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Abstract001

Diverse language model responses are crucial002
for creative generation, open-ended tasks, and003
self-improvement training. We show that com-004
mon diversity metrics, and even reward mod-005
els used for preference optimization, system-006
atically bias models toward shorter outputs,007
limiting expressiveness. To address this, we008
introduce Diverse, not Short (Diverse-NS), a009
length-controlled self-learning framework that010
improves response diversity while maintain-011
ing length parity. By generating and filtering012
preference data that balances diversity, qual-013
ity, and length, Diverse-NS enables effective014
training using only 3,000 preference pairs. Ap-015
plied to LLaMA-3.1-8B and the Olmo-2 fam-016
ily, Diverse-NS substantially enhances lexical017
and semantic diversity. We show consistent018
improvement in diversity with minor reduction019
or gains in response quality on four creative020
generation tasks: Divergent Associations, Per-021
sona Generation, Alternate Uses, and Creative022
Writing. Surprisingly, experiments with the023
Olmo-2 model family (7B, and 13B) show that024
smaller models like Olmo-2-7B can serve as025
effective “diversity teachers” for larger mod-026
els. By explicitly addressing length bias, our027
method efficiently pushes models toward more028
diverse and expressive outputs.029

1 Introduction030

Alignment has played a key role in making large031

language models (LLMs) broadly useful, control-032

lable, and safe for real-world applications (Schul-033

man et al., 2017; Bai et al., 2022; Dai et al., 2023;034

Ouyang et al., 2022; Longpre et al., 2023). As a035

form of post-training, it typically involves a combi-036

nation of instruction tuning (Longpre et al., 2023;037

Peng et al., 2023; Ouyang et al., 2022) and prefer-038

ence optimization (Schulman et al., 2017; Ouyang039

et al., 2022; Rafailov et al., 2023), enabling mod-040

els to follow human instructions and generate re-041

sponses that are helpful, harmless, and honest (Bai042

et al., 2022; Dai et al., 2023). However, alignment 043

comes at a cost: several studies have found that 044

alignment can significantly reduce the diversity of 045

model outputs (Kirk et al., 2023; Doshi and Hauser, 046

2024; Padmakumar and He, 2023; Anderson et al., 047

2024; Shaib et al., 2024b). 048

This decrease in diversity has important conse- 049

quences. When humans collaborate with aligned 050

models, the content they produce tends to be less 051

original and less varied (Doshi and Hauser, 2024; 052

Padmakumar and He, 2023). At scale, this reduc- 053

tion in diversity can hinder creative ideation and in- 054

crease output homogeneity (Anderson et al., 2024; 055

Xu et al., 2024). Beyond creativity, reduced diver- 056

sity of generated text has a direct impact on the 057

continued improvement of LLMs. Recent studies 058

have shown that repeatedly training models on their 059

own aligned outputs can lead to a consistent decline 060

in diversity, eventually resulting in model collapse 061

(Shumailov et al., 2023; Guo et al., 2023; Seddik 062

et al., 2024; Herel and Mikolov, 2024). 063

Despite these challenges, alignment remains es- 064

sential. The question, then, is not whether to align, 065

but how to preserve or recover the output diversity 066

of aligned models. In this work, we ask: Can we 067

increase the response diversity of aligned models 068

while retaining the the response quality? 069

Prior work has explored a range of strategies to 070

improve output diversity of aligned language mod- 071

els, including methods based on prompting, sam- 072

pling, and targeted training procedures (Lu et al., 073

2024; Zhang et al., 2020; Tian et al., 2023; Li et al., 074

2024, 2025; Lanchantin et al., 2025; Chung et al., 075

2025; Qin et al., 2025). Sampling techniques such 076

as temperature, top-p, and top-k have been shown 077

to increase diversity, though often at the cost of 078

reduced quality (Zhang et al., 2020). Sequential 079

prompting strategies are also helpful in increas- 080

ing response diversity (Lu et al., 2024; Tian et al., 081

2023). However, the computational cost scales 082

rapidly with more discussion turns due to increas- 083
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ing context length. Training approaches have intro-084

duced explicit diversity objectives (Li et al., 2025;085

Chung et al., 2025; Cideron et al., 2024) and en-086

tropy regularization (Li et al., 2024) to encourage087

more varied outputs. Self-learning methods, where088

the model generates its own training data, have also089

been used to promote diversity (Tian et al., 2024;090

Lanchantin et al., 2025; Qin et al., 2025).091

However, one critical confound, text length, has092

received little scrutiny in recent work. Widely used093

diversity metrics are length-sensitive and consis-094

tently assign higher scores to shorter passages (Cov-095

ington and McFall, 2010; McCarthy and Jarvis,096

2010; Shaib et al., 2024a). While this bias is less097

problematic in structured generation tasks, opti-098

mizing these metrics can reduce expressiveness in099

open-ended writing, which thrives on depth and nu-100

ance, thereby undermining the very creativity they101

are meant to cultivate. But even though optimizing102

length-sensitive metrics can clearly backfire, the103

role of length in both measuring and improving104

diversity has been largely overlooked. Our work105

aims to close this gap.106

To address this overlooked confounding fac-107

tor, we propose Diverse, not Short (Diverse-NS),108

a length-controlled self-learning framework that109

counteracts the hidden brevity bias in standard110

diversity metrics and improves diversity in both111

structured and free-form generation. The frame-112

work first uses sequential prompting to elicit more113

diverse responses, followed by preference pair cu-114

ration that improve both diversity and quality while115

maintaining comparable response lengths (within116

±5 words). Using these preference pairs, we apply117

Direct Preference Optimization (DPO) (Rafailov118

et al., 2023) to improve the response diversity of119

the base model. Our key contributions are:120

1. Diverse-NS: A length-controlled self-learning121

framework that significantly improves the re-122

sponse diversity of Llama-3.1-8B and Olmo-2-123

7B using only 3k preference pairs.124

2. Diverse-NS-Lite: A computationally efficient125

variant that achieves comparable performance126

to Diverse-NS while significantly reducing the127

data filtering cost.128

3. Small-to-large transfer: We highlight the po-129

tential of smaller models to serve as effective130

“diversity teachers” for larger variants, enabling131

low-cost diversity alignment.132

4. Length-controlled diversity evaluation: We133

introduce Diversity Decile, a new metric that134

adjusts for text length when evaluating diversity 135

gains. 136

5. Dataset: We release a high-quality dataset of 6k 137

preference pairs generated from Llama-3.1-8B 138

and Olmo-2-7B to support future research on 139

length-aware diversity alignment. 140

2 Related Work 141

Increasing Diversity without Training. Zhang 142

et al. (2020); Chung et al. (2023), shows that com- 143

mon sampling methods such as temperature, top-p, 144

top-k, are comparable in terms of increasing the 145

diversity but, increasing diversity often comes at 146

the price of reduced quality. For curating a generic 147

large-scale dataset, prompting methods can boost 148

topical, stylistic, and formatting diversity (Li et al., 149

2023; Chen et al., 2024; Face, 2024; Ge et al., 150

2024). Conversely, for more task-specific datasets, 151

sequential prompting can elicit diverse responses 152

(Lu et al., 2024; Tian et al., 2023; Qin et al., 2025). 153

Increasing Diversity with Training. Augment- 154

ing method-specific objective functions with el- 155

ements that directly maximize diversity has been 156

successful in increasing response diversity (Li et al., 157

2024; Chung et al., 2025; Li et al., 2015, 2025). 158

The other approach gaining more attention in re- 159

cent studies is to adopt a three-step procedure: gen- 160

erate diverse data, filter data for improving quality, 161

and fine-tune LLM on the filtered data (Lanchantin 162

et al., 2025; Chung et al., 2025; Qin et al., 2025). 163

This approach has been successful in task-specific 164

alignment, but more generic self-training has still 165

seen limited success (Li et al., 2023; Face, 2024; 166

Shumailov et al., 2023; Guo et al., 2023; Herel and 167

Mikolov, 2024; Seddik et al., 2024). Our work is 168

closest to the task-specific alignment studies in the 169

self-learning framework (Lanchantin et al., 2025; 170

Qin et al., 2025). 171

Diversity Evaluation. Evaluation of diversity is 172

challenging for two main reasons: length bias (Mc- 173

Carthy and Jarvis, 2010; Covington and McFall, 174

2010; Mass, 1972; Johnson et al., 2023), and in- 175

consistent human preferences (Evans et al., 2016; 176

Chakrabarty et al., 2023, 2024; Gómez-Rodríguez 177

and Williams, 2023). Despite the challenges, many 178

studies have highlighted the compromised diver- 179

sity of synthetic text (Shaib et al., 2024b,a; Salkar 180

et al., 2022; Padmakumar and He, 2023; Guo et al., 181

2023; Kirk et al., 2023; Doshi and Hauser, 2024; 182

Anderson et al., 2024). So, we present a method, 183
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Diverse-NS, to increase the response diversity and184

propose a metric, Diversity Decile, to measure di-185

versity in a length-controlled way.186

3 Preliminaries187

Self-learning, also known as self-training, is a semi-188

supervised approach involving three main steps:189

data generation (pseudo-labeling), data filtering,190

and model learning (Lee et al., 2013; Amini et al.,191

2025). In our setup, data generation involves sam-192

pling text from a language model in response to193

story-writing prompts. This is followed by filter-194

ing, where we construct high-quality preference195

pairs—two continuations for the same prompt, with196

one preferred over the other. We refer to the pre-197

ferred continuation as the “chosen” continuation198

(or response) and the other as the “rejected” contin-199

uation (or response). Using this preference dataset,200

we apply Direct Preference Optimization (DPO)201

(Rafailov et al., 2023) to train the model to favor202

the chosen responses.203

4 Data204

We describe data generation and filtering pipeline205

designed to elicit diverse model responses for206

downstream preference tuning. The pipeline first207

generates candidate stories using a sequential208

prompting strategy, then filters the pool of gen-209

erated responses to form preference pairs suitable210

for Direct Preference Optimization (DPO) training211

(Rafailov et al., 2023). The preference pairs are212

formed to maximize the diversity and quality gain213

while maintaining the same length for "chosen" and214

"rejected" samples.215

4.1 Data Generation216

Task Setup. We focus on a creative writing task217

to build the dataset for preference learning. The218

goal is to generate short stories (five sentences) that219

must include three words specified in the prompt.220

This task has been extensively validated in studies221

of human creativity (Prabhakaran et al., 2014). To222

create a diverse set of prompts, we first curated a223

list of 300 unique words, Wu
1. For generating short224

stories from LMs, we create prompts by randomly225

sampling three-word sets from Wu.226

Sequential Prompting. Given the task setup, we227

create 1k story writing prompts, with 1k unique228

1A manually curated list of 20 words was extended using
GPT-4o and Claude-3.7.

three-word sets. The exact prompt is provided 229

in Appendix A.1. We initially sampled 10k sto- 230

ries (10 per prompt) using a temperature of 1.0 231

from each of the following LMs: Llama-8B and 232

Olmo-7B (Grattafiori et al., 2024; OLMo et al., 233

2024). Within the sampled stories, we extracted 234

the repeating Part-Of-Speech (POS) bigrams and 235

found that the start of the story is highly likely 236

to have repetitions across different prompts (re- 237

fer to Table B.1). To overcome these repetitions, 238

we performed a second inference call to re-draft 239

the story with additional constraints, an approach 240

similar to Denial Prompting presented by Lu et al. 241

(2024) (refer to Appendix A.1 exact prompt). In 242

our case, unlike Lu et al. (2024), the constraints 243

we use are specifically targeted to elicit a more di- 244

verse response from the model while maintaining 245

the same (or comparable) length. With a pilot anal- 246

ysis on the initial 20k responses, we find that the 247

story generated in the second inference call is on 248

average more diverse (refer to Table B.2). These re- 249

sults motivated us to set up the final two-step data 250

generation process, first inference call to collect 251

natural responses from the model, and second infer- 252

ence call to redraft the natural response into a more 253

diverse story. In the final data generation phase, 254

we used 20k unique three-word sets to generate 255

prompts and sampled 10 first and second responses 256

for each prompt, resulting in a dataset of 200,000 257

tuples of prompt, first response, and second re- 258

sponse, per model (Llama-8B and Olmo-7B). We 259

denote the data as follows: D(π) = {(p, r1, r2)i | 260

i = 1, . . . , 200,000} where, p, r1, and r2 denote 261

the prompt, first response, and second response, re- 262

spectively, generated from model (policy) π. Note 263

that |{p1, p2, . . . , p200,000}| = 20, 000 and we use 264

two models, m ∈ {Llama-8B, Olmo-7B}, for data 265

generation. 266

4.2 Data Filtration 267

The Chosen and Rejected Pools. Each instance 268

in our generated dataset is a tuple (p, r1, r2), where 269

p is the prompt and r1, r2 are two responses con- 270

ditioned on it. The first response r1 reflects the 271

model’s default behavior which are stories gener- 272

ated without intervention, capturing its most likely 273

completion. In contrast, the second response r2 274

is generated with additional instructions aimed at 275

reducing repetition, resulting in a more diverse out- 276

put. We leverage this contrast by designating r1 277

as the rejected response and r2 as the chosen one. 278

This setup encourages the model to prefer more di- 279
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verse continuations that it is already capable of gen-280

erating. Hence, it provides a strong self-learning281

framework for improving diversity.282

Filtration Rules. Each pair (r1, r2) gives us a283

natural candidate for rejected and chosen responses.284

On average, the second response r2 is more diverse285

than the first r1 (Table B.2), but not every pair286

guarantees learning higher diversity. To ensure that287

the model receives consistent and useful learning288

signals, we apply a set of filtering rules.289

First, we require that the diversity of r2 exceeds290

that of r1, so that the model consistently learns291

to prefer more diverse continuations. However,292

higher diversity may negatively impact text quality293

as prior work has shown a trade-off between the294

two (Zhang et al., 2020). To ensure that preference295

learning also promotes higher quality, we further296

require that r2 be of higher quality than r1. Ad-297

ditionally, we filter out cases where both r1 and298

r2 are of poor quality, even if r2 is marginally bet-299

ter. To do so, we enforce that r2 must surpass the300

median quality of all r1 responses. Lastly, most301

diversity metrics have been shown to be negatively302

correlated with text length (Covington and McFall,303

2010; Shaib et al., 2024a; McCarthy and Jarvis,304

2010), which introduces a bias toward shorter texts.305

This issue has not been explicitly addressed in the306

recent studies for training and evaluation of LMs307

for diversity (Qin et al., 2025; Lanchantin et al.,308

2025; Chung et al., 2025). To control for this, we309

constrain r1 and r2 to be of comparable length (±5310

words). Ideally, we would like r1 and r2 to have311

exactly the same length. However, in practice, very312

few examples satisfy this strict constraint, espe-313

cially when working with smaller language models314

(under 10B parameters). Therefore, we relax the315

constraint and allow a maximum length difference316

of ±5 words between r1 and r2.317

In summary, we retain a data point for prefer-318

ence learning only if it satisfies all of the following319

conditions, applied in order:320

• The quality of r2 is greater than or equal to the321

50th percentile of all r1 quality scores.322

• The quality of r2 is greater than r1.323

• The diversity of r2 is greater than r1.324

• The absolute difference in word count between325

r1 and r2 is at most five words.326

Diversity and Quality Metrics. We use entropy327

to measure diversity and the ArmoRM reward328

model scores (Wang et al., 2024) to assess quality.329

Entropy is a standard metric for lexical diversity 330

(Lanchantin et al., 2025), with higher values indi- 331

cating greater diversity. In our self-learning setup, 332

entropy is useful because it reflects the model’s 333

likelihood of producing a certain continuation of 334

the prompt. When used in filtering, it helps iden- 335

tify training data that aligns with the model’s own 336

capabilities. For each example, we compute the 337

entropy and the reward model score of both r1 and 338

r2, conditioned on the original prompt p. When 339

we use our data generation method, and use en- 340

tropy and ArmoRM values for filtration, we call 341

our approach, Diverse, not Short (Diverse-NS or 342

D-NS). 343

Lightweight Filtration. While entropy and Ar- 344

moRM scores are high-quality metrics for measur- 345

ing diversity and response quality, they are com- 346

putationally expensive. Each example (p, r1, r2) 347

requires two additional inference calls to compute 348

entropy and two more for ArmoRM scoring. To 349

reduce this overhead, we evaluated seven alterna- 350

tive metrics and measured their correlation with 351

entropy and ArmoRM scores. Among these, Type- 352

Token Ratio (TTR) showed the highest correlation 353

with entropy (Pearson r = 0.2027, p < 0.0001), 354

and the MAAS index (Mass, 1972) was most cor- 355

related with ArmoRM scores (Pearson r = 0.2357, 356

p < 0.0001). Refer to Table 1 for all correlation re- 357

sults. Based on these findings, we replace entropy 358

with TTR and ArmoRM scores with MAAS in our 359

filtering pipeline. When this lightweight variant is 360

used during data filtering, we refer to the resulting 361

method as Diverse-NS-Lite (or D-NS-Lite). 362

Post-Filtration Properties. Based on the corre- 363

lation analysis (Tab. 1), it is worth noting that both 364

entropy and ArmoRM scores are negatively cor- 365

related with text length. As a result, optimizing 366

for diversity or quality alone may unintentionally 367

favor shorter responses as the “chosen” continua- 368

tions. To avoid this bias, it is essential to explicitly 369

control for length when curating preference learn- 370

ing data for improving diversity. To show this, 371

we implement a recent study that is closest to our 372

method, Diverse Preference Optimization(DivPO) 373

(Lanchantin et al., 2025). DivPO also generates 374

responses and filters the responses to form prefer- 375

ence learning pairs without explicitly control the 376

length of the chosen and rejected continuations. We 377

compare pre- and post-filtration data properties for 378

DivPO and Diverse-NS in Tab. 2. The table clearly 379

shows that in the pursuit of maximizing the entropy 380
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Method Word Count TTR MATTR HD-D MTLD MAAS

Entropy −0.1574 0.2027 0.0800 0.1071 0.0656 −0.1104
ArmoRM Score −0.3461 0.1698 −0.0042∗∗ −0.0487 0.0749 0.2357

Table 1: Correlation Analysis. Pearson correlation coefficients between six text statistics and two target metrics: entropy
(diversity) and ArmoRM reward scores (quality). Both entropy and ArmoRM scores show negative correlation with text
length. Among diversity metrics, TTR exhibits the strongest correlation with entropy, while the MAAS index shows the highest
correlation with ArmoRM scores. ∗∗: p < 0.001; all others: p < 0.0001.

Num. Pref. Word Count
Method Pairs ∆

No Filtering 200,000 −0.68± 11.33
DivPO 3,000 −49.90± 17.51
Ours - D-NS-Lite 3,000 −0.90± 2.91
Ours - D-NS 3,000 −1.35± 2.93

Table 2: Data Properties After Filtering. This table reports
the average (±std.dev.) length difference (∆) between chosen
and rejected. While DivPO tends to favor significantly shorter
chosen responses.

values, DivPO selects significantly shorter (-49.90381

words shorter on average) responses as the chosen382

responses in the final preference data.383

5 Experimental and Evaluation Setup384

5.1 Preference Tuning385

After generating and filtering the data, we fine-tune386

the same base policy π that was used to generate it.387

In other words, data generated by Llama-8B is used388

to train Llama-8B, and likewise for Olmo-7B. To389

ensure a fair comparison across methods (DivPO,390

D-NS, and D-NS-Lite), we limit the final training391

dataset to 3,000 preference pairs2. To construct392

this 3k dataset, we first compute the entropy gain393

for each pair as the difference between the entropy394

of the chosen and rejected responses 3. We then395

sort all pairs by entropy gain in descending order396

and select the top 3k examples. This ensures that397

the final training set maximizes diversity gain for398

the base model. The same selection procedure is399

applied to all three methods.400

We further extend our experiments to evaluate401

the utility of training larger models with data gen-402

erated from smaller ones. For this, we train Olmo-403

13B using preference pairs generated from Olmo-404

7B. We provide all hyperparameter values in Ap-405

pendix C.406

2We observed that the size of the dataset after filtering is
the smallest for Diverse-NS, slightly more than 3k. Hence, to
make the training runs more comparable across methods, we
limit the size of the dataset to 3k for all methods.

3note that, by construction, the chosen response has higher
entropy in the filtered set

All experiments are run on a single NVIDIA 407

RTX 6000 GPU (48GB memory), using a per- 408

device batch size of 2 and a global batch size of 409

64. Training Llama-8B or Olmo-7B takes approxi- 410

mately 100–150 minutes while O-13B takes 200- 411

220 minutes per run, highlighting our setup effi- 412

ciency. 413

5.2 Evaluation 414

5.2.1 Tasks 415

We evaluate the model’s response diversity with 416

four tasks: Divergent Association Task (DAT), Per- 417

sona Generation Task (PGT), Alternate Uses Task 418

(AUT), and Creative Writing Task (CWT). 419

Divergent Associations Task (DAT). The DAT 420

(Olson et al., 2021) is a psychological test com- 421

monly used to assess divergent thinking in humans. 422

Participants are asked to generate a list of 10 words 423

that are as dissimilar from each other as possi- 424

ble. Recent studies have adapted DAT to evalu- 425

ate the creativity of language models, focusing on 426

their ability to produce diverse outputs (Bellemare- 427

Pepin et al., 2024). To quantify model performance 428

on DAT, we use the Divergent Semantic Integra- 429

tion (DSI) metric (Johnson et al., 2023), which 430

computes the average semantic distance of each 431

word in the generated list from all others. Higher 432

DSI values indicate more divergent thinking and 433

greater ideological diversity. Following Johnson 434

et al. (2023), we extract token embeddings from 435

the 6th layer of BERT-large for the generated list 436

and compute the average pairwise cosine distance 437

between all embeddings. This approach has been 438

shown to correlate strongly with human judgments 439

of creativity (Johnson et al., 2023). We provide the 440

exact prompt used for DAT in Appendix A.2. For 441

a robust evaluation, we sample 100 DAT responses 442

per model using temperature 1.0 and different ran- 443

dom seeds. From these 100 lists (each with 10 444

words), we compute and report two metrics: (1) the 445

average and standard deviation of DSI scores, and 446

(2) the number of unique words across all 1,000 447
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generated tokens. In both cases, higher values indi-448

cate greater diversity.449

Persona Generation Task (PGT). To assess di-450

versity in structured generation, we use the PGT,451

also used in the study conducted by Lanchantin452

et al. (2025). In this task, the model is prompted453

to generate a JSON object with three fields: first454

name, city of birth, and current occupation to eval-455

uate the model’s ability to produce varied persona456

descriptions. The exact prompt is provided in Ap-457

pendix A.2. We sample 100 responses per model458

using temperature 1.0 and different random seeds.459

For each key in the JSON object, we report the pro-460

portion of unique values across the 100 responses.461

Higher uniqueness indicates greater diversity.462

Alternate Uses Task (AUT). The Alternate Uses463

Task (AUT) is a common and rigorously validated464

psychological test to measure human divergent465

thinking (Guilford, 1956). In this task, the sub-466

ject/model is asked to generate creative and un-467

conventional uses for objects (e.g., broom). The468

prompt and list of objects used for evaluation are469

provided in Appendix A.2. We use 15 unique ob-470

jects and generate 10 responses per object using471

different random seeds, resulting in 150 total re-472

sponses sampled at temperature 1.0. For quantify-473

ing the diversity of the generated uses, we measure474

the distance between the target object and gener-475

ated uses with the help of BERT-large encodings,476

a validated approach that correlates with human477

creativity ratings (Patterson et al., 2023). We report478

the mean and standard deviation of the distance479

values, higher values indicate higher diversity.480

Creative Writing Task (CWT). The CWT —481

based on a well-validated psychological assessment482

of creativity (Prabhakaran et al., 2014) — is exactly483

the same as our data generation task. That is, given484

a set of three words, the subject/model is tasked485

with generating a creative short story that includes486

all three words. We provide a separate list of three-487

word sets used for evaluation in Appendix A.2. We488

sample 10 responses for each of the seven three-489

word sets with temperature of 1.0. Unlike our other490

evaluation tasks, we measure the diversity as well491

as the quality of the generated responses. Similar to492

Johnson et al. (2023), we calculate the DSI metric493

to measure the diversity of the generated story. For494

quality measurements, we resort to the ArmoRM495

reward model preference scores (Wang et al., 2024).496

We report the average and standard deviation values497

of DSI and ArmoRM scores, and 4-gram diversity 498

values, where higher values are more desirable for 499

all metrics. 500

5.2.2 Length-Adjusted Evaluation 501

While most diversity metrics exhibit bias toward 502

shorter outputs, Johnson et al. (2023) shows that 503

the DSI metric displays the opposite tendency-it 504

favors longer responses. This is not an issue in 505

tasks like DAT, where the output length is fixed at 506

10 words. But for open-ended tasks such as CWT, 507

longer stories may receive disproportionately high 508

DSI scores primarily due to their length, rather than 509

genuine diversity. To address this issue, we intro- 510

duce a novel evaluation metric: ∆ Diversity Decile 511

(∆ DD), which takes into account text length when 512

assessing diversity. 513

Change in Diversity Decile (∆DD). We first 514

build a decile map that captures the empirical dis- 515

tribution of diversity scores at each length. Us- 516

ing 800 000 stories collected from Llama-8B and 517

Olmo-7B over 40 000 prompts, we: (1) group 518

responses by word count w; (2) compute decile 519

thresholds for a chosen diversity metric (e.g. TTR, 520

MTLD); and (3) store these percentile thresholds 521

in a lookup table M. Here, a decile refers to one 522

of ten intervals that divide the distribution of diver- 523

sity scores for a given length into ten equal parts. 524

The top decile corresponds to the most diverse 10% 525

of responses at that length, the second-highest to 526

the next 10%, and so on. This mapping allows 527

us to estimate the approximate diversity rank of 528

any new response relative to other responses of the 529

same length. At evaluation time, a new response 530

r with word count wr and diversity score dr is 531

assigned the highest decile index k ∈ {0, . . . , 9} 532

such that dr exceeds the k-th threshold in M[wr]. 533

Formally, DD(r,M) = k, where larger k means 534

the response is more diverse than a greater share of 535

previously observed texts of the same length. 536

To evaluate the effect of preference tuning, we 537

average DD scores over 70 CWT prompts for the 538

base and the preference-tuned models and report 539

their difference: ∆DD = DDtuned −DDbase. 540

Positive ∆DD values indicate improved diver- 541

sity, with higher values corresponding to a larger 542

improvement. Negative values signify reduced di- 543

versity, and ∆DD = 0 signifies no change. Note 544

that, DD is agnostic to the choice of diversity met- 545

ric. We therefore report ∆DD values using seven 546

standard metrics: TTR, MATTR, HD-D, MTLD, 547

6



Ours
Task Metric Base Model DivPO D-NS-Lite D-NS

LLaMA-8B

DAT DSI 0.7535 0.7545 0.7590 0.7640
DAT Unique Words 0.4575 0.4593 0.4797 0.4914
PGT Unique First Names 0.6500 0.6100 0.6900 0.6900
PGT Unique Cities 0.3300 0.3100 0.4700 0.4200
PGT Unique Occupations 0.4100 0.3900 0.5100 0.4900
AUT DSI 0.8876 0.8837 0.8876 0.8878
CWT DSI 0.8515 0.8521 0.8556 0.8581
CWT ArmoRM Score 0.1451 0.1495 0.1369 0.1405
CWT 4-gram div. 2.8550 2.9320 2.9450 2.9620

OLMo-7B

DAT DSI 0.7480 0.7509 0.7662 0.7639
DAT Unique Words 0.6139 0.6079 0.6347 0.6327
PGT Unique First Names 0.3300 0.3300 0.3300 0.3400
PGT Unique Cities 0.3100 0.3000 0.2700 0.2700
PGT Unique Occupations 0.5200 0.5500 0.6100 0.6100
AUT DSI 0.8836 0.8846 0.8852 0.8858
CWT DSI 0.8499 0.8491 0.8548 0.8563
CWT ArmoRM Score 0.1435 0.1441 0.1462 0.1464
CWT 4-gram div. 3.1270 3.1690 3.1750 3.1620

OLMo-13B

DAT DSI 0.7233 0.7282 0.7320 0.7364
DAT Unique Words 0.3421 0.3340 0.3310 0.3256
PGT Unique First Names 0.4100 0.4100 0.4400 0.4500
PGT Unique Cities 0.3500 0.3500 0.3700 0.3900
PGT Unique Occupations 0.1900 0.1900 0.1900 0.2000
AUT DSI 0.8943 0.8960 0.8974 0.8970
CWT DSI 0.8557 0.8555 0.8616 0.8614
CWT ArmoRM Score 0.1571 0.1589 0.1585 0.1590
CWT 4-gram div. 3.0820 3.0770 3.095 3.1070

Table 3: Diversity and Quality Evaluation. We present the average diversity (DSI or unique values) and quality (ArmoRM
Score) measurements for model responses collected on four creative generation tasks (Structured Gen.: DAT, PGT, Free-Form
Gen.: AUT, CWT).

and MAAS. We also compute ∆DD using Ar-548

moRM reward scores to quantify the gain or loss549

in quality. This length-aware normalization pre-550

vents either long or short responses from being551

over-credited for diversity4.552

6 Results553

Divergent Associations Task (DAT). In our DAT554

evaluation (Tab. 3), we see that both Diverse-NS555

and its lightweight variant deliver clear improve-556

ments in diversity over the untrained base and the557

DivPO baseline across all model sizes. Remark-558

ably, even the D-NS-Lite variant consistently out-559

performs DivPO, demonstrating that a compact560

diversity strategy can be highly effective. Interest-561

ingly, using data generated by the smaller Olmo-7B562

to fine-tune the larger Olmo-13B yields diversity563

gains for every method, highlighting how smaller564

4We provide a summary of all metrics in Table G.1

models can serve as powerful “diversity teachers” 565

for their larger counterparts. 566

Persona Generation Task (PGT). In our PGT 567

evaluation (Tab. 3), Diverse-NS produces more 568

distinct first names, cities, and occupations than 569

DivPO for every model, with the sole exception of 570

the city metric on Olmo-7B. Outside that one case, 571

Diverse-NS-Lite also outperforms DivPO across all 572

three metrics. Notably, on Llama-8B, Diverse-NS- 573

Lite matches or exceeds the baseline and Diverse- 574

NS on every attribute of the task. 575

Alternate Uses Task (AUT). In our AUT evalu- 576

ation (Tab. 3), Diverse-NS-Lite consistently beats 577

DivPO, and Diverse-NS consistently beats Diverse- 578

NS-Lite, though only by a small margin. 579

Creative Writing Task (CWT). In our CWT 580

evaluations (Tab. 3), Diverse-NS produces the high- 581

est DSI scores for both Llama-8B and Olmo-7B. 582
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Diversity Quality

Better than
base model

Worse than
base model

Figure 1: Diversity and Quality Evaluation on CWT. This figure shows ∆Diversity Decile (∆DD) values (y-axis) across
various metrics (x-axis), computed from 70 CWT responses generated by the Olmo-2-7B model. A value of zero represents
base model performance; bars indicate improvements from preference-tuned models. D-NS achieves the highest diversity gains
overall, while D-NS-Lite consistently outperforms DivPO, except under TTR. In terms of quality (ArmoRM), DivPO shows a
slight improvement, whereas our methods show a minor drop.

Interestingly, for Llama-8B the other methods ac-583

tually reduce the ArmoRM score below baseline584

but Diverse-NS exceeds it. The highest 4-gram585

diversity is observed for Diverse-NS or -Lite in586

all cases. We also compute ∆DD with six lexical587

diversity measures and ArmoRM. Both Diverse-588

NS and its lightweight variant significantly out-589

perform DivPO on every diversity metric. The590

∆DD remains above the baseline for all metrics591

except MAAS, where it dips marginally below and592

similarly shows a slight under-performance for Ar-593

moRM. Crucially, even where ∆DD suggests a594

minor quality drop, the absolute diversity values af-595

ter self-training still exceed those of the base model596

(despite longer outputs), indicating that any loss in597

writing quality is minimal (refer to Appendix F for598

Llama-8B and Olmo-13B results)5.599

7 Discussion600

We introduced Diverse-NS, a self-learning frame-601

work to improve output diversity while preserving602

quality. Experiments with Llama-8B and Olmo-7B603

show that Diverse-NS improves diversity on four604

creative generation tasks: DAT, PGT, AUT, CWT.605

Diverse-NS is highly efficient. All gains are606

achieved with only 3k preference pairs and less607

than two hours of training on a single 48 GB GPU.608

The lightweight variant, Diverse-NS-Lite, replaces609

costly entropy and ArmoRM scoring with inexpen-610

sive proxies yet still surpasses DivPO in nearly611

every setting. We further show that a 7B model612

can act as an effective “diversity teacher” for its613

5We provide all results with std. dev. values in Table E.1

13B counterpart, pointing to a low-cost path for 614

diversity-aware alignment at scale. 615

Diverse-NS maintains high quality. Diversity 616

and quality are often at odds (Zhang et al., 2020; 617

Chung et al., 2023), and we observe this trade-off 618

in our experiments as well. However, there are en- 619

couraging instances where both improve together. 620

For Olmo-7B and Olmo-13B, the ArmoRM score 621

increases alongside diversity. ∆Diversity Decile 622

values further confirms that, for Olmo-13B, diver- 623

sity and quality consistently rise in tandem. In 624

other cases, we observe only a minor drop in qual- 625

ity, suggesting that Diverse-NS effectively balances 626

this trade-off in most scenarios. 627

The long-standing challenge of length. Eval- 628

uating diversity remains difficult due to the well- 629

known length bias in most diversity metrics. This 630

issue extends to ArmoRM scores, which also fa- 631

vor shorter texts (Tab. 1), further complicating 632

reliable evaluation. To mitigate this, we introduce 633

the ∆Diversity Decile metric, which quantifies per- 634

centile gains or losses in diversity (or quality) rela- 635

tive to the base model. Using this length-adjusted 636

metric, we observe substantial improvements in 637

diversity across most lexical diversity measures, 638

along with small but mixed changes in quality. 639

Overall, Diverse-NS offers a practical and scal- 640

able solution for boosting diversity in aligned 641

LLMs. By addressing the length bias in both train- 642

ing and evaluation, our framework sets a founda- 643

tion for more expressive and diverse language gen- 644

eration. We hope this work encourages further 645

exploration of length-aware diversity alignment. 646
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Limitations647

While our study demonstrates the effectiveness of648

diversity-aware self-learning, several areas remain649

open for future exploration. First, our data filter-650

ing relies on a single diversity metric (e.g., entropy651

or TTR). Although effective, no single metric can652

fully capture all aspects of text diversity. Future653

work could incorporate multiple metrics to jointly654

optimize lexical, semantic, and syntactic variation,655

as well as novelty, to better capture diverse training656

signals. Second, we focus on one data genera-657

tion task—short story writing—which allows for658

controlled analysis and task-specific improvements.659

Expanding the framework to include a broader set660

of tasks could lead to more generalizable diversity661

enhancements. Third, our self-learning setup in-662

vestigates only a single round of preference tuning.663

While this provides a strong baseline, recent work664

suggests that repeated rounds of self-training can af-665

fect diversity (Guo et al., 2023; Seddik et al., 2024;666

Herel and Mikolov, 2024). It would be valuable667

to study how diversity evolves across multiple self-668

learning iterations in our framework. We do not in-669

clude human evaluation in this study. While human670

judgments can provide nuanced insight, they often671

come with variability and inconsistency. Along672

these lines, it is often prohibitively costly to gather673

high-quality human feedback—particularly at the674

scale necessary to provide stable estimates. In this675

paper, we emphasize stringent empirical evaluation676

of D-NS using reliable, automatic metrics and leave677

human-centered evaluation for future work. It is678

worth noting a peculiar change in the length distri-679

bution of the preference-tuning model (Table D.1).680

Even though preference pairs are of comparable681

lengths in Diverse-NS and Diverse-NS-Lite, the682

model learns to be more expressive. We suspect683

this shift is influenced by a skewed proportion of684

longer preference pairs, which may inadvertently685

bias the model toward generating longer responses.686

Controlling the length distribution is challenging687

under our current framework due to the strict filter-688

ing criteria. In future work, we aim to address this689

by extending our method to a multi-task setup that690

includes both short and long generation tasks.691

Ethics Statement692

Our work focuses on improving the diversity of lan-693

guage model outputs, particularly in creative and694

open-ended tasks. While diversity is an important695

dimension of language generation, it may come at696

the cost of factual correctness in certain scenarios. 697

Therefore, we caution against the use of our dataset 698

or models in tasks where factual accuracy is crit- 699

ical, such as medical advice, legal reasoning, or 700

scientific fact-checking. We also acknowledge the 701

growing computational divide in language model 702

research. A key motivation behind our approach is 703

to make diversity-aware alignment more accessible. 704

By limiting training to 3,000 preference pairs and 705

demonstrating the effectiveness of smaller models 706

(e.g., Olmo-2-7B) as diversity teachers, we aim to 707

lower the resource barrier and encourage further 708

research in compute-constrained environments. Fi- 709

nally, while we use proprietary language models 710

(such as GPT-4o and Claude) to assist in editing 711

and refining text during data curation and paper 712

writing, no portion of this manuscript was gener- 713

ated entirely by an LLM. All content has been writ- 714

ten, reviewed, and edited by the authors to ensure 715

clarity, originality, and scientific rigor. 716
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Appendix970

A Prompts971

This section provides the exact prompts used for972

data generation, model training, and model evalua-973

tion.974

A.1 Data Generation Prompts975

The prompt used for generating the first response976

set from the model is as follows,977

System Prompt: Task Description: For
this task, you will write a very
short story. You will be given
3 words, and write a story that
includes all 3 words. Your story
should be about 5 sentences long.
Use your imagination and be creative
when writing your story. But, also
be sure your story makes sense.
User Prompt: Write a short story
that includes these three words:
[THREE_WORDS].

978

The prompt used for generating the second re-979

sponse set from the model is as follows,980

System Prompt: Task Description: For
this task, you will write a very
short story. You will be given
3 words, and write a story that
includes all 3 words. Your story
should be about 5 sentences long.
Use your imagination and be creative
when writing your story. But, also
be sure your story makes sense.
User Prompt: Write a short story
that includes these three words:
[THREE_WORDS].
Assistant Prompt: [FIRST_STORY]
User Prompt: I do not like the
previous story. Please rewrite the
story in the most creative way. The
new story: - must be completely
different from the previous story
in: story plot and characters. -
must have a completely different
start (do not use standard phrases
like "Once upon", "As the", "In a",
"In the" etc.). - must be composed
of exactly [FIRST_STORY_WORD_COUNT]
words. Remember to use the three
words: [THREE_WORDS]

981

A.2 Model Evaluation Prompts 982

Divergent Association Task The prompt used 983

for the Divergent Association Task (DAT) is as 984

follows, 985
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System Prompt: Task description:
Please generate 10 words that are
as different from each other as
possible, in all meanings and uses
of the words. Rules: Only single
words in English. Only nouns (e.g.,
things, objects, concepts). No
proper nouns (e.g., no specific
people or places). No specialized
vocabulary (e.g., no technical
terms). Think of the words on your
own (e.g., do not just look at
objects in your surroundings). Make
a list of these 10 words, without
any repetition. You must list each
word with a number and a period. For
example, "1. word-1, 2. word-2,
etc."
User Prompt: List 10 words that are
as different from each other as
possible:

986

Persona Generation Task (PGT) The prompt987

used for the Persona Generation Task (PGT) is as988

follows,989

System Prompt: Generate a random
persona description with three
characteristics. Characteristics
are: - First Name - The city of
birth - Current occupation Format
the output strictly using JSON
schema. Use ‘first_name‘ for First
Name, ‘city‘ for the city of birth,
‘occupation‘ for current occupation
as corresponding JSON keys. The
ordering of characteristics should
be arbitrary in your answer.

990

Alternate Uses Task (AUT). The prompt used991

for the Alternate Uses Task (AUT) is as follows,992

System Prompt: Task Description: For
this task, you’ll be asked to
come up with as many original and
creative uses for objects as you
can. The goal is to come up with
creative ideas, which are ideas that
strike people as clever, unusual,
interesting, uncommon, humorous,
innovative, or different. You must
list each use with a number and a
period. For example, "1. Use-1, 2.
Use-2, 3. Use-3, etc.". You must
provide exactly five (5) uses for
each object.
User Prompt: Object: [OBJECT],
Uses:

993

The objects used for collecting the AUT re- 994

sponses are as follows, 995

"belt", "brick", "broom", "bucket",
"candle", "clock", "comb", "knife",
"lamp", "pencil", "pillow", "purse",
"rope", "sock", "table"

996

Creative Writing Task (CWT). The three-word 997

sets used in evaluating the model are as follows, 998

("stamp, letter, send"), ("petrol,
diesel, pump"), ("statement,
stealth, detect"), ("belief, faith,
sing"), ("gloom, payment, exist"),
("organ, empire, comply"), ("year,
week, embark"),

999

B Pilot Analysis for Sequential Prompting 1000

We conducted an exploratory analysis on 20, 000 1001

short stories generated from Llama-3.1-8B and 1002

Olmo-2-7B models (Grattafiori et al., 2024; OLMo 1003

et al., 2024). The analysis was targeted at under- 1004

standing the repeating patterns in the generated 1005

stories. With the help of the diversity package in 1006

Python (Shaib et al., 2024a), we extract the top-5 1007

repeating Part-Of-Speech (POS) bi-grams. We find 1008

that the most repeated bigram (IN DT) occurs in 1009

over 15k stories (out of 20k) and 23% of occur- 1010

rences are present at the beginning of the generated 1011

story, refer to table B.1. 1012

Based on the findings, we conducted a sequential 1013

prompting experiment that elicits a more diverse 1014

response from the model by asking the model to 1015
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POS Pattern Example String Present
(out of 20k)

Present at
start (%)

IN DT As a, In a, In the, At the, On the 15,782 23.30
DT JJ a delicate, the rare, the main, the late 11,418 16.81
DT NN an alley, a monarc, a spoon, a thicket 18,472 16.03
JJ NN single silk, current king, ancient time 9,335 0.50
NN IN hike in, group of, wave of, vendor to 1,800 0.45

Table B.1: Repeating bi-grams are more likely at the beginning. We present the frequency of repeating POS
bi-grams. IN DT is the most frequent and commonly appears at the start of generated stories.

avoid repeating phrases (refer to appendix A.1 for1016

exact prompts). We find that the diversity of the1017

second response is, on average, higher than the first1018

one.1019

C Hyperparameters for Preference1020

Optimization1021

We fine-tune the base model using the Direct Prefer-1022

ence Optimization (DPO) objective (Rafailov et al.,1023

2023), with β = 0.1 to control the divergence from1024

the original policy. We use a peak learning rate of1025

1× 10−5 with a cosine learning rate schedule, and1026

a warm-up phase covering 10% of the total training1027

steps. All models are trained using LoRA adapters1028

(Hu et al., 2021) with a rank r = 16 and scaling fac-1029

tor α = 16, on a quantized 4-bit backbone model1030

(Dettmers et al., 2023). We add the LoRA modules1031

to query and value projection metrics of all trans-1032

former layers in the base model with a dropout of1033

5%.1034

D Reponse Length Distribution1035

We observe that the length distribution varies after1036

fine-tuning the model. As presented in table D.1,1037

we observe that the average (and standard devia-1038

tion) of response length reduces for DivPO and in-1039

creases for our proposed methods (Diverse-NS and1040

Diverse-NS-Lite). DivPO (inadvertently) teaches1041

the model to generate shorter responses (refer to1042

table 2). Despite maintaining comparable length1043

for “chosen” and “rejected” samples in our meth-1044

ods (Diverse-NS and Diverse-NS-Lite), the model1045

interestingly learns to generate longer responses.1046

We suspect this shift is influenced by a skewed pro-1047

portion of longer preference pairs, which may inad-1048

vertently bias the model toward generating longer1049

responses.1050

E Results with Standard Deviation1051

In this section, we report the results with the stan-1052

dard deviation values in Table E.1.1053

F ∆DD-based Evaluation 1054

Similar to the results presented fig. 1 for Olmo-7B, 1055

we present the results for Llama-8B and Olmo-13B 1056

in this section. 1057

G A Summary of Metrics 1058

We provide a concise summary of all metrics used 1059

in our evaluation setup in Table G.1. 1060
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Diversity Quality

Better than
base model

Worse than
base model

Diversity Quality

Better than
base model

Worse than
base model

Figure F.1: Diversity and Quality Evaluation on CWT. This figure shows ∆Diversity Decile (∆DD) values
(y-axis) across various metrics (x-axis), computed from 70 CWT responses generated by the Llama-8B model
(top-panel) and Olmo-13B (bottom panel). A value of zero represents base model performance; bars indicate
improvements from preference-tuned models.
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Metric First Story Second Story Increase in Diversity

TTR 0.7112 0.7469 +0.0357
MAAS (↓) 0.1639 0.1609 +0.0031
HD-D 0.4143 0.4202 +0.0059
MTLD (MA-Bi) 13.9802 14.3997 +0.4195
MTLD (MA) 14.0778 14.5063 +0.4284
MTLD 14.2246 14.6652 +0.4406
MATTR 0.3810 0.3867 +0.0057

Table B.2: Sequential prompting increases diversity. We conducted a trial of sequential prompting on 20, 000
responses generated from Llama-8B and Olmo-7B models. The second story generated from the models has higher
diversity. ↓: indicates that the lower values of MAAS index represent higher diversity.

Model Base Model DivPO (Lanchantin et al., 2025) Ours - D-NS-Lite Ours - D-NS

Llama-8B 123.27± 18.14 111.24± 14.89 141.44± 37.26 139.47± 33.65
Olmo-7B 73.63± 15.47 62.27± 12.88 81.37± 18.21 83.91± 17.93
Olmo-13B 86.11± 13.96 72.20± 13.87 101.40± 17.64 100.60± 18.01

Table D.1: Change in the Response Length. In this table, we present the average length of model-generated
responses before and after the preference-tuning. The average values are calculated on 70 responses generated on
the CWT evaluation prompts.
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Task Metric Base Model DivPO D-NS-Lite D-NS

LLaMA-8B

DAT DSI 0.7535± 0.07 0.7545± 0.06 0.7590± 0.07 0.7640± 0.07
DAT Unique Words 0.4575 0.4593 0.4797 0.4914
PGT Unique First Names 0.6500 0.6100 0.6900 0.6900
PGT Unique Cities 0.3300 0.3100 0.4700 0.4200
PGT Unique Occupations 0.4100 0.3900 0.5100 0.4900
AUT DSI 0.8876± 0.02 0.8837± 0.02 0.8876± 0.02 0.8878± 0.02
CWT DSI 0.8515± 0.01 0.8521± 0.01 0.8556± 0.01 0.8581± 0.01
CWT ArmoRM Score 0.1451± 0.02 0.1495± 0.01 0.1369± 0.02 0.1405± 0.02
CWT 4-gram div. POS 0.4990 0.4990 0.5030 0.5000
CWT 4-gram div. 2.8550 2.9320 2.9450 2.9620
CWT Comp. Ratio. 2.635 2.546 2.568 2.530

OLMo-7B

DAT DSI 0.7480± 0.09 0.7509± 0.08 0.7662± 0.08 0.7639± 0.08
DAT Unique Words 0.6139 0.6079 0.6347 0.6327
PGT Unique First Names 0.3300 0.3300 0.3300 0.3400
PGT Unique Cities 0.3100 0.3000 0.2700 0.2700
PGT Unique Occupations 0.5200 0.5500 0.6100 0.6100
AUT DSI 0.8836± 0.02 0.8846± 0.02 0.8852± 0.02 0.8858± 0.02
CWT DSI 0.8499± 0.01 0.8491± 0.01 0.8548± 0.01 0.8563± 0.01
CWT ArmoRM Score 0.1435± 0.02 0.1441± 0.02 0.1462± 0.01 0.1464± 0.01
CWT 4-gram div. POS 0.5720 0.5770 0.5350 0.5530
CWT 4-gram div. 3.1270 3.1690 3.1750 3.1620
CWT Comp. Ratio. 2.4460 2.4160 2.3850 2.3970

OLMo-13B

DAT DSI 0.7233± 0.06 0.7282± 0.07 0.7320± 0.06 0.7364± 0.06
DAT Unique Words 0.3421 0.3340 0.3310 0.3256
PGT Unique First Names 0.4100 0.4100 0.4400 0.4500
PGT Unique Cities 0.3500 0.3500 0.3700 0.3900
PGT Unique Occupations 0.1900 0.1900 0.1900 0.2000
AUT DSI 0.8943± 0.02 0.8960± 0.02 0.8974± 0.02 0.8970± 0.02
CWT DSI 0.8557± 0.01 0.8555± 0.01 0.8616± 0.01 0.8614± 0.01
CWT ArmoRM Score 0.1571± 0.01 0.1589± 0.01 0.1585± 0.01 0.1590± 0.01
CWT 4-gram div. POS 0.5210 0.5229 0.5080 0.4960
CWT 4-gram div. 3.0820 3.0770 3.095 3.1070
CWT Comp. Ratio. 2.492 2.512 2.505 2.480

Table E.1: Diversity and Quality Evaluation. We present the average (± std. dev.) diversity (DSI or unique
values) and quality (ArmoRM score) measurements for model responses collected on four creative generation tasks
(Structured Gen.: DAT, PGT, Free-Form Gen.: AUT, CWT).
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Metric Definition Trend Description (Trend) Application

Entropy Entropy of the token distribu-
tion in a response; measures un-
predictability.

Higher values indicate greater
lexical diversity (↑).

Training-data filtering and
diversity-bias analysis

Type–Token Ratio
(TTR)

Ratio of unique token types to
total tokens.

Higher values indicate more
lexical variety (↑).

Lightweight filtering (D-NS-
Lite), Calculation of Diversity
Decile

Moving-Average TTR
(MATTR)

Moving-average of TTR over
sliding windows; smooths vari-
ability.

Higher values indicate greater
lexical diversity (↑).

Correlation analysis, Calcula-
tion of Diversity Decile

Measure of Textual Lex-
ical Diversity (MTLD)

Average segment length until
TTR falls below a threshold;
longer segments imply more di-
versity.

Higher values indicate greater
lexical diversity (↑).

Correlation analysis, Calcula-
tion of Diversity Decile

Moving-Average
MTLD (MTLDM )

Moving-average smoothing of
MTLD to reduce variance.

Higher values indicate greater
lexical diversity (↑).

Correlation analysis, Calcula-
tion of Diversity Decile

Bidirectional Moving-
Average MTLD
(MTLD-MB)

MTLD-M applied forward and
backward for context-sensitive
smoothing.

Higher values indicate greater
lexical diversity (↑).

Correlation analysis, Calcula-
tion of Diversity Decile

MAAS Proxy metric correlated with
ArmoRM quality scores.

Higher values indicate stronger
quality/diversity signal (↑).

Lightweight filtering (D-NS-
Lite), Calculation of Diversity
Decile

Hypergeometric Distri-
bution Diversity (HD-
D)

Probability-based measure of
lexical diversity under a hyper-
geometric model.

Higher values indicate greater
lexical diversity (↑).

Correlation analysis

ArmoRM score Holistic quality score from a re-
ward model.

Higher values indicate better
fluency–diversity trade-off (↑).

Quality evaluation (Creative
Writing Task) and filtering, Cal-
culation of Diversity Decile

Divergent Semantic In-
tegration (DSI)

Average semantic distance
among items in a generated
list.

Higher values indicate greater
divergent thinking (↑).

Diversity evaluation (Diver-
gent Association Task, Creative
Writing Task)

Diversity Decile (DD) Decile rank of a response’s di-
versity within its length group.

Higher decile indicates higher
relative diversity after length
normalization (↑).

Length-normalized evaluation
(Creative Writing Task)

Change in Diversity
Decile (∆DD)

Difference in DD before and af-
ter tuning; quantifies diversity
gain.

Positive values indicate diver-
sity gain; negative indicate loss
(↑/↓).

Measuring tuning effect on di-
versity (Creative Writing Task)

Semantic Distance (SD) Average embedding-space dis-
tance between outputs; indi-
cates semantic variety.

Higher values indicate greater
semantic variety (↑).

Diversity evaluation (Alternate
Uses Task)

Table G.1: Overview of diversity and quality metrics: definitions, trend descriptions with arrows, and their
applications including evaluation tasks.
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