ouy + (R w;)*® — — > (R ;)

M
h

The third term u°? is a constant across all » and was removed in the zero-meaned projection. By

our assumption we have node j and j' with both positive and negative signs. So % (f‘ i f' ih) =
2 (R} u;) o u;. If a linear representation of {f } can perfectly reconstruct the target Y, so does the

original representation. So for now we just let feature fj r = 2(R,u;) ou; = 2diag(R;] u;juj).

Let U; := ujuj, which is Hermitian in End(#), then f; , = 2diag(R] U;).

Gram block diagonalization. For each irrep k, let J be the set of all node j that converges to the

k-th irrep. For any Hermitian operator U supported in Hy (i.e. U = II;UIly), define the centered
quadratic cross-feature

cy(h) = 2diag(R, U) e CM,
and write ¢y, = [cy, (h)]pen € CM * as a concatenated vector.

For U,V € End(Hy), define G(U, V) := >, .y (cu(h),cv(h)). On Hy, Ry, = I, @ Ci(h), so
the map U +— cy (h) is linear and the bilinear form G is invariant under U — (I ® Ci(9))U(I ®
Cr(g9))*. By Schur’s lemma, G(U, V) = ai(U, V) = ay, tr(UV™*) for some scalar ay,. Evaluating
on rank-one U = V (or by a direct calculation) gives o = 4, hence

> (eu(h),ev(h)) =4 tx(UV*).

h

For U; = u;u} and Uy = uuy from Hy, and H, with k # £, we have

S (e, (h), cu, (b)) = 417 S diag(R wyu}) o diag(R}] 6,1})

h h
=417 Z(RZuj) omjoR uou =41" KZ Rh) (ujo ﬁé)} oujouy
h h
= 4|u;fuﬂ2

17
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This means that (f;, f;) = (cu;,cu,) = 0. And thus the Gram matrix G := FTF is block diagonal

with each block G}, corresponding to an irrep subspace k. Here Gj, € C™+*Nr_ Note that since
we sample D? = mid; weights, then {U;},c, becomes a complete set of bases (not necessarily
orthogonal bases) and thus G, is invertible.

Right-hand side. For any U € End(Hy,),

— ZCU(h’)m =2 tr (IR Iy,)U) = 2 tr ((Im,, ® Cx(K))U).

and we have [£] Y], = [£] Y] = ry, ().

Solve LS. Now we try to solve the LS problem GV = FTY. Due to the block diagonal nature, this
can be solved independently for each G. Consider G Vy, = F,;r Y. Here Fy, = [f;];c, collects the
subset column J;, from F'.

Therefore, Vi, = G, ' F}] Y and v; (1) as the (j, 1) entry of Vi, has v; (h') = 3,[Gy jro, (W) =
2 Zl[Glzl]jl tr ((Imk ® C’k(h’))Ul). Then we have Y ®) = F},Vj:

o (k
YL =D () )=4)" § (G i tr ((T® CR(h)Uy) - diag(R} U;).
JEJk €Ik

By linearity in U and completeness of {U;} (the Hermitian bases span all operators in ), we have
for any A € End(Hy):

42 Y1 tr(AUy) diag(Ry) Uy) = adiag | Ry} | Y [G (A, U)U; | | = diag(R;, A)
5
The last equality holds by noticing that (A,U;)) =  vec*(U;)vec(A) and thus

A3 GG Na(A,U)U; = A Take A = I © C(h') = IiRyIl; € End(Hy), and we
have:

VO = diag( RITLRLTL) (bl € H).

To see why Y = )7, we have:

V) o = diag(R] (MR T1) = SOV, |, = diag(RY (D MRy L) ).
k0 k0
Since Zk Hk =T and Hth/ = Rh/Hk,
Z I, Ry I, = Ry — .
k0

where [1) = ﬁl M 1}1 is the central idempotent projector onto the trivial irrep. Thus

. , . 1—-)1y, h=",
STV = diag(R] Riv) — diag(R] o) = {( )

1
k#£0 - M 1Ma h 7& h/7

because diag(R, Ry/) = 1 iff A = h/ and 0 otherwise, while diag(R), Ilg) = 771/ for all h.

Hence ;g YR = ply =Y. O

Remark. The above proof also works for real w since we can always take a real decomposition of
R}, and all the above steps follow.

Property of the square term. With quadratic features the class-centered column for node j and
block h decomposes as F' = [A, B], where for B each column j (and block k) is b; j, := R; (u;?Q) —

18
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%1 u (the “square” part) and for A each column j (and block h) is a; , 1= 2 (R,Iuj) ou; (the
“cross” part we discussed above). The vector b is entrywise mean-zero, i.e. >, b;(z) = 0 for all
h, hence it has zero correlation with any class-centered target column Y. 5y o< 1: (bIhY)h/ =
>, bjn(x) = 0. Moreover, under 1 "u; = 1" u, = 0 one has 3_,(b; 1, a,,) = 0. So the normal

equation becomes
T T TV
Tt |AA O A'Bl ., |A'Y
FEV = [BTA BBl |BTY

which gives
ATA 0 Vo ATY
0 B'™B|" | 0

So even with the square term B in F , V will still have zero coefficient on them.

A.3 SCALING LAWS OF MEMORIZATION AND GENERALIZATION (SEC.[5.3)

Theorem 4 (Amount of samples to maintain local optima). If we select n > di M log(M/§) data
sample from H x H uniformly at random, then with probability at least 1 — 0, the empirical energy

Sfunction & keeps local maxima for dy-dimensional irreps (Thm. E])

Proof. Overview. We keep the setting and notation of the theorem in the prompt (group H, |H| =
M, quadratic activation, S as defined there, z, = (Rp, S) = tr(R}TS), zero-mean removal already
folded into Ry). We analyze random row subsampling and show that the empirical objective keeps
the same local-maxima structure with n 2> M log(M/0) retained rows.

Setup. There are M? rows indexed by pairs (h1,hs) € H x H, with target h = hyhg. For each
h € H, exactly M rows map to h; we index them by j € [M] after ordering by h; as in the proof,

and write
M

Shy = (R;S)jj. so that zn = Zs;m = (Rp, 5).
j=1

We subsample rows independently with keep-probability p € (0,1]. Let &, ; € {0,1} be the keep
indicator for the row (h, j):

Pr(é,; =1)=p, iid.over (h,j).

The number of kept rows for target h is

M
mp = Zéh’j ~ Bin(M, p), E[mp] = pM, Var(mp) = Mp(1 — p).
j=1

Estimator for z;,. We use the linear/unbiased (Horvitz—Thompson) target-wise estimator
1M
Zn = ];Zgh’j Sh,j- = E[/Z\h|5} = Zh.
j=1

Define the diagonal sampling matrix

Wit .= diag(%w..,ghé)M), SO Zp = tr(R;S Wity = (R,WR'T, S).

The empirical Gram operator. Set the normalized per-target weight
ﬁzh 1-— P 1
= — Elwp] =1 Var(wp) = —— < ——.
W = T [wa] =1, (wn) =31 <
Decompose WHT into its mean and zero-mean parts:

W;I:IT = th + Ah, tI‘(Ah) = 0, E[Ah | ’ﬁ’lh} = O

19
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Therefore
Zn = (Rp(wpl + AR),S) = wpzn + e, en = (RplAp,S), Elen | S, mp] = 0.
(25)
Using the decomposition
my mp
P Z Z tr(Cy §k7,.) = Z Z vec(gk,,.)* vee(Cr,n),
k#0 r=1 k#0 r=1
we obtain
Zzh = Z whzh + €h>2 = Zwiz,% + Qthzheh + Zai (26)

The signal term can be written as a quadratic form over irrep blocks:

Zw%zi = Z VeC Sk r [th vec Ck h) VeC(Ck/ ) ] vec(gk/ﬂ«/). (27)
h (k) (K',r)
Recall that the full-data operator is

1 _
App = i Z};Ck',h ® Ck h-

and vec(Cy, ) vec(Cy p)* is just a column and row reshuffling of Cys , ® Ck. p,. In the following
we will study approximation errors of Ay ;s instead. Let

-~ 1 — —~ 1 _
Al(c229 = Z Wi Crrp @ o and  App = i Z wp, O h ® Ci,n
h h

the second- and first-weighted empirical Gram operators, respectively. By construction, E[,&k W] =
Ay 1 and IE[A,?;C,] = A + L_—Mp Ay i (a tiny bias of order 1/(pM)).

Error bounds for each (k, k') block. We will control three deviations, uniformly over all (k, k'):

~ log(M /6§
BL. ’AW | < ey B0 28)
’ op Mp
S log(M/§) ¢
E2: ’A(Z),—A : —=n = T in 2
k,k k.k op C2 D + Mp’ (29)

)

M log(M/6 Mlog(M/6
E3: [ wnznen| < szl Mlog(M/3) S e < o MloeM/o) )
h

for numerical constants ¢;, ¢;, with probability at least 1 — 6/3.

Tool: Matrix Bernstein (self-adjoint dilation form) (Tropp, 2012). Let {X;} be independent,
mean-zero random d x d matrices with || X;|| < L and ||}, E[X; X/ || < v. Then forall ¢t > 0,

Pr ZX- >t] < 2d ex __t2
=t = PlTor )

Proof of (28). Fix (k, k') and define B, := Cj j, ® C , (unitary, so || Bp,|| = 1). Consider

1 lwp — 1] 1
X, = — —1)B E|X,]| = Xl < — < —.
h i (wp — 1) By, [Xn] =0, | X5 < S
We have ( )2] (wn)
" E[(wy — Var(wy, 1
BXaXj] = =1 BiBi = —p 1 X el
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1

Summing over h gives variance proxy v < M - AT

1 — /3, Matrix Bernstein yields

= pﬁ. Since d < M, with probability at least

log(M/6)

HAk,k’ — Ap i Mp

S

I

which is (28).
Proof of (29). Write

ALY = Ak = i > (wip —wp) By = i > ((wn = 1)*+ (wn — 1)) B
h h

=X+

For Y5 we reuse the argument of (28). For X1, note that E[(w;, — 1)?] = Var(wy) < 1/(pM),
and (wy, — 1)? is sub-exponential with scale O(1/(pM)), so matrix Bernstein again gives that with
probability at least 1 — §/3,

log(M/9) n 1

Sillop S —

Combining yields (29).

Bounds for the mixed and noise terms in (30). Conditional on S and {wy,}, the {e}} are inde-
pendent, mean-zero, and

S 2
lenl = [{Run, S| < [RuAullE ISIlE < 1AulF ISIF: B3| S wn] < %

Hence by scalar Bernstein (and Cauchy—Schwarz for the mixed sum),

E WhZhER

h
with probability at least 1 — §/3, which is (30).

Combine the above three bounds, we know that with probability at least 1 — 4, 28)—(30) hold at the
same time.

Mlog(M/é M log(M/6
< Nl lll2llellz < Nl # Sep g MloslM/0)

h

Stability of local maxima. For the quadratic case (after mean removal), with the collinear and equal
length u and v required by local maxima, £ can be written as a positive semidefinite quadratic in
the block masses ¢, (Eqn. 21):

gc) = 23 ‘i Ser=1, >0

c) = — ) = = .

] dk7 Ck y Ck Z
k#0 k0

The empirical energy has the form

~ M
Ele) = < ¢"(D+ E)c¢ + (terms independent of ¢),

where D = diag(1/dy) and E is the symmetric perturbation induced by replacing Ay, j with Kff,)c,

and by the mixed/noise terms. By (28)-(30),

log(M/é 1
HEHop 5 g‘gwp/) + m (31)

with probability at least 1 — 4.
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Directional slope at a vertex (no gap needed). Consider a pure-irrep vertex ¢ = e, and leak ¢
mass to any other coordinate b # a: ¢, = 1 — ¢, ¢} = ¢, others 0. Population change:

M [((1-e)P—-1 &\ M 5
A5—8<da +d7b ——Eé‘—FO(&).

M

Hence every leakage direction is strictly downhill at rate 57—,

even if multiple dj, tie. Therefore, a

first-order approximation of AE is

AE = AE + %A(CTEC) = —%E + O(e?) + %O(”E”opg)‘

4d,,
Therefore AE < 0 for all sufficiently small € > 0 provided
M M 1
—NE|op < — = Elop < —.
1Bl < 4 1Bl <

Combining with (3T), a sufficient sampling condition is

Mp Mp Cd,

log(M 1 M
M + = Mp 2 dilogF,

for a universal numerical constant C. Since the total number of kept rows is n = pM?2, this is
exactly

M
n > Md? log?

(up to universal constants). Under this condition, with probability at least 1 — J, every
pure-irrep vertex remains a strict local maximum of the empirical objective (energies shift by

O(y/log(M/5)/(Mp))). When several irreps have the same dj, (tied energies), which one is the
global maximizer may swap, but the local-maxima set is preserved. O

A.4 MEMORIZATION

Setting. Fix a group element h. The admissible training pairs are (g, g~ 'h) for ¢ € H with
probabilities py := p, 415, and a unique maximum at g*, i.e., pg~ > py for all g # g*. Let
w = [u;v] € R*M with budget ||u]|3 + [|v]|3 = 1. Define the pair-sums s, := ug + vy-15 > 0.
Then ) g 53 < 2 and the (single-target) objective reduces to

F(s) := Zpg o(sq) subject to sq >0, Zs§ <2,
g g

where o € C1([0, 00)) is strictly increasing on (0, 00). Maximizing the energy £ is equivalent (up
to a fixed positive factor) to maximizing F'.

Lemma 5 (KKT characterization via ¢ = o’ /z). Assume o’'(x) > 0 for x > 0, and define ¢(z) :=
o'(z)/x for x > 0. Let s* be an optimal solution. Then there exists X\ > 0 such that for each g:

pgd(sy) = 2X\, ifs; >0, (32)

Moreover, the budget is tight: Zg (32)2 = 2 (hence X\ > 0). If ¢ is strictly monotone on (0, 00),
then for every active coordinate s, > 0,

spo= ¢! (;A) . (33)
g

Proof. Consider the Lagrangian L(s, A, 1) = >_  pg 0(s¢) —A(3_, §2—2)— > g HgSg> With A > 0,
g > 0. Stationarity gives py 0’ (s¢) —2Asg—pg = 0. If s > 0, then p1y = 0 and py 0’ (s4) = 2Asy,
ie., pyo(sy) = 2A. If s, = 0, complementary slackness allows p, > 0 and the stationarity
reads py 0’ (0) — g = 0. Interpreting ¢(0") := lim, o0’ (z)/x (possibly +00), the inequality
Py #(07) < 2X encodes the fact that activating s, > 0 would violate the KKT balance. Since
o’ > 0 and the objective is increasing in each s,, the budget must be tight at optimum, hence
>, 5o = 2and A > 0. If ¢ is strictly monotone, uniquely determines s, as in (33). O
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Lemma 6 (Memorization vs. spreading by ¢-monotonicity). Under the setup above and assuming
¢(x) = o' (x)/x is continuous on (0, 00):

(A) If ¢ is nondecreasing on (0, /2], then the unique maximizer is the memorization (peaked)
solution

* * —
Sg= = \/5’ Sg#gr = 0,

realized by u = %eg*, v = %6(9*)—1}1.

(B) If ¢ is strictly decreasing on (0, 00), then the unique maximizer spreads and is given by

5; - ¢—1(Z\) (for all g with 2\ /p, < #(0h)),

and sy = 0 for any g with 2\/p, > #(07) (if p(0%) < o). The multiplier X > 0 is
uniquely determined by the budget 29(52)2 = 2. In particular, if $(07) = oo (e.g., ReLU
on [0,00): ¢(x) = 1/z; SiLU: ¢(x) = % + sigmoid(z)(1 — sigmoid(x))), then
all coordinates are strictly positive and

pi>p; = s;>s;>0.

Proof. (A) Peaking when ¢ is nondecreasing. Take any feasible s with two positive coordinates
s; > s; > 0and p; > p;. Define a squared-mass transfer preserving »_ s2: s;(t) 1= /57 +1,

5j(t) := (/87 —t,and U(t) := p;o(si(t)) + pjo(s;(t)). Then
V(1) = 3 [pid(si(t) — pid(s;(1)] = 3[(pi —py)e(s;(t)] > 0,

because s;(t) > s,(t) and ¢ is nondecreasing. Hence W increases with ¢, so any two-support point
can be strictly improved by pushing mass to the larger p. Iterating this collapse yields the single-
support boundary s, = /2, others 0. Uniqueness follows from strict inequality and the uniqueness
of pg-.

(B) Spreading when ¢ is strictly decreasing. By Lemma [5| the optimal active coordinates satisfy
pg¢(s;) = 2. Since ¢ is strictly decreasing, ¢! exists and is strictly decreasing, yielding Sy =
»~1(2\/py) on the active set; complementary slackness gives the thresholding when ¢(07) < oo.
The budget > g (32)2 = 2 fixes A, and strict monotonicity implies the profile is strictly ordered by
Dg- O

Theorem 5 (Memorization solution). Let ¢(z) := o’ (x)/x and assume o' (x) > 0 for x > 0. For
group arithmetic tasks, suppose we only collect sample (g, g~'h) for one target h with probability
Dg. Then the global optimal of £ is a memorization solution, either (1) a focused memorization w =

%(eg* ,€g«-1p) for g* = argmaxp, if ¢ is nondecreasing, or (2) a spreading memorization with
w = % Zq Sgleg, eg-14), if ¢ is strictly decreasing. Here sq = ¢~ '(2)\/py) and X is determined by

s2 =

g 5g = 2. No other local optima exist.

Proof. The conclusion follows directly from Thm. 6] O

Some discussions. We know that

» For power activations o(z) = x4 (¢ > 2) have ¢(x) = q 72 nondecreasing; Thm. @A)
gives memorization. In all these cases, the peaked solution is realized by even split ©u =
%eg*, V= %6(9*)—1;1; any profile s* can be realized with, e.g., ug = vg-1), = 55/2.

* ReLU on [0, 00): o(z) = @, ¢(x) = 1/x strictly decreasing; Thm. [B) yields s*  p.

* SiLU/Swish/Tanh/Sigmoid: ¢ strictly decreasing with ¢(0) = oo; Thm. [§{B) gives a
strictly ordered spread s} = ¢~ (2)/p,).
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B INTERACTIVE FEATURE LEARNING (SEC.[6)

B.1 FEATURE REPULSION (SEC.

Theorem 6 (Repulsion of similar features). The j-th column of FB is given by [FB] = bt +
Zl 1 ]lfl, where sign(bj;) = 781gn(f P, ]]fl) and P, _j; =1 — F_]l(F F_Jl +nl)~ 1Fjﬂ
is a projection matrix constructed from F,] ,, which is F excludlng the l-th and j-th columns.

Proof. Let Q = (FTF +nI)~1. Without loss of generality (by a column permutation similarity
that preserves signs of the corresponding inverse entries), reorder columns so that the pair (7, /)
becomes (1,2). Write the partition

F = I:f'l f'g FT]7 FT = Fi(l,Q) GRHX(K_Q).

Then the ridge Gram matrix G = FTF + nlx acquires the 2 x 2 / remainder block form

T O JO— [
a b u a=Ff+n b=t u=Ff,
G=|b ¢ v'|, where . s .
u v H ci=8fHh+n vi=F'f,, H:=F F. +nl

Because 7 > 0, H is positive definite and hence invertible. The inverse of a block matrix is governed
by the Schur complement. Define the 2 x 2 Schur complement

__|a b u’ _1 _|la B
= o - [r)rw =[5 ]
where the entries are

o =a—u H'u, B =b—u H v, v =c—v H'v.

A standard block inversion formula (e.g., via Schur complements) yields that the top-left 2 x 2
block of G~! equals S~!. In particular, the off-diagonal entry of Q = G~! for indices (1, 2) is the
off-diagonal entry of S~1. Since

1 _
K M{Wﬂ oﬂ with ay—p52>0
(because G > 0 implies S' > 0), we obtain
_ B
= (871 = -
Q12 ( )12 ay— B2

It remains to identify «, 3,y in terms of ridge residuals with respect to F,.. Note that
H=FF+4+n = FH'FE =1,-P,.,,
by the definition P, , := I — F,, H-'F,". Therefore
a=Ff+n - 6 EHETR =n+ f;(f . F,.Hflﬁ?,T)f‘l — -+ P8,
B=1f — {fEHETE, = f;(z - FTH*FTT)E £ P, b,
y=n+1 P, fo.
Substituting these identities into the expression for g2 gives
£ P, £
(77 + f‘1TP?777"E‘1) (77 + %;—anﬁ) - (f‘l—rpnm?Q)Q .

The denominator is strictly positive (it is the determinant of the positive definite 2 x 2 matrix ),
hence

qi2 = —

sign(qi2) = —sign(f'lTPn,T.f'g).
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Undoing the preliminary permutation shows the same formula for the original indices (j, ¢), which
proves the sign claim.

Finally, since @ is the inverse Gram with ridge, the j-th column of FQ is

quj m = Qij + ZQm] m-

m#j

Because ¢,,,; has sign opposite to the ridge-residual similarity f;P —m Jf features that are (resid-

uvally) similar to f'j enter with negative coefficients and hence subtract from (FQ). ; along those di-
rections— ‘repelling” similar features and promoting specialization. This completes the proof. [

B.2 TOP-DOWN MODULATION (SEC.[6.2))

Theorem 7 (Top-down Modulation). For group arithmetic tasks with o(x) = x2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient Gp x (Ps®@1p)(Ps®@1p)*F
(see proof for the definition of ®s), which yields a modified Es that only has local maxima on the
missing irreps k ¢ S.

Proof. Fix a nontrivial isotype (irrep) k and we have
o (k .
}/((.’}3)’ ho= dlag (Rf—ll— (Hth’Hk)) .
Since II}, is central and idempotent, it commutes with R;,, and Hi = I, hence
Hth/Hk = Hth/ = Rh/Hk.
Expand the central idempotent in the group algebra using unitary irreps {C} } and characters y:
dy, - dp, _
M = 37> k@ By = 3, > xrlo™") Ry. (34)
geH gEH

Therefore

P — P —
Uy Ry = Mk Z Xk(9) Rg Ry = Mk Z Xk (9) Bgn-
gEH geH

Taking the diagonal after the left shift by R, gives
diag (R, (I Rp)) = Z xi(9) diag(R) Ryn).
geH
Since R;{Rgh/ = Rp-14ps, we have

1]%7 h_lgh/ =€,

diag(Ry, Rgn') = {0 otherwise

Only the unique term g = hh'~! survives, so

d -
diag (R (eRw)) = 3o xR Lar = 37 Xk () 1ar,

MXk

where we used x(a) = xx(a~!) for unitary irreps. Consequently,

(k) _

-1
(rows for block h), h’ Xk(h/ h) 1.

Summing over a subset S of isotypes yields

9 k
Yv(rows forblock h), R’ — Z Yv(gov)‘,b for block k), h’ = Z dy, Xk Xk: h/) 1.
kesS kES
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Since summing over all k£ # 0 leads to Y =Y (Thm. , for the residual Y — Y we have

1 -
[Y" = Y] (rows for block 1), b = i Z di xe(h)xk(R') 1
k#£0,k¢S

which means that Y — Y = OsP5 ® 1y, where Os := {\ / ‘]i\gx;c()] e CMx(x(H)=|S|=1)
N k#£0,k¢S
Since Y = Pf- ® 1,7, we have:

Grp x (Y — Y/)YTF = ((I)S‘I):kg & 1]y[1;&) F = ((I)S X ]-M) (‘bg ® 1M)* F
Therefore, the energy function £ now becomes
1 * 1 *
= 51(@s @ 10) FI5 = S|P3

where z = [2;] = [(Rp,, S)p] € CM defined in Eqn.[12] Computing each row k in ®%z and use the
property of projection matrix IT;, (Eqn.[34), we have:

<I>5z;€—Z\/>Xk h)Ry, S —\/d7<Hk»S>

heH
In the ) space, we have (II;, S) = > "% tr(S’k,r) and therefore
1 M 2
=l Y MmsP-Y S Lywa,
k#£0,kgS k#£0,k ¢S

which is exactly the same form as the decomposition (Eqn. [I9) in Thm. 2] (but a much cleaner
derivation). Therefore, all the local maxima of £s are still in the same form as Thm. [2} but we just
remove those local maxima that are in isotype/irreps k € S, and focus on missing ones.

B.3 MUON OPTIMIZERS LEAD TO DIVERSITY (SEC.[6.3)

Lemma 2 (Muon optimizes the same as gradient flow). Muon finds ascending direction to maximize
Jjoint energy Eiging(W) = > ;€ (w;) and has critical points iff the original gradient Gy vanishes.

Proof. Let G = [V, &, Ve, &, ..., Vi, E] be the gradient matrix. Let G = UDV T be the singu-
lar value decomposition. Then Muon direction is G = UV T and thus the inner product between G
and G is

(G,G\p =tr(GTG) =tr(VU'UDV ") = tx(D) >0 (35)
So Muon always follows the gradient direction and improve the objective. Furthermore, <é ,G)p =
0 iff D = 0, which means that G = 0. So the stationary points of the Muon dynamics and the

original gradient dynamics are identical. O
Lemma 7 (Proposition of Fréchet / log-Gumbel selection). Let z1,...,x, be i.i.d. positive random
variables with Fréchet(a) CDF
F(x) :exp(—m*a), x>0, a>0,
and let wy, ..., wy, > 0 be fixed weights. Define
i = arg lréljagn w; .

Then

. w )

Pr(z :z):W, 1=1,...,n.
In particular, when o« = 1,
o Wy
Pr (z = z) = m .
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Proof. SetY := wjx;. Fort > 0,

n

Pr(m]aXYj <t) = HF(L) = exp(— Xn:(wj/t)o‘)

=1 Wi i=1
Differentiating gives the density of the maximum:

n

fmax(t):diPr(maxY <t (Zaw t—” 1) eXp( Z w;/t) )

j=1
The density that “s achieves the maximum at level ¢ is
t n
t) HF(—) =aqwt ! exp( Z w; /t) )
o wy
#1i j=1

Hence the conditional probability that ¢ is the argmax given max; Y; = t is

awdt ! w
Pr(¢* =i | maxY, =t) = v = d
( | J J ) E :;7':1 O[U)}l t—a—1 2 :;1:1 U}}JN
which is independent of ¢. Averaging over ¢ yields the stated result. O

Lemma 8 (The properties of the dynamics in Eqn. [9). The dynamics always converges to ;. for
I* = arg max; vy (0). That is, the initial leader always win.

Proof. Note that due to orthogonality of {¢;}, the dynamics can be written as
= pjaf, >0,
with the constraint Z _, @3 < 1. Define
rjoi= Q.
Interior. In the interior, we have
7y = iy = py(pgad) =1;.

For any pair i, k define the ratio

_
Pik :
7”k
Its derivative is
T T . 7"1'2 T
pik = — — Tk =—"— *Tk = pik(ri — 7).
Tk Tk Tk T‘k
Equivalently,
d
— log — — Tk 1
o7 g . & (1)

Thus if 7¢(0) > 7;(0), then 4 log(r;/r;) > 0 and py;(t) is strictly increasing. Hence a strict leader
in r cannot be overtaken in the interior.

Boundary region (3 j af = 1). On the unit sphere, the projected dynamics is

L
= pjas — Aa;j A= p
Q5 = fjQ; Qg = M-
k=1
In terms of r;,

L L

Sy, v=Yain=Y

r; =r1;(r; —v), V= aLrE = 2 Tk.
k=1 k=1""k

For the ratio p;;, = r;/r, we again obtain

pik = pir(ri —rp) =  — logfk =7r;— T (2)
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Monotonicity of ratios. From (1)-(2), if 7,(0) > r;(0) then

d Te
—log— >0 WVt
dt o8 T’j o ’

80 pg;(t) = re(t)/r;(t) is strictly increasing for every j # ¢. Thus a strict leader £ remains the
unique leader for all time.

Convergence to the vertex. Define weights

Ly
wj = a = =3, w; = 1.
e J

Their dynamics is
Ii)j = 2’[0]'(7’]‘ — l/).

Taking ratios,

d (o
—log — =2(r; — 71).
dt 8 Wi (ri =)
In particular, =* is strictly increasing for every j # £. Therefore
J
w;(t) :
: -0 £),
weD) (J#10)
implying we(t) — 1 and w;(t) — 0. Hence
a(t) — e ast — oo.

O

Lemma 9 (Muon projection). For the matrix A = [Q, v] where Q is a column orthonormal matrix

and v is a vector with small magnitude, its Muon regulated version A = [Al, V| takes the following
form:

vy M ) 2
v = + + O(||v (36)
(n1+n| (vl

where v| = QQTvandv, =1-QQ"v.

Proof. Given A = [Q, B] with QT Q = I, write B = QC + B, where C := Q' B € R**™ and
B, :=(1-QQ")B.

LetT := BIBJ_ > 0. For ¢ > 0 define
Al — A(ATA) Ve, Al — [ggc), géc)]_

We derive a first-order (in C') formula for the last block 25”.

The exact Gram matrix is

Iy, C

AT A
Gi=A A= [CT CTC 4T

: 0 C
] =Gy + H, Go = diag(Iy,T), H := [CT CTC} )

Treat C as small. To first order in C' we may drop the quadratic block:

=g o]+ ouem,

Diagonalizing 7. Let T = UAU T with A = diag(\1, ..., Aw), Aj > 0. Define the block orthogo-
nal change of basis

P:=diag(Iy, U) = G:=P 'GP, Go:=P'GoP =diag(Iy,A), H:=P HP = {é)T g] :

where C := C U. All first-order statements can be done in this basis and then mapped back by P.
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First-order Taylor Expansion. Now let’s do the Taylor expansion. Write
G=Go+ H=GY*(1+G," " 05, )y,
—_———
=F

Since G = diag(Ij, A),

0 CA-1/2 .
E:[A1/26T ] ] is 0(|C])).

For the scalar function f(z) = 2~1/¢,
~1/c 1
(I+E)™ Ve = [--F + O(||E||?).
Therefore
S—1)e _ A—1/2 e ;12 _ F-1fe L xo1/2 ., xo12
Ge=G (I BTGP =Gt = S GPEG) 1 o).

Compute the blocks using 661/2 = diag(I, A—1/2);

~—1/2 0 A—1/2 0 C A1
G, ""EG, = [A—léT 0 .
Hence, to first order,
~ e I 0 17 0 CA!
1/c _ k = _ 2
G =0 WS -3 [yt O8]+ ot @

Back to the original space. Now
GV = pGglepT,
Using and P = diag(I},U),
G-1/e _ |:Ik 0 } 1 [ 0 CUANTUT
0 UAVeUT UAUTCT 0
Since UA™'UT =T tandUAVeUT =T/,

o VO R CT‘I} + o(ICI).

} + o(lo]?).

C

0 T Vel c|T1CT 0

Now multiply
A© = [Q, QC+BL]GVe
Taking the last m columns (the 2nd block) and keeping first-order terms:

~(c 1 _ —1/c
AP —q(~Lor) + Qo+ BT + O(ICI)

1
—B. T Ve ¢ Q(CT—UC_ ECT—l) + o(|c]?).

Factor the Q-part columnwise via the spectral calculus of 7. If T = UAU ", then on each eigenvalue

) the scalar factor is

1)\_1 _ 1— )\l—l/c

)\—1/0 .
c 1—A

Thus, in matrix form,

crve_lori-c (I-7'"Yeyq-1)7h
C

and we have

A9 — BT 1 B (1-T V) (T-T) + O(ICIP). (38)
where B|| = QQ'B.

For polar case ¢ = 2, the operator becomes (I — T'/?)(I — T)~'. For B = v, we have T =

B[ B, = ||v_||3 and the conclusion follows. O
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Lemma 10 (B()U.Ild ()f TO)-
>

=1

Proof. Ty > min; 1/p; since the expected time to collect all the coupons is always larger than
collecting the rarest coupon alone.

To prove Ty > L Zlel 1/1, fix t > 0 and consider the function
h(p) = log(l — efpt), p> 0.
A direct computation shows
t2
r'(p) = ————— <0,
») 4 sinh?(pt /2)

so h is concave. By Jensen’s inequality and >, p; = 1,

L
Zlog(l —e Pty < Llog(l — e_t/L).
i=1

Exponentiating gives the pointwise bound

L

[[a—e?®) < (1—e 5k

=1

Therefore o
E[T] > / (1- @) dr
0
To evaluate the integral, set u = e L sodt=—L du/uandt:0— comapstou:1 — 0:
oo 1 L 1 L-1 L—-1
1—(1—wu) 1
1—(1—e_t/L)L)dt:L/ 7du:L/ (1—u)ldu=1L —

/0 ( 0 u 0 ; ; I+1
Thus the conclusion holds. Equality holds if and only if p; = --- = p;, = 1/L, since that is the
case of equality in Jensen. O

Theorem 8 (Muon rebalances gradient updates). Consider the following dynamics (Tian, 20235)):
w = A(w)w, w2 <1 9)

where A(w) = S, \(w)¢,C/ . Assume that (1) {¢,} form orthonormal bases, (2) for w =
Yo uCy we have \(w) = oy with py < 1, and (3) {oy} is initialized from inverse-exponential
distribution with CDF(x) = exp(—x~%) with a > 1. Then
* Independent feature learning. Prjw — ;| = p; = pj'/ >, 1. Then the expected
#nodes to get all local maxima is Ty > max (1/ miny py, ZlL:l 1/l).

* Muon guiding. If we use Muon optimizer to optimize K nodes sequentially, then the ex-
pected #nodes to get all local maxima is T, = 27Ty + (1 — 2=%) L. For large a, T, ~ L.

Proof. From Lemma|8] we know that the final mode ¢; that the nodes converge into is the one with
largest initial ay:
Priw — ¢;] = Pr[l = arg max wrayp (0)] (40)

By Lemma([7] we have Prlw — ¢;] = p1 := '/ 3, pf".

Independent feature learning. In this case, getting all local modes {¢,} is identical to the coupon
collector problem with L coupons. With the property of the distribution (Lemma (7)), we know that
the probability of getting [-th local maxima is p; := uf/ >, pf'.
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Therefore, the expected number of trials to collect all local maxima is (Flajolet et al.||{1992):

+o0 L
Ty = /O (1 — H(1 W)) dt 41)

=1

Note that Ty > max (1 /min; p;, L ZzL:1 1/ l) (Lemma . Since each node is independently
optimized, we need K ~ Tj to collect all local maxima in K hidden nodes with high probability.

Muon guiding. Consider the following setting that we optimize the hidden nodes “incrementally”.
When learning the weights of node j, we assume all the previous nodes (node 1 to node j — 1)
have been learned, i.e., they have converged to one of the ground truth bases {¢;}, but still keep the
gradients of them (after deduplication) in the Muon update. Let S;_; C [L] = {1,..., L} be the
subset of local maxima that have been collected.

By Lemma[9] we know that

. 1 ( gLl ) 2
g = 8L+ - 8l | TOlgsLl”) (42)
T e AT T 1 g ’
where g; || = P;_ 1P 18j and g; | = g; —g;,. Here P, = [Cslses;_, is the projection matrix

formed by the prev10us 7 — 1 nodes. Since

lgs Il < llgsll = 11D Myl = 1Y (Mlan)an)?| < 1Y af| <1 (43)
l l l

We have Jﬁj Ll i < 1/2. Therefore, this means that the parallel components, i.e., the components

that are duphcated with the previous j — 1 nodes in the gradient was suppressed by at least 1/2,
compared to the orthogonal components (i.e., the directions towards new local maxima). This is
equivalent to dividing p; for all [s that appear in P;_; by (at least) 2. By Lemma for the node 7,
the probability of converging to a new local maximum other than S;_1 is

) Digs;
i1 2
new,S; 1 2 a EZGS P+ thS
We do this sequentially starting from node j, then node j + 1, etc. Let m = |S;_1| be the number
of discovered local maxima. Then the expected time that we find a new local maxima is:
~ 1

E[Tm—)m+l] = ﬁ < Q_GE[TmHmle] +1-— 27 (45)
new,o;—1

(44)

where E[T,, —my1] = 1/>° 1¢S; 1 Pl is the expected time for the original coupon collector problem
to pick a new local maximum, given S;_; known ones. Adding the expected time together, we have

L—1
To= Y E[Tmmi1] <27°Th + (1-27%)L (46)

m=0

Note that all the expected time are conditioned on the sequence of known local maxima. But since
these values are independent of the specific sequence, they are also the expected time overall. O

C MORE DETAILED ANALYSIS ON STAGE I (LAZY LEARNING)

To analyze the Stage I more thoroughly, we consider the gradient-flow dynamics of the output layer
weights V.

Let F' € R"*X be a fixed feature matrix and Y € R"*M

We assume throughout that

(A1) F has full column rank K , and
(A2) col(Y) C col(F), i.e. there exists V* € RE*M guch that Y = FV*.
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(A3) Small and independent random initialization on entries of V'(0), with mean zero and vari-
ance a2, where 0 < o < 1, and thus ||V (0)||r = O(av/ K M) with high probability.

(A4) Zero-mean centering: 1"TF=0and17Y = 0.

Note that (A4) is optional. It simplifies some interpretations but is not needed for the main analysis.

We train a linear readout V' € RX*M by minimizing
1, ~ -
JV) = (V= FVIE+alVIE),  n=o0. 47)
We define the (matrix) prediction error and the backpropagated gradient G’z as

E{t):=Y - FV({t) eRVM — Gat):=Et)V(t)" e R™*K, (48)

Note that in the main text, we use G to denote the backpropagated gradient on the uncentered
feature matrix F',ie., Gp = Pf‘ G j, where PlJ- =I-11" /n is the zero-mean projection matrix
along the sample dimension. As we will see below, the leading term of G ; is YY T F and thus

Gr=PlGrx PLYY F=YY'F=YY'TF. (49)
because 1T F =0and17Y = 0.
We consider continuous—time gradient flow for V:

R ! (50)

The gradient of J with respect to V' is
VyJ(V)=F'(FV -Y)4+nV =AV —-B, A:=F"F4nlg, B:=F'Y. (5

We study the gradient flow dynamics

%/ = —VyJ(V)=—AV + B. (52)

Define the error matrix and the backpropagated gradient on F by
E(t):=Y —FV({t) e R™>M  Gx(t):= E)V(t)" € R™K,

Our goal is to understand:

1. the small—time expansion of G ;-(t) and show that the leading term is Y'Y T F'; and
2. the long—time decay behavior of G ;(t), for both n = 0 and n > 0.
C.1 THE DYNAMICS OF G, AT INITIAL TIME STAMPS
C.1.1 SMALL-TIME EXPANSION AND LEADING TERM
Write the Taylor expansions at £ = 0 as
V(t)=Vo+tVi +O(?),  E(t) = Ey+tE; +O(t?),
where Vj := V(0) and Ey := Y — FV;,. From (2),

v - -
Vi = E‘ = —AVo+ B = —(FTF4qI)Vo+FTY. (53)
t=
Differentiating E(t) = Y — FV/(t) gives
dE = BT e
Bi=2| =—FVi= F(FTF +qli)Vo - FFTY. (54)
t=
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Now expand Gz (?):
Gp(t) = EMV ()" = (Eo+tE)(Vo+tVi)" +0(t%) = EoVy' +t(EoV," + E1Vy) + O(t?).
Using By = Y — FVj and V; from 3),
BV, = (Y — FVo)(=Vy (FTF+nlx) +Y'F)
=YY'F — FW'TF — YV, (FTF4+nlg) + FVoVy) (FTF 4+ nlk).
Every term except YY | F contains (at least one factor of) Vp, hence is O(«) in Frobenius norm.
Moreover, E; VOT also contains Vj:
E\WV)' = F(FTF +nlx)VoVy — FFTYV,
so |E1Vy' || F = O(a) as well.
We therefore obtain the small-time expansion
Ga(t) =YV,  +tYYTF+ t R (Vo) + O(t?), (55)
——
O(a)
where R; (V) collects all order—¢ terms that contain Vj and thus satisfy || Ry (Vo) ||r = O(«).

C.1.2 WHY YY" F IS THE LEADING TERM

We now compare the deterministic term YY T Ftothe Vo—dependent terms using norm inequalities.

Lemma 11 (Lower bound on ||YY T F|| ). Let E' have full column rank and Y be nonzero. Then
IYYTFlr > own(F) VY T|F >0,

where O’min(ﬁ‘ ) is the smallest singular value of F.

Proof. For any matrices A, B, ||AB||% = tr(BBT AT A). Take A=YY ", B=F. Since BB is
PSD with eigenvalues bounded below by & i, (F)?,

|AB||% = tr(BBTATA) > opin(F)? tr(AT A) = omin(F)?||Al|%.
Taking square roots gives the result. O
Next, bound the Vj,—dependent part. For concreteness, consider the term FF’TY/VOT (other mixed
terms are bounded similarly). Using || AB||r <
IFFTY Vo' llp < IFFTY|[p| Vol p.
Under the iid initialization with variance o2, |Vy||r = O(av/K M), hence
IFETY V) P = O(a).

The same argument applies to all other Vy—dependent order—¢ terms in Ry (V).

Combining Lemma [IT| with these upper bounds yields
1B (Vo) r
IYYTElp
for some constant C independent of a.. Thus, in the limit & — 0 (small random initialization), the
term Y'Y T F is the unique leading contribution at order .

< C(F,Y,K,M)«

Proposition 2 (Small-time leading term of G ;). Under assumptions (Al)—(A2) and small random
initialization with scale o < 1,

Gp(t) =YV +tYYTF +O(ta+t%)
in Frobenius norm. In particular, as o« — 0,
Gp(t) — Y/VOT
t
for fixed small t, independently of whether n = 0 orn > 0.

S YYTE,  and  ||Ga(t)|p ~t ||V T F||p
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Remark on the role of . The weight decay parameter 1 only appears in products involving Vj,
and hence all n—dependent order—¢ contributions are also O(«) in norm. Therefore the leading

deterministic term Y'Y | F is the same for both 7 = 0 and ) > 0.

C.2 LONG-TIME DECAY OF Gz

We now analyze the behavior of G (t) as t — oo, again for both = 0 and n > 0.

C.2.1 GENERAL SOLUTION OF THE GRADIENT FLOW

From (52), the gradient flow is a linear ODE with constant coefficients. The unique fixed point V*
satisfies
AV*=B = V*=A"'B.
Define AV (t) := V(t) — V*. Then
d
TZAV() = —AAV(h),  AV() = e AV (0),
and hence
V(t) =e YV (0) = V*)+ V™ (56)

Let Amin(A) denote the smallest eigenvalue of A. Since A > FTF and F has full column rank,

Amin(A) > omin(F)? for n = 0 and Apin(A) > omin(F)? + n for n > 0. Standard bounds on
matrix exponentials give
IAV(#)][ 5 < e A== DE AV (0)] . (57)

The error satisfies
E(t)=Y —FV({t)=Y — FV* — FAV(t) = E* — FAV(¢),
where E* := Y — FV* is the residual at the minimizer. Using |[FAV (t)||r < || F|2|AV ()| #

and (57), )
IE®) = E* || < [[Fllz e =8 AV (0)]| 5. (58)

C.2.2 CASEn=0

When 7 = 0, we have A = F'T F.. By assumption (A2), Y = FV* is exactly realized by the model,
so E* =0, 1i.e.

tlim E(t) = 0.
—00
Equations (37)) and imply exponential decay:
. )2 * - —0. . )2
V() = V¥ < e V) = VFr, E@)e < [Fllae™ 7 [V(0) = Ve

We can now bound G ;(t):

o)
IGe@F < IEOr VOl < IEOIF (V2 + [V(E) = V). (59)
Using the exponential bounds above and the fact that ||V (t) — V*||2 < ||V (¢) — V*||, we obtain
2
IG5 (t)llr < CoemmntE
for some constant C depending on F, V* and V'(0) but not on ¢.
Thus in the realizable, unregularized case, the backpropagated gradient decays exponentially to zero.
Proposition 3 (Exponential decay of G z for n = 0). Assume (Al)—(A2) and n = 0. Then
tlgrQlQ Gp(t) =0,
and there exists Coy > 0 such that
IGE(t)lr < Coe ==t forailt > 0.

A more refined analysis using the SVD F' = UL | shows that every singular direction of G (t)is
a finite linear combination of exponentials e~ (o740t and e+ ¢, so the slowest rate in the Frobenius
norm is indeed e~ min(F)*t,
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C.2.3 CAsen >0

When n > 0, the minimizer V* = AYETY is the ridge solution. In general it does not exactly
interpolate Y, and the residual

E* =Y — FV*
is nonzero. Consequently the limiting backpropagated gradient
*x .1 . _ *xY /x|
G% = tl;rgoGF(t) =FEV
is also nonzero in general.

To study the convergence, write
Gp(t) -G =EQV(t) — E*V*T =(E({t) - ENV(®) + E*(V(t) - v
Using 37)-(58) and | AB||r < ||A||r||B]|2, we obtain
1G5(t) =GRl < IE®) = EX [ VOl + [E][F [V(E) = V72
< (HFH2IIV(0) —VAE VOl + 1 E* [V (0) - V*IIF)efA“”“(A)V
Since ||V (t)]|2 is bounded (it converges to ||[V*||2), this shows exponential convergence of G (t) to

G}. Therefore, we have the following proposition:

Proposition 4 (Exponential convergence of G z for n > 0). Assume (Al)—(A2) and n > 0. Then
: S S *T .
tliglo Gp(t) = Gf = E*V* #0 in general,

and there exists C1 > 0 such that

|G5(t) — Ghllp < Cpe RmmDE Amin(A) > omin(F)? + 1.
Finally, note that
GL=EVT=PYV'T =n(FFT +nI)"'YYTF(FTF +yI)™" (60)
where Py :=1 — F(FTF 4+ nI)"'FT = n(FEFT 4+nI)~", by Woodbury matrix formula.
Summary.

* For small ¢, the leading term in G (%) is tYY TF, independent of 7. All other terms
(including those involving V'(0) and n) are lower order in the initialization scale c.

* For 77 = 0 and realizable Y € col(F’), both the error E(t) and G 5 (t) decay exponentially
to zero at rate at least oy (F)2.

* For n > 0, E(t) and V(t) converge exponentially to (E*,V*), and G 3(t) converges
exponentially to a nonzero limit G% = E*V*T.

D WHEN DOES GROKKING HAPPEN?

Previous empirical works show that many hyperparameters can lead to grokking behaviors. Here
we summarize these key factors can be explained through their interactions with G i and the feature
learning process. Here we categorize these factors into several categories.

Learning rate. (Gromovl [2023) reports that grokking happens without regularization, but with a
large initial learning rate (verified by the author). This corresponds to increasing the strength of
Gr(t) oc tYY T F at the initial phase of learning so that the hidden layers receives enough correct
gradient signal.

Loss function. (Prieto et al., 2025) uses stable softmax (linear form) rather than regular softmax
(exponential form) in computing probability. This prevents the model from overfitting to the label
too quickly, and thus maintains a nonzero backpropagated gradient that can be useful for feature

35



Under review as a conference paper at ICLR 2026

learning. (Kumar et al.| |2024) also reports that grokking happens without regularization, using
vanilla SGD optimizer. Our explanation is that it may take longer for SGD to converge to Vijgge
than Adam, and during that period, the hidden layer has already accumulated a sufficient amount of
correct gradient signal.

Weight initialization. (Liu et al., [2023)) reports that grokking happens with small initialization,
regardless of the weight decay. This is straightforward from our framework, since Gg(t) = O(a) +
tYYTF + O(at) + O(t?) and if the weight initialization « is small, then G (t) is dominated by
clear signal term tY'Y T ', which leads to grokking. If « is large, then O(c) term is large and the
initial phase of Gy contains too much noise, and we need to rely on the signal provided by the
convergence phrase of G controlled by the weight decay 7. This is consistent with the finding
by (Liu et al., 2023) that for large weight initialization, regularization is needed for grokking to
happen, and small regularization leads to slow grokking transition.

Scaling factor 3 of the output. (Kumar et al.| 2024; |Chizat et al [2019) reports that scaling the
output by a factor 5 > 1 will make the grokking faster. From L1, framework, this corresponds to
optimizing J5(V) = ||Y — BFV||% + n||V||%. Following a similar derivation as in Sec.|C} we can
show that at the initial phase, the backpropagated gradient G (t) = O(a) +t8YY T F +O(apt) +
O(t?). Soif B > 1 is large then the signal term tBY'Y T F becomes more dominant than the case of
B =1, and the grokking happens faster.

Weight decay 1. According to Eqn. |4} since Gg(+00) nY'Y T F, itis clear that the weight decay
1 becomes the learning rate of feature learning process. This coincides with findings in empirical
works (Power et al.| [2022; |Clauw et al.,2024) that low regularization leads to slow grokking transi-
tion. This is also consistent with ¢ ~ 1 /7 laws to start grokking (Liu et al.l[2023) or reach maximal
test performance (Lewkowycz & Gur-Ari, [2020).

Data size n. Our sample analysis (Theorem. ) shows the local maxima can be kept with sufficient
number of samples (n 2 M log M). Intuitively, more samples lead to better shaped local maxima
with less noise and thus the feature learning is faster.

The number of hidden nodes K. Our analysis requires that we need a decent number of hidden
nodes K to cover the diverse set of the local maxima of £. On the other hand, Lemma [I| tells that
very large K may reduce |G r(400)| and makes grokking slower. This is consistent with the finding
by (Chizat et al.,[2019).

E MORE EXPERIMENTS

E.1 USE GROUPS ALGORITHMS PROGRAMMING (GAP) TO GET NON-ABELIAN GROUPS

GAP (https://www.gap-system.org/)) is a programming language with a library of thou-
sands of functions to create and manipulate group. Using GAP, one can easily enumerate all non-
abelian group of size M < 127 and create their multiplication tables, which is what we have done
here. From these non-Abelian groups, for each group size M, we pick one for our scaling law
experiments (Fig. ] bottom right) with maxy, dj, = 2.
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Figure 7: Adam versus Muon optimizers in modular addition tasks with M = 71, when the number of hidden
nodes K is relatively small compared to M. Muon optimizer achieves lower test loss compared to Adam.
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Figure 8: Training modular addition tasks with 2, 3 and 4 layer network with ReLU activations. Left: Training
accuracy and losses. Right: Learned features at the lowest layer. With more layers, the training takes longer
and grokking (delayed generalization) becomes more prominant. However, features at the lowest layer remain
(distorted version) of Fourier bases, which are consistent with the analysis in Sec.m
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Figure 9: Generalization/memorization phase transition in product and non-Abelian tasks. Left: Product
group Zy ® L, Ls @ ZLe, Lo @ Lo @ Ly, Z13 Q@ L, Ls @ Lo @ Lo Q Lo, Le @ Za @ 22, L3 @ Lo @ Zar,
Lo ® 73 @ Z3 ® Zs. Right: Non-Abelian groups with maxy, di = 2 (maximal irreducible dimension 2). These
non-Abelian groups are generated from GAP programs (See Appendix Sec. EI)
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Figure 10: Training modular addition tasks with real weights (M = 23,41, 89, 127). Learning rate is 0.005,
weight decay is 5e — 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M?. Using
Adam optimizer. Averaged over 5 seeds. This is a baseline.
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Figure 11: Training modular addition tasks with complex weights (M = 23,41, 89, 127). Learning rate is
0.005, weight decay is 5e — 5. Number of hidden nodes K = 256. Test sample is 20% of the full set of M2,
Using Adam optimizer. Averaged over 5 seeds. Compared with the real case (Fig. [I0), models with complex
weights seem to grok faster.
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Figure 12: Training modular addition tasks with real weights (M = 23,41, 89,127). Instead of using
gradient descent to update the top layer V, in every gradient update we use ridge regression solution Vjigge With
respect to the current F' (Eqn. ??). Learning rate is 0.005, weight decay is 5e — 5. Number of hidden nodes
K = 256. Test sample is 20% of the full set of M?. Using Adam optimizer. Averaged over 5 seeds. The
grokking still happens (for M = 23 check Fig. [T3] for completeness). It is slower for M = 23 but actually
faster for M = 41, 89, 127, compared to the baseline (Fig. [[0).
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Figure 13: Training modular addition tasks with real weights M = 23 for 500 epochs, using Vjiqge as the
top layer weight. The grokking still happens but slower than the baseline (Fig. for M = 23.
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