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ABSTRACT

The regression discontinuity design (RDD) is a widely used framework for
threshold-based causal effect estimation in causal inference. Recent extensions
incorporating machine learning (ML) adjustments have made RDD an appealing
approach for researchers utilizing causal ML toolkits. However, many real-world
applications, such as production systems, involve multiple decision criteria and
logically connected thresholds, necessitating more sophisticated identification
strategies, which are not clearly addressed in the recent literature. We derive a
novel identification result for the complier effect in the multi-score RDD (MRD)
setting by extending unit behavior types to multiple dimensions. Further, we show
that under mild assumptions, this identification result does not depend on subsets
of units with constant response. We apply our findings to simulated and real-world
data from opto-electronic semiconductor manufacturing, employing estimators that
adjust for covariates through machine learning. Our results offer insights into en-
hancing current production policies by optimizing the cutoff points, demonstrating
the applicability of MRD in a manufacturing context.

1 INTRODUCTION

The Regression Discontinuity Design (RDD) is a quasi-experimental strategy for the identification
and estimation of causal effects that has been widely applied in empirical economics (Hartmann
et al., 2011} |Card et al., [2015; [Flammer, 2015} (Calvo et al., 2019)), public policy (Lee}, |2008) and
the social sciences (Angrist & Lavy, [1999). Its appeal lies in its ability to deliver credible causal
estimates under minimal assumptions, utilizing discontinuities in treatment assignment rules that are
typically based on an observed running or score variable (Imbens & Lemieux)} 2008; Lee & Lemieux)
2010). Typical examples are credit scores, GPAs or vote shares. The classic RDD setting assumes
that treatment assignment hinges on a single, continuous forcing variable crossing a known threshold.
When correctly specified, this setting enables identification of average treatment effects for units near
the cutoff (Cattaneo et al.,[2019). In particular, RDD can be applied even if typical causal machine
learning assumptions such as unconfoundedness (Rubin, |1974) or positivity (Austin,[2011)) do not
hold (Imbens & Lemieux), [2008)).

However, in many real-world contexts — particularly in industrial, operational, or engineering systems
— treatment decisions are based not on a single score, but on multiple criteria (Sabaei et al., [2015).
Such situations call for an extension of the classical RDD setup to multi-score RDD (MRD), in which
treatment is assigned when a combination of variables jointly satisfies a threshold condition (Papay
et al., 2011). Recent work has surveyed MRD (Reardon & Robinson} [2012; Wong et al., [2013}; [Porter
et al.,|2017) and proposed estimators for test score-based (An et al., 2024) and geographical (Keele &
Titiunik| [2015) applications.

This paper addresses the identification and estimation challenges that arise in the context of multi-
score RDD, particularly in complex decision-making environments such as production systems. In
such systems, decision rules are often implemented through a layered combination of logic and
thresholds applied to multiple inputs, making the treatment assignment mechanism more intricate
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than in the standard RDD case. We develop new identification results tailored for multi-score RDD
settings. Specifically, we provide a formal framework that defines and categorizes behavioral types
of units. We investigate general boolean-type cutoff rules, such as "AND"-type and "OR"-type
rules, commonly observed in MRD environments and analyze how their properties influence local
identification. Further, we show how the complier effect can be identified using these categories. We
demonstrate the utility of our framework by applying it to a real-world problem in light-emitting
diode (LED) production, where treatment assignment is based on multiple quality indicators. Using
real-world manufacturing data, we estimate the causal effect of a threshold-based production policy
and show how the estimated effects can guide the optimal tuning of the decision threshold to improve
manufacturing outcomes. We complement our empirical results with a simulated study using a
semi-synthetic clone of the production environment, highlighting the value of multi-score RDD for
counterfactual analysis and industrial policy design.

Our contributions to the causal machine learning literature are twofold. On the theoretical side, we
advance the multi-dimensional regression discontinuity (MRD) framework, previously developed in
the econometric literature. Specifically, we provide a rigorous definition and categorization of unit
behavior types in the multi-cutoff case, introducing in particular the novel class of indecisive units,
which has no counterpart in the one-dimensional setting. We further establish an identification theorem
for the complier effect, derive precise conditions under which non-changing units (alwaystakers
and nevertakers) can be rejected, and show how our identification results enable recovery of the
complier effect in the multi-dimensional case. On the practical side, we illustrate the applicability
and usefulness of the MRD framework in a real-data industrial application, thereby demonstrating
the potential of causal machine learning methods in practice.

2 BACKGROUND

2.1 RELATED LITERATURE

Early theoretical work on extending RDD to Multi-Score Regression Discontinuity Designs recog-
nized that such designs require new identification strategies (Papay et al.,2011). While this setting
included multiple treatment levels, most recent papers on MRD study the identification of a binary
treatment that is assigned based on multiple indicators, using either “AND” connections of rules
(Choi & Leel [2018} Keele & Titiunikl 2015), “OR” connections (Wong et al.| |2013)), or both (Reardon
& Robinson, [2012; [Imbens & Zajoncl 2009). An important special case involves geographical MRD,
which features a two-dimensional design with longitude and latitude as scores (Keele & Titiunik),
2015} |Cattaneo et al.,[2025). See Appendix|D|for an overview of the MRD estimators typically studied
in recent literature (Porter et al.l [2017). Additionally, recent work has introduced new estimators
based on a minimax approach (Imbens & Wager, 2019) and on decision trees (Liu & Qi [2024).
Porter et al.|(2017) note that although there is a rich body of studies using MRD, there is a lack of
theoretical understanding of MRD estimators.

Our work further contributes to a growing field of applications of causal machine learning in
management and operations. Calvo et al.|(2019) use a one-dimensional fuzzy RD design in public
infrastructure projects. |[Hiinermund et al.| (2021)) highlight the value of causal machine learning
for business decision-making and provide an overview of methods, including RDD. Mithas et al.
(2022) give an overview of RDD applications in operations management. |Schacht et al.| (2023)) study
policy making in semiconductor manufacturing using propensity score-based estimation in the double
machine learning framework. [Vukovi¢ & Thalmann|(2022) investigate the development of research
on causal discovery in manufacturing, focusing on motivation, common application scenarios, impact,
and implementation challenges. Finally, there have been applications of causal machine learning to
policy learning in different business fields, e.g., supply chain management (Wyrembek et al., 2025) or
marketing (Huber, [2024). Despite these recent advances, the application of causal machine learning
methodologies within operational and industrial domains remains underexplored.

2.2 RDD SETTING

RDD dates back to a study by [Thistlethwaite & Campbell| (1960) on scholarship programs. Recent
sources on RDD often rely on identification and estimation results by [Hahn et al.| (2001), as well as
prominent surveys (Imbens & Lemieux) 2008} |Lee & Lemieux,|[2010; (Cattaneo et al.,2019). RDD
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consists of three key ingredients: A score X that rates the individuals; a cutoff c that splits the support
of the score into two groups; and a treatment D, which is assigned to one of the groups based on their
score and the cutoff, D; = 1[X; > ¢| (Cattaneo et al.,[2019).

The parameter of interest is the average treatment effect at the cutoff ¢, E[Y (1) — Y (0) | X = ¢] with
Y (1) and Y'(0) being the potential outcomes of the individuals (Rubin, 2005). The central RDD
assumption is continuity.

Assumption 1. Continuity. The conditional mean of the potential outcomes E[Y;(d) | X; = z] for
d € {0, 1} is continuous at the cutoff level c.

Under Assumption [, RDD provides inference around the threshold as plausible as that from a
randomized experiment (Lee}, 2008). The average treatment effect at the threshold 7o = E[Y;(1) —
Y;(0) | X; = ] is identified as 79 = lim,_, .+ E[Y; | X; = 2] — lim, .- E[Y; | X; = z] (Hahn
et al., 2001). The basic RDD estimator runs separate local linear regressions on each side of the

cutoff:
7A-balse(h) = Zwi(h))/iv

where the w;(h) are local linear regression weights that depend on the data through the realizations
of the running variable only, and /& > 0 is a bandwidth.

Under standard conditions (Hahn et al.,[2001)), which include that the running variable is continuously
distributed, and that the bandwidth h tends to zero at an appropriate rate, the estimator 7y,se (h) is
approximately normally distributed in large samples, with bias of order h? and variance of order
(nh)~!, with sample size n.

More recent work, which we will also employ in the empirical section, uses a flexible covariate
adjustment based on potentially nonlinear adjustment functions 7. The estimator takes the following
form:

TroFlex (R5 1) = sz(h)Mz(n)7 Mi(n) =Yi —n(Zs). ey

Here, 7 is the influence of Z on the outcome Y and is estimated using ML methods (Noack et al.,
2024).

3 GENERAL IDENTIFICATION STRATEGIES IN MULTI-SCORE RDD

In this section, we give a formal definition of common behavior types of units (e.g., complier, defier)
in multi-score, two-stage decision settings that employ cutoff-rules for the initial treatment assignment.
We derive an identification result using these unit categories. In particular, we show that under certain
assumptions, the identification does not depend on subsets of unit types with constant response. This
is a new result in the literature and our main theoretical contribution.

In practical settings, the easiest way to improve a complex cutoff-rule is to analyze and adjust cutoffs
individually, e.g., one can estimate the effect on complier with respect to a specific subrule involving
a single cutoff. Taking the AND-rule D := 1[X; > ¢;] 1[X2 > c2] as an example, one can analyze
the effect on complier of G := 1[X; > ¢;] at the cutoff to gain insights on how to improve ¢;. This
can be achieved in different ways: First, using a fuzzy setting in which we regard G as the assigned
and D as the actual treatment. Second, by conditioning on the complying units and using a sharp
estimator. Thus, knowledge of unit behavior can open up a different way of estimating the complier
effect.

Expanding on the previous example, now suppose that the treatment assignment 7' := 1[X; >
c1] 1[X3 > co] is known, while the final decision rule D is unknown and does not always comply
with T'. Thus, the question arises how knowledge of units that comply with 7" in the final treatment
D can improve the estimation of the effect of G := 1[X; > ¢;] on the treatment outcome.

3.1 SETUP
For each individual 4, let X; = (X34, ..., Xk,) € RX denote the score variables. Further, given
c € RE let I;(c) == (I1i(c1), ..., Ik.i(ck)) denote the corresponding indicator variables with



Under review as a conference paper at ICLR 2026

Iy i(cx) == 1[ Xy, > ci] and let the observed outcome for individual ¢ be Y;. We regard the entries

I;(c) as boolean variables and allow any composition of AND, OR and negation operations (A, V, )
over this set of atoms to form general boolean functions g(I;(c)).

Definition 1. A mapping T : RX — {0, 1} is called a decision rule. We say that a decision rule T is
a cutoff rule (on RX) if there exists a boolean mapping g such that T; = T(X;) = g(I;).

With slight abuse of notation, we use T'(c), T'(X; | ¢) and T;(c) to indicate the use of a specific cutoff
c € RE. Note that

) @)

T(X +ele)=T(X|c—¢) and T(AX|0):T(X :

holds fore € RE )\ € R~ . Thus, without loss of generality, we assume that the cutoff of interest is
¢ = 0. We suppose that Y; depends in the following way on a cutoff rule 7" and a general decision
rule D:

Y, = Yi(T,, D) = (m(o,oxl D)) +Y@-<0,1>Di)<l 1)
n (Yi(LO)(l Dy +Yi<1,1>Di)Ti

where T is the treatment assignment and D is the actually implemented treatment. Unless otherwise
stated, in the proofs we make no further assumptions on D except that it is a decision-rule.

3.2 UNIT CATEGORIZATION

Given this setup, there are certain groups of individuals that are especially interesting, namely the
nevertaker, the alwaystaker, the complier and the defier with respect to the pair (T, D) or (G, D),
where G is a subrule of 7. We follow the intuition that changes in the cutoff, or equivalently in the
observed score values — relevant for 1" — are necessary to categorize the behavior of a unit .

Ax,
D=0 D=1

A
Y

D=0 D=0
\4

Figure 1: Cutoff rules D = I1 A Iz and T' = I,. The decision boundaries coincide with the coordinate axes.
When X2 > 0, T complies with D; otherwise, D = 0 regardless of the value of X, which governs the behavior
of T

Figure illustrates this idea for D := I; A I and T := I, and shows that only changes ¢ € R?
that affect T" are relevant for categorizing the behavior of a unit ¢ with respect to (7', D). Additional
variables that affect only D may not be controllable or even observable. The following definition
formalizes the intuition behind relevant directions of change in a cutoff rule.

Definition 2. Let T be a cutoff rule on R . Denote with e1, . . ., ex the unit direction in RE and
with
S(T) = {/4;|HCERK,)\ ER:T(0]c+ Aex) #T(0]c)}
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the support directions of T. The support of T is defined as the linear hull over the support directions:

supp(T) = Z ek | M\ ER ke S(T)
keS(T)

The above notion of the support of a cutoff rule is motivated by the existence of a change along a
single coordinate direction. It is almost trivial to see that an empty support also excludes changes
along multiple directions, justifying the definition.

Lemma 1. T is constant if and only if S(T) = (), or equivalently, if and only if supp(T) = {0}.

From now on, we require that 7" is not degenerate in the sense that supp(7") # {0}.

For the introductory AND-rule example, D = I;(c) A Iz(c) and T := I (c) we have supp(T) =
R x {0} and supp(D) = RZ. If a unit i complies in the assigned treatment 7" with the actual D,
one would require that 7; produces the same output as D;, even under anyﬂ hypothetical change of
the cutoff c¢;. In other words, both rules should be synchronous on the support of 7', which is the
case if X9 ; > co. Thus, it is X ; (or equivalently c) that controls the behavior of ¢. To make this
distinction more apparent, it is useful to have a notation for entries X € R that do not affect T°:

NT ={X eR¥|T(X |c)=T(0|c)forallc € R*}
In particular, one can show the following.
Proposition 1. For each X € RX, there exists a unique decomposition X = XT + X7 with
XT ¢ supp(T) and X*+T € NT. The orthogonal projection Pr(X) = > kes(r) (X, ex) ex onto
supp(T) satisfies the above properties, where (-, -) denotes the standard scalar product on RX.

That is, according to Proposition[T} one has the following decomposition
S = RISMDI 5 RE-ISD) supp(T) @ NT =RE

of the score space into two distinct parts. The former part captures the decision changes of 7" and
the latter consists of free variables not affecting 7', but potentially controlling the unit category. This
observation allows for a general definition of unit categories.

Definition 3. Let i be a unit and X; = XiT + XiJ‘T. Then i is said to be a nevertaker (an alwaystaker)
of T with respect to D iff D (X;T — ¢) = 0 (iff D (X;** — ¢) = 1) for all ¢ € supp(T).

Further, i is said to be a complier (a defier) of T with respect to D iff T (0| c) = D (X;- — ¢) (iff
T (0|c) # D (X;*T —¢)) forall ¢ € supp(T).

Let the sets of compliers, nevertakers, alwaystakers, and defiers be denoted by ComP (T, D),
Nt(T, D), At(T, D), and DeF(T, D), respectively.

Particularly, if D is a cutoff-rule one obtains the following more intuitive equivalencies, which capture
the notion of a simultaneous cutoff changes along relevant directions.

Proposition 2. Let D be a cutoff rule over R¥ and i be a unit. Then i is a nevertaker (an alwaystaker)
of T w.rt. D iff D;(c) = 0 (iff D;(c) = 1) for all ¢ € supp(T'). Further, i is a complier (a defier) of
T wrt. D iff T;(c) = D;(c) (iff T;(c) # D;(c)) for all ¢ € supp(T).

Note that the terminology introduced in Definition [3|indeed introduces well-defined categories:
Proposition 3. The sets At(T, D), Nt(T, D), ComP(T, D) and DeF (T, D) are pairwise disjoint.

From now on, whenever we assume that D is a cutoff rule, we restrict ourselves to the case in which
D has at least as much information for decision-making as 7". This means that D might depend on
It ;(0) for k € S(T). In addition, we suppose that D does not depend on I, ;(c) with ¢ # 0 for
k € supp(T), effectively restricting to the case where both decision rules have a zero cutoff. E]

'A more refined, local definition could relax this requirement to “any reasonable changes”. For ease of
presentation, we stick to the global version.

Both linear spaces are isomorphic; g denotes the direct sum.

3This restricts the general case. Suppose that the decision maker D is an opportunist and ignores all the
other scores as long as a certain incentive X, exceeds an even higher cutoff 0 < ¢;, < Xj. Only then D would
comply with 7T'.
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Even for cutoff rules D under these restrictions, the categories above are not exhaustive if
dim(supp(T)) > 1. For example, let D := (I; A I3) and T := I; A I5. Then supp(7T) = R? and
for T(0]0) = D(0]0) but 0 = T(0|(—1,1)) # D(0]|(—1,1)) = 1. Thus, D is not constant nor
equal to T" or T on the support of T". We call individuals of this remaining category indecisive and
denote the set of indecisives (of T with respect to D) by Ind(T, D).

Figure[2] visualizes the general case in which D is not a cutoff rule.
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(a) No matter which change c of X, in the supp(7") plane we imagine, (b) Unit categorizations with respect to (7', D). While supp(T") cap-
the responses of D and T are equal. A shift of score X; by c is tures the directions in which I" can change, unit behavior is determined
equivalent to a simultaneous shift of the decision boundaries by ¢, which by N T The space is partitioned (from top to bottom) into areas of
amounts to a coordinate shift for D and a cutoff shift for 7" motivating alwaystakers, indecisives, compliers, indecisives and nevertakers of T
Definition 3} with respect to D.

Figure 2: General case with D not being a cutoff rule. The decision boundaries of 7" and D are indicated with
orange and blue dashed lines.

Note that given T with dim(supp(T")) > 1, one can always construct a cutoff rule D that exhibits
indecisive items. At least one has the following:

Proposition 4. Let D be a cutoff rule on RX and let i denote an individual. If dim(supp(T)) = 1
then i € At(T, D) UNt(T, D) UDeF(T, D) U ComP(T, D).

Moreover, our definitions of complier, nevertaker and alwaystaker imply the corresponding definitions
in (Imbens & Lemieux! [2008). For this, let ct, ¢~ € supp(T') be two directions that induce change
in 7T, that is:

lim T(X; | Act) =1 and lim T(X;|Ac™) =0

A—0 A—0

Using the above complier definition:
T(Xile)=T(X[ |¢)=T(0|c—X]) = DIX;" + X{ —¢) = D(X; —¢)
for ¢ € supp(T). In particular, T and D coincide in a neighborhood of zero, and thus
)1\11% D;(\cT) = )1\12% D(X; — Xct) =1 and )l\lirb D;(Ac7) = ;11% DX, =X )=0

where D;(c) := D(X; — ¢) for ¢ € supp(T’). The corresponding statements for nevertaker and
alwaystaker follow analogously. Indeed, requiring consistency in the limit for any direction one
would arrive at a local definition of the unit categories sufficient for the multi-score RDD setting.
Before continuing with the identification part we are going to expand on the AND-rule example.

Example (AND-Rules) Let D = /\jil Ijand T = /\;?:1 I for k € {1,...,K — 1}. Then
supp(T) = R* x {0}%~*. Further, we have the following unit categorizations: (i) ComP (T, D) =
{i|Vk <j <K : X;;>0} Note that X;; > 0forall k < j < K is equivalent to A%, I;;(c)
being one for ¢ € supp(7T'). Thus, the rule D; effectively reduces to T5. (ii) At(7, D) = () Since
for each X; € R¥ there exists a ¢ € supp(T’) such that D;(c) = 0. For example choose any ¢ with
X1 <crandcj = 0forj # 1. (iii) Nt(7', D) = {i |3k < j < K : X;; < 0} Note that i being in
the set on the right is equivalent to /\f: w+11j.i(c) being zero for all ¢ € supp(T). This is equivalent
to D;(c) = 0 for all ¢ € supp(T), since given an 4 one can always find a cutoff ¢ € supp(T)
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such that T;(c) = 1, which implies that one of the indicators I; ; for j > k has to be zero. (iv)
DeF(T, D) = () Note that T;(c) = 0 implies D;(c) = 0, and that ¢ € supp(T') can always be chosen
such that the former is satisfied.

Additional examples can be found in Appendix [A.2] illustrating instances of the remaining unit
categories (excluding the indecisive case). We conclude that the introduced definitions are indeed
reasonable.

3.3 EFFECT IDENTIFICATION

Inspired by the work of (Hahn et al.| [2001; Imbens & Angrist, |1994), we use the introduced unit
categories to prove an identification theorem for the effect on complier at the cutoff. For this section,
we require that the outcome Y does not directly depend on the treatment assignment 7. Denote the
set of all unit categories by

C := {ComP(T, D), Nt(T, D), At(T, D), DeF(T, D), Ind(T, D)}

and the set of non-change categories by C° := {Nt(T, D), At(T, D)}. We assume that the cate-
gorization of a unit is independent of the support part of 7" in a neighborhood of the cutoff, that
is:

Assumption 2. There exists an € > 0 such that Pr (i € Cat ’ XTI =2) =Pr (i€ Cat ‘ XI'=0)
for ||z|| < eand Cat € C.

Note that this requirement relates to the independence assumptions used in (Imbens & Angrist, |1994).
We further rely on the following local continuity assumption, which is a variation of the standard
continuity assumption (Assumption [I)):

Assumption 3. There exists an € > 0 such that x — E(Y;(d) | X' = x, i € Cat) is continuous for
lz]| <€ de{0,1} and Cat € C.E]

Two more assumptions are required to make further use of the continuity. First, we deny the existence
of indecisive items, since this category does not allow structured conclusions about D based on
knowledge of T'.

Assumption 4. Ind(7, D) = )

Second, we assume that the directions 2+, =~ € supp(T') along which we aim to estimate the
complier effect induce a change in 7T'.

Assumption 5. 1 = limy_,o7 (Az"|0) # limy0 7 (Az~ |0) =0

This assumption is implicit in one-dimensional RDD designs and imposes no real restriction in
practice, as T is generally assumed to be known. The proof of the following proposition can be found

in Appendix[A.3]
Theorem 1. Let Assumptions 2| 3} H|and[3| hold. Then the complier effect at the cutoff is identified as

E(Yi(1)| X[ =0, i€ ComP) —E (Y;(0) | X[ =0, i € ComP) =

1 ~ T — et — T ) ) —
Pr (i € ComP [ X7 = 0) (ilﬁ%]E(Y"Xi =) — I B (%X = )> ¢

with C' being the correction term for defier:
Pr (i € DeF | X' = 0)

- : T, —E(Y, T—0,i
C'_Pr(ieComP]XiT—O)<]E(YZ(O)|XZ 0,i € DeF) —E (Y;(1) | X; O,zeDeF))

This identification result allows for two immediate conclusions. First, one is free to choose among
the directions ™ and z~ satisfying Assumption Second, the proof suggests that dropping subsets
2 C Nt U At does not affect identification, as long as doing so does not violate Assumptions [3]and
[2l We provide a corresponding result in Appendix [A.3](see Theorem [2)). We call estimates of the
complier effect of 7" when removing €2 the sub-set complier effect of G excluding ).

*This assumption can be weakened by assuming only directional continuity, which would render the effect
dependent on the chosen directions.
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4 APPLICATION SETTING

In the following section, we will bridge the gap between our theoretical considerations and the
empirical setting studied. We consider an inline rework process in lot-based opto-electric semicon-
ductor manufacturing during the phosphor conversion step. Production lots, each consisting of 784
individual LEDs, that fail to achieve a certain quality level are subjected to an additional rework step
to improve overall yield. For details on the conversion process, we refer to related work (Cho et al.,
2017; Schwarz et al.l [2024).

The score consists of two components: The distance score, X p, measures the distance from the mean
color point C' := (Cy, Cy) of a lot to the optimal target in the color space. The yield improvement
score, Xy, is a relative measure that evaluates the quality distribution of individual chips in a lot by
calculating a hypothetical scenario in which the target is ideally met by the mean of the lot. If there is
high variability in the quality of parts within a lot, this improvement is negligible or even negative.
Figure [3| depicts the score components in more detail.

The treatment is assigned by a binary “AND” decision rule T' = Ip A Iy. We assume that the
final decision makers (i.e., human operators) D have an informational advantage regarding the
improvement score and that they use this advantage to override 7', while remaining cautious about
possible degradation. This cautious operator assumption aligns with the observed one-sided fuzziness
in the Iy dimension and the strict compliance to the distance rule Ip, as observed in real data (see
Figure[d). In particular, whenever 7" suggests that a rework step should be carried out, the operator

. . ) Decision Rul
Xp: Distance from Color Target Xy: Estimated Yield Improvement ecision Rule

 Good Individual Chip
 Bad Individual Chip

Target Area

Estimated Yield Improvement

Cx Cx Distance from Color Target

Figure 3: Left: Xp is defined as the distance between the current Figure 4: Real data plot w.r.t. the score com-
mean color point and the target point. Right: Xy evaluates the ponents Xp and Xy . The decision bound-
expected improvement by calculating the share of in-specification ary 7' is dashed. The actual treatment as-
chips in the lot. This is done by moving the current distribution of signment (green and orange) follows an un-
color points to the target. observed rule D, rendering the MRD fuzzy.

may override it due to the informational advantage not captured in 7". Conversely, if 7" does not
suggest a rework treatment, we assume that the operator accepts this decision, being cautious of
possible degradation. We formalize the inclination toward this negative override into an additional
score variable X,, that captures the information advantage: D = T' A I,,. A DGP based on the
cautious operator assumption is outlined in Appendix [E] In this case, we have:

ComP(T, D) = {i| Xop; > 0} and Nt(T, D) = {i| X,p; < 0},

as well as

ComP(G, D) = {i| Xop; >0, Xy >0} and Nt(G, D) = {i| X,p,; <0} U{i| Xy, <0}
for the sub-rule G := Ip of T' (see Example[3.2). Employing Theorem [2|from Appendix[A]one can
estimate the sub-set complier effect of G excluding the nevertaker 2 := {i | Xy ; < 0} instead of the
complier effect of G. [

5 EFFECT ESTIMATION WITH RDD

We benchmark estimators in accordance to Section |3|on both semi-synthetic and real-world data as
described in Sectiond] We compare estimators without adjustment, with conventional adjustment,
penalized linear adjustment and adjustment using a stacked ensemble learner.

3Since the condition Xy ; < 0 is global, the required continuity and stability assumptions are likely to be
satisfied in practical applications.
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5.1 SEMI-SYNTHETIC DATA

To provide a realistic benchmark of the estimators across different settings, we generate semi-synthetic
data following Algorithm |1P’| The process is calibrated to match real data characteristics. We draw
n = 10,000 observations and repeat the experiment = 250 times. The oracle value is estimated
using a local linear kernel regression on the differences in true potential outcomes. The covariates
consist of statistics describing the quality of individual items.

We evaluate the cut-offs c¢p and cy separately, estimating the complier effect of G € {Iy, Ip} as
identified in Theorem [I| the subset complier effect of GG given its counterpart (in accordance to
Theorem 2] and intent-to-treat estimates with and without the subset conditioning. The complier
effects are estimated under a fuzzy design; the intent-to-treat effects under a sharp design.

As shown in Figure[5] the intent-to-treat oracles are closer to zero than the complier effects due to
the inclusion of individuals who are nevertakers with respect to each cutoff rule. As visible in[5a]
for Ip we estimate an overall negative effect, although it is not significant at 95%-level. The subset
effect for the fuzzy case exhibits a smaller bias as the percentage of nevertakers in the estimation
sample is smaller. The estimated effect remains unchanged as only nevertakers but no compliers
were removed. This underlines our theoretical argument. For the intent-to-treat estimator, a higher
share of compliers in the subsample increases the estimated effect of treatment rule G. The subset
estimators have a comparable estimated variance (see Table[d]in Appendix [C.T)), with the coverage
overall appearing slightly more credible. Generally, the covariate adjustment reduces the standard
error in the estimation, especially for the sharp estimators.

The estimates for Iy are small and positive. The fuzzy estimator on the full data has a high standard
error, which increases further with ML adjustment. This may be due to a small jump in treatment
probability in the full data, destabilizing the ML estimate. The subset estimator along this axis
removes much more observations within the bandwidth of the estimation thus decreasing the variance.
Additional results can be found in Appendix[C]

Effect Estimates at the Distance Cutoff Effect Estimates at the Yield Improvement Cutoff
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Figure 5: Median coefficient and median CI for fuzzy and intent-to-treat estimators along X p (left) and Xy
(right) with simulated data. The different colors depict estimators on the full sample and on the subset. The
dashed line shows the oracle estimate for each setting, with the complier (fuzzy) oracles overlapping.

5.2 REAL DATASET

This section presents results from estimation on the real data with n = 9,103 observations from
the production system. Additional to information on color measurements, we include the shopfloor
workload. Our primary interest in the real system is evaluating /.

As shown in Tableﬂ]on the real data, we estimate a positive effect. The subset estimates have a lower
variance, as we remove uncertainty due to nevertakers according to Xy . In case of the intent-to-treat
estimators, the addition of ML adjustment improves the variance of the estimation. For the fuzzy
estimators, there is no clear improvement.

The comparison in Figure [ provides insight into the differing effect signs between semi-synthetic
and real data. While the semi-synthetic process (left) appears to have a rework threshold closer than
the optimal distance, the real data (right) suggests a threshold that is further away, resulting in a

significant outcome jump at the current threshold.

5The python implementation of this process will be made available.



Under review as a conference paper at ICLR 2026

Coef se. CI25% CI197.5% RMSEleft Loglossleft RMSEright Loglossright % s.e. change

setting method

Fuzzy RDD Conventional Covs ~ 0.1031  0.0508  0.0035 0.2028 222532
RDD Without Covs 0.0387 0.0416  -0.0428 0.1202 0.0000
RDFlex Lasso 0.0999 0.0470  -0.0004 0.2003 0.1452 0.0141 0.1523 0.6142 12.9249
RDFlex Stacking 0.1097  0.0500 0.0023 0.2171 0.1429 0.0188 0.1570 0.6322 20.1333

Fuzzy on Subset  RDD Conventional Covs ~ 0.0630  0.0426  -0.0205 0.1466 36.5324
RDD Without Covs 0.0369 0.0312  -0.0243 0.0981 0.0000
RDFlex Lasso 0.0713  0.0304 0.0031 0.1395 0.1410 0.0209 0.1507 0.5424 -2.5667
RDFlex Stacking 0.0768 0.0319 0.0048 0.1487 0.1394 0.0121 0.1530 0.5018 2.1538

Sharp RDD Conventional Covs ~ 0.0393  0.0208  -0.0015 0.0802 2.2467
RDD Without Covs 0.0165  0.0204  -0.0235 0.0564 0.0000
RDFlex Lasso 0.0357  0.0167  -0.0026 0.0740 0.1425 0.1513 -17.9717
RDFlex Stacking 0.0367 0.0168  -0.0018 0.0753 0.1408 0.1530 -17.5203

Sharp on Subset  RDD Conventional Covs  0.0362  0.0205  -0.0040 0.0764 -2.3944
RDD Without Covs 0.0098 0.0210 -0.0314 0.0509 0.0000
RDFlex Lasso 0.0364 0.0184  -0.0031 0.0758 0.1408 0.1525 -12.2509
RDFlex Stacking 0.0307 0.0181  -0.0093 0.0708 0.1395 0.1540 -14.0691

Table 1: Coefficients, standard errors, and quality of fit for the different estimators for the distance dimension in
the real dataset.

Semi-synthetic Data Real Data

Adjusted Outcome
Adjusted Outcome

Distance Score Distance Score

(a) RDD plot for the semi-synthetic process. (b) RDD plot for the real production data.

Figure 6: Comparison of local linear regressions around the cutoff for the semi-synthetic and real data. The
opposite sign of the estimated effect can be explained by the calibration of the semi-synthetic process. Specifically,
the modeling of the operator decision could be imperfect by taking only incomplete information into account.
Particularly, the real-world operator might have more knowledge, such as machine states and outputs, as well as
practical job experience.

6 CONCLUSION AND LIMITATIONS

Our paper presented a novel application of RDD in the context of threshold-based decision-making
in industrial manufacturing. By integrating multi-score RDD techniques with recent advancements
in causal machine learning — particularly flexible covariate adjustment — we demonstrated how to
evaluate threshold based decision policies on real data.

Our formalization of unit behavior categories (complier, nevertaker, alwaystaker, defier and indecisive
units) in multi-dimensional cutoff rules yields a novel effect identification result in MRD settings.
Among the required assumptions, the local stability of the unit categories (Assumption [2)) is the
most debatable one. As it involves counterfactual reasoning about potential category changes, it
cannot be verified using observed data. This shortcoming is shared with related independence
assumptions common in RDD literature. Causal identification is not possible without any of these
assumptions. The question is whether such an assumption is interpretable enough to justify an
approximate conformance in empirical studies. Compared to previously presented formulations, we
draw from the intuitive language of unit categories to aid the argument for or against applicability.

7 REPRODUCIBILITY STATEMENT

We provide full source code and detailed instructions in the supplementary material to reproduce all
numerical experiments. The data-generating processes for synthetic experiments are fully specified.
Information about runtime environments and computing resources is documented in the Appendix.
Hyperparameters used in the experiments are listed in the relevant sections and in the supplementary
material. The implementation of our semi-synthetic process is included and will also be released as
part of an open-source causal inference package to facilitate community use. The dataset used in the
real-data application is subject to data protection regulations and therefore cannot be released.
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APPENDIX A PROOFS

A.1 UNIT CATEGORIZATION
Lemmall] T is constant if and only if S(T') = 0 or equivalently if and only if supp(T') = {0}.

Before proofing the above statement let us make some simple observations. Let
ST|X)={k|INER : T(X|0)AT(X |0+ Aex)}
denote the set of local change directions of X. Then one has the following properties:

1. S(T'| X) depends only upon the quadrant of X, since within a quadrant the I} ‘s and the
I °s are constant.

2. S(T) = Uyepr S(T|X)
Since T(0 | ¢ + Aex) # T(0| ) is equivalent to T'(—c |0 + Aey) # T(—c|0).

3. S(T'| X) can be empty.
For example let T = (I; A I) V Is and X; > 0 for j = 1,2,3. Then S(T | X) = (), since
T is true as long as there are at least two indicators that are true. Changing the cutoff in

only one direction k does not affect T'(0 + Aey). This example can be extended such that
changes in multiple directions do not affect T'.

Proof. One direction is clearly trivial. For the other suppose 7" is not constant. Then one has
0=T(X|0)# T(X|0) =1 for appropriate X, X € R¥. Define the sequence

k
Xr =X+ (X=X, e5)e; 0Sh<K
j=1

for0 < k < K. Then XX = X, X0 = X and X* — X*~1 = X\yep, with ), = <X - X, ek>. We
assume that S(7'| X*) = {) for all k. Then
T(X*710) = T(X*1 [0 = Ayer) = T(X"[0)

and thus per induction 0 = T'(X |0) = T'(X | 0) = 1. Which contradicts the assumption. Thus, there
exists some k with S(T'| X*) # (). Which shows that S(T') # (). O

As a general assumption for the next statements we require that 7 is not trivial, that is supp(7") # {0}.
PropOSItlon l. For each X € R there exists a unique decomposition X = XT + X1 with
XT € suppT and X+T € NT. The orthogonal projection Pr(X) = >res(r) (X, ex) ey onto
supp(T') satisfies the above properties.

Proof Usmg equatlonslone can see that X + \Y € N7T for X, Y € N7 and A € R.q. Further
7) TO|c+X)=T(X|c+X)=T(X —X|c)=T(0|c) for X € N” and c € R¥,
Thus N7 is a linear subspace of RX. Let k € S(T') then there exists A € R, ¢ € RX such that
T(0|c+ Aex) # T(0|c). This means that —Aex, ¢ N. Since N7 is a linear space this means that ey,
can also not be in N. Now let k ¢ S(T). Then T(0|c) = T(0|c — ex) = T(ey, | c) forall c € RE
and thus e, € NT. This shows that supp(T) N NT = {0}. Let X7 = > kes(r) (X, ex) ex be the
projection on to the subspace supp(7) and X+7 := X — X7 Suppose there exists some ¢ such that

T(XtT|e) £T(0|c). Let

k
& ::c—X+ZAjej 0<k<K
j=1
with \; == <XJ-T, ej>. Then ® = ¢ — X*7, ¢& = cand ¢ = c¢*~! + A\,ex holds. Further, one has
T(O0]c") =T + Aeer) = T(0[ )

forall 1 < k < K. Otherwise, k C S(T) and thus \;, = 0 by definition of X+, Using induction
we derive T(X 1T |¢) = T(0]c%) = T(0| cX) which contradicts the assumption. For uniqueness

suppose there exists another decomposition X = Z7 + Z1T with the above properties. Then
ZT — XT =747 — X7 e supp(T) N NT = {0}. O
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Proposition[2} Let D be a cutoff rule over X. A unit i is

1. a nevertaker (of T with respect to D) iff D;(¢) = 0

2. an alwaystaker (of T with respect to D) iff D;(c) = 1
3. a complier (of T with respect to D) iff T;(¢) = D;(c)
4. adefier (of T with respect to D) iff D;(c) # T;(c)

forall ¢ € supp(T).

Proof Note that T;(c) = Ti(Xi|¢) = T(X] |¢) = T(0]c — X[) = T(0]¢) and Dj(c) =
D(X; —¢|0) = D(X; — &) with ¢ == ¢ — X & supp(T) by applying equation (2) and Proposition
[ O

Proposition3} The sets At(T, D), Nt(T, D), ComP(T, D) and DeF (T, D) are pairwise disjoint.

Proof. Tt is easy to see that At(T, D) N Nt(7, D) = () and ComP (7', D) N DeF(T, D) = . For
i € C:= Nt(T, D)UAt(T, D) it follows that D(X;-T — ¢) is constant for all ¢ € supp(T'). Suppose
thati € C'N ComP (T, D). The latter would mean, that 7'(0 | ¢) = D(X;-T —¢) for all ¢ € supp(T).
This contradicts supp(7T) # {0}. Now suppose that i € C' N DeF (T, D). The latter would mean that
T(0|c) # D(X;T — ¢) for all ¢ € supp(T'), which implies that T is constant on supp(7’). This
again contradicts supp(7T') # {0}. O

From now on whenever we assume that D is a cutoff rule we suppose that D does not depend on
Iy, ;(c) with ¢ # 0, that is T and D are synchronous regarding their cutoffs.

Proposition@ Let D be a cutoff rule on R and let i denote an individual. If dim(supp(T)) = 1
then i € At(T, D) UNt(T, D) U DeF(T, D) U ComP(T, D).

Proof. Since supp(T') =~

R one I, ; with k& € S(T). Suppose i is in neither of the
mentioned sets. Then T;(c) # D;(c
c

has T; = Iy ;
)and T;(¢) = D;(¢ )forsomec ¢ € supp(T). Thus, ¢ = c+ ey

for appropriate A € R. If T;(c) 3(é) then D;(c) # D;(é). Since D is a cutoff rule and
I; j(c) = I; (&) for j # k we conclude T;(c) = Iy i(c) # I:(¢é) = T;(¢). This contradicts the
assumption. If otherwise T;(c) # T;(¢) one has D;(c) = D;(¢ ) Which would imply that D;(c) is

constant for ¢ € supp(T'), and thus i € At(T, D) UNt(T, D). O

A.2 EXAMPLES

Example (OR-Rules) Let D = \/jfillj and T' = \/f:1 I for k € {1,...,K — 1}. Then
supp(T) = R* x {0}%~*. Further, we have the following unit categorizations:
1. ComP(T, D) ={i|Vk<j<K:X,; <0}
Note that in this case the additional or-conditions are zero, reducing the rule D, to T;.
2. AT, D) ={i|Fk<j< K : X,; >0}

As long as there is any additional or condition that is always true, cutoff changes in supp(7’)
do not affect D.

3. Nt(T, D) =0

Choose ¢ € supp(T) such that X; ; > cfor 0 < j < k, then D; = 1.
4. DeF(T, D) =0

Note that T;(c) = 1 implies D;(c) = 1 for all ¢ € supp(T).
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Example (XOR dominant rule) Let D := (I; V I5) A (I1 V I3) and T := I . Then supp(T) =

R x {0}. Note if X3 ; > 0, one has D;(c) = T';(c) and otherwise D;(c) = T;(c) for all ¢ € supp(T).
Thus:

1. ComP(T, D) = {i| X2, <0}

2. AY(T, D) =10

3. Nt(T, D) =0

4. DeF(T, D) = {i| X2, > 0}

A.3 EFFECT IDENTIFICATION

For this section, we require that the outcome does not directly depend on the treatment assignment 7.
Denote the set of all unit categories with
C :={ComP(T, D), Nt(T, D), At(T, D), DeF(T, D), Ind(T, D)}
and the set of non-change categories with:
C° == {Nt(T, D), At(T, D)}

We assume that the categorization of a unit is independent of the support part of 7" in a neighborhood
of the cutoff, that is:

Assumption 2} There exists some € > 0 such that
Pr(i € Cat | X} = 2) = Pr(i € Cat | X} = 0)
for ||z|| < eand Cat € C.
Using this assumption and further assuming Pr (z € Cat | XI= 0) > ( one has
E(Y;| X[ =2)= Y E(Y;|X] = i€ Cat)Pr(ic Cat| X =0)
CateC
and thus
B (v, X7 =) ~B (v X] =) =
> (E(Yi|XiT:x+,z’eCat) —IE:(mXZ.T:x—JeCat))Pr(iecat\ngzo)
CateC

for appropriate directions ™, = € supp(T'). Further, we employ a local continuity assumption, for
the potential outcomes of the unit categories.

Assumption There exists an € > 0 such that © — E(Y;(d) | X = =, i € Cat) is continuous for

|z|| <€ de{0,1} and Cat € C.
Note that

E(Yi|XF =aF, i At) = E(Yi(1) | XT = 2%, i € At)
and

E(Y; | X] =a%,ieNt) = E(Y;(0)| X[ = 2*, i € Nt)
holds for the non-change unit categories. Together with Assumption [3|one derives:
ImE (V; | X =X2®) = Im E (V; | X =x27) =
A—0 A—0

> ( lim E (Y; [ X[ = Az™, i € Cat) — lim E (Y; | X] = Az™, i € Cat) ) 3)
Catec\co A—0 A—0
-Pr (i € Cat| X" =0)

Two more assumptions are in order to make further use of the continuity. First, we deny the existence
of indecisive items, since this category does not separate the potential outcomes Y;(0) and Y;(1).

Assumptiond Ind(T, D) =0

16



Under review as a conference paper at ICLR 2026

Second, we assume that z+ and 2~ induce a change in T'.

Assumption 5}
L= lim T (A" [0) # lim T (e~ [0) =0
— —

With this we know how D; behaves for complier and defier when approaching from z* and 2~
direction. That is:

lim Pr(D; = 1| X = Az, i€ ComP) =1 and lim Pr(D; =1| X/ = Xz™, i € ComP) =0
A—0 A—0

as well as

lim Pr (D; = 1| X = X", i € DeF) =0 and lim Pr (D; =1|X] = Xz™, i € DeF) =1
A—=0 A—=0

Thus we can apply Assumption[3]to these two remaining categories on the right side of Equation [3|as
well:

Theorem[I} Let Assumptions[2| B} H|and[3|hold. Then the complier effect at the cutoff is identified as
E(Y;(1)| X" =0, i € ComP) —E (V;(0) | X =0, i € ComP) =

1 . : T _ +\ 1 : T _ _ .
Pr (i € ComP [ X7 = 0) (ilﬂ%]E(mXi =et) — i E (V| X7 = A )> ¢

with C' being the correction term for defier:
_ Pr(ieDeF| X[ =0)
"~ Pr(i € ComP | X =0)

(IE (Yi(0) | X =0,i€DeF)—E (Yi(1) | X[ =0,i€ DeF))

We now investigate how dropping units in | Jq,,.co Cat affects the above identification result. For
ease of presentation we make the assumption that there do not exist any defier, at the cutoff. Further,
let 2 C AtUNt. Then Pr (i € ComP, i € Q| X = 0) = 0 and thus one has

Pr(i€ ComP | X =0)=Pr(i€ComP| X/ =0,i¢Q)Pr(i¢ QX =0) @

for the denominator. For the nominator note that
E(Y; | X[ = X%, i€ Q) =E(Y;(0)| X[ = Az*, i € QNNt) Pr (i € Nt | X[ = Aa*, i € Q)
+E(Y;(1)| X = Aa*, i € QNAL) Pr (i € At | X] = Xa™, i € Q)

holds. Requiring Assumption [3]and Assumption [2]to hold when conditioning on 2 N Nt and © N At
(instead of Nt and At) we get:

Aling(Yi|XiT:>\x+,i€Q)f;ii%]E(YAXiT:)\m*,ieQ):0 Q)
Since
E(Y; | X[ =X®) =E (V| X[ = 2™, i€ Q) Pr(i € Q| X = Az¥)
+E(Y; | X] =XaF, i ¢ Q)Pr(i ¢ Q| X[ = Xa™)
holds we require an assumption similar to Assumptionto for Pr (z e ‘ XTI = )\mi) in order to
get

limE (V; | X =Xa®) — Iim E (V; | X = Az7)
A—0 A—0

= <;%E()Q|X1T_>\a:+,i¢9);LH}JE(E|XZ-T_)\$,Z'¢Q)>-

Pr(i¢ Q| X] =0)
(6)
using Equation[5] Combining Equations [6]and ] we obtain the following result:

Theorem 2. Let Assumptions andhold, and Pr(i € DeF | X = 0) = 0. Further, let
Q C Nt U At such that
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1. there exists an € > 0 such that the functions vt — E ( | Y X =z,ieQn Nt) and
v — E(Yi(1)| XT ==, i € QN At) are continuous for ||x|| <e

2. there exists an € > 0 such that
PrieNt| X/ =2,i€Q)=Pr(ieNt|X] =0,i€Q)

and
PriicAt| X =2,icQ)=Pr(icAt]|X] =0,i€Q)
as well as
Pr(ie Q| X/ =2)=Pr(icQ|X] =0)

Sor ||z| < e
Then
E(Yi(1)| X[ =0, i€ ComP) —E (Y;(0) | X =0, i € ComP) =

1 T _y,.t ; 1 YT — o 4

Br (i € ComP | XT = 0,1 ¢ O) (hmE(Y|X Azt i ¢ Q) ;\%E(YZ|X1‘ = Az ,z¢Q))
holds.

APPENDIX B ADDITIONAL SIMULATION STUDY
In this appendix, we present an additional simulation study with more complex treatment assignments.

B.1 DATA GENERATING PROCESS

We consider a multi-dimensional regression discontinuity design (MRD) with three scores
X1, Xo, X3, where
(X1, X2, X3) " ~ N(0,T3).
For notational simplicity, we leave out the unit index 7. Further, we generate independent covariates
Z; ~ Uniform(—1,1)
for j € {1,...,d = 4}. The potential outcomes are defined as:

2
)=0.1- (ZX) +g(Z
d 3
Y(1)70-4'<ZX1:> +a- ZZ]' '<2X¢>+9(Z)+s

where £ ~ N(0,0.25), 7 = 2 is the treatment effect parameter at the joint cutoff point (0,0,0) 7,
and a = 0.5 controls the interaction between running variables and covariates. The function g(Z) is
defined as

d
SIS ED e
j=1 j=1 1<j<k<d
Define binary indicators for exceeding each cutoff as
Ik:IL[Xk>0], k:1,2,3

where ¢c; = co = c3 = 0 are the cutoff values for the scores. For the treatment assignment, we
consider two settings:

b Setting A: DA = Il /\IQ /\13
o Setting B: DB = (Il /\IQ) \/Ig

The observed outcome is Y = Y (0)(1 — D) + Y(1)D.
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B.2 RDD ESTIMATES
The overall procedure consists of the following steps:

1. Choose a subrule 7', which you would like to evaluate.

2. Based on 7" and D, determine a subset of never- and alwaystakers B(T, D) C At(T, D) U
Nt(T, D), which can be identified.

3. Remove all observations from B(T', D) from your original data.

4. Estimate a (fuzzy or sharp) univariate RDD on the remaining observations.

Remark that the subsets B(7, D), will depend on the choice of T'.

For simplicity, we will focus only on the evaluation of the first cutoff threshold, i.e. T' = I;.

As mentioned in Appendix [D] one possibility to evaluate the effect would be to consider this as a
fuzzy setting, where all observed units are used (“Fuzzy IV” approach). Instead, we would like to
compare this approach to our proposal, which allows specifying exactly which units can be discarded,
i.e. the “subset complier effect”, which can be seen as a generalization of the “Frontier method”.

In both settings, we will evaluate 7' but with different choices of D. Considering the definition of
D 4, there do not exist alwaystakers, but identifiable nevertakers, such that we can choose

B(Tl,DA) = {Z|1271 = O V 1371‘ = 0} g Nt(Tl,DA).

Instead in setting B, we can identify alwaystakers {i|I3;, = 1} C At(71, Dp) and nevertakers
{i|l2,; = 0 A I3; = 0} C Nt(T1, Dp), such that we can choose

B(Tl,DB) = {Z|1372 = 1} U {7,|1272 =0A 1371' = O}

In the following, we generate a dataset with 5,000 observations and evaluate the subsetting approach
(Subset) against a fuzzy estimation approach on the whole dataset (Full Dataset). We estimate both
approaches with the rdrobust (linear covariate adjustment) and doubleml (flexible covariate
adjustment) packages, but without much tuning of the machine learning algorithms. The main focus
of the comparison is the estimation on the full data as a fuzzy design and on the data subset as a sharp
design.

-~ Oracle Effect -=~- Oracle Effect
rdrobust (Full Dataset, Fuzzy) @ rdrobust (Full Dataset, Fuzzy)
RDFlex (Full Dataset, Fuzzy) RDFlex (Full Dataset, Fuzzy)
rdrobust (Subset, Sharp) 30 @ rdrobust (Subset, Sharp)
RDFlex (Subset, Sharp) @ RODFlex (Subset, Sharp)

(a) Setting A (b) Setting B

Figure 7: Comparison of point estimates and confidence intervals. For each method only using the data subset
improves the precision of the estimator.

Note that the identified effect differs from 7 since the potential outcomes depend on the scores. The
oracle effect is computed on the subset of compliers (of 7} with respect to D) using an independent
sample of 100,000 observations. It is obtained via kernel regression of the individual treatment
effects (Y (1) —Y'(0)) on the score T;. Statistical coverage is evaluated over 200 independent datasets.
The confidence interval length for the subset methods is substantially smaller, while still maintaining
the desired coverage level.

APPENDIX C ADDITIONAL NUMERICAL RESULTS

In this appendix, we present additional results concerning Section[5.1]and[5.2}
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Table 2: Simulation Results Setting A

Data Method Mean Bias  s.e.  Mean CI Length  Coverage
rdrobust (Fuzzy) -0.012 0.483 1.816 0.945

Full Dataset - phplex (Fuzzy) 0020 0351 1253 0.930

Subset rdrobust (Sharp) -0.039 0.298 1.108 0.940
RDFlex (Sharp) -0.026 0.285 1.025 0.945

Table 3: Simulation Results Setting B

Data Method Mean Bias  s.e.  Mean CI Length  Coverage
rdrobust (Fuzzy) 0.077 0.568 2.148 0.960

Full Dataset - phplex (Fuzzy) 0042 0470 1.821 0.955

Subset rdrobust (Sharp) 0.033 0.223 0.837 0.925
RDFlex (Sharp) 0.008 0.172 0.633 0.940

C.1 TABLE OF RDD ESTIMATES AT Ip AND Iy

Tables [ and [5| provide additional insights to the estimation conducted in Section[5.1] Particularly, the
quality of fit in the ML estimation, the coverage as well as the mean bias can be assessed here.

Mean Bias s.e. Coverage RMSE left Loglossleft RMSEright Log loss right

setting method
Fuzzy RDD Conventional Covs -0.0025 0.0111 0.9912
RDD Without Covs -0.0027  0.0109 0.9735
RDFlex Lasso -0.0030  0.0092 0.9823 0.0242 0.0787 0.0897 0.5645
RDFlex Stacking -0.0029  0.0092 0.9823 0.0243 0.0169 0.0898 0.4938
Fuzzy Subset RDD Conventional Covs -0.0001 0.0117 0.9609
RDD Without Covs -0.0003  0.0118 0.9478
RDFlex Lasso -0.0002 0.0110 0.9435 0.0249 0.4230 0.1010 0.5140
RDFlex Stacking -0.0004 0.0113 0.9522 0.0258 0.0329 0.1011 0.3580
Sharp RDD Conventional Covs -0.0040  0.0063 0.9120
RDD Without Covs -0.0040  0.0063 0.9240
RDFlex Lasso -0.0040  0.0055 0.9200 0.0242 0.0886
RDFlex Stacking -0.0040  0.0055 0.9240 0.0243 0.0888
Sharp Subset RDD Conventional Covs -0.0014  0.0094 0.9680
RDD Without Covs -0.0014  0.0095 0.9600
RDFlex Lasso -0.0014  0.0079 0.9560 0.0246 0.1004
RDFlex Stacking -0.0015  0.0080 0.9600 0.0256 0.1006

Table 4: Mean bias, standard errors, coverage, and quality of fit for the different estimators at cp in the setting
of Section[5.1}

C.2 VALIDATION TESTS FOR THE REAL DATA

A typical validation for the application of RDD is the pseudo-cutoff test (Cattaneo et al.l 2019). We
compare the estimated intent to treat effect of the real data at cp with a fictional lower and a higher
cutoff. In Table[C.Z]it is visible that both pseudo cutoffs show effects close to zero and with large
confidence band, while at the real cutoff the effect is almost significant on 95% confidence level.

Cutoff Coef 25%CI 97.5%CI
lower pseudo  0.002919 -0.014796  0.020634
real 0.039332  -0.001524  0.080188

higher pseudo  0.041137 -0.015333  0.097606

Table 6: Coefficient and confidence interval of the sharp real data estimation at pseudo cutoffs concerning cp.
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Mean Bias s.e. Coverage RMSEleft Loglossleft RMSEright Log loss right

setting method
Fuzzy RDD Conventional Covs -0.0158 0.0124 0.6867

RDD Without Covs -0.0189 0.0117 0.5200

RDFlex Lasso -13.0991  690.4369 0.9600 0.0275 0.0202 0.0707 0.4681

RDFlex Stacking -0.3166  16.4743 0.9667 0.0257 0.0104 0.0732 0.3574
Fuzzy Subset RDD Conventional Covs -0.0003 0.0085 0.9754

RDD Without Covs -0.0002 0.0085 0.9713

RDFlex Lasso 0.0002 0.0057 0.9795 0.0333 0.2688 0.0936 0.1580

RDFlex Stacking 0.0000 0.0058 0.9754 0.0337 0.0321 0.0938 0.1460
Sharp RDD Conventional Covs -0.0043 0.0073 0.8720

RDD Without Covs -0.0050 0.0074 0.8880

RDFlex Lasso -0.0045 0.0077 0.8800 0.0271 0.0726

RDFlex Stacking -0.0048 0.0070 0.8680 0.0255 0.0732
Sharp Subset RDD Conventional Covs -0.0005 0.0078 0.9800

RDD Without Covs -0.0004 0.0078 0.9720

RDFlex Lasso -0.0003 0.0054 0.9760 0.0333 0.0940

RDFlex Stacking -0.0004 0.0054 0.9720 0.0337 0.0939

Table 5: Mean bias, standard errors, coverage, and quality of fit for the different estimators at cy in the setting of

Section @

C.3 SHARP TWO-DIMENSIONAL DESIGN

We provide additional results for Section[5.1]in a different DGP configuration, where we assume that
the operator shows perfect compliance with the decision taken by the decision tool (D = T'). This
yields a perfect sharp two-dimensional RDD.

C.3.1 DISTANCE CUT-OFF

The effect at Ip is negative and significant (See Figure[8|and Table[7). While the setting in Section[5.1]
yielded D # T for units where the operator is cautious about the rework, here all units are reworked
independent of additional information that hint at a possibly negative outcome of the rework. Thus,
the effect of the rework is even more negative and the proposed movement of the threshold should be
larger than in the setting above.

There is no fuzzy subset estimator, as the conditioned set on the compliers of I is sharp only. The
subset estimator again reduces bias at a lightly higher standard error in the intent-to-treat (sharp)
estimator. The true sharp subset effect is smaller as less nevertakers are included that have an effect
of zero and thus take the average effect closer to zero. The ML adjustment reduces the standard error
for all estimators.

Mean Bias s.e. Coverage RMSE left Loglossleft RMSEright Log loss right

setting method
Fuzzy RDD Conventional Covs -0.0019  0.0102 0.4400

RDD Without Covs -0.0017 0.0103 0.4440

RDFlex Lasso -0.0021  0.0083 0.4440 0.0242 0.1130 0.0958 0.4996

RDFlex Stacking -0.0018  0.0085 0.4440 0.0243 0.0135 0.0960 0.3813
Sharp RDD Conventional Covs -0.0042  0.0067 0.9320

RDD Without Covs -0.0042  0.0067 0.9360

RDFlex Lasso -0.0042  0.0057 0.9360 0.0241 0.0951

RDFlex Stacking -0.0042  0.0057 0.9320 0.0243 0.0954
Sharp Subset RDD Conventional Covs 0.0010  0.0101 0.9720

RDD Without Covs 0.0009 0.0102 0.9720

RDFlex Lasso 0.0009  0.0085 0.9720 0.0247 0.1078

RDFlex Stacking 0.0009  0.0085 0.9720 0.0258 0.1080

Table 7: Mean bias, standard errors, coverage, and quality of fit for the different estimators at Ip in the setting
without nevertakers (sharp MRD).

C.3.2 YIELD CUT-OFF
The effect at Iy is comparable to the DGP setting in Section [5.1| (See Figure[9]and Table ).

C.4 NOISELESS DGP

We provide additional results for Section[5.1]in a setting where we assume that there is less noise
in the system. This is to provide a benchmark where the true ground truth is less noisy. We only
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Effect Estimates at the Distance Cutoff
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Figure 8: Median coefficient and median 95% confidence interval for coefficients at Ip. The estimation was
repeated » = 250 in the simulated process with a sharp boundary (D = T'). The different colors depict a fuzzy,
a sharp, and a sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap
for some settings.

Effect Estimates at the Yield Improvement Cutoff
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Figure 9: Median coefficient and median 95% confidence interval for coefficients at Iy. The estimation was
repeated = 250 in the simulated process with a sharp boundary (D = T'). The different colors depict a fuzzy,
a sharp, and a sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap
for some settings.

evaluate Ip as due to little variation around [y and the design of the process the estimators for Iy
have large variance.

C.4.1 DISTANCE CUT-OFF

In this setting, all estimates are positive (See Figure[I0]and Table[9). This could hint that the negative
effect in Section 5.1} which does not match with our estimation in the real data in Section[5.2} can be
explained by the tuning of the noise parameters of the process. The coverage is held better on the
subset estimators in this DGP setting. The sharp subset effect again is larger due to less nevertakers.
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Mean Bias s.e. Coverage RMSEleft Loglossleft RMSEright Log loss right

setting method
Fuzzy RDD Conventional Covs -0.0160  0.0125 0.3760

RDD Without Covs -0.0193  0.0115 0.3040

RDFlex Lasso -0.0697  4.5786 0.5920 0.0276 0.0213 0.0744 0.4486

RDFlex Stacking 0.0001 1.7755 0.5760 0.0257 0.0096 0.0777 0.3278
Sharp RDD Conventional Covs -0.0035 0.0081 0.8480

RDD Without Covs -0.0044  0.0079 0.8600

RDFlex Lasso -0.0041  0.0086 0.8680 0.0271 0.0766

RDFlex Stacking -0.0042  0.0077 0.8600 0.0256 0.0771
Sharp Subset RDD Conventional Covs -0.0008  0.008T 0.9760

RDD Without Covs -0.0008  0.0080 0.9760

RDFlex Lasso -0.0006  0.0056 0.9800 0.0336 0.0971

RDFlex Stacking -0.0007  0.0055 0.9760 0.0333 0.0970

Table 8: Mean bias, standard errors, coverage, and quality of fit for the different estimators at Iy in the setting
without nevertakers (sharp MRD).
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Figure 10: Median coefficient and median 95% confidence interval for coefficients at p. The estimation was
repeated r = 250 in the simulated process with no noise. The different colors depict a fuzzy, a sharp, and a
fuzzy and sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap for
some settings.

APPENDIX D COMMON ESTIMATORS FOR MULTI-SCORE REGRESSION
DISCONTINUITY

The following estimators for multi-score RD designs (e.g. consisting of two score components
{X1, X»}) are commonly proposed in recent surveys by Wong et al.|(2013]), Porter et al.|(2017), or
Reardon & Robinson| (2012)).

Mean Bias s.e. Coverage RMSEleft Loglossleft RMSEright Log loss right

setting method
Fuzzy RDD Conventional Covs -0.0021  0.0038 0.9040

RDD Without Covs -0.0022  0.0038 0.8920

RDFlex Lasso -0.0034  0.0032 0.8840 0.0240 0.0937 0.0256 0.5585

RDFlex Stacking -0.0030  0.0032 0.9080 0.0237 0.0113 0.0247 0.4681
Fuzzy Subset RDD Conventional Covs -0.0006  0.0038 0.9600

RDD Without Covs -0.0006  0.0039 0.9680

RDFlex Lasso -0.0007  0.0033 0.9560 0.0240 0.4183 0.0120 0.4649

RDFlex Stacking -0.0006  0.0034 0.9640 0.0248 0.0301 0.0129 0.2750
Sharp RDD Conventional Covs -0.0038  0.0025 0.5920

RDD Without Covs -0.0039  0.0025 0.6040

RDFlex Lasso -0.0039  0.0021 0.5960 0.0240 0.0254

RDFlex Stacking -0.0038  0.0021 0.6080 0.0237 0.0246
Sharp Subset RDD Conventional Covs -0.0006 0.0032 0.9680

RDD Without Covs -0.0006  0.0032 0.9720

RDFlex Lasso -0.0006  0.0027 0.9760 0.0240 0.0121

RDFlex Stacking -0.0006  0.0027 0.9720 0.0248 0.0128

Table 9: Mean bias, standard errors, coverage, and quality of fit for the different estimators at Ip in the setting
without noise in the DGP.
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. Binding the score: This method combines both score components into one dimension

by aggregating the minimum or the maximum of both scores. In settings where there
is a uniform effect along the boundary, this technique makes it possible to estimate the
effect of one treatment level with standard RDD estimators, using the score variable z* =
min (X7, X5) around a normalized cut-off.

. Frontier method: This method divides the two-dimensional setting into two one-

dimensional ones. It allows to evaluate two separate RDD along cutoff ¢; and co, respectively.
Non-compliers due to the other dimension of X are discarded.

. Location Specific Effect: Similarly to the latter two methods that used a L; distance

from the boundary to transform the two-dimensional setting into an easier-to-estimate one-
dimensional one, it is also possible to use the Ly-distance of each observation from a specific
location at the boundary. This is particularly popular in the geographic RDD literature since
we are able to identify location specific effects 7( X7, X5) instead of averaged effects along
one dimension.

. Fuzzy IV: This method divides the two-dimensional setting into two one-dimensional ones

similarly to (2). However, the method does not discard the observations that do not comply
to the derived one-dimensional rule. The position relative to the cutoff is now only an IV for
receiving the treatment, there is “non-compliance” caused by treatment assignment based
on the other dimension.

. Parametric Surface: This method is the only setting where the two-dimensional structure of

a RDD with two scores is directly taken into account. Using a parametric or nonparametric
approach, the two-dimensional surface of treatment and control groups are estimated and
the effect can be estimated as the average difference in outcomes at the boundary.

APPENDIX E DGP FOR THE CAUTIOUS OPERATOR

As discussed in Section ] we assume an information advantage of the final decision maker D. To
model this algorithmically we suppose that 7" has only access to the improvement estimates of every
m-th item in the production lot resulting in the yield score Xy whereas the final decision maker
knows the estimate for every item X g. In particular, the overall estimated yield improvement is
Xr = Xy + Xgr where X is the yield improvement of items not taken into account by Xy . In the
notation of Section 4| we set X, := X g. That is, the operator specific policy in Algorithm outlined
below is Do(Xy, XE) = IXy AN IXE-

Algorithm 1: DGP for a cautious operator

Data: seed, lot-size n, cutoff ¢, measurement steps m, yield criteria ), distance criteria D,
operator specific policy Do

Result: lot L, scores X = (X p, Xy ), assigned treatment 7', actual treatment D, outcome Y

L+ (Cy,...,C,) generate a random production lot of n items;

Xp < D(L) calculate the distance to the target;

L 4 < carry out an optimal rework step on L;

Xy < calculate improvement ) (ﬁ 4) — V(L) on every m-th item;
T + ]I[XD > CD] A ]I[Xy > Cy];
X g <+ calculate improvement )/ (ﬁ 4) — V(L) on every item;
D + ]].[XD > CD] /\Do(Xy, XE);
L 4 < carry out a realistic (noisy) rework step on L;
if D then
| Y < Y(La)
else
Y V(D)
end
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APPENDIX F  COMPUTATIONAL RESOURCES AND HYPERPARAMETERS

. In this appendix, we specify the computational resources that were used to achieve the main results.

The simulated study in Section [5.1| was facilitated on a single node of a high performance cluster.
Specifically, 16 cores of an AMD EPYC 9654 CPU with 8GB RAM were used. The total computation
time was 9.5 hours for 250 repetitions with 4 estimators in 8 scenarios (each 4 scenarios concerning
I D and [ Y)-

The real data application in Section [5.2] was facilitated on single node spark cluster. Specifically,
4 cores of a 64bit Intel(R) Xeon(R) Platinum 8171M CPU with 8 GB RAM were used. The total
computation time was 2 hours.

For the no-covariate and conventional-covariate RDD estimation, the rdrobust (Calonico et al.,
2017) package was used with default parameters regarding bandwidth selection and polynomial
order. For the flexible covariate adjustment, the DoubleML (Bach et al.| 2022) package was
used with fit_iterations = 2 and 5-fold cross-fitting. For ML, the scikit-learn
(Pedregosa et all [2011) implementation of cross-validated Lasso was used, and the stacked
learner was defined as follows: stacking_regressor = StackingRegressor (
estimators=[ (’lgbm_regressor’, LGBMRegressor (n_estimators=100,
learning_rate=0.01, verbose=-1, n_jobs=-1)), ('global_forest’,
GlobalRegressor (RandomForestRegressor (n_jobs=-1))),

(" linear_regressor’, LassoCV(n_jobs=-1)), 1, final_estimator=RidgeCV (),
n_jobs=-1).

APPENDIX G STATEMENT ON Al USAGE

For this research paper, large language models were used solely to assist with literature search,
writing, and coding. All conceptualization, ideation, and theoretical contributions were carried out
without Al support. The paper and code were authored entirely by the researchers, with Al serving
only as a support and feedback tool.
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