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Abstract: Sampling-based model-predictive control (MPC) is a promising tool
for feedback control of robots with complex, non-smooth dynamics, and cost func-
tions. However, the computationally demanding nature of sampling-based MPC
algorithms has been a key bottleneck in their application to high-dimensional
robotic manipulation problems in the real world. Previous methods have ad-
dressed this issue by running MPC in the task space while relying on a low-
level operational space controller for joint control. However, by not using the
joint space of the robot in the MPC formulation, existing methods cannot directly
account for non-task space related constraints such as avoiding joint limits, sin-
gular configurations, and link collisions. In this paper, we develop a system for
fast, joint space sampling-based MPC for manipulators that is efficiently paral-
lelized using GPUs. Our approach can handle task and joint space constraints
while taking less than 8ms (125Hz) to compute the next control command. Fur-
ther, our method can tightly integrate perception into the control problem by uti-
lizing learned cost functions from raw sensor data. We validate our approach
by deploying it on a Franka Panda robot for a variety of dynamic manipula-
tion tasks. We study the effect of different cost formulations and MPC param-
eters on the synthesized behavior and provide key insights that pave the way for
the application of sampling-based MPC for manipulators in a principled man-
ner. We also provide highly optimized, open-source code to be used by the wider
robot learning and control community. Videos of experiments can be found at:
https://sites.google.com/view/manipulation-mpc

1 Introduction

Real-world robot manipulation can greatly benefit from real-time perception-driven feedback con-
trol [1, 2]. Consider an industrial robot tasked with stacking boxes from one pallet to another or a
robot bartender moving drinks placed on a tray [3]. In both cases, the robot must ensure object stabil-
ity via perception while respecting joint limits, avoiding singular configurations and collisions, and
handling task constraints such as maintaining orientation during transfer. This leads to a complex
control problem with competing objectives that is difficult to solve in real-time.

Classic approaches to solving these tasks rely on operational-space control (OSC) [4, 5, 6], where
the different task costs are formulated in their respective spaces and then projected into the joint
space (i.e., the control space of the robot) via a Jacobian map. OSC methods are inherently local as
they only optimize for the next time step while ignoring future actions or states.

MPC based approaches attempt to find a locally-optimal policy over a finite horizon starting from
the current state using a potentially imperfect dynamics model. An action from the policy is ex-
ecuted on the system and the optimization is performed again from the resulting next state which
can overcome the effects of model-bias. MPC has been successfully applied on real robotic systems
allowing them to rapidly react to changes in the environment [7, 8, 9, 5, 10]. Existing MPC methods
that operate in the joint space of a manipulator are limited to gradient-based approaches [11, 12]

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/view/manipulation-mpc


Figure 1: Our sampling-based model-predictive control framework operates in the joint space to enable a
robot to achieve manipulation objectives such as tracking a moving target or balancing a ball on a plate while
respecting constraints such as joint limits, singularity avoidance and collision avoidance via learned collision
checking from raw sensor data.

which require the cost and dynamics to be differentiable. However, manipulation tasks often involve
discontinuous phenomena such as contact and complex cost terms that are hard to differentiate an-
alytically. Sampling-based methods such as Model-Predictive Path Integral (MPPI) [13] and Cross
Entropy-Method (CEM) offer a promising alternative. Here, control sequences are sampled using
a simple policy followed by rolling out the dynamics model to compute a sample-based gradient
of the objective function. These algorithms make no restrictive assumptions about the cost, dy-
namics or policy class, are straightforward to parallelize and can be effectively applied on highly
dynamic systems [10, 14]. These properties have also been a major factor in the increased adoption
of sampling-based MPC by the Model-based RL community in recent years [15]

However, a key question still remains to be answered - how well do these control algorithms transfer
to high-dimensional robots like manipulators? In this work, we describe an integrated system for
sampling-based MPC that aims to answer this question. Our proposed framework, Stochastic Tensor
Optimization for Robot Motion (STORM) implements a highly-parallelized control architecture
that can optimize complex task objectives while simultaneously ensuring desirable properties such
as smoothness, constraint satisfaction, and low control latency.

A major criticism of sampling-based MPC algorithms for full joint space control has been their
inability to produce smooth (low-jerk) trajectories [16]. To address this challenge, we study dif-
ferent sub-components of sampling-based MPC and make several novel contributions such as low
discrepancy action sampling, smooth interpolation and cost-function design, and demonstrate their
effectiveness in scaling sampling-based methods to real robot manipulators. We also demonstrate
that STORM can incorporate learned components in the control loop, by using learned self and
environment collision costs. We integrate our system on a real Franka Panda robot arm where we
demonstrate that feedback driven sampling-based MPC is able to solve complex and dynamic ma-
nipulation tasks with simple models. In summary, our major contributions are1

1. A novel sampling-based MPC with the introduction of low discrepancy sampling, smooth
trajectory generation and behavior-based cost functions that are key for producing smooth,
reactive, and precise robot motions.

2. A feedback control framework that directly integrates learned perception components into
the control loop in the form of a learned self collision cost and a discrete collision checker
between the robot links and raw environment pointcloud from [17].

3. An open-source and highly optimized implementation of sampling-based joint-space MPC,
which achieves a control rate of 125Hz on a single GPU, a speedup of 100x compared to
existing MPPI based manipulation implementations [17].

4. Empirical evaluation in simulation and a real-world Franka Panda robot on dynamic control
tasks.

2 Problem Definition

We consider the problem of generating a feedback control law (or policy) for a robot manipula-
tor with d joints performing user-specified tasks in an unstructured environment where it is subject

1For further discussion of related work please refer to the supplementary material.
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Variable Description
θt, θ̇t, θ̈t joint position, velocity, acceleration
xt = [θt, θ̇t, θ̈t] robot state at time t
ut joint space command at time t

h ∈ [0, H) number of steps in horizon H
n ∈ [0, N) batch of control sequences
K iterations of optimization
dt change in time between steps in horizon
dt vector of dt [0, H)

φt = {φt,h} parameters of policy at time t.
πφt distribution over control given state
µt = µt,h sequence of H Gaussian means
Σt = Σt,h sequence of H Gaussian Covariances
u = un,h batch of N control sequences of length

H
x̂ = x̂n,h batch of N state sequences of length H
ĉ = ĉn,h batch of N cost sequences of length H
L MPC loss function

Algorithm 1: Sampling-Based
MPC
Input : θ0,
Parameter: H, N, K

1 for t = 1 . . . T do
2 xt ← GET STATE()
3 πθ ← SHIFT()
4 for i = 1 . . .K do
5 u← SAM-

PLE CONTROLS(πφt , H,N )
6 x̂, ĉ, q̂← GENER-

ATE ROLLOUTS(xt, H)
7 φt ←

UPDATE DISTRIBUTION(
ĉ,u)

8 end
9 ut = NEXT COMMAND(πφ)

10 EXECUTE COMMAND(ut)
11 end

Figure 2: We summarize the notations used on the left and the sampling based MPC algorithm on the right.

to non-linear constraints and must react in real-time to overcome errors due to its internal dynam-
ics model, state estimation, and perception. The problem can be modelled as optimal control of
a discrete-time stochastic dynamical system described by the equation, xt+1 ∼ P (xt+1|xt, ut),
where P (xt+1|xt, ut) defines the probability of transitioning into state xt+1 conditioned on xt and
control input ut ∈ Rd. The robot chooses controls using a deterministic or stochastic closed-loop
policy ut ∼ π (·|xt), incurs an instantaneous cost c(xt, ut) and transitions into the next state, and the
process continues for a finite horizon T . The goal is to design a policy that optimizes a task-specific
objective function, π∗ = arg min

π∈Π
Eπ,P

[∑T−1
t=0 c(xt, ut)

]
where Π is the space of all policies.

The above setup is akin to optimizing a finite horizon Markov Decision Process (MDP) with con-
tinuous state and action spaces as done in reinforcement learning approaches [18]. Solving for a
complex globally optimal policy is a hard problem especially since the task objective c could be
sparse or difficult to optimize. MPC can be viewed as a practically motivated strategy that simplifies
the overall problem by focusing only on the states that the robot encounters online during execution
and rapidly re-calculating a “simple” locally optimal policy. At state xt, MPC performs a look-
ahead for a shorter horizon H < T using an approximate model P̂ (x̂t+1|x̂t, at), approximate cost
function ĉ(xt, at) and a parameterized policy πφ to find the optimal parameters φ∗ that minimize an
objective function L

φ∗ = arg min
φ

L(ĉ, q̂, πφ, P̂ , xt) (1)

where q̂(·) is a terminal cost function that serves as a coarse approximation of the cost-to-go beyond
the horizon. An action is sampled from πφ∗ and the optimization is performed again from the
resulting state after applying the action to the robot. The optimization is hot-started from the solution
at the previous timestep by using a shift operator, which allows MPC to produce good solutions with
few iterations of optimization (usually 1 in practice).

In the next section, we first introduce a sampling-based MPC technique to solving the optimization
in Eq. 1 and discuss the objective function, policy class, and update equations. We then present our
approach for applying it to manipulation problems. An overview of the notation used in the paper is
presented in Fig. 2.

3 Sampling-Based Model Predictive Control

Sampling-based MPC iteratively optimizes simple policy representations such as time-independant
Gaussians over open-loop controls with parameters φt such that πφt =

∏H−1
h=0 πφt,h . Here, φt repre-
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sent the sequence of means µt = [µt,0 . . . µt,H−1] and covariances Σt = [Σt,0 . . .Σt,H−1] at every
step along the horizon H . A standard algorithm is shown in Fig. 2. At every iteration, the optimiza-
tion proceeds by sampling a batch of N control sequences of length H , un∈[0,N),h∈[0,H), from the
current distribution (Line 5), followed by rolling out the approximate dynamics function using the
sampled controls to get a batch of corresponding states x̂n∈[0,N),h∈[0,H) and costs ĉn∈[0,N),h∈[0,H)

(Line 6). The policy parameters are then updated using a sample-based gradient of the objective
function (Line 7). After K ≥ 1 optimization iterations we can either sample an action from the
resulting distribution or execute the first action from the mean (Line 9). We next describe how the
distribution is updated. Consider the function Ĉ(·),

Ĉ(xt, ut) =

H−2∑
h=0

γhĉ(x̂t,h, ut,h) + γH−1q̂(x̂t,H−1, at,H−1). (2)

where γ ∈ [0, 1] is a discount factor that is used to favor immediate rewards. A widely used objective
function is the exponentiated utility or the risk-seeking objective,

L = Eπθ,P̂

[
exp

(
−1

β
Ĉ(xt, ut)

) ∣∣∣∣x̂0 = xt

]
(3)

where β is a temperature parameter. For this choice of objective, the mean and covariance are
updated using a sample-based gradient as,

µt,h = (1− αµ)µt−1,h + αµ

∑N
i=1 wiut,h∑N
i=1 wi

(4)

Σt,h = (1− ασ)Σt−1,h + ασ

∑N
i=1 wi(ut,h − µt,h)(ut,h − µt,h)>∑N

i=1 wi
(5)

where αµ and ασ are step-sizes that regularize the current solution to be close to the previous one
and,

wi = exp
−1

β

(
H−2∑
h=0

γhĉ(x̂h,i, ah,i) + γH−1q̂(x̂H−1,i, aH−1,i)

)
. (6)

The update equation for the mean is the same as the well-known Model-Predictive Path Integral
Control (MPPI) algorithm [13]. We refer the reader to [19] for the connection and derivation of
update equations. While covariance adaptation has previously been explored in the context of Path
Integral Policy Improvement [20] to automatically adjust exploration, standard implementations of
MPPI on real systems generally do not update the covariance [13, 19]. However, we observed that
updating the covariance leads to better performance with a fewer number of particles, such as stable
behavior upon convergence to the goal. Once an action from the updated distribution is executed on
the system, the mean and covariance are shifted forward with default values appended at the end to
warmstart the optimization at the next timestep (Line 3).

The above formulation of MPC offers the flexibility to extract different behaviors from our algorithm
by tuning different knobs such as the choice of approximate dynamics, running cost, terminal cost,
the policy class and parameters such as the horizon length, number of particles, step sizes and
discount factor γ. Next, we switch our focus to the domain of robot manipulation and build our
approach for sampling-based MPC by systematically evaluating the effects of a subset of key design
choices on the overall performance of the controller.

3.1 Approximate Model

The MPC paradigm allows us to effectively leverage simple models that are both computationally
cheap to query and easy to optimize, as re-optimizing the control policy at every timestep can help to
overcome the effects of errors in the approximate model. We leverage this error correcting property
of MPC and utilize the kinematic model of the manipulator as our approximate transition model.
Let the robot state be defined in the joint space as x = [θ, θ̇, θ̈] ∈ R3d and the commanded action
be the joint acceleration u ∈ Rd. At every optimization iteration, we compute the state of the robot
across the horizon (x̂ = [Θn,h, Θ̇n,h, Θ̈n,h], h ∈ [0, H), n ∈ [0, N)) by integrating the sampled
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control sequences un∈[0,N),h∈[0,H) from the robot’s initial state xinit = [θinit, θ̇init, θ̈init] (i.e., current
state of the real robot). This can be efficiently implemented as a tensor product followed by a sum:

Θ̈ = u Θ̇ = θ̇init + Sl(1) diag(dt)Θ̈ Θ = θinit + Sl(1) diag(dt)Θ̇ (7)

where Sl(1) is a lower triangular matrix filled with 1, and dt is a vector of delta timesteps across
the horizon2. We use variable timesteps, with a smaller dt for the earlier steps along the horizon
for higher resolution cost near the robot’s current state and larger ones for later steps to get a better
approximation of cost-to-go, similar to [8]. We intentionally write Θn,h as Θ to highlight the fact
that we compute the states across the batch and horizon with a tensor operation without the need to
iteratively compute the states across the horizon. This significantly speeds up the computation and
is key to achieving the 8ms control latency.

Given a batch of states x̂, the Cartesian poses X ∈ SE(3), velocities Ẋ, and accelerations Ẍ of the
end-effector are obtained by using forward kinematics FK(Θ), the kinematic Jacobian J(Θ), and
its derivative J̇(Θ) as

X = FK(Θ) Ẋ = J(Θ)Θ̇ Ẍ = J̇(Θ)Θ̇ + J(Θ)Θ̈ (8)

We can compute the forward kinematics in batch as they depend only on the current state. This pro-
vides an easily parallelizable formulation of the robot model that is amenable to GPU acceleration.

3.2 Cost Function

The cost function ĉ(s, a) encodes high-level robot behavior directly into the MPC optimization. This
can be viewed as a form of cost-shaping that allows MPC to achieve sparse task objectives while also
satisfying auxillary requirements such as avoiding joint limits, ensuring smooth motions and safety.
We consider cost functions that are a weighted sum of simple cost terms, where each individual term
encodes a desired robot behavior that can be easily implemented in a batched manner. We describe
a subset of the cost terms here and refer the reader to the supplementary for more details.

3.2.1 Stopping for Contingencies

The finite horizon makes MPC myopic to events that can occur further in the future. Thus, it is
desirable to ensure that the robot can safely stop within the horizon in reaction to events that might
be observed at timestep H − 1, especially in dynamic environments. We encode this behavior by
computing a time varying velocity limit θ̇max ∈ RH for every timestep in the horizon based on a
user-specifed maximum acceleration θ̈max and the time untilH−1. This means the joint velocity of
the robot must allow it to come to a stop at the end of the horizon by applying the max acceleration.
Any state that exceeds this velocity is penalized by a cost which is expressed as

θ̇max = Su(1)θ̈maxdt ĉstop(θ̇t) =

{
||θ̇max,t − |θ̇|||2 if θ̇max,t − |θ̇| > 0.0

0, otherwise
(9)

where Su(1) is an upper triangular matrix filled with 1.

3.2.2 Avoiding Cartesian Local Minima

The manipulability score describes the ability of the end-effector to achieve any arbitrary velocity
from a given joint configuration. It measures the volume of the ellipsoid formed by the kinematic
Jacobian which collapses to zero at singular configurations. Thus, to encourage the robot to optimize
control policies that avoid future kinematic singularities, we employ a cost term that penalizes small
manipulability scores [21, 22]

ĉmanip(θt) =

{
1.0−

√
J(θt)J(θt)>, if

√
J(θt)J(θt)> < km

0.0, otherwise
(10)

2We use semi-implicit Euler integration which provides more stable solutions than explicit Euler due to it
being symplectic. See https://gafferongames.com/post/integration_basics/
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3.2.3 Self Collision Avoidance

Computing self-collision between the links of the robot for a large number of configurations can
be computationally expensive [23, 17]. Hence, similar to previous approaches [23, 17], we train
a neural network that predicts the closest distance 3 between the links of the robot given a joint
configuration (θ). A difference in our approach (termed jointNERF) is the use of positional encod-
ing (i.e.,[sin(θ), cos(θ)]) that improves the accuracy of the distance prediction [24]. We compute a
cost term as: ĉself-coll(θt) = max(0, jointNERF(θt))

3.2.4 Environment Collision Avoidance

Safe operation in cluttered environments requires a tight coupling between perception and control for
collision avoidance. Gradient-based approaches [25] generally rely on either known object shapes
or pre-computed signed distance fields that provide gradient information for optimization. However,
our sampling-based approach can handle discrete costs and as such we explore collision avoidance
without using signed distances. Specifically, we use a learned collision checking function from
Danielczuk et al. [17] that operates directly on raw pointcloud data and classifies if an robot link
pointcloud pcl is in collision with the environment pointcloud pcenv given the robot link’s pose X l.

ĉcoll(pcl, pcenv, X l) =

{
1, if collision,
0, otherwise.

(11)

3.3 Sampling Strategy for Control Sequences
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0.0

0.1

0.2

0.3

0.4

0.5

Random Comb Halton Comb

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
Random B-Spline Halton B-Spline

Figure 3: We compare our sampling scheme
on a planar robot reacher task [26]. The
holonomic robot must move from its ini-
tial position (green cross) to the desired po-
sition (red cross) while avoiding obstacles
shown as the grey regions. The path taken
by the robot is given by the black dot-dashed
line and red circles are positions of the robot
after every 30 timesteps. The blue lines are
the rolled out trajectories of the top 5 parti-
cles. Our Halton B-Spline is able to find a
smooth short path to the goal while Random
B-Spline takes a longer path. Halton with a
comb filter is not smooth as shown by the
sudden path changes.

The method used for sampling controls from the Gaus-
sian policy can have a great impact on the convergence of
the optimization and can help embed different desirable
behaviors such as ensuring smoothness. Pseudorandom
sequences typically used in Monte Carlo integration ex-
hibit an undesirable clustering of sampled points which
results in empty regions. Whereas low-discrepancy se-
quences, where low discrepancy refers to the degree of
deviation from perfect uniform sampling, alleviate this
problem by defining deterministic samplers that correlate
each point to avoid groupings [27]. Halton sequences [28]
are a widely used form of low discrepancy number gen-
erators that attempt to improve the rate of convergence
of Monte Carlo algorithms, and are reported to achieve
superior performance in high-dimensional problems [29].
In particular, the Halton sequence uses the first pi, . . . , pd
prime numbers to define a sequence, w1,w2, . . ., for in-
tegers i ≥ 0 and b ≥ 2 where wi = (φp1(i), . . . , φpd(i))
and φb(i) =

∑∞
a=1 iab

−a, with i =
∑∞
a=1 iab

a−1 for
i0, i1, · · · ∈ {0, 1, . . . , b − 1} 4. We incorporate Hal-
ton sequences for sampling controls that can provide a
better estimate of the objective function gradient. Con-
trols from the Halton sequence are sampled once at the
beginning and then transformed using the mean (µt) and
Covariance Σt of the current Gaussian policy.

Furthermore, we explore two different strategies for en-
forcing smoothness in sampled control sequences. The
first method is a comb filter that uses user-specified co-
efficients [c1, c2, c3] to filter out each sampled control trajectory along the horizon as ut,h =
c1ut,h + c2ut,h−1 + c3ut,h−1 This method has previously been used with sampling-based control
techniques [30, 31], however, it requires extensive tuning and the filtered trajectories are not guar-
anteed to be smooth as neighboring samples in the horizon can have large difference in magnitude.

3Distance is positive when two links are penetrating and negative when not colliding.
4See http://extremelearning.com.au/unreasonable-effectiveness-of

-quasirandom-sequences/ for a visualization of different low-discrepancy methods.
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tFigure 4: We show a sequence from our collision avoidance experiment where the robot has to move between
thin walls to reach the orange ball held by the human. The robot tries to reach the ball but moves only as close
as possible as any further motion would cause the elbow to hit the right book.

We propose an alternate strategy to enforce smoothness by fitting B-splines of degree 3 to controls
sampled using a Halton Sequence. The resulting curve is sub-sampled at a finer resolution to obtain
smooth joint acceleration samples which are then integrated to obtain corresponding joint velocity
and position trajectories using Eq 7. In Fig. 3 we show a qualitative comparison between different
combinations of sampling and smoothing strategies for a planar robot trying to reach a goal while
avoiding obstacles where we see that our Halton + B-Spline sampling strategy is able to better
explore the action space while maintaining smoothness (see supplementary for details).

Covariance Parameterization: Conventionally, sampling-based MPC algorithms such as MPPI
parameterize the covariance of the Gaussian policy to be of the form Σt,h = σu ∗ Id×d where σu is
a scalar value and Id×d is a d× d identity matrix, which forces the covariance to be the same across
all control dimensions. However, in the case of manipulators it is desirable to allow the covariance
of different joints to adapt independently so they can potentially optimize different cost terms such
as pose reaching versus increasing manipulability. Thus we also consider covariance of the form
ΣUt,h = σTu Id×d where σu = [σ1, . . . , σd]. Each term in σu is then adapted based on the rollouts.
Adapting the covariance along action dimensions has also been employed by [15] for CEM.

Our sampling strategy also offers us the flexibility of incorporating certain fixed set of action trajec-
tories which could be task-dependent or even a library of pre-defined desired motions. We leverage
this fact by incorporating a set of zero acceleration or “null” particles which allows the robot to
coast at a constant velocity once the robot is accelerated sufficiently and also easily stop at the goal
as demonstrated in our experiments.

4 Experimental Evaluation

Through our experiments we aim to analyze the effectiveness of STORM as a framework for real-
time, perception-driven feedback control in real-world manipulation scenarios. To this end, we first
study the performance of STORM in reacting to changing end-effector targets from perception data
while satisfying task constraints such as maintaining user-specified orientation and avoiding obsta-
cles in cluttered scenes. Second, we consider the dynamic task of balancing a ball on a tray grasped
by the end effector that uses an approximate model of the ball dynamics. We also provide qualitative
ablations in simulation for different components of our framework such as cost terms, sampling strat-
egy and policy parameterization on our website (https://sites.google.com/view/manipulation-mpc).
We additionally compare our approach to MOVEIT! and OSC [32] for the standard pose reaching
problem in the supplementary material.

4.1 Tracking Moving Targets while Handling Task Constraints

A key strength of feedback-based MPC over “plan and execute” and OSC approaches is its ability to
simultaneously optimize complex cost functions over a long horizon while demonstrating reactive
behavior. We demonstrate this by having the robot react to changing goal poses obtained from noisy
perception, while satisfying task constraints such as maintaining desired orientation and avoiding
obstacles. In these experiments, a ball held by a human is tracked using a depth camera and the
robot tries to reach the ball as the human moves it to different locations in the workspace.

Obstacle Avoidance: Demonstrating reactive motion and reasoning about obstacle avoidance in
cluttered environments, while simultaneously coordinating large degrees of freedom leads to a hard
online optimization problem. Standard planning and OSC approaches often fall short in optimizing
for such behavior.
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Figure 5: We move the ball across the
workspace while having a high weight on
maintaining a specific orientation of the end-
effector. Our control scheme can maintain
the orientation during motion as seen by the
very low orientation error (< 3%).

To test our method’s capability to handle such scenar-
ios, we setup two different table top environments, one
consisting of two blocks representing common pick and
place environments as shown in Fig. 1 and an environ-
ment with thin walls to represent a densely occupied
space, as shown in Fig. 4. We use our perception based
ball tracker to make the robot reach different positions in
the environment. During the experiment, we also move
the ball to some positions that are not reachable by the
robot due to possibility of collision between the robot’s
links and the obstacles. As seen in Fig. 4, the robot han-
dles these situations very well as it prioritizes collision
avoidance over reaching the pose accurately. We present
our full obstacle avoidance experiments as well as several
experiments in simulation in the accompanying videos.

Orientation Constraints: Several common manipula-
tion tasks such as moving a filled cup require maintaining
orientation during motion which reduces the feasibility
region of a controller. We test this scenario by imposing
orientation constraints on the end-effector while tracking
the ball. Our controller achieves a median quaternion er-
ror of 1.2485% while tracking the ball with sufficient ac-
curacy as shown in Fig. 5.

4.2 Dynamic Object Balancing
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y(
m
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Figure 6: The observed trajectory of the ball
in the frame of the tray for the balancing
task is shown in the plot. Our controller is
able to reach an error of less than 4cm us-
ing a simplified dynamics model and noisy
perception inputs.

We consider a hard dynamic manipulation task where the
robot tries to balance a ball placed on a tray grasped by
a parallel jaw gripper as shown in Fig. 1. The location
of the ball is tracked using the RGBD input from a Re-
alSense camera at 30Hz. We use a simplified dynamics
model of the object rolling on the tray under acceleration
due to gravity and do not explicitly account for friction or
inertial properties of the ball and do not perform any sys-
tem identification. The purpose of this task is to demon-
strate the robustness of MPC under severe model-bias
while optimizing complex objectives and dealing with
noisy perception. Fig. 6 shows the trajectory taken by the
ball when the robot is controlled by STORM. MPC with
its forward lookahead and rapid re-optimization is able to
anticipate the ball’s motion and correct for errors due to
inaccurate dynamics and perception to center the ball on the tray with an error of less than 4cm.

Our experimental results indicate that accurate and reactive manipulation behavior can be obtained
by using relatively simple models and intuitive cost functions in an MPC framework. Sampling-
based MPC also provides us the flexibility to encode different desired behaviors such as smooth
motions directly in the optimization and tightly couple perception with control which are key com-
ponents for real-world robot control.

5 Discussion
We presented a sampling-based MPC framework for manipulation that operates in the joint space
and is able achieve smooth and reactive motions while respecting constraints, and demonstrated its
performance on dynamic control tasks. The first key component of our approach is a fully tensorized
kinematic model that allows for GPU-based acceleration of rollouts. Second, we leverage intuitive
cost terms that encourage desirable behaviors. Third, our formulation allows us to leverage diverse
sampling strategies to embed desirable properties directly into the optimization. However, a few key
questions remain. First, performance can be made more robust by directly accounting for state un-
certainty in the control loop. Second, at higher speeds, the kinematic model might induce significant
model-bias. Here, learning a residual dynamics model [33] or a terminal Q-function [34] can help
mitigate the effects of model-bias while still maintaining computational speed.
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