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ABSTRACT

Large language models have become multimodal, and many of them are said
to integrate their modalities using common representations. If this were true,
a drawing of car as an image, for instance, should map to the similar area in
the latent space as a textual description of the strokes that conform the drawing.
To explore this in a black-box access regime to these models, we propose the
use of machine teaching, a theory that studies the minimal set of examples a
teacher needs to choose so that the learner captures the concept. In particular,
we apply this to GPT-4V, a multimodal version of GPT-4 that includes support for
image analysis, to evaluate the complexity of teaching a subset of objects in the
Quick, Draw! dataset using two presentations: raw images as bitmaps and trace
coordinates in TikZ format. The results indicate that image-based representations
generally require fewer segments and achieve higher accuracy when compared to
coordinate-based representations. But, surprisingly, for concepts recognized by
both modalities, the teaching size ranks concepts similarly across both modalities,
even when controlling for (a human proxy of) concept priors. This could also
suggest that the simplicity of concepts is an inherent property that transcends
modality representations.

1 INTRODUCTION

As children, when we transform images of the world into drawings and other simplified sketches, we
have the intuition that some objects are simpler than others (Chen & Cook, 1984; Long et al., 2018).
For instance, six segments are enough to represent a house that everybody can recognize, while
a bit more are necessary to represent a cat. This intuition is epitomized by some guessing games
where one person picks a concept from a card deck and has to draw something quick for their team
to identify the concept. We can easily describe and recognize some very simple visual concepts,
such as letters, with verbalized descriptions. For instance, the letter T is a horizontal segment on top
of a vertical segment. However, it is challenging for humans to describe complex shapes as verbal
descriptions (Sun & Firestone, 2022) or objects, such as a cat, using a series of segments.

However, Large Language Models (LLMs) can identify objects from a textual representation of their
coordinates (Bubeck et al., 2023). Thus, we need to find out whether this understanding maps to
similar capabilities for the multimodal versions of these models. Also, we do not know whether this
is independent of the modality. Here, we are asking two research questions:

• Q1 (Absolute Invariance): If we randomly sample a concept from a concept class, c → C, would it
take the same number of segments to identify it if represented as a bitmap drawing as if represented
as a set of coordinates in textual form?

• Q2 (Relative Invariance): If we randomly sample two concepts from a concept class, c1, c2 →
C, such that each of the two concepts is recognized by both modalities, and c1 requires fewer
segments than c2 when represented as a bitmap drawing, will this order prevail when expressed as
a set of coordinates in textual form?

It is important that we distinguish the second question from the first. For instance, consider c1 is
a house and c2 is a cat. Following the example in Figure 1, if a house is easier than a cat
when using the bitmap of the drawing (top of the figure), is it also easier when represented as
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Bitmap:

House

<

Cat

Coordinates:

\draw (10, 169) -- (0, 0) --

(250, 0) -- (226, 178) -- (20,

172);

\draw (2, 166) -- (78, 255) --

(253, 165);

House

<

\draw (49, 9) -- (13, 134);

\draw (67, 199) -- (163, 185);

. . .

Cat

Figure 1: In this paper, we address two research questions. First, Q1 (absolute invariance): When
using a vision-language model, are bitmaps (top) equally efficient representations for drawings than
coordinates (bottom)? The second question is Q2 (relative invariance): Are the orders (left vs. right)
of simplicity preserved across modalities?

segment coordinates (bottom of the figure)? This question Q2 is different from Q1, which refers
to whether a concept represented with a bitmap drawing is easier or harder to recognize than the
same concept as coordinates in text. Question Q2 is about the ranking, the relative invariance. Note
that we are not comparing with photographic images of the object since other features would come
into play. For instance, a tiger is mostly recognized (or distinguished from other felines) by its
striped texture rather than by its shape. Such distinctions are particularly evident in machine vision
systems (Geirhos et al., 2023). In the rest of this work, when addressing relative invariance, we
assume that the two concepts in question have been recognized by both modalities.

However, how will we determine the notion of simplicity of a concept from its drawings? The
idea we pursue in this paper is based on the field of machine teaching (Zhu et al., 2018), and in
particular, the notion of teaching minimality. A concept is as simple as a teacher can communicate
the concept to a learner with as little information as possible. This captures our intuition that a
house needs six segments while a cat needs many more. Given a concept, the teacher thus faces
the problem of finding the simplest drawing in terms of the number of straight-line segments—the
teaching size—that enables the learner to consistently recognize the concept over a certain number
of attempts. We use two different types of language representations (bitmaps of the drawing
and coordinates in TikZ code) to present the concepts to the learner. The Generative Pretrained
Transformer (GPT)-4V model (Achiam et al., 2023) is employed as the “learner.”

It is also important to note that priors play a role in machine teaching. When in doubt, the learner
will more likely associate the evidence with the most common concept (e.g., a house is more
common than an envelope). Accordingly, a Bayesian prior will be used to disentangle this effect
when looking at the concept simplicity rankings.

The contributions of this paper are:

• A novel machine teaching framework for evaluating the complexity of concepts, which can be
applied to drawings in coordinate- and image-based modalities.

• Use of the teaching size specifically to evaluate how simply and effectively the concept can be
taught across both modalities.

• A comparison of the effectiveness of both modalities on GPT-4 by focusing on the number of
concepts identified, accuracy, frequency of errors, and teaching size.

• A way to disentangle the effect of the learner’s prior knowledge in the concept identification task.

These contributions are generic and can be applied to other problems and modalities. In our
particular case, we show that bitmaps are more efficient than coordinates, but surprisingly, the order
of complexity between the concepts is preserved. This suggests that either the representations of
both modalities are tightly connected in the latent space of the model or the simplicity of concepts
is an inherent property that transcends modalities.
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2 RELATED WORK

Drawing (or Sketches) Recognition Eitz et al. (2012) were the first, to our knowledge, to provide
a dataset of human drawings. Their dataset includes 250 concepts and 20,000 drawings. In the same
work, they introduced a support vector machine model to recognize these drawings and observed
that humans outperformed its performance. Since then, artificial intelligent models has been closer
or even higher than the accuracy of human classification for drawing recognition (e.g., Schneider &
Tuytelaars 2014; Yu et al. 2015; Zhang et al. 2020).

Using the Quick, Draw! dataset, Ha & Eck (2017) propose sketch-rnn, a generative model
designed to create drawings of common objects that resemble those drawn by humans. A similar
version of this model has also shown capabilities in drawing recognition (Bajaj, Payal, 2017). Other
neural approaches studied for this task include convolutional neural networks (Kabakus, 2020), and
graph neural networks applied over drawings represented as graphs (Xu et al., 2022).

Drawing (Recognition) Capacities of GPT-4 Sharma et al. (2024) assess the visual abilities of
different language models (including GPT-4). They conduct experiments that prompt the models
to create code that draws images based on text descriptions and improve image generation code
iteratively through text feedback. Additionally, and of particular relevance to our research, the
authors evaluate the model’s ability to recognize visual concepts from human drawings converted
into code. They arrive at two important conclusions: (a) language models, such as GPT-4, possess
limited ability to recognize concepts represented in code, and (b) these models sometimes fail to
recognize concepts that they can accurately draw. Note that the authors addressed the problem as
a multi-class classification problem. Moreover, the online interface utilized for collecting human
drawings is confined to specific components and shapes, such as ellipses. This limitation might
restrict the ability of participants to express more complex drawings fully.

In their initial experiments with GPT-4, Bubeck et al. (2023) presents an example of drawing
generation, showcasing text-to-image capabilities using TikZ. They show tasks such as GPT-4
drawing a unicorn and constructing TikZ code through a multi-step prompt process. In another
study, Pourreza et al. (2023) introduce the Painter, a modified LLM that creates drawings using
virtual brush strokes based on user-provided text descriptions, with results indicating that Painter can
effectively generate, complete, and modify drawings following textual prompts. Additionally, Cai
et al. (2023) evaluated GPT-4’s ability to understand visual data in SVG format across various visual
tasks, including image classification, visual reasoning, and image generation, concluding that GPT-4
possesses the capacity to understand and generate visual content.

Machine Teaching Machine teaching is a research area that focuses on identifying the optimal
set of examples that allow a learner (e.g., a human or a machine) to identify a given concept (Zhu
et al., 2018). To illustrate the underlying idea of machine teaching, assume the teacher wants the
learner to identify the concept of prime numbers. To achieve this, the teacher uses the set S1 =
{2, 3, 5, 7, 11, 13} and succeeds. However, would it not be enough for the learner just to see the
smaller set S2 = {19, 23}? Of course, that depends on the learner. In general, optimal teaching will
depend on the model the teacher has about the learner, but we can also consider that the teacher tries
many sets in independent experiments to answer that question.

Machine teaching presents an alternative framework to machine learning (where examples are
not chosen but sampled from a distribution) to answer the question of whether some concepts
are inherently more complex than others. The connections between machine teaching and
computational learning theory are strong; see, e.g., the works by Doliwa et al. (2014) or Moran
& Yehudayoff (2016), with machine teaching putting the emphasis on the minimal evidence that
distinguishes the concept from all the rest. To determine how easy it is to teach a concept, the
teaching dimension (Zhu et al., 2018)—the minimum number of examples the learner needs to
identify a concept—was traditionally used. Recently, however, Telle et al. (2019) introduced a new
metric named teaching size. This metric puts the focus on the sum of the sizes of the examples
needed to identify a concept, rather than only the number of examples.
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3 METHODS

The drawings used in this work come from the Quick, Draw! dataset (Jongejan et al., 2016; Ha &
Eck, 2017), which includes over 50 million drawings of 345 concepts. Collected by Google Creative
Lab via an interactive game, participants had 20 seconds to draw a concept while a neural network
attempted real-time recognition. The dataset, which is publicly available and moderated by Google
Creative Lab, is the largest collection of doodles in the world, with contributions from more than
15 million participants. Each drawing in the Simplified Drawing files that we use is stored as vectors
of distinct pen strokes, i.e., distinct continuous movements of the pen without lifting. Each stroke
si is represented by a sequence of (x, y) coordinates {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}. Note
that each pair of consecutive points in a stroke creates a segment. Additionally, for each drawing, a
binary flag r indicates whether the game’s neural network correctly recognized the concept.

The following sections discuss our selection of concepts and the corresponding drawings. They also
introduce the learner, the proposed machine teaching setting, and a set of experiments we carried
out before testing this framework, which we call altogether pre-framework experiment.

3.1 TEACHING SIZE

Let D denote an infinite space of possible drawings (and their simplifications, as will be explained
later), and let C be a set of concepts. We use Dc to denote all the drawings of a concept c → C. For
any given concept c → C, in some representation, the objective is to identify the simplest drawing
S → Dc such that a learner L successfully learns c with a probability of at least ω over N independent
trials (i.e., recognition consistency). The teaching size (TS) of c can be defined as follows:

TSω,N (c) = min
S→Dc

|S| s.t.
N∑

1

1 [L(S) = c] ↑ ω ·N. (1)

We argue that a good metric for assessing the simplicity of a given drawing d can be based on the
number of segments it contains. This is represented by |S| in the above equation.

3.2 CONCEPTS

In our work, if the expected concept is car and the identified concept is police car, the
identification is still considered correct because police car is a specific type of car. This
approach is similar to the one followed by Lamb et al. (2020). This means that if a specific
sub-concept, or hyponym, is identified, it should still be seen as a correct identification as long
as it falls under the more general expected concept. For a concept c, such as car, we consider
a set of hyponyms h(c) that corresponds to a set of concepts with a more specific meaning than
c, e.g., police car belongs to h(car). For this study, we want a set of concepts that ensures
that in the set of their hyponyms, there is no overlap, i.e., for any two concepts ci, cj , we have
h(ci) ↓ h(cj) = ↔. This rules out certain pairs of concepts available in the Quick, Draw!, like van
and car, and it enhances the clarity and robustness of the study.

Thus, we select the following subset of 20 concepts from the 345 concepts available in Quick,
Draw!, with no overlap among their hyponyms: apple, banana, car, cat, computer, cup,
door, envelope, fish, grass, hockey puck, house, key, radio, string bean, sun,
sword, television, The Great Wall of China and tree. In Table 3 in the Appendix,
we list each concept from the dataset and the accepted hyponyms that are considered correct. This
correspondence is established by human inspection and after the execution of the pre-framework (cf.
Sect. 3.6) and the machine teaching framework experiments, with the results then analyzed based
on these mappings.

3.3 DRAWINGS

After choosing the concepts to study, we only include drawings that the game’s neural network
correctly identified (i.e., r = 1) in our research. For every concept, approximately 50 drawings
are selected by a proportional random stratified sampling method (Taherdoost, 2016), based on the
number of strokes (this number is approximate, as there may be rounding errors when calculating the
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ω = 2; 48 segments ω = 13; 17 segments ω = 27; 12 segments ω = 46; 7 segments

RDP RDP RDP

Figure 2: Example of a drawing simplification for the concept car using the RDP algorithm. As
the value of ε increases, the drawings become progressively simpler.

number of samples for each bin according to its proportion.) The bin width was obtained using the
minimum bin width between the Sturges’s rule and the Freedman Diaconis Estimator. This sampling
method ensures that drawings of any concept are represented in a way that reflects the distribution
of stroke counts for all correctly identified drawings of that concept in the dataset.

To simplify the drawings in our study, we employ the Ramer–Douglas–Peucker (RDP)
algorithm (Ramer, 1972; Douglas & Peucker, 1973) on each stroke s of a given drawing d. RDP
reduces the number of segments in each stroke while preserving its overall shape. Specifically, given
a stroke s with a sequence of points {(x1, y1), (x2, y2), . . . , (xn, yn)}, the RDP algorithm iteratively
selects the most distant point (xd, yd) from the line segment connecting the first and last points of
the stroke. If this distance is below a predefined threshold ε, then this stroke is simplified to a single
segment {(x1, y1), (xn, yn)} on the first and last points. However, if the distance to (xd, yd) exceeds
ε, the algorithm keeps this point and recursively processes the two sequences of points formed by
{(x1, y1), . . . , (xd, yd)} and {(xd, yd), . . . , (xn, yn)}. This ensures that the essential characteristics
of the stroke, up to distance ε, are preserved. This process continues until all points in the stroke fall
within the threshold, resulting in a simplified representation of the stroke with fewer segments. By
incrementing the threshold parameter, from an initial value of ε = 2 1, until each stroke is reduced
to one segment, we generate simplified versions of each original drawing associated with a given
concept c, resulting in new drawings {d}ε ↗ Dc. Figure 2 illustrates a drawing simplification.

3.4 LEARNER (L)

We utilize the GPT-4 model from OpenAI, which is a multimodal LLM capable of processing visual
(as per GPT-4V) and language inputs to produce text outputs (Achiam et al., 2023). To conduct the
experiments of this work, GPT-4 is accessed using OpenAI’s API. Also, we set the temperature
parameter T to 1 for the experiments carried out within the machine teaching framework, and we set
T = 0 for the pre-framework experiment. T → [0..2] controls the behavior of the model’s outputs:
the lower T is, the more deterministic (predictable) results it leads to (OpenAI, 2024). Thus, by
setting T = 0 in the pre-framework experiment, our goal is to obtain deterministic and predictable
results, which are essential for creating a consistent baseline of drawings where the concepts were
correctly identified. On the other hand, setting T = 1 in the experiments of the machine teaching
framework is intended to introduce a controlled level of variability, allowing the model to generate
diverse outputs while maintaining a degree of predictability.

We consider two different representations for each concept: a visual representation and a text-based
representation. Accordingly, we develop and test two prompt templates, one for each modality. For
the vision-based modality, the drawings are presented as images generated from the sequence of
coordinates (cf. Prompt 1 in the Appendix). For the text-based modality, the pen stroke vectors
are coded using the TikZ language (cf. Prompt 2 in the Appendix). Note that both prompts ask
for an open-ended answer (not multiple choice), allowing GPT to consider a wide range of possible
concepts when identifying a given concept, including those that are not in our 20-concept set.

Let us also briefly discuss the possible issue of contaminated data. Data contamination occurs
when language models are tested and evaluated using information from their training data. In this
context, this means drawings it has already seen during training (Ravaut et al., 2024). However,
in this study, the drawings are consistently simplified using the RDP algorithm. This algorithm
alters the coordinate information, thereby modifying the TikZ code and the visual representation.

1The strokes stored in the Simplified Drawing files of Quick, Draw! have already been simplified by the
RDP algorithm using ω = 2, so this initial value did not simplify any drawing further.
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Consequently, we argue that these modified drawings are not part of the training set used to train
GPT-4. Therefore, contamination tests are not required for this experiment.

3.5 CONCEPT PRIORS

As we argue in the introduction, some concepts, such as a house, are more common than others,
such as an envelope. This sets a strong prior bias, especially in cases of doubt. We obtain
these priors for each of the 20 concepts using Google Books Ngram. Google Books Ngram is a
tool developed by Google that allows users to analyze how often certain words and phrases appear
in an extensive collection of books over time (Google, 2010). Google Books Ngram provides
the prior of a given concept as normalized number between 0 and 1, representing the relative
frequency of the concept. The rationale for using word frequency from Google Books Ngram
as a proxy for human priors lies in the historical and cultural representativity of a corpus. The
assumption underlying our approach is that the frequency of specific words and phrases in written
text correlates with their prominence in human thoughts, discussions, and collective knowledge at
particular times (Tanaka-Ishii & Terada, 2011). Given that GPT models are trained on large text
corpora that include books, articles, and other written materials, it is reasonable to assume that the
priors derived from Google Books Ngram closely align with the priors embedded in GPT models.

In this study, we use the 2019 English corpus—the latest year accessible when we conducted our
experiments—in the Google Books Ngram, extracted with no smoothing factor applied, to serve as
the prior. Each concept is analyzed without considering variations in capitalization and is treated
strictly as a noun. This approach ensures that, for instance, the concept fish is recognized only as
the animal instead of the fishing activity, avoiding ambiguity in the prior information.

3.6 PRE-FRAMEWORK EXPERIMENT

After selecting the drawings from the concepts for evaluation, we conduct what we call a
pre-framework experiment for the generation of a wide range of simplified drawings. Hence, our
minimization of Eq. 1 is sufficiently accurate. As already mentioned, the drawings are simplified
using the RDP algorithm. The process starts with a threshold of ε = 2 on the raw drawings
and continues until each stroke in the drawing consists of a single segment. For each ε, the
learner is prompted using Prompt 1 for visual-based identification and Prompt 2 for text-based
identification. Then, based on the completions from the learner, we obtain, by human inspection, the
correspondence (between concepts and their respective accepted hyponyms) described in Table 3 in
the Appendix, and we analyze the results based on those mappings. The accuracy and frequency of
mistakes for each concept are also obtained from the pre-framework experiment.

In total, for the pre-framework experiment, N = 21, 896 prompts are presented to the learner.
We then use the drawings that are correctly identified to test and evaluate the machine teaching
framework proposed in Eq. 1, and thus obtain, for each concept, the teaching size.

4 RESULTS

4.1 CONCEPTS IDENTIFIED

Out of the 20 concepts evaluated, 16 are identified by the learner using images, specifically: apple,
banana, car, cat, computer, cup, door, envelope, fish, house, key, radio, Sun,
sword, television and tree. For coordinates, six concepts are recognized, namely car, cat,
envelope, fish, house and tree. In both representations, however, the concepts of grass,
hockey puck, string bean, and The Great Wall of China are not identified. We
hypothesize that not only the complexity but also the prior of each of these latter concepts are
behind their failed identification.

The image-based modality is thus more effective than the coordinate-based modality in identifying a
broader range of concepts. This observation aligns with the typical human learning patterns, where
visual information is often easier to process and understand than abstract text-numerical data.
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Images Coordinates

Figure 3: Accuracy for each concept in the vision-based (images; left) and text-based (coordinates;
right) modality representations.

4.2 ACCURACY

We begin by evaluating the accuracy on each concept c, Accuracy(c), defined here as

Accuracy(c) =
1

Nc

Nc∑

i=1

1 [L(Si) = c] , (2)

where Nc corresponds to the total number of tests (in this case, prompts) conducted on L for the
concept c on the pre-framework experiment, with {Si}Nc

i=1 ↗ Dc.

Figure 3 depicts each concept’s accuracy across the two modality representations. We can observe
that modalities significantly influence the accuracy levels for the same concepts. For example, the
concept envelope achieves an accuracy of 60.48% in the image-based modality, while in the
coordinate-based modality, it reaches to 5.46%. This pattern is also observable in car, fish, and
cat concepts. Conversely, the accuracy levels between visual and textual modalities are similar for
the concepts of house and tree.

For house, it is interesting to note that the concept is identified in over half of all prompts in
the coordinate-based modality. One plausible explanation for this is the inherent simplicity and
commonality of the house concept. The structure of a house, typically represented by a few
straight lines forming a basic geometric shape, can be easily represented using coordinates. This
simplicity likely contributes to its higher recognition rate. Additionally, the concept of a house is
more common, which may influence the model’s priors and contribute to its higher accuracy in both
modalities.

We also study the relationship between the number of segments (i.e., complexity) and the accuracy
of concept identification for both image- and coordinate-based representations, as shown in Figure 4.
For image-based representations, there is a clear positive relationship between the number of
segments and accuracy. Starting from an accuracy of around 10% in the (0, 7] interval, the
accuracy increases steadily, reaching approximately 65% in the (62, 69] interval. Conversely, for
the text modality, the accuracy remains consistently low across all segment intervals, with values
fluctuating between approximately 10% and 20%. This indicates that increasing the number of
segments in coordinate-based representations does not significantly improve the accuracy of concept
identification (and may even get worse at the end as the description becomes very large).

4.3 FREQUENCY OF MISTAKES

Accuracy measures how well the learner has identified the correct concepts. However, the model
can also respond with “I don’t know” answers (or something that is not a concept), or by identifying
a different concept which is incorrect. We focus on the latter case and refer to this performance

7
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Figure 4: Relationship between the number of segments and accuracy for both modalities.

Images Coordinates

Figure 5: Observed mistakes for each concept in the visual-based modality (images) (left) and
text-based modality (coordinates) (right). The little crosses represent the prior probability for each
concept.

metric as the frequency of mistakes for a given concept c, FOM(c). Formally,

FOM(c) =
1

N

N∑

i=1

1 [Si → Dc ↘ L(Si) ≃= c] , (3)

where N is the total number of tests (prompts) conducted on L during the pre-framework
experiment. In this study, as already mentioned, N = 21, 896. We also explore whether there
is a relationship between the frequency of mistakes and the prior probability of each concept. We
have included in Tables 4 and 5 of the Appendix the confusion matrices for the GPT-4’s predictions
for both modalities. These tables show how well the model performs across various concepts by
detailing the true positives and the frequency of errors for each concept.

Figure 5 shows that the vision modality exhibits a lower percentage of observed mistakes than the
text modality. One possible explanation for this difference is that the coordinate-based modality
might be selecting answers from a smaller subset of concepts. The marginal row in the confusion
matrix for the image-based modality (Table 4) shows that only four concepts were never predicted,
even incorrectly, compared to 12 in the text-based modality (Table 5). This hypothesis also aligns
with our observation that only six out of the 20 concepts are ever recognized by the text-based
modality.

Interestingly, the concept house in both modality representations, and envelope in only the
visual-based modality, show the highest accuracy. However, these also have the highest frequency
of mistakes. This indicates that although these concepts are generally easily recognizable, variations
in attributes like size and shape may introduce ambiguities that complicate the identification of these
concepts. In other words, GPT often guesses these concepts whether they are correct or not. This
leads to high accuracy for these concepts but also a high number of observed mistakes.
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Table 1: Teaching size, consistency, and priors for the concepts identified by images.

Concept c TS0.5,50(c) Correct Incorrect Prior

Envelope 5 50 0 0.0011
Computer 6 50 0 0.0063
House 6 50 0 0.0315
Door 7 45 5 0.0253
Sun 7 50 0 0.0101
Sword 7 50 0 0.0047
Television 7 50 0 0.0031
Apple 9 50 0 0.0021
Fish 9 50 0 0.0057
Banana 10 50 0 0.0005
Cat 11 50 0 0.0034
Key 11 50 0 0.0051
Cup 13 50 0 0.0052
Tree 14 50 0 0.0080
Radio 17 50 0 0.0034
Car 19 50 0 0.0130

Table 2: Teaching size, consistency, and priors for the concepts identified by coordinates.

Concept c TS0.5,50(c) Correct Incorrect Prior

Envelope 5 50 0 0.0011
House 5 50 0 0.0315
Fish 15 32 18 0.0057
Tree 15 47 3 0.0080
Cat 20 50 0 0.0034
Car 31 50 0 0.0130

When calculating the Pearson correlation between the frequency of mistakes and the prior
probability, we obtain a weak correlation of 0.110 for the images and a strong correlation of 0.949
for coordinates. This suggests that in textual modality, the learner is more susceptible to responding
based on their pre-existing biases when confronted with unfamiliar concepts. In contrast, this
tendency is reduced in visual representation.

4.4 TEACHING SIZE

To calculate the teaching size for each concept, we set the T to 1, ω to 0.5, and N to 50, meaning that
a correct identification needs to happen at least 25 times out of 50 trials even with some stochasticity
in the model. The aim is to determine the simplest drawing for each modality representation that
the learner can identify consistently in at least 25 out of 50 trials. We highlight that this procedure
is different from the one conducted in the previous sections, where the experiment was part of
the pre-framework experiment. We present the results in terms of teaching size for images and
coordinates in Tables 1 and 2, respectively. Table 6 of the Appendix shows the original and simplest
representations for each concept and modality.

The data suggests that the average teaching size values for coordinates (15.16, SD=8.95) with
successful identification (6) are higher than images (10.67, SD=4.78) with successful identification
(16). But even if we look at the six concepts that are well identified by coordinates, the means are
lower for images. This means there is no absolute invariance, answering our question Q1 in the
negative. The number of strokes required to have a concept identified by GPT is higher using textual
coordinates than bitmap images.

Furthermore, it is important to highlight a weak, though similar, negative correlation between the
teaching size and the prior of each concept across both modalities. The correlation coefficients are
⇐0.204 for coordinates and ⇐0.152 for images. This may be the case because common concepts

9
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Figure 6: Concepts’ teaching size order for images (top) and for coordinates (bottom).

are geometrically simpler, but it is more likely that this is because they are more common and their
accuracy is higher; in the same way, we saw that the false positives for these concepts are higher.

Interestingly, however, teaching size ranks concepts in a similar order between images and
coordinates. The order is exactly the same except for cat and tree, with a Kendall rank correlation
of approximately 0.867. Even when adjusting for concept priors, by regressing the teaching sizes
for both modalities on the priors to isolate their residuals and then calculating the Kendall rank
correlation on those residuals, we obtain the same correlation value. This means that we have relative
invariance, which answers our question Q2 positively. The similar ranking of concept complexity
according to teaching size across both modalities indicates that concepts are inherently easier or
harder to teach in a relative way, regardless of the data modality and prior.

5 DISCUSSION

In this study, we examined how a multimodal model such as GPT-4 identifies the same concepts
in two different modalities: either image- or coordinate-based drawings. Our findings show that
images are generally more effective than coordinates for identifying concepts. In particular, using
images led to the recognition of more concepts than using coordinates, indicating that images are
better suited for teaching concepts to a given learner. This is supported by the higher accuracy and
lower frequency of mistakes seen with image-based representations. Moreover, we use the number
of segments as the teaching size to measure the complexity of a concept. Our analysis indicates
that the teaching size is again more beneficial for images than coordinates (answering question Q1
negatively) but consistently ranks concepts in the same way, regardless of the type of drawing used,
even when we account for the learner’s priors (answering question Q2 positively). This suggests that
some concepts are naturally easier or more difficult to teach, no matter how they are represented.

Our analysis has to be seen in the light of some limitations. (a) The study concentrates on a specific
set of concepts, which might affect how well the findings apply to other (eventually more complex)
concepts. (b) The study employs GPT-4 as the learning model. Although GPT-4 is powerful, results
may be different for other models, and of course, also for human learners, something that is out of
the scope of this paper. (c) Our use of the RDP algorithm for drawing simplification simplifies each
stroke but does not totally remove any single stroke from the drawing. This should not be much of
a limitation as we focus on the simplest drawings. (d) A factor that can influence the teaching size
of a concept is the curvature of its drawings, i.e., the amount by which it deviates from a straight
line. In this work, we have chosen not to focus on this aspect, but this could be of interest for future
works.

Our study shows that the simplest drawings usually correspond to those that humans intuitively think
of as less complex, and confirms that the simplest drawings are so across modalities. This gives
support to the hypothesis that the representation of concepts in both modalities is tightly connected
in the latent space. Some other methods, especially white-box approaches having access to weights
or gradients, could give a definitive answer to this hypothesis, but in cases such as GPT-4 or humans,
a black-box approach as the one presented in this paper is the practical course of action.
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