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ABSTRACT

Self-supervision has the potential to transform reinforcement learning (RL), paral-
leling the breakthroughs it has enabled in other areas of machine learning. While
self-supervised learning in other domains aims to find patterns in a fixed dataset,
self-supervised goal-conditioneds reinforcement learning (GCRL) agents discover
new behaviors by learning from the goals achieved during unstructured interac-
tion with the environment. However, these methods have failed to see similar
success, both due to a lack of data from slow environment simulations as well
as a lack of stable algorithms. We take a step toward addressing both of these
issues by releasing a high-performance codebase and benchmark (JaxGCRL)
for self-supervised GCRL, enabling researchers to train agents for millions of
environment steps in minutes on a single GPU. By utilizing GPU-accelerated
replay buffers, environments, and a stable contrastive RL algorithm, we reduce
training time by up to 22×. Additionally, we assess key design choices in con-
trastive RL, identifying those that most effectively stabilize and enhance training
performance. With this approach, we provide a foundation for future research
in self-supervised GCRL, enabling researchers to quickly iterate on new ideas
and evaluate them in diverse and challenging environments. Code: https:
//anonymous.4open.science/r/JaxGCRL-2316/README.md

1 INTRODUCTION

Self-supervised learning has significantly influenced machine learning over the last decade, trans-
forming how research is done in domains such as natural language processing and computer vi-
sion (?Dosovitskiy et al., 2020; Vaswani et al., 2017). In the context of reinforcement learning (RL),
most self-supervised prior methods apply the same recipe that has been successful in other domains:
learning representations or models from a large, fixed dataset (Hoffmann et al., 2022; Sardana et al.,
2024; Muennighoff et al., 2023). However, the RL setting also enables a fundamentally different type
of self-supervised learning: rather than learning from a fixed dataset (as done in NLP and computer
vision), a self-supervised reinforcement learner can collect its own dataset. Thus, rather than learning
a representation of a dataset, the self-supervised reinforcement learner acquires a representation of an
environment or of behaviors and optimal policies therein. Self-supervised reinforcement learners
may address many of the challenges that stymie today’s foundations models: reasoning about the
consequences of actions (Rajani et al., 2019; Kwon et al., 2023) (i.e., counterfactuals (Bhargava and
Ng, 2022; Jin et al., 2023)) and long horizon planning (Bhargava and Ng, 2022; Du et al., 2023; Guan
et al., 2023).

In this paper, we study self-supervised RL in an online setting: an agent interacts in an environment
without a reward to learn representations, which are later used to quickly solve downstream tasks.
We focus on goal-conditioned reinforcement learning (GCRL) algorithms, which aim to use these
unsupervised interactions to learn policies for achieving various goals – an essential capability for
multipurpose robots. Prior work has proposed several algorithms for self-supervised RL (Eysenbach
et al., 2022; Zheng et al., 2024; Myers et al., 2023; 2024a), including algorithms that focus on learning
goals (Erraqabi et al., 2022). However, these methods were limited by small datasets and infrequent
online interactions with the environment, which has prevented them from exploring the potential
emergent properties of self-supervised reinforcement learning on large-scale data.

The main goal of this paper is to introduce JaxGCRL: extremely fast GPU-accelerated codebase
and benchmark for effective self-supervised GCRL research. For instance, an experiment with
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Figure 1: JaxGCRL is fast. It learns goal-reaching policies for Ant in 10 minutes on 1 GPU. This paper releases
a GCRL benchmark and baseline algorithms that enable research and experiments to be done in minutes.

10 million environment steps lasts only around 10 minutes on a single GPU, which is up to 22×
faster than in the original contrastive RL codebase (Eysenbach et al., 2022) (Fig. 1). This speed
allows researchers to “interactively” debug their algorithms, changing pieces and getting results in
near real-time for multiple random seeds on a single GPU without the hustle of distributed training.
Consequently, JaxGCRL eliminates the barriers to entry to state-of-the-art GCRL research, making
it more accessible to under-resourced institutions.

To achieve this training and performance improvement, we combine insights from self-supervised
RL with recent advances in GPU-accelerated simulation. The first key ingredient is recent work on
GPU-accelerated simulators, both for physics (Freeman et al., 2021; Thibault et al., 2024; Liang et al.,
2018) and other tasks (Matthews et al., 2024; Dalton et al., 2020; Fischer et al., 2009; Bonnet et al.,
2024; Rutherford et al., 2024) that enable users to collect data up to 1000× faster (Freeman et al.,
2021) than prior methods based on CPUs. The second key ingredient is a highly stable algorithm
build upon recent work on contrastive RL (CRL) (Eysenbach et al., 2022; Zheng et al., 2024), which
uses temporal contrastive learning to learn a value function. The third key ingredient is a suite of
tasks for evaluating self-supervised RL agents which is not only blazing fast but also stress tests the
exploration and long-horizon reasoning capabilities of RL policies.

The contributions of this work are as follows:

JaxGCRL codebase: a blazingly fast JIT-compiled training pipeline for GCRL experiments.
JaxGCRL benchmark: we introduce a suite of 8 GPU-accelerated state-based environments that

help to accurately assess GCRL algorithm capabilities and limitations.
Extensive empirical analysis: we evaluate important CRL design choices, focusing on key algo-

rithm components, architecture scaling, and training in data-rich settings.

2 RELATED WORK

We build upon recent advances in GCRL, self-supervised RL, and hardware-accelerated physics
simulators, showing that CRL enables fast and reliable training across a diverse suite of environments.

2.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

GCRL is a special case of the general multi-task RL setting, in which the potential tasks are defined
by goal states that the agent is trying to reach in an environment (Kaelbling, 1993; Ghosh et al., 2019;
Nair et al., 2018). Achieving any goal is appealing for generalist agents, as it allows for diverse
behaviors without needing specific reward functions for each task (each state defines a task when
seen as a goal) (Schaul et al., 2015). GCRL techniques have seen success in domains such as robotic
manipulation (Andrychowicz et al., 2017; Eysenbach et al., 2021; Ghosh et al., 2021; Ding et al.,
2022; Walke et al., 2023) and navigation (Shah et al., 2023; Levine and Shah, 2023; Manderson et al.,
2020; Hoang et al., 2021). Recent work has shown that representations of goals can be imbued with
additional structure to enable capabilities such as language grounding (Myers et al., 2023; Ma et al.,
2023), compositionality (Liu et al., 2023; Myers et al., 2024b; Wang et al., 2023), and planning (Park
et al., 2023; Eysenbach et al., 2024). We show how GCRL techniques based on contrastive learning
(Eysenbach et al., 2022) can be scaled with GPU acceleration to enable fast and stable training.
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2.2 ACCELERATING DEEP REINFORCEMENT LEARNING

Deep RL has only recently become practical for many tasks, in part due to improvements in hardware
support for these algorithms. Distributed training has enabled RL algorithms to scale across hundreds
of GPUs (Mnih et al., 2016; Espeholt et al., 2018; 2020; Hoffman et al., 2022). To resolve the
bottleneck of environment interaction with CPU-bound environments, various GPU-accelerated
environments have been proposed (Matthews et al., 2024; Freeman et al., 2021; Bonnet et al., 2024;
Rutherford et al., 2024; Liang et al., 2018; Dalton et al., 2020; Makoviychuk et al., 2021; Lange, 2022;
Lu et al., 2022). Most of these works rely on JAX (Bradbury et al., 2018; Heek et al., 2023; Hennigan
et al., 2020), which enables JIT compilation, operator fusion and other components necessary
for efficient vectorized code execution. These features significantly accelerate data collection by
supporting rollouts in hundreds of parallelized environments. We build on these advances to scale
self-supervised RL to data-rich settings.

2.3 SELF-SUPERVISED RL

Self-supervised training has enabled key breakthroughs in language modeling and computer vision
(Sermanet et al., 2017; Zhu et al., 2020; Devlin et al., 2019; He et al., 2022; Mikolov et al., 2013). In
the context of RL, by the term "self-supervised", we mean techniques that can be learned through
interaction with an environment without a reward signal. Perhaps the most successful form of
self-supervision has been in multi-agent games that can be rapidly simulated, such as Go and Chess,
where self-play has enabled the creation of superhuman agents (Silver et al., 2016; 2017; Zha et al.,
2021). When learning goal-reaching agents, another basic form of self-supervision is to relabel
trajectories as successful demonstrations of the goal that was reached, even if it differs from the
original commanded goal (Kaelbling, 1993; Venkattaramanujam et al., 2020). This technique has
seen recent adoption as “hindsight experience replay” for various deep RL algorithms (Andrychowicz
et al., 2017; Ghosh et al., 2021; Chebotar et al., 2021; Rauber et al., 2021; Eysenbach et al., 2022).

Another perspective on self-supervision is intrinsic motivation, broadly defined as when an agent
computes its own reward signal (Barto, 2013). Intrinsic motivation methods include curiosity (Barto,
2013; Bellemare et al., 2016; Baumli et al., 2021), surprise minimization (Berseth et al., 2019;
Rhinehart et al., 2021), and empowerment (Klyubin et al., 2005; de Abril and Kanai, 2018; Choi
et al., 2021; Myers et al., 2024a). Closely related are skill discovery methods, which aim to construct
intrinsic rewards for diverse collections of behavior (Gregor et al., 2016; Eysenbach et al., 2019;
Sharma et al., 2020; Kim et al., 2021; Park et al., 2021; Laskin et al., 2022; Park et al., 2024).
Self-supervised RL methods have been difficult to scale due to the need for many environment
interactions (Franke et al., 2021; Mnih et al., 2015). This work addresses that challenge by offering a
fast and scalable contrastive RL algorithm on a benchmark of diverse tasks.

2.4 RL BENCHMARKS

The RL community has recently started to pay greater attention to how RL research is conducted,
reported, and evaluated (Henderson et al., 2018; Jordan et al., 2020; Agarwal et al., 2022). A key
issue is a lack of reliable and efficient benchmarks: it becomes hard to rigorously compare novel
methods when the number of trials needed to see statistically significant results across diverse settings
ranges in the thousands of training hours (Jordan et al., 2024). Some benchmarks that have seen
adoption include OpenAI gym/Gymnasium (Brockman et al., 2022; Towers et al., 2024), DeepMind
Control Suite (Tassa et al., 2018), and D4RL (Fu et al., 2021). More recently, hardware-accelerated
versions of some of these benchmarks have been proposed (Gu et al., 2021; Matthews et al., 2024;
Koyamada et al., 2023; Makoviychuk et al., 2021; Nikulin et al., 2023). However, the RL community
still lacks advanced benchmarks for goal-conditioned methods. We address this gap with JaxGCRL,
significantly lowering the GCRL evaluation cost and thereby enabling impactful RL research.

3 PRELIMINARIES

In this section, we introduce notation and preliminary definitions for goal-conditioned RL and the
contrastive RL method, which serves as the foundation for this work.

In the goal-conditioned reinforcement learning setting, an agent interacts with a controlled Markov
process (CMP) M = (S,A, p, p0, γ) to reach arbitrary goals (Kaelbling, 1993; Andrychowicz et al.,
2017; Blier et al., 2021). At any time t the agent will observe a state st and select a corresponding
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action at ∈ A. The dynamics of this interaction are defined by the distribution p(st+1 | st, at), with
an initial distribution p0(s0) over the state at the start of a trajectory, for st ∈ S and at ∈ A.

For any goal g ∈ S, we cast optimal goal-reaching as a problem of inference (Borsa et al., 2019;
Barreto et al., 2022; Blier et al., 2021; Eysenbach et al., 2022): given the current state and desired
goal, what is the most likely action that will bring us toward that goal? As we will see, this is
equivalent to solving the Markov decision process (MDP) Mg obtained by augmenting M with the
goal-conditioned reward rg(st, at) ≜ (1 − γ)γp(st+1 = g | st, at). Formally, a goal-conditioned
policy π(a | s, g) receives both the current observation of the environment as well as a goal g ∈ S.

We denote the k-step action-conditioned policy distribution pπk (sk | s0, a0) as the distribution of
states k steps in the future given the initial state s0 and action a0 under π. We define the discounted
state visitation distribution as pπγ (s

+ | s, a) ≜ (1 − γ)
∑∞
t=0 γ

tpπt (s
+ | s, a), which we interpret

as the distribution of the state T steps in the future for T ∼ Geom(1 − γ). This last expression
is precisely the Q-function of the policy π(· | ·, g) for the reward rg: Qπg (s, a) ≜ pπγ (g | s, a) (see
Appendix D.1). For a given distribution over goals g ∼ pG , we can now write the overall objective as

max
π(·|·,·)

Ep0(s0)pG(g)π(a0|s0,g)
[
pπγ (g | s0, a0)

]
. (1)

3.1 CONTRASTIVE CRITIC LEARNING

CRL is an actor-critic method that aims to solve Eq. (1). The critic is represented as a state-action-goal
value function f(s, a, g), which provides the likelihood of future states and how various actions
influence the likelihood of future states. This function satisfies:

f(s, a, g) ∝ pπγ (g | s, a) = Qπg (s, a). (2)

Therefore, we can treat f(s, a, g) as an approximation of the Q-function and use it to train the
actor. This approach builds on previous research that frames learning of this critic as a classification
problem (Eysenbach et al., 2022; 2021; Zheng et al., 2023; 2024; Farebrother et al., 2024; Myers et al.,
2024b). Training is performed on batches of (s, a, g) to classify whether or not g is the future state
corresponding to the trajectory starting from (s, a). Thus, in each sample from batch (si, ai, gi) ∈ B
the goal gi is sampled from the future of the trajectory containing (si, ai).

The family of CRL algorithms consists of the following components: (a) the state-action pair
and goal state representations, ϕ(s, a) and ψ(g), respectively; (b) the critic, which is defined as
an energy function fϕ,ψ(s, a, g), measuring some form of similarity between ϕ(s, a) and ψ(g);
and (c) a contrastive loss function, which is a function of the matrix containing the critic values
{fϕ,ψ(si, ai, gj)i,j} over the elements of the batch B. The base contrastive loss we study will be
the infoNCE objective (Sohn, 2016), modified to use a symmetrized (Radford et al., 2021) critic
parameterized with ℓ2-distances (Eysenbach et al., 2024). The final objective for the critic can thus
be expressed as:

min
ϕ,ψ

EB

[
−
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(si,ai,gj)

)
−
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(sj ,aj ,gi)

)]
,

where
fϕ,ψ(s, a, g) = ∥ϕ(s, a)− ψ(g)∥2.

This loss contrasts each positive sample with the batch of negative samples. Other losses, which are
tested in Section 5.3, are further discussed in Appendix A.2.

3.2 POLICY LEARNING

We use a DDPG-style policy extraction loss to learn a goal-conditioned policy, πθ(a|s, g), by
optimizing the critic fϕ,ψ (Lillicrap et al., 2016):

max
θ

Ep(s,a)p(g|s,a)πθ(a′|s,g) [fϕ,ψ(s, a
′, g)] (3)

To form a batch of data, we sample uniformly (s, a) pairs and then sample goals g from states that
occur after s in a trajectory.
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Figure 2: JaxGCRL benchmark: New suite of GPU-accelerated environments for studying GCRL. In this
setting, the agent does not receive any rewards or demonstrations, making some of these tasks an excellent testbed
for studying exploration and long-horizon reasoning. Our accompanying implementation of GCRL algorithms
trains with more than 15K environment steps per second on a single GPU, enabling rapid experimentation.

4 JAXGCRL: A NEW BENCHMARK AND IMPLEMENTATION

JaxGCRL is an efficient tool for developing and evaluating new GCRL algorithms. It shifts the
bottleneck from compute to implementation time, allowing researchers to test new ideas, like
contrastive objectives, within minutes—a significant improvement over traditional RL workflows.

4.1 JAXGCRL SPEEDUP ON A SINGLE GPU

We compare the proposed fully JIT-compiled implementation of CRL in JaxGCRL to the original
implementation from Eysenbach et al. (2022). In particular, Fig. 1 shows the performance in Ant
environment along with the experiment’s wall-clock time. The speedup in this configuration is
22-fold, with the new implementation reaching a training speed of over 16500 environment steps
per second with a 1:16 update to data (UTD) ratio. For results with other UTD, refer to Section 5.6.
Complete speedup results are provided in Appendix A.1. Importantly, BRAX physics simulator
differs from the original MuJoCo, so performance numbers here may vary slightly from prior work.

4.2 JAXGCRL ENVIRONMENTS IN THE BENCHMARK

To evaluate the performance of GCRL methods, we propose JaxGCRL benchmark consisting of 8
diverse continuous control environments. These environments range from simple, ideal for quick
checks, to complex, requiring long-term planning and exploration for success. The following list
provides a brief description of each environment, with the technical details summarized in Table 1:

Reacher (Brockman et al., 2022). A 2D manipulation task involves positioning the end part of a
2-segment robotic arm in a specific location sampled uniformly from a disk around an agent.

Half Cheetah (Wawrzyński, 2009). In this 2d task, a 2-legged agent has to get to a goal that is
sampled from one of the 2 possible places, one on each side of the starting position.

Pusher (Brockman et al., 2022). This is a 3d robotic task, that consists of a robotic arm and a
movable circular object resting on the ground. The goal is to use the arm to push the object into the
goal position. With each reset, both position of the goal and movable object are selected randomly.

Ant (Schulman et al., 2016). A re-implementation of the MuJoCo Ant with a quadruped robot that
needs to walk to the goal randomly sampled from a circle centred at the starting position.

Ant Maze (Fu et al., 2021). This environment uses the same quadruped model as the previous Ant,
but the agent must navigate a maze to reach the target. We prepared 3 different mazes varying in size
and difficulty. In each maze, the goals are sampled from a set of listed possible positions.

Ant Soccer (Tunyasuvunakool et al., 2020). In this environment, the Ant has to push a spherical
object into a goal position that is sampled uniformly from a circle around the starting position. The
position of the movable sphere is randomized on the line between an agent and a goal.

5
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Ant Push (Fu et al., 2021). To reach a goal, the Ant has to push a movable box out of the way. If the
box is pushed in the wrong direction, the task becomes unsolvable. Succeeding requires exploration,
understanding block dynamics, and how it changes the layout of the maze.

Humanoid (Tassa et al., 2012). Re-implementing the Mujoco task involves navigating a complex
humanoid-like robot to walk towards a goal sampled from a disk centred at the starting position.

In Fig. 3, we report the baseline results for the proposed benchmark. It is worth noting that for most
environments, experiments involving 50M environment steps can be completed in less than an hour.

4.3 CONTRASTIVE RL DESIGN CHOICES

JaxGCRL streamlines and accelerates the evaluation of new GCRL algorithms, enabling quick
assessment of key CRL design choices:

Energy functions. Measuring the similarity between samples can be achieved in various ways,
resulting in potentially different agent behaviors. Our analysis in following sections include cosine
similarity (Chen et al., 2020), dot product (Radford et al., 2021), and negative L1 and L2 distance (Hu
et al., 2023), detailed list can be found in Appendix A.2. Even though there is no consensus on the
choice of energy functions for temporal representations, recent works showed that they should abide
by quasimetric properties (Wang et al., 2023; Myers et al., 2024b).

Contrastive losses. Beside InfoNCE-type losses (van den Oord et al., 2019; Eysenbach et al., 2022),
we evaluate FlatNCE-like losses (Chen et al., 2021), and a Monte Carlo version of Forward-Backward
unsupervised loss (Touati and Ollivier, 2021). Additionally, we test novel objectives inspired by
preference optimization for large language models (Calandriello et al., 2024). Specifically, we
evaluate DPO, IPO, and SPPO, which increase the scores of positive samples and reduce the scores
of negative ones. A full list of contrastive objectives can be found in Appendix A.2.

Architecture scaling. Scaling neural network architectures to improve performance is a common
practice in other areas of deep learning, but it remains relatively underexplored in RL models, as
noted in Nauman et al. (2024a;b). Recently, Zheng et al. (2024) showed that CRL might benefit
from deeper and wider architectures with Layer Normalization (Ba et al., 2016) for offline CRL in
pixel-based environments; we want to examine whether this also holds for online state-based settings.

5 EXAMPLES OF FAST EXPERIMENTS POSSIBLE WITH THE NEW BENCHMARK

The goal of our experiments is twofold: (1) to establish a baseline for the proposed JaxGCRL
environments, and (2) to evaluate CRL performance in relation to key design choices. In Section 5.1,
we define setup that is used for most of the experiments unless explicitly stated otherwise. First
in Section 5.2, we report baseline results on JaxGCRL. Second, in Sections 5.3 and 5.4, we try to
understand the influence of design choices on CRL learning performance. Third, in Section 5.5, we
asses those design choices in a data-rich setting with 300M environment steps. Lastly, in Section 5.6,
we explore the relation between performance and UTD.

5.1 EXPERIMENTAL SETUP

Our experiments use JaxGCRL suite of simulated environments described in Section 4.2. We evaluate
algorithms in an online setting for 50M environment steps. We compare CRL with Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), SAC with Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017), TD3 (Fujimoto et al., 2018), TD3+HER, and PPO (Schulman et al., 2017). For algorithms
with HER, we use final strategy relabelling, i.e. relabeling goals with states achieved at the end of the
trajectory. In the majority of experiments, we use CRL with L2 energy function, symmetric InfoNCE
objective, and a tuneable entropy coefficient for all methods. See Appendix B for details. We use
two performance metrics: success rate and time near goal. Success rate measures whether the agent
reached the goal at least once during the episode, while time near goal indicates how long the agent
stayed close to it. We use a sparse reward for all baselines, with r = 1 when the agent is in goal
proximity and r = 0 otherwise. We define goal-reaching as achieving proximity below the goal
distance threshold defined in Table 1. The implementations of PPO and SAC are sourced from
the Brax repository (Freeman et al., 2021), while TD3, HER, and CRL are partially based on Brax.
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5.2 JAXGCRL BENCHMARK RESULTS

We establish baseline results for JaxGCRL with all algorithms in Fig. 3. Clearly, CRL achieves
the highest performance across tested methods, resulting in non-trivial policies even in the hardest
tasks in terms of high-dimensional state and action spaces (Humanoid) and exploration (Pusher and
Ant Push). However, the performance in these challenging environments is low, indicating room for
improvement for future contrastive RL methods. As expected, HER can improve performance for
both TD3 and SAC. In contrast, PPO performs poorly across all tasks, likely due to the challenges
posed by the sparse reward setting. Additional experiments on JaxGCRL environments with design
choices discussed in the following sections can be found in Appendix A.4.

0 10 20 30 40
Time in minutes 

0.6

0.8

1.0

S
u
cc

es
s 

ra
te

Reacher

CRL

SAC

SAC + HER

PPO

TD3

TD3 + HER

0 10 20 30 40 50 60 70
Time in minutes 

0.00

0.25

0.50

S
u
cc

es
s 

ra
te

Pusher Hard

0 10 20 30 40
Time in minutes 

0.0

0.2

S
u
cc

es
s 

ra
te

Humanoid

0 10 20 30
Time in minutes 

0.0

0.5

S
u
cc

es
s 

ra
te

Ant

0 10 20 30 40 50
Time in minutes 

0.0

0.2

0.4

S
u
cc

es
s 

ra
te

Ant U-Maze

0 10 20 30 40 50 60 70
Time in minutes 

0.0

0.2

S
u
cc

es
s 

ra
te

Ant Big Maze

0 10 20 30
Time in minutes 

0.0

0.1

0.2

S
u
cc

es
s 

ra
te

Ant Soccer

0 10 20 30 40 50 60 70
Time in minutes 

0.0

0.2

S
u
cc

es
s 

ra
te

Ant Push

Figure 3: Baseline results in JaxGCRL benchmark. Success rates of all the baseline algorithms for
50M environment steps for every JaxGCRL environment. CRL outperforms other baselines in most of
the environments. The training speed is a function of the environment complexity, method complexity,
and physics backend; see Appendix A.4. Specifically, due to differences in how each method works,
the speed varies greatly in the same environments; this can be best seen with the PPO method being
significantly faster than others due to it not using a replay buffer, which frees up GPU memory for more
parallel environment simulations. Results are reported as the interquartile mean (IQM) along with its
standard error, based on 10 seeds.

5.3 CONTRASTIVE OBJECTIVES AND ENERGY FUNCTIONS COMPARISON

Contrastive objective and energy function are the two main components of contrastive methods, serv-
ing as the primary drivers of their final performance. We evaluate CRL with 10 different contrastive
objectives, as defined in Section 4.3 across five environments: Ant Soccer, Ant, Ant Big Maze,
Ant U-Maze, Ant Push, and Pusher, and report aggregated performance. For the energy function,
we use L2, as it consistently resulted in the highest performance for the CRL method, especially
regarding time near goal, see Appendix A.2. Additionally, we apply logsumexp regularization with a
coefficient of 0.1 to each objective. This auxiliary objective is essential, as without it, the performance
of InfoNCE deteriorates significantly (Eysenbach et al., 2022). The analysis presented in Fig. 4
reveals that the originally proposed NCE-binary objective, along with forward-backward, IPO, and
SPPO, are the least effective objectives among those evaluated. However, for other InfoNCE-derived
objectives, it is difficult to determine the best one, as their performance is similar. Interestingly, CRL
seems fairly robust to the choice of contrastive objective.

5.4 SCALING THE ARCHITECTURE

In this section, we explore how increasing the size of actor and critic networks, in terms of both depth
and width, influences CRL performance. We evaluate the aggregated performance during the final
10M steps of a 50 million-step training process across three environments: Ant, Ant Soccer, and Ant
U-Maze. We use the L2, Symmetric InfoNCE and logsumexp regularizer coefficient of 0.1 for all
architecture sizes.

We present the results of this scaling experiment in Fig. 5 and observe that increasing both the
width and depth tends to increase performance. However, performance does not further improve
when increasing the depth for width = 1024 neurons. Our next experiment studies whether layer
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Figure 4: InfoNCE-based loss functions perform best. The critic loss functions that achieve the highest
success rates are based on InfoNCE and DPO. However, DPO policies tend to stay at the goal for a shorter
duration. IQMs averaged over 10 seeds and plotted with one standard error.
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Figure 5: Scaling the critic and actor networks.
Increasing the width and depth generally enhances
performance, but performance levels off for deeper
architectures at a width of 1024. Aggregated metrics,
5 seeds per configuration.
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Figure 6: Layer normalization enables stable per-
formance improvement. Using Layer Normaliza-
tion (LN) in the largest architecture allows for contin-
ued learning even after reaching the saturation point
of a standard large architecture.

normalization can stabilize the performance of these biggest networks (width of 1024 neurons, depth
of 4). Indeed, the results in Fig. 6 show that adding layer normalization before every activation allows
better scaling properties, especially for bigger networks.

5.5 SCALING THE DATA

We evaluate the benefits CRL gains from training in a data-rich setting. In particular, we report
performance for large architectures (studied in Section 5.4) with different combinations of energy
functions and contrastive objectives for 300M environment steps in Fig. 7. We observe that the L2
energy function with InfoNCE objective configuration outperforms all others by a substantial margin,
leading to a higher success rate and time near the goal across three locomotion tasks. Interestingly,
the dot product energy function performs best in the object manipulation task (Ant Soccer). This
indicates that only a subset of a wide array of design choices performs well when scaling CRL.
Additionally, there is still room for improvement in scaling CRL with data, as the success rate in Ant
Soccer and Ant Big Maze remains around 40%. For additional experiments, refer to Appendix A.6

5.6 GRADIENT UPDATES TO DATA RATIO

JaxGCRL enables efficient execution of extensive experiments. Leveraging this capability, we
explore the effect of the model’s update frequency in CRL by evaluating a range of UTD ratios. In
particular, we examine ratios (1:1, 1:8, 1:16, 1:24, 1:32, 1:49, 1:48) in five environments: Ant, Ant
Soccer, Ant U-Maze, Pusher Hard, and Ant Push. Interestingly, we only observe a significant increase
in performance for Pusher Hard with a higher number of updates, while in other environments, it
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leads to decreased or similar performance. With a UTD ratio of 1:16, our code is 22× faster than
prior implementations, and with a lower frequency of gradient updates, it can be even faster.
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Figure 7: JaxGCRL allows researchers to study en-
ergy functions and critic losses over hundreds of
millions of steps. Among tested configurations, L2
with InfoNCE objective performs best in locomotion
environments when data is abundant.
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Figure 8: More gradients ̸= better performance.
Success rate (top) and Time near goal (bottom) for
different UTD ratios. Increasing the UTD ratio for
CRL increases performance only for Pusher.

Key takeaways from empirical experiments:
• Experiments with 10M steps can be completed in minutes, while those with billions

of environment steps can be done in a few hours using JaxGCRL on a single GPU.
• CRL is the only method that can learn effectively in all proposed environments without

needing a high UTD ratio in most cases. It benefits greatly from using large architectures,
especially when Layer Normalization is applied.

• Different combinations of energy and contrastive functions lead to different outcomes:
some primarily improve success rates, while others extend the time spent near the goal.

Taken together, these experiments not only provide guidance on good design decisions for self-
supervised RL, but also highlight how our fast codebase and benchmark can enable researchers to
quickly iterate on ideas and hyperparameters.

6 CONCLUSION

In this paper, we introduce JaxGCRL, a very fast benchmark and codebase for goal-conditioned
RL. The speed of the new benchmark enables us to rapidly study design choices for state-based
CRL, including the network architectures and contrastive losses. We expect that self-supervised RL
methods will open the door to entirely new learning algorithms with broad capabilities that go beyond
the capabilities of today’s foundational models. The key step towards this goal is accelerating and
democratising self-supervised RL research so that any lab can carry it out regardless of its computing
capabilities. Open-sourcing the proposed codebase with easy-to-implement self-supervised RL
methods is an important step in this direction.

Limitations. The GCRL paradigm complicates the process of defining goals that are not easily
expressed as a single state, making it infeasible for some applications. Additionally, our benchmark
environments and methods assume full observability and that goals are being sampled from known
goal distribution during training rollouts. Future work should relax these assumptions to make
self-supervised RL agents useful in more practical settings. We also only investigate online GCRL
settings.

Reproducibility Statement. All experiments can be replicated using the provided publicly available
JaxGCRL code at https://anonymous.4open.science/r/JaxGCRL-2316/README.
md. This repository includes comprehensive instructions for setting up the environment, running the
experiments, and evaluating the results, making it straightforward to reproduce the findings.
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Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, et al. Acme: A Research Framework for
Distributed Reinforcement Learning. 2022. arXiv:2006.00979.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, et al. Training Compute-Optimal Large
Language Models. 2022. arXiv:2203.15556.

Tianyang Hu, Zhili Liu, Fengwei Zhou, Wenjia Wang, and Weiran Huang. Your Contrastive Learning
Is Secretly Doing Stochastic Neighbor Embedding. In International Conference on Learning
Representations. 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, L. Y. U. Zhiheng, Kevin Blin,
Fernando Gonzalez Adauto, Max Kleiman-Weiner, and Mrinmaya Sachan. Cladder: Assessing
Causal Reasoning in Language Models. In Thirty-Seventh Conference on Neural Information
Processing Systems. 2023.

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip Thomas. Evaluating the
Performance of Reinforcement Learning Algorithms. In International Conference on Machine
Learning, pp. 4962–4973. 2020.

Scott M. Jordan, Adam White, Bruno Castro da Silva, Martha White, and Philip S. Thomas. Position:
Benchmarking Is Limited in Reinforcement Learning Research. 2024. arXiv:2406.16241.

Leslie Pack Kaelbling. Learning to Achieve Goals. In International Joint Conference on Artificial
Intelligence. 1993.

Jaekyeom Kim, Seohong Park, and Gunhee Kim. Unsupervised Skill Discovery With Bottleneck
Option Learning. In International Conference on Machine Learning. 2021.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A Universal
Agent-Centric Measure of Control. In IEEE Congress on Evolutionary Computation, volume 1,
pp. 128–135. 2005.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and
Shin Ishii. Pgx: Hardware-Accelerated Parallel Game Simulators for Reinforcement Learning.
Neural Information Processing Systems, 36:45716–45743, 2023.

Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth Karamcheti, A. Dragan, and Dorsa Sadigh.
Toward Grounded Commonsense Reasoning. In International Conference on Robotics and Au-
tomation. 2023.

Robert Tjarko Lange. Gymnax: A JAX-Based Reinforcement Learning Environment Library. 2022.
Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. CIC:

Contrastive Intrinsic Control for Unsupervised Skill Discovery. 2022. arXiv:2202.00161.
Sergey Levine and Dhruv Shah. Learning Robotic Navigation From Experience: Principles, Methods,

and Recent Results. Philosophical Transactions of the Royal Society B: Biological Sciences,
378(1869):20210447, 2023.

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and Dieter
Fox. Gpu-Accelerated Robotic Simulation for Distributed Reinforcement Learning. In Conference
on Robot Learning, pp. 270–282. 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous Control With Deep Reinforcement Learning. In
International Conference on Learning Representations. 2016.

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric Residual Network for Sample Efficient Goal-
Conditioned Reinforcement Learning. In AAAI Conference on Artificial Intelligence, volume 37,
pp. 8799–8806. 2023.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered Policy Optimisation. Neural Information Processing Systems, 35:16455–16468, 2022.

Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang, Osbert Bastani, and
Dinesh Jayaraman. LIV: Language-Image Representations and Rewards for Robotic Control. In
International Conference on Machine Learning. 2023.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac Gym:
High Performance GPU-Based Physics Simulation for Robot Learning. In NeurIPS Datasets and
Benchmarks. 2021.

Travis Manderson, Juan Camilo Gamboa Higuera, Stefan Wapnick, Jean-François Tremblay, Flo-
rian Shkurti, David Meger, and Gregory Dudek. Vision-Based Goal-Conditioned Policies for
Underwater Navigation in the Presence of Obstacles. In Robotics - Science and Systems. 2020.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas
Jackson, Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A Lightning-Fast Benchmark
for Open-Ended Reinforcement Learning. In Forty-First International Conference on Machine
Learning. 2024.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed Representations
of Words and Phrases and Their Compositionality. In Neural Information Processing Systems,
volume 26. 2013.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In International Conference on Machine Learning. 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, et al. Human-Level Control Through Deep Reinforcement
Learning. Nature, 518(7540):529–533, 2015.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A. Raffel. Scaling Data-Constrained Language
Models. In Neural Information Processing Systems, volume 36, pp. 50358–50376. 2023.

Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, and Anca Dragan. Learning to Assist
Humans Without Inferring Rewards. In Neural Information Processing Systems. 2024a.

Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe Hansen-Estruch, Ching-An
Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal Representations
for Instruction Following: A Semi-Supervised Language Interface to Control. In Conference on
Robot Learning, pp. 3894–3908. 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-
Making. In International Conference on Machine Learning, arXiv:2406.17098. 2024b.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Vi-
sual Reinforcement Learning With Imagined Goals. In Neural Information Processing Systems,
volume 31. 2018.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and
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A ADDITIONAL RESULTS

A.1 SPEEDUP COMPARISON ACROSS VARIOUS NUMBERS OF PARALLEL ENVIRONMENTS

We present an extended version of the plot from Fig. 1, with additional experiments, as depicted on
the left side of Fig. 9. Each experiment was run for 10M environment steps, and for the original
repository, we varied the number of parallel actors for data collection, testing configurations with 4,
8, 16, and 32 actors, each running on separate CPU threads. Each configuration was tested with three
different random seeds, and we present the results along with the corresponding standard deviations.
The novel repository used 1024 actors for data collection. We used NVIDIA V100 GPU for this
experiment.

A notable observation from these experiments is the variation in success rates associated with different
numbers of parallel actors. We hypothesize that this discrepancy arises due to the increased diversity
of data supplied to the replay buffer as the number of independent parallel environments increases,
leading to more varied experiences for each policy update. We conducted similar experiments using
our method with varying numbers of parallel environments to further investigate. The results are
presented on the right side of Fig. 9. This observation, while interesting, is beyond the scope of the
current work and is proposed as an area for further investigation.
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Figure 9: Speedup in ant environment for the 1:16 ratio of SGD steps : environment steps for different numbers
of parallel actors.

A.2 ENERGY FUNCTIONS AND CONTRASTIVE OBJECTIVES

The full list of evaluated energy functions:

fϕ,ψ,cos(s, a, g) =
⟨ϕ(s, a), ψ(g)⟩

∥ϕ(s, a)∥2∥ψ(g)∥2
, (4)

fϕ,ψ,dot(s, a, g) = ⟨ϕ(s, a), ψ(g)⟩, (5)
fϕ,ψ,L1

(s, a, g) = −∥ϕ(s, a)− ψ(g)∥1, (6)
fϕ,ψ,L2

(s, a, g) = −∥ϕ(s, a)− ψ(g)∥2, (7)

fϕ,ψ,L2 w\o sqrt(s, a, g) = −∥ϕ(s, a)− ψ(g)∥22. (8)

The full list of tested contrastive objectives:

LInfoNCE-fwd(B;ϕ, ψ) = −
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(si,ai,gj)

)
, (9)

LInfoNCE-bwd(B;ϕ, ψ) = −
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(sj ,aj ,gi)

)
, (10)

LInfoNCE-sym(B;ϕ, ψ) = LInfoNCE-fwd(B;ϕ, ψ) + LInfoNCE-bwd(B;ϕ, ψ), (11)

LFlatNCE-fwd(B;ϕ, ψ) = −
∑|B|

i=1
log

( ∑|B|
j=1 e

fϕ,ψ(si,ai,gj)−fϕ,ψ(si,ai,gi)

detach
[∑|B|

j=1 e
fϕ,ψ(si,ai,gj)−fϕ,ψ(si,ai,gi)

]), (12)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.24 0.32
L1
L2

L2 w/o sqrt
Dot
Cos

IQM

Success rate
60 90 120

L1
L2

L2 w/o sqrt
Dot
Cos

IQM

Time near goal

Figure 10: Energy functions influence CRL performance metrics in multiple ways. Success rate (left) and
time near goal (right) results for 5 energy functions. IQMs indicate better performance of p-norms and dot
product as energy functions over cosine similarity for CRL. Interestingly, L2 results in a much higher time
near goal than other energy functions. Results averaged over five seeds and plotted with one standard error.

LFlatNCE-bwd(B;ϕ, ψ) = −
∑|B|

i=1
log

( ∑|B|
j=1 e

fϕ,ψ(sj ,aj ,gi)−fϕ,ψ(si,ai,gi)

detach
[∑|B|

j=1 e
fϕ,ψ(sj ,aj ,gi)−fϕ,ψ(si,ai,gi)

]), (13)

LFB(B;ϕ, ψ) = −
∑|B|

i=1

(
efϕ,ψ(si,ai,gi)

)
+ 1

2(|B|−1)

K∑
j=1,j ̸=i

(
efϕ,ψ(si,ai,gj)

)2
, (14)

LDPO(B;ϕ, ψ) = −
∑|B|

i=1

∑|B|

j=1
log σ

[
fϕ,ψ(si, ai, gi)− fϕ,ψ(si, ai, gj)

]
, (15)

LIPO(B;ϕ, ψ) =
∑|B|

i=1

∑|B|

j=1

[(
fϕ,ψ(si, ai, gi)− fϕ,ψ(si, ai, gj)

)
− 1

]2
, (16)

LSPPO(B;ϕ, ψ) =
∑|B|

i=1

∑|B|

j=1

[
fϕ,ψ(si, ai, gi)− 1

]2
+

[
fϕ,ψ(si, ai, gj) + 1

]2
, (17)

where we have highlighted the indices corresponding to positive and negative samples for clarity.

The last three of those losses, that is DPO, IPO, and SPPO were inspired by the structure
of losses in the Preference Optimization domain. Unlike in the losses from InfoNCE family, here the
samples are compared in pairs.
The DPO loss simply drives the difference between scores of positive and negative samples to be
larger, and doesn’t regularize those scores in any other way.
The IPO loss can be seen as a restriction of DPO, where the scores are regularized to always have a
difference of one between a positive and negative sample pairs.
The SPPO loss restricts this even further, and regularizes the scores to be equal to one for positive
samples and negative one for negative samples.

A.3 ENERGY FUNCTIONS RESULTS

The performance of contrastive learning is sensitive to energy function choice (Sohn, 2016). This
section aims to understand how different energy functions impact CRL performance. In particular, we
evaluate five energy functions: L1, L2, L2 w/o sqrt, dot product and cosine. For every energy function,
we use symmetric InfoNCE as a contrastive objective, with a 0.1 logsumexp penalty coefficient.

In Fig. 10, we report the performance of every energy function for four different ant environments and
pusher. We find that p-norms and dot-product significantly outperform cosine similarity. Additionally,
removing the root square from the L2 norm (L2 w/o sqrt) results in performance degradation,
especially regarding time near goal. This modification makes the energy function no longer abide
by the triangle inequality, which, as pointed out by (Myers et al., 2024b), is desirable for temporal
contrastive features. Results per environment are reported in Fig. 11.

Fig. 11 shows the results of different energy functions per environment, success rate and time near
goal. Clearly, no single energy function performs well in all the tested environments, as, for instance,
L1 and L2, which perform well in Ant environments, work poorly in Pusher. In addition, we observed
high variability in every configuration performance, as indicated by relatively wide standard errors.
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Figure 11: Success rate (top) and time near goal (bottom) results in different energy functions and environments.
Best performing energy function varies across environments.

A.4 BENCHMARK PERFORMANCE

In this section, report additional results for more advanced architectures on the benchmark environ-
ment. In particular, we report the results for architecture with 4 hidden layers of size 1024 and Layer
Normalization in Fig. 12. Unsurprisingly, the performance is significantly better in most environ-
ments, particularly for Humanoid. This suggests that a larger architecture is needed to effectively
manage the high-dimensional state and action spaces involved in this environment.
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Figure 12: Baseline results in JaxGCRL benchmark. Success rates for each of our benchmark environments
using bigger architecture. Reported as 10 seeds and standard error.

A.5 HINDSIGHT EXPERIENCE REPLAY DETAILS

In HER, we relabel, on average, 50% of goals with states achieved at the end of the rollout. The
humanoid environment was trained on goals sampled from a distance in the range [1.0, 5.0] meters
and evaluated on goals sampled from a distance 5.0 meters. All other environments were trained and
evaluated on identical environments.

We observe poor performance for SAC+HER in the Pusher environment as a result of HER generating
a "successful" experience, which is trivial. In particular, the goal in the pusher environment is the
desired location of the puck, which is different from its initial position, so that agent should push the
puck to that position. Relabeling the goal to the final location of the puck reached at the end of the
episode often results in just changing the goal to the puck’s initial position. This happens because,
during the early stages of training, the random policy usually doesn’t interact with the puck.

A.6 SCALED-UP CRL ARCHITECTURE IN DATA-RICH SETTING

In Figures 13 and 14, we report success rates and time near goal for scaled-up CRL agent with
architecture consisting of 4 layers with 1024 neurons per layer and layer norm. We find that these
architectures can increase the fraction of trials where the agent reaches the goal at least once, but they
do not enable the agent to stabilise around the goal (e.g., on 7 tasks, the best agent spends less than
50% of an episode at the goal).
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When visualizing the rollouts, we observe that the Humanoid agent falls immediately after reaching
the goal state, and the Ant Soccer agent struggles to recover when it pushes the ball too far away. The
Humanoid merely "flings" itself toward the goal, while the optimal policy would involve running to
the goal and remaining there. This inability to stabilize around the goal suggests that the agent is not
effectively optimizing the actor’s objective, pointing to a potential area for further research.
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Figure 13: CRL with big architecture success rates in data-rich setting.
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Figure 14: CRL with big architecture time near goal in data-rich setting.

B TECHNICAL DETAILS

JaxGCRL is a fast implementation of state-based self-supervised reinforcement learning algorithms
and a new benchmark of GPU-accelerated environments. Our implementation leverages the power of
GPU-accelerated simulators (BRAX and MuJoCo MJX) (Freeman et al., 2021; Todorov et al., 2012)
to reduce the time required for data collection and training, allowing researchers to run extensive
experiments in a fraction of the time previously needed. The bottleneck of former self-supervised RL
implementations was twofold. Firstly, data collection was executed on many CPU threads, as a single
thread was often used for a single actor. This reduced the number of possible parallel workers, as only
high-compute servers could run hundreds of parallel actors. Secondly, the necessity of data migration
between CPU (data collection) and GPU (training) posed additional overhead. These two problems
are mitigated by fully JIT-compiled algorithm implementation and execution of all environments and
replay buffer operations directly on the GPU.

Notably, our implementation uses only one CPU thread and has low RAM usage as all the operations,
including those on the replay buffer, are computed on GPU. It’s important to note that the BRAX
physics simulator is not exactly the same as the original MuJoCo simulator, so the performance
numbers reported here are slightly different from those in prior work. All methods and baselines we
report are run on the same BRAX simulator.

B.1 ENVIRONMENT DETAILS

In each of the environments, there are a number of parameters that can change the learning process.
A non-exhaustive list of such details for each environment is presented below.

1in 3 dimensions
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Table 1: Environments details

Environment Goal distance Termination Brax pipeline Goal sampling

Reacher 0.05 No Spring Disc with radius sampled
from [0.0, 0.2]

Half-Cheetah 0.5 No MJX Fixed goal location
Pusher Easy 0.1 No Generalized x coordinate sampled from

[−0.55,−0.25], y coordinate
sampled from [−0.2, 0.2]

Pusher Hard 0.1 No Generalized x coordinate sampled from
[−0.65, 0.35], y coordinate
sampled from [−0.55, 0.45]

Humanoid 0.51 Yes Spring Disc with radius sampled
from [1.0, 5.0]

Ant 0.5 Yes Spring Circle with radius 10.0
Ant Maze 0.5 Yes Spring Maze specific

Ant Soccer 0.5 Yes Spring Circle with radius 5.0
Ant Push 0.5 Yes MJX Two possible locations with

uniform noise added

B.2 BENCHMARK DETAILS

Our experiments use JaxGCRL suite of simulated environments described in Section 4.2. We evaluate
algorithms in an online setting, with a UTD ratio 1:16 for CRL, TD3, TD3+HER, SAC, SAC+HER,
and 1 : 5 for PPO. We use a batch size of 256 and a discount factor of 0.99 for all methods except
PPO, for which we use a discount factor of 0.97. For every environment, we sample evaluation
goals from the same distribution as training ones and use a replay buffer of size 10M for CRL, TD3,
TD3+HER, SAC, and SAC+HER. We use 1024 parallel environments for all methods except for
PPO, where we use 4096 parallel environments to collect data. All experiments are conducted for 50
million environment steps.

B.3 BENCHMARK PARAMETERS

The parameters used for benchmarking experiments can be found in Table 2.
min_replay_size is a parameter that controls how many transitions per environment should be
gathered to prefill the replay buffer.
max_replay_size is a parameter that controls how many transitions are maximally stored in
replay buffer per environment.

C RANDOM GOALS

Our loss in Eq. (3) differs from the original CRL algorithm (Eysenbach et al., 2022) by sampling
goals from the same trajectories as states during policy extraction, rather than random goals from
the replay buffer. Mathematically, we can generalize Eq. (3) to account for either of these strategies
by adding a hyperparameter α to the loss controlling the degree of random goal sampling during
training.

max
θ

(1− α) · Ep(s,a)p(g|s,a)πθ(a′|s,g) [fϕ,ψ(s, a
′, g)]

+α · Ep(s,a)p(g)πθ(a′|s,g) [fϕ,ψ(s, a
′, g)]

The hyperparameter α controls the rate of counterfactual goal learning, where the policy is updated
based on the critic’s evaluation of goals that did not actually occur in the trajectory. We find that
taking, α = 0 (i.e., no random goal sampling) leads to better performance, and suggest using the
policy loss in Eq. (3) for training contrastive RL methods.
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Table 2: Hyperparameters

Hyperparameter Value
num_timesteps 50,000,000
max_replay_size 10,000
min_replay_size 1,000
episode_length 1,000
discounting 0.99
num_envs 1024 (512 for humanoid)
batch_size 256

multiplier_num_sgd_steps 1
action_repeat 1
unroll_length 62
policy_lr 6e-4
critic_lr 3e-4

contrastive_loss_function symmetric_infonce
energy_function L2

logsumexp_penalty 0.1
hidden layers (for both encoders and actor) [256,256]

representation dimension 64

D PROOFS

D.1 Q-FUNCTION IS PROBABILITY

This proof follows closely the one presented in Eysenbach et al. (2022).

We want to relate the Q-function to discounted state visitation distribution: Qπg (s, a) = pπγ (g | s, a).
The Q-function is usually defined in terms of rewards:

Qπg (s, a) ≜ Eπ(·|g)

[ ∞∑
t=0

γtrg(st, at) | s0=s,a0=a

]
. (18)

We will define rewards conditioned with goal g as:

rg(s, a) ≜

{
(1− γ)

(
p(s0 = g) + γp(s1 = g | s0, a0)

)
, t = 0

(1− γ)γp(st+1 = g | st, at), t > 0.
(19)

Lastly, we define discounted state visitation distribution:

pπγ (g) ≜ (1− γ)

∞∑
t=0

γtpπt (g). (20)

For t > 0, the term pπt (g) is a probability of reaching the goal g at timestep t with policy conditioned
on g, and thus:

pπt (g) = Eπ(·|g)
[
pt(g | st−1, at−1)

]
= Eπ(·|g)

[
p(st = g | st−1, at−1)

]
.

On the second line, we have used the Markov property. We can now substitute this into Eq. (20):

pπγ (g) = (1− γ)

∞∑
t=0

γtpπt (g)

= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtEπ(·|g)
[
p(st = g | st−1, at−1)

]
= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=0

γt+1Eπ(·|g)
[
p(st+1 = g | st, at)

]
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= Eπ(·|g)

[
(1− γ)p(s0 = g) + (1− γ)

∞∑
t=0

γt+1p(st+1 = g | st, at)

]

= Eπ(·|g)

(1− γ) (p(s0 = g) + γp(s1 = g | s0, a0))︸ ︷︷ ︸
rg(s0,a0)

+

∞∑
t=1

γt (1− γ)γp(st+1 = g | st, at)︸ ︷︷ ︸
rg(st,at)


= Eπ(·|g)

[ ∞∑
t=0

γtrg(st, at)

]
.

Thus for a set state-action pair (s, a), we have:

pπγ (g | s, a) = Eπ(·|g)

[ ∞∑
t=0

γtrg(st, at) | s0=s,a0=a

]
= Qπg (s, a),

which relates the Q-function to discounted state visitation distribution.

E FAILED EXPERIMENTS

1. Weight Decay: Prior work (Nauman et al., 2024b) indicated that regularizing critic weights
might improve learning stability. We did not observe significant upgrades in the CRL setup,
perhaps due to a much lower ratio of updates per environment step. We tested this only for
small architectures.

2. Random Goals: In prior implementation (Eysenbach et al., 2022) using random goals in
actor loss resulted in higher performance. We did not observe that in our online setting.

F PSEUDOCODE

Algorithm 1 Contrastive Reinforcement Learning

1: Input: Contrastive loss LCritic, energy function f
2: Initialize ϕ, ψ, π and an empty replay buffer D
3: repeat
4: In parallel for each environment instance:
5: Observe state s and sample an action a ∼ π(s, g)
6: Execute a in the environment
7: Observe next state s′ and done signal d to indicate whether s′ is terminal
8: Append (s, a, s′) to current trajectory for this environment
9: if s′ is terminal then

10: Reset this environment state (this includes sampling new goal)
11: Store current trajectory for this environment in D
12: Start new trajectory for this environment
13: if it is time to update then
14: for j in range(number of updates) do
15: From buffer D randomly sample (with discount) a batch B of state-action pairs and

goals from their future
16: Update critic by one step of gradient descent using given Critic loss:

∇ϕ,ψ LCritic(B;ϕ, ψ) + βLlogsumexp(B, ϕ, ψ)

17: Update policy by one step of gradient descent using:

∇π LActor(B;ϕ, ψ, π)

18: until convergence
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