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ABSTRACT

The 1-WL algorithm provides a clean algorithmic model for graph neural net-
works (GNNs) that run with a message-passing architecture. Previous work com-
pares a GNN against the 1-WL algorithm to analyze its expressiveness and then
develops new GNN variants under the guidance of the comparison. In this work,
we propose WL-Trees, a new algorithmic model of GNNs. We compute WL-trees
using a variant of Breadth-First-Searches on the input graph. We show that WL-
trees are equivalent to colors computed from the 1-WL algorithm. Despite the
equivalence, WL-trees deepen the understanding of a graph’s structural informa-
tion encoded in node representations. They also serve as an algorithmic model for
improved GNNs to analyze their expressiveness from a new angle.

1 INTRODUCTION

Graph neural networks (GNNs) (Wu et al., 2020) have gained success in a series of graph learning
tasks including node label predictions (You et al., 2018), link predictions (Zhang & Chen, 2018),
graph classification (Errica et al., 2019), and graph generation (Li et al., 2018; You et al., 2018).
Learning node representations is an indispensable step in all these graph learning tasks (Wu et al.,
2020). An important question is: what structural information is encoded in node representations?

A fundamental form of GNNs is the Message-Passing Neural Network (MPNN) (Gilmer et al.,
2017), which uses neural layers to compute messages and then passes them between neighboring
nodes. At the output layer of an MPNN, each node gets a representation that encodes the node’s
structural information (Srinivasan & Ribeiro, 2019; Donnat et al., 2018). Two nodes with similar
surrounding graph structures, which include node attributes in the range, should have similar rep-
resentations, irrespective of their distance in the graph. More recent research shows that such node
representations can be enhanced by positional information (Li et al., 2020; Dwivedi et al., 2021; Lim
et al., 2022), which helps to model “spatial similarity” between nodes.

The 1-WL algorithm (Grohe et al., 2017; Grohe, 2017) is an algorithmic model of the MPNN given
that they have the same message-passing structure. So theoretical analysis (Xu et al., 2018; Chen
et al., 2020; Jegelka, 2022; Sato, 2020) uses the 1-WL algorithm to analyze the expressiveness of
MPNNs. The main result is that an MPNN is no stronger than the 1-WL algorithm: if two graph
nodes obtain the same color from the 1-WL algorithm, then they will get the same representation
from the MPNN calculation. Guided by the analysis, new GNNs are designed to either match (Xu
et al., 2018) or exceed the expressiveness of the 1-WL algorithm (Morris et al., 2019; Li et al., 2020;
Chen et al., 2020; Sato et al., 2021; Zhang & Li, 2021; Dasoulas et al., 2021; Balcilar et al., 2021;
Bouritsas et al., 2022).

The graded modal logic (GC2) (Barceló et al., 2020; Grohe, 2021) provides another equivalent
algorithmic model for MPNNs. This is because logical tests in GC2 are equivalent to the 1-WL
algorithm (Cai et al., 1992). Therefore, the expressiveness of MPNN can also be characterized by
logical tests in GC2. The analysis of GNNs with different algorithmic models gives understanding
of their expressiveness from different angles.

In this work, we propose the WL-tree, which is another algorithmic model for MPNNs. In particular,
we construct a WL-tree from a Breadth-First-Search (BFS) that allows revisits. We show that WL-
trees are equivalent to node colors computed by the 1-WL algorithm. Despite its equivalency with
the 1-WL algorithm, WL-trees provide a more intuitive understanding of graph structures that can
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be possibly learned by an MPNN. In this work, we focus on node representations. Our analysis
with WL-trees has reached a new understanding of node representations. We provide an algorithm
to identify all graph structures surrounding a node that give the same node representation. Our
analysis also shows the usefulness of node representations in subgraph matching models. Finally,
we use WL-trees to analyze how two GNNs enhance MPNN’s abilities through richer node inputs.

In summary, WL-trees provide a new tool for the analysis of GNNs. Given their close relationship
with the original graph, WL-trees enable a more intuitive and insightful understanding of node
representations, which suggests new directions of improving GNNs.

2 RELATED WORK

A series of expressiveness analyses compare GNNs against the 1-WL algorithm in terms of distin-
guishing graph structures (Sato, 2020; Grohe, 2021; Jegelka, 2022). This algorithm is further used
to direct the development of new GNNs. Xu et al. (2018) propose the Graph Isomorphism Network
(GIN) to achieve the same level of expressiveness as the 1-WL algorithm. After that, a series work
has been proposed to further improve GNN’s expressiveness (Morris et al., 2019; Li et al., 2020;
Chen et al., 2020; Sato et al., 2021; Zhang & Li, 2021; Dasoulas et al., 2021; Balcilar et al., 2021;
Bouritsas et al., 2022).

Barceló et al. (2020) and Grohe (2021) use logic to characterize the expressiveness of GNNs. In
particular, they show that the expressiveness of MPNNs is bounded by by GC2 tests, which is
equivalent to the 1-WL algorithm (Cai et al., 1992). Guided by the FOC2 logic, Barceló et al.
(2020) has designed a new GNN, whose improved expressiveness is equivalent to FOC2 logic tests.
This work aims to develop another algorithmic tool for the analysis of GNNs.

Previous work also use trees to represent graph structures that can be described by the 1-WL algo-
rithm. For example, Shervashidze et al. (2011) use the 1-WL algorithm to construct trees to compute
graph similarity. Zhang & Li (2021) consider node representations with trees. However, these trees
obtained by rolling out message-passing steps are different from our WL-trees: the latter are derived
from from BFSes on graphs. Furthermore, there is no systematic investigation of the relationship
between trees and GNN representations.

3 BACKGROUND

Let G denote a graph with node set V (G) and edge set E(G). In this work, we only consider
connected simple graphs. Let N (i) = {j : (i, j) ∈ E(G)} denote the neighbor set of a node
i ∈ V (G). Let dist(i, j) denote the distance between two vertices i, j ∈ V (G). If i = j, then
dist(i, j) = 0. Assume each node i is associated with a color ci. If there is not a natural way to
color graph nodes, then let ci = 0 for all i. We use W `

i = (j1 = i, . . . , j`) to denote a walk that
starts from i and has length `. Note that a walk allows repetition of nodes and edges. Let Ω`i denote
the set of all such walks.

In a graph S, we often designate a special node i ∈ V (S) as the anchor of S and then get an
anchored graph Si. If S is from a larger graph G, we also call Si an anchored subgraph. We say two
anchored subgraphs Si and S′j are isomorphic, Si ∼= S′j , if there exists a ismorphic mapping from S
to S′, and the mapping maps i to j.

The 1-WL algorithm. 1 The 1-WL algorithm plays an important role in the detection of graph
isomorphism. Formally, the 1-WL algorithm runs multiple “message-passing” rounds to color graph
nodes. Suppose each node i ∈ G initially has a color c0i = ci. Then in each round k each node get a
new color:

cki :=
(
ck−1
i ,

{{
ck−1
j : (i, j) ∈ E(G)

}})
(1)

Here {{·}} denote a multiset, a set that allows duplicate elements. The tuple, which contains i’s
previous color and its neighbors’ previous colors, is hashed to a new color cki . Note that cki = cki ⇒

1To be exact, this is the color-refinement algorithm, which is slightly different from the 1-WL algorithm
(Grohe, 2021). But we follow the literature and still refer it as the 1-WL algorithm.
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Figure 1: Examples of anchored graphs. S0
0

is a singleton, S1
0 is indicated by very thick

lines, S2
0 also includes thick lines, and S3

0 in-
cludes the entire graph.
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Figure 2: Two structurally different graph nodes
(0 and 3) get the same color at every coloring
round.

ck−1
i = ck−1

i , so the 1-WL algorithm never reduces the number of colors used in each round. The
algorithm converges when the number of colors no longer increases. We use c∞i to denote the color
of a node i at convergence.

If two graphs G and G′ are isomorphic, then they get the same multiset of colors, {{c∞i : i ∈ V }} =
{{c∞i′ : i′ ∈ V ′}}. But there are also cases in which non-isomorphic graphs G � G′ still have
{{c∞i : i ∈ V }} = {{c∞i′ : i′ ∈ V ′}}.
The 1-WL algorithm is an appealing method to extract structural information because of its effi-
ciency (Shervashidze et al., 2011). It only runs a small number of rounds to converge and only
needs linear time in the number of edges in each round.

Message-passing neural networks (MPNNs). An MPNN takes a graph as the input and passes
messages between nodes to learn node representations. It has a similar algorithmic structure as 1-
WL but use vectors to represent node “colors”. Suppose each node i has an initial feature vector z0

i .
Then in each message-passing round,

zki = update
(
zk−1
i , aggregate

({{
zk−1
j : j ∈ N (i)

}}))
(2)

Here aggregate(·) aggregates representation vectors in a multiset into a single vector, and the
update(·) computes the new representation of i. The two functions need to be differentiable. They
together imitate the hashing function in (1).

The expressiveness of an MPNN is bounded by the 1-WL algorithm: if two nodes get the same color
c`i = c`j after ` 1-WL rounds, then their representations z`i = z`j must be the same.

4 METHOD

In this work, we consider the structural information at a graph node. Here we consider node colors
computed by the 1-WL algorithm, given that it is a clean computation model for a GNN.

4.1 ANCHORED SUBGRAPHS

We first precisely define what information we need to encode in a node’s representation. To do so,
we identify the “receptive” field of a node color c`i computed at the `-th 1-WL round. With ` round
of message passing, a node’s information can be passed along any walk with length `. Therefore,
the color c`i of node i at round ` encodes the information from the anchored subgraph S`i :

S`i = ∪̇W `
i ∈Ω`

i
W `
i (3)

= ({j : dist(i, j) ≤ `}, {(j, k) ∈ E : dist(i, j) < `,dist(i, k) ≤ `}). (4)

Here we treat a walk as a collection of edges, and ∪̇ takes unique edges in walks Ω`i to form the
subgraph S`i .

The anchored subgraph S`i is the receptive field of c`i : the calculation of c`i does not involve any
nodes or edges beyond S`i . At the same time, each node or edge in S`i may affect the color c`i .
The superscript `, which we call the order of the anchored subgrah, indicates the length of walks
composing S`i . The radius of S`i is at most ` and can be smaller when the graph G is smaller.
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Figure 1 shows one example of S`i for different ` values: S0
0 is the singleton with node 0, S1

0 is
indicated by very thick lines, S2

0 is expanded to include thick lines, and S3
0 is further expanded to

include the entire graph. Note that S`i does not contain edges between j and k if they are both at
distance k from the anchor i.

From the definition, we also have
S`i = ∪̇{(i,W `−1

j ) : W `−1
j ∈ Ω`−1

j , j ∈ N (i)}

= ∪̇
(
∪j∈N (i){(i, j)} ∪ S`−1

j

)
. (5)

Here (i,W `−1
j ) is a length-` walk with i as the starting node and the rest specified by W `−1

j . The
equation means that S`i consists of anchored subgraphs {S`−1

j : j ∈ N (i)} and edges connecting i
to the anchors of these subgraphs.

One fundamental questions is how much information about S`i is encoded in c`i . The previous
analysis of the 1-WL algorithm shows that

S`i
∼= S`j ⇒ c`i = c`j . (6)

In the opposite direction, the color c`i cannot uniquely decide the anchored subgraph S`i , and Figure
2 shows one example. However, c`i does encode rich information about the structure surrounding i.
The neural representation z`i learned by a GNN also has receptive field S`i and contains information
about it. In a learning task, if a node’s label is mostly decided by the graph structure surrounding
the node, then z`i can be used to learn such relationships and predict node labels.

4.2 BFS-TREES AND WL-TREES

It is clear that a node color c`i cannot encode all information of the anchored subgraph S`i . In this
section, we propose to examine the information contained in c`i with a tree form of 1-WL colors.
In particular, we construct a tree from a BFS on G starting from one of its nodes. To make the
discussion easier, we refer G’s nodes by their ids, which are their indices in V (G).

We construct a BFS-tree from a BFS starting from i ∈ G and record node ids to not lose information.
Here we allow the BFS to revist previous nodes except the direct parent.
Definition 1. A BFS-Tree B`i at a node i ∈ G is recursively constructed as follows:

i) B0
i is a singleton with the root labeled with id i and color ci;

iii) for each tree node t at level `′ < `, let t’s id be j. Let i be t’s parent’s id if t has a parent
or -1 otherwise. For each neighbor j′ ∈ N (j)\i, create a child with id j′ and color cj′ .

Let V (B`i ) denote the node set of the BFS-tree. We use a function id(·) : V (B`i ) → V (S`i ) to map
a tree node to a node in S`i . Note that a node in S`i may appear multiple times in the tree. Figure
3 (middle) shows one example of BFS-tree derived from the anchored subgraph on the left. Our
BFS-tree is different from the roll-out tree considered by Shervashidze et al. (2011); Zhang & Li
(2021); Jegelka (2022) – here a tree node does not include its parent as its child.

A BFS-tree B`i preserves all information about S`i . Since B`i is obtained by a BFS with ` levels, all
edges in walks in Ω`i are in B`i . Then we can recover S`i by merging B`i ’s tree nodes by their ids.

From a BFS-tree B`i , we can read out other shallower BFS-trees.
Lemma 2. Let t ∈ B`i be a tree node at level d, and j = id(t). By changing the root of the BFS-tree
to be t and pruning nodes below level ` − d, the resultant tree is the BFS-tree B`−dj . As a special
case j ∈ N (i), the resultant tree is B`−1

j .

Now we define a WL-tree by dropping node ids from a BFS-tree. Figure 3 (right) shows a WL-tree
derived from the BFS-tree in the middle.
Definition 3. A WL-tree T `i is a rooted tree obtained by dropping node ids of a BFS-tree B`i .

Here the subscript i indicates that it is computed at node i in the original anchored subgraph S`i .
From a WL-tree, we can similarly read out shallower WL-trees possibly at a different node. Figure
4 shows two examples, from which we will show the equivalence of a WL-tree and a 1-WL color.
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Figure 3: An anchored subgraph, its BFS-tree, and its WL-tree. The anchor node is indicated by
double circle. A node’s color is either yellow or blue.

Lemma 4. For any WL-tree T `i obtained from an anchored graph Si, let t ∈ T `i be a tree node at
level d, and t is obtained from a node j ∈ Si. By changing the root of the BFS-tree to be t and
pruning nodes below level `−d, the resultant tree is the WL-tree T `−dj . As a special case j ∈ N (i),
the resultant tree is T `−1

j .

We are ready to show that WL-trees are equivalent to colors from the 1-WL algorithm.
Theorem 5. Let c`i and T `i be the 1-WL color and the WL-tree computed from a arbitrary anchored
subgraph S`i , then the mapping cki ↔W k

i forms a bijection.

0

1 2

T `−1
0

T `−1
1 T `−1

2

Figure 4: Colors in the ` − 1 round are read
out from WL-trees of the order `− 1.

Here we only show the main idea of the theorem and
put the formal proof in the appendix. A node’s color
c`i is obtained from its color and its neighbors’ col-
ors in the previous round. These colors can be read
out from subtrees in the WL-tree T `i from Lemma
4. Figure 4 shows subtrees T `−1

0 , T `−1
1 , and T `−1

2 ,
which are equivalent to c`−1

0 , c`−1
1 , and c`−1

2 respec-
tively. From their equivalency, we can establish the
equivalency between T `0 and c`0.

Similar to the 1-WL algorithm, WL-trees can also be
used to distinguish graph structures.

T `i 6= T `j ⇒ S`i 6= S`j . (7)

Although there is an bijective mapping between 1-WL colors and WL-trees, WL-trees make the
underlying structures easier to analyze. In particular, WL-trees provides a more fine-level analysis
of the expressiveness of node representations learned by GNNs.

If an anchored graph is a tree rooted at the anchor, then the WL-trees at the root have the same
structure as the anchored graph expect a possible depth difference. It also indicates that any rooted
tree can be a WL-tree.
Theorem 6. If an anchored graph Si is a tree rooted at i and has depth `, then

i) the WL-tree T `
′

i with `′ < ` is the tree obtained by pruning nodes at levels deeper than `′ ;

ii) the WL-tree T `i is Si with its root at i;

iii) the WL-tree T `
′

i with `′ > ` is also Si with its root at i.

If a graph contains at least one cycle, then its WL-tree can have any depth.
Corollary 7. If an anchored graph Si has a cycle, then for any `, at least one leaf node in the
WL-tree T `i is at depth `.

If we run enough 1-WL rounds, we can always distinguish a loopy graph from a tree.
Corollary 8. Let Si be graph with a cycle, and let S′i′ be a tree with depth k. Then the k + 1-th
1-WL round is able to distinguish i and i′ from their anchored graphs, that is, the two WL-trees
T k+1
i � T k+1

i′ obtained at i and i′ are different.
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Figure 6: Two anchored graphs graphs recovered
the WL-tree.

4.3 RECOVERING ANCHORED GRAPHS FROM WL-TREES

A important approach of understanding the information encoded in a WL-tree (or a 1-WL color) is
to identify anchored subgraphs compatible with a given WL-tree. In this section, we assume that the
given WL-tree is T `0 – the subscript indicates that the root is to be mapped to a node 0 later.

We first consider the simple case that the underlying anchored graph S0 is a tree.
Corollary 9. Let T `0 be a WL-tree with depth d ≤ `, and T `0 is from an anchored graph S0, then:

i) if S0 is known to be a tree with depth d′ ≤ `, then S0 has the same structure as T `0 ;

ii) if d < `, then S0 must be a tree and have the same structure as T `0 .

Now we consider a general algorithm to identify an anchored graph S0 compatible with a WL-tree
T `0 . We follow the BFS order and label each tree node with an id, then we get a BFS-tree and then
can find an S0.

We first assign 0 as the root’s id, then our next steps face the same problem: how to label a child of
a parent that has received an id. Suppose (p, c) is a parent-child pair in the tree, and p has id id(p).
Then we need to decide id(c), which will introduce an edge (id(p), id(c)) to the anchored graph S0.

There are two cases of assigning id(c), which can be either a new id or an id used by a previous
node p′. In the first case, we add a new node id(c) to the graph and connect it to id(p). Since c is
the first appearance of the graph node id(c), we need to further label c’s descendants in the tree.

The second case is to assign id(c) with an existing id id(p′), which is used by a previously labeled
tree node p′. This case is more restricted by the tree structure. Labeling id(c) = id(p′) means that c
and p′ correspond to the same graph node id(p′) in the anchored graph. Figure 5 shows one example
of this situation. If we need to assign 2 as the id of c, then c and p′ are from the same graph node
2, and then they need to have matching WL-trees (indicated by dashed circles). Correspondingly, p′
needs to have a neighbor c′ that matches p. WL-trees (indicated by dotted circles) of c′ and p need
to match as well.

Formmally, the assignment id(c) = id(p′) needs satisfy the following condition.
Condition 1. Let (p, c) be a parent-child pair in a WL-tree T `0 . Suppose p has id id(p), and another
node p′ in the tree has id id(p′). Let 1 ≤ k ≤ ` be the level of c, and k′ ≤ k be the level of p′. In
order to label id(c) = id(p′), the following must hold:

i) p′ is not the parent or a sibling of c, and p′ has a neighbor c′ with no id yet;

ii) the WL-tree rooted at c is isomorphic to the WL-tree rooted at p′ with depth `− k;

iii) the WL-tree rooted at c′ is isomorphic to the WL-tree rooted at p with depth `− k′ − 1.

If this condition is satisfied, it means that the WL-tree at graph node id(c) is the same as the WL-tree
at id(p′) up to the known depth ` − k, so c and p′ can be from the same graph node. Similarly, c′
and p can be from the same graph node. Then we can set id(c) = id(p′) and id(c′) = id(p), and at
the same time add an edge (id(p), id(p′)) to the subgraph S. The descendants of c or c′ will not be
further labeled because their ids are decided by subtrees rooted at p and p′.
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Algorithm 1 Compute an anchored subgraph from a WL-tree

Require: A WL-tree T
1: Initialize a graph S as a singleton with id gid = 0
2: Create a queue Q and set Q = children(root(T))
3: while Q is not empty do
4: c = Q.pop()
5: if use existing id and can find (p2, c2) satisfying Condition 1 then
6: Set id(c) = id(p2), id(c2) = id(parent(c))
7: Add an edge (id(parent(c)), id(c)) to S
8: Q.remove(c2)
9: else

10: gid += 1, and set id(c) = gid
11: Add a node id(c) and an edge (id(parent(c)), id(c)) to S
12: Q.push(children(c))
13: end if
14: end while
15: return S

A BFS labeling order guarantees that the node with a new id has a deeper subtree than later
nodes taking the same id. The algorithm is summarized in Algorithm 1. It can optionally decide
use existing id in each “while” loop to get an anchored graph S0.

Figure 6 shows two other anchored graphs recovered from the WL-tree. Besides the graph in Figure
3 (left) and these two graphs, there are 5 more trees corresponding to the WL-tree in Figure 5.

Theorem 10. With T `0 as the input, Algorithm 1 returns an anchored graph S0 that has WL-tree T `0 .

We can further extend Algorithm 1 to enumerate all anchored graphs for one WL-tree. In particular,
we need to enumerate combinations of choices of id(c) at different c. We also need to identify
isomorphic anchored graphs and only keep one of them. Here we omit the implementation details.
The computation is much higher than identifying one anchored graph, but we want to emphasize is
that this algorithm is only used to diagnose the 1-WL algorithm or a GNN, and the computation is
not a main consideration here.

5 INFORMING SUBGRAPH MATCHING

A WL-tree not only carries information about an anchored graph Si but also indicates whether Si
contains a smaller anchored subgraph Ŝi ⊆ Si.
Theorem 11. Suppose Ŝi is a subgraph of Si and also has anchor i. Let T `i and T̂ `i be the respective
`-th order WL-trees of S`i and Ŝi, then a subtree of T `i sharing the same root matches T̂ `i .

We derive this fact from the BFS-tree B`i of S`i : we only need to take the subtree with nodes in the
set V (Ŝi), then the resultant subtree is the BFS-tree of Ŝi, and then the subtree without ids is the
WL-tree of Ŝi.

This theorem indicates that T̂ `i * T `i ⇒ Ŝi * S`i , which can be used to execlue some matching
possibilities. This type of information may have already been potentially used in graph learning
models for subgraph matching (Ying et al., 2020; Bai et al., 2021; Li et al., 2019). While neural
representations hardly give any guarantee over a possible matching, a WL-tree can firmly exclude
some matching possibilities. An interesting topic is to use WL-trees to direct matching decisions.

6 AN ANALYSIS OF COLORING STRATEGIES THAT IMPROVE MPNN’S
EXPRESSIVENESS

In this section, we analyze two GNNs, CLIP (Dasoulas et al., 2021) and Nested GNN (Zhang & Li,
2021), which feed extra node inputs to improve the expressiveness. A CLIP uses random colors to
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distinguish nodes with the same attributes and then run a GNN to compute node representations. By
pooling representations learned from permutations of colors, the learned representation eliminates
the variance brought by different color codings. Similar ideas of using random inputs to improve
the expressiveness of GNNs are also explored by GNN-RNI (Abboud et al., 2020) and rGNN (Sato
et al., 2021). CLIP has one issue that it requires too many colors when the graph is large. Here
we consider a variant of CLIP, termed CLIP-2, that adds random binary colors to node inputs and
computes node representations.

Nested GNN run two layers of GNN. The inner-layer GNN runs on a node’s neighborhood to com-
pute the node’s feature input. Note that a node’s neighborhood is the subgraph induced by the
node’s neighbors within h hop. The computed inputs are able to distinguish some graph nodes than
cannot be distinguished by the 1-WL algorithm. Then the outer-layer GNN takes these new node
inputs and compute node representations with normal-message passing layers. The learned node
representations are able to encode more information than those from a vanilla GNNs.

Node representations are usually real numbers, which pose difficulties to analysis of the structural
information encoded. Our plan here is to find algorithmic models for these GNN variants, just like
the 1-WL algorithm for a vanilla GNN, and then check a node’s representation in discrete form.

CLIP-2 directly assign random colors to graph nodes. In a NGNN with center pooling, the represen-
tation computed by the inner-layer GNN can also be viewed as colors: they are equivalent to colors
obtained by running the 1-WL algorithm on the neighborhood of the node. Then we can compare
the two GNNs against WL-trees.
Theorem 12. Given a graph G, suppose a CLIP-2 uses a set C of colorings of G and an `-layer
GIN to compute a node i’s representation:

h̄i = max
c̄∈C

GIN(i, G, c̄), i ∈ V (G) (8)

The WL-tree T̄ `i at i is computed from (G, c̄) with a coloring c̄ ∈ C. Then T̄ `i = T̄ `i′ ⇒ h̄i =
h̄i′ , i, i

′ ∈ V (G).
Theorem 13. Given a graphG, suppose a NGNN first uses an `1 layer GIN to compute each node i’s
representation from its h-hop neighborhood G(i, h), and then uses another `-layer GIN to compute
the node representation:

x̂j = GINI(j,G(j, h), c), j ∈ V (G) (9)

ĥi = GINO(i, G, {x̂j , j ∈ V (G)}), i ∈ V (G). (10)

Corresponding to GINI , let T `1j be the WL-tree computed from (G(j, h), c). Let T̂ `i be the WL-tree
at i and computed using WL-trees as graph colors, ĉj = T `1j . Then T̂ `i ↔ ĥi is a bijection.

With these two theorems identifying the two GNNs’ computation models, now we use WL-trees to
assess their expressive power. In particular, we check their abilities in identifying the underlying
subgraphs. We first count the number of subgraphs that can be possibly identified from a WL-tree.
We also take data statistics into account and calculate the conditional entropy H[S`i |T `i ] from the
data. A smaller count or conditional entropy means that the WL-tree can better identify a node’s
surround structure.

We conduct the evaluation on three datasets with low node degrees so we can afford counting possi-
ble anchored subgraphs. MUTAG (Debnath et al., 1991) is a collection of 188 chemical compounds,
which are represented as graphs. On average each graph has 17.9 nodes and 19.8 edges. Each node
takes one from 7 possible colors. Road-MN (Rossi & Ahmed, 2015) contains the road network of
Minnesota, which contains 2.6K nodes and 3.3K edges. We set color 0 to all nodes. The CiteSeer
dataset (Giles et al., 1998) consists of 3312 scientific publications and 4732 citation links. We treat
it as an undirected graph and remove all node attributes. We further set all node with color 0.

For each node i in the graph, we extract S`i , T
`
i , T̄ `i , and T̂ `i . Here S`i and T `i use the original graph’s

node colors. T̄ `i uses node colors that combine the original node color and random colors. For T̂ `i ,
node colors are hashing of the inner layer WL-trees, as described in Theorem 13. We choose h = 1
and `1 = 2 in the calculation of these WL-trees.

We first check the number of possible anchored subgraphs that are compatible with three types of
WL-trees. In this experiment, we set the depth of WL-trees to 3. For each node’s WL-tree, we
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MPNN CLIP-2 NGNN
MUTAG 11.5 ± 26.0 3.1 ± 5.1 1.9 ± 1.8

Road-MN 562 ± 3410 148 ± 1276 17 ± 213
CiteSeer 267 ± 1402 235 ± 1609 230 ± 1751

Table 1: Average counts of anchored subgraphs corre-
sponding to each WL-tree.

depth 3 4 5 6
MPNN 0.15 0.078 0.061 0.02
CLIP-2 0.004 4e-4 4e-4 0
NGNN 0.035 0.013 0.012 6e-4

Table 2: The conditional entropy of an-
chored subgraphs on the MUTAG dataset.

depth 3 4 5 6
MPNN 0.39 0.09 0.02 0.003
CLIP-2 5e-4 0 0 0
NGNN 0.008 0.003 5e-4 1e-4

Table 3: The conditional entropy of anchored
subgraphs on the Road-MN dataset

depth 3 4 5 6
MPNN 0.056 0.011 0.0061 0.0061
CLIP-2 8e-4 4e-4 0 0
NGNN 5e-4 0 0 0

Table 4: The conditional entropy of anchored
subgraphs on the CiteSeer dataset.

count the number of possible anchored subgraphs behind it. The results are shown in Table 1. From
the results, we see that extra node colors from CLIP-2 and NGNN significantly reduces the number
of graphs corresponding to each node’s WL-tree. These counts are highly unbalanced at different
nodes and thus introduce high variance. A WL-tree from a densely connected neighborhood tend to
have many more anchored subgraphs than those from sparse neighborhoods.

We then check the conditional entropyH[S`i |T `i ], which includes data statistics in consideration. For
each dataset, we vary ` from 3 to 6 and check conditional entropies obtained from three coloring
methods. The results from the three datasets are in Table 2, 3, and 4. We see that CLIP-2 and NGNN
both reduce the conditional entropy when ` = 3. However, when ` is large, all conditional entropy
values are small. If the anchored subgraphs corresponding to a WL-tree are equally possible, then
conditional entropy would be log(C) with C being the count from Table 1, and the conditional en-
tropy would be much larger. However, in the data the probability concentrates to a few anchored
subgraphs corresponding to a WL-tree. Also given the large number of subgraph patterns, the re-
ported numbers underestimate the true entropy in an inductive setting (e.g. MUTAG), but it is less
a problem in transductive setting (with only one network). When the conditional entropy is small, a
GNN has the ability to differentiate nodes by their WL-trees at least on the training set. This is true
particularly with a large depth `.

Discussion. Now we’d like to re-consider the node classification task after the above investigation.
We categorize the error source in three layers. First, nodes with different labels may have the same
anchored graphs. For example, two communities have the same structure but different hobby labels.
In this situation, the model needs to consider spatial similarity besides structural similarity, e.g. by
including spectral information (Li et al., 2020; Dwivedi et al., 2021; Lim et al., 2022). Second, nodes
with different labels have the same WL-tree but different anchored subgraphs. This kind of error is
indeed due to a GNN’s inability in distinguishing nodes by their WL-trees. In terms of reducing the
this type of error, there seem to be a big gap between graph theory and practice. If we consider the
worst case, then a GNN doesn’t seem to be able to fully represent all anchored subgraphs given its
linear running time. But if we also consider data statistics, extra colors by CLIP and NGNN have
provided satisfying differentiation of nodes with different surrounding structures. Third, nodes with
different labels can be discriminated by WL-trees but not by a GNN. The over-smoothing (Rusch
et al., 2023) and over-squashing (Topping et al., 2021) issues are all at this level. Our new analytic
tool suggests that the solution to this issue boils down to better representation learning of WL-trees.
The prospective learning architecture might be very different from message-passing used by GNNs.

7 CONCLUSION

In this work, we have developed WL-trees as a new tool for the analysis of node representations
learned by GNNs. Compared with previous computation models of GNNs, WL-trees provides a
deeper understanding of graph structures that can be encoded by node representations. Our new
analysis also points to new directions of learning these representations.
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