

000 001 002 003 004 005 006 007 008 BRINGING LIGHT TO THE THRESHOLD: IDENTIFICA- 009 TION OF MULTI-SCORE REGRESSION DISCONTINUITY 010 EFFECTS WITH APPLICATION TO LED MANUFAC- 011 TURING 012

013 **Anonymous authors**

014 Paper under double-blind review

015 ABSTRACT

016 The regression discontinuity design (RDD) is a widely used framework for
017 threshold-based causal effect estimation in causal inference. Recent extensions
018 incorporating machine learning (ML) adjustments have made RDD an appealing
019 approach for researchers utilizing causal ML toolkits. However, many real-world
020 applications, such as production systems, involve multiple decision criteria and
021 logically connected thresholds, necessitating more sophisticated identification
022 strategies, which are not clearly addressed in the recent literature. We derive a
023 novel identification result for the complier effect in the multi-score RDD (MRD)
024 setting by extending unit behavior types to multiple dimensions. Further, we show
025 that under mild assumptions, this identification result does not depend on subsets
026 of units with constant response. We apply our findings to simulated and real-world
027 data from opto-electronic semiconductor manufacturing, employing estimators that
028 adjust for covariates through machine learning. Our results offer insights into en-
029 hancing current production policies by optimizing the cutoff points, demonstrating
030 the applicability of MRD in a manufacturing context.

031 1 INTRODUCTION

032 The Regression Discontinuity Design (RDD) is a quasi-experimental strategy for the identification
033 and estimation of causal effects that has been widely applied in empirical economics (Hartmann
034 et al., 2011; Card et al., 2015; Flammer, 2015; Calvo et al., 2019), public policy (Lee, 2008) and
035 the social sciences (Angrist & Lavy, 1999). Its appeal lies in its ability to deliver credible causal
036 estimates under minimal assumptions, utilizing discontinuities in treatment assignment rules that are
037 typically based on an observed running or score variable (Imbens & Lemieux, 2008; Lee & Lemieux,
038 2010). Typical examples are credit scores, GPAs or vote shares. The classic RDD setting assumes
039 that treatment assignment hinges on a single, continuous forcing variable crossing a known threshold.
040 When correctly specified, this setting enables identification of average treatment effects for units near
041 the cutoff (Cattaneo et al., 2019). In particular, RDD can be applied even if typical causal machine
042 learning assumptions such as *unconfoundedness* (Rubin, 1974) or *positivity* (Austin, 2011) do not
043 hold (Imbens & Lemieux, 2008).

044 However, in many real-world contexts – particularly in industrial, operational, or engineering systems
045 – treatment decisions are based not on a single score, but on multiple criteria (Sabaei et al., 2015).
046 Such situations call for an extension of the classical RDD setup to multi-score RDD (MRD), in which
047 treatment is assigned when a combination of variables jointly satisfies a threshold condition (Papay
048 et al., 2011). Recent work has surveyed MRD (Reardon & Robinson, 2012; Wong et al., 2013; Porter
049 et al., 2017) and proposed estimators for test score-based (An et al., 2024) and geographical (Keele &
050 Titiunik, 2015) applications.

051 This paper addresses the identification and estimation challenges that arise in the context of multi-
052 score RDD, particularly in complex decision-making environments such as production systems. In
053 such systems, decision rules are often implemented through a layered combination of logic and
thresholds applied to multiple inputs, making the treatment assignment mechanism more intricate

than in the standard RDD case. We develop new identification results tailored for multi-score RDD settings. Specifically, we provide a formal framework that defines and categorizes behavioral types of units. We investigate general boolean-type cutoff rules, such as "AND"-type and "OR"-type rules, commonly observed in MRD environments and analyze how their properties influence local identification. Further, we show how the complier effect can be identified using these categories. We demonstrate the utility of our framework by applying it to a real-world problem in light-emitting diode (LED) production, where treatment assignment is based on multiple quality indicators. Using real-world manufacturing data, we estimate the causal effect of a threshold-based production policy and show how the estimated effects can guide the optimal tuning of the decision threshold to improve manufacturing outcomes. We complement our empirical results with a simulated study using a semi-synthetic clone of the production environment, highlighting the value of multi-score RDD for counterfactual analysis and industrial policy design.

Our contributions to the causal machine learning literature are twofold. On the theoretical side, we advance the multi-dimensional regression discontinuity (MRD) framework, previously developed in the econometric literature. Specifically, we provide a rigorous definition and categorization of unit behavior types in the multi-cutoff case, introducing in particular the novel class of *indecisive units*, which has no counterpart in the one-dimensional setting. We further establish an identification theorem for the complier effect, derive precise conditions under which non-changing units (alwaystakers and nevertakers) can be rejected, and show how our identification results enable recovery of the complier effect in the multi-dimensional case. On the practical side, we illustrate the applicability and usefulness of the MRD framework in a real-data industrial application, thereby demonstrating the potential of causal machine learning methods in practice.

2 BACKGROUND

2.1 RELATED LITERATURE

Early theoretical work on extending RDD to **Multi-Score Regression Discontinuity Designs** recognized that such designs require new identification strategies (Papay et al., 2011). While this setting included multiple treatment levels, most recent papers on MRD study the identification of a binary treatment that is assigned based on multiple indicators, using either "AND" connections of rules (Choi & Lee, 2018; Keele & Titiunik, 2015), "OR" connections (Wong et al., 2013), or both (Reardon & Robinson, 2012; Imbens & Zajonc, 2009). An important special case involves geographical MRD, which features a two-dimensional design with longitude and latitude as scores (Keele & Titiunik, 2015; Cattaneo et al., 2025). See Appendix D for an overview of the MRD estimators typically studied in recent literature (Porter et al., 2017). Additionally, recent work has introduced new estimators based on a minimax approach (Imbens & Wager, 2019) and on decision trees (Liu & Qi, 2024). Porter et al. (2017) note that although there is a rich body of studies using MRD, there is a lack of theoretical understanding of MRD estimators.

Our work further contributes to a growing field of **applications of causal machine learning in management and operations**. Calvo et al. (2019) use a one-dimensional fuzzy RD design in public infrastructure projects. Hünermund et al. (2021) highlight the value of causal machine learning for business decision-making and provide an overview of methods, including RDD. Mithas et al. (2022) give an overview of RDD applications in operations management. Schacht et al. (2023) study policy making in semiconductor manufacturing using propensity score-based estimation in the double machine learning framework. Vuković & Thalmann (2022) investigate the development of research on causal discovery in manufacturing, focusing on motivation, common application scenarios, impact, and implementation challenges. Finally, there have been applications of causal machine learning to policy learning in different business fields, e.g., supply chain management (Wyrembek et al., 2025) or marketing (Huber, 2024). Despite these recent advances, the application of causal machine learning methodologies within operational and industrial domains remains underexplored.

2.2 RDD SETTING

RDD dates back to a study by Thistlethwaite & Campbell (1960) on scholarship programs. Recent sources on RDD often rely on identification and estimation results by Hahn et al. (2001), as well as prominent surveys (Imbens & Lemieux, 2008; Lee & Lemieux, 2010; Cattaneo et al., 2019). RDD

108 consists of three key ingredients: A score X that rates the individuals; a cutoff c that splits the support
 109 of the score into two groups; and a treatment D , which is assigned to one of the groups based on their
 110 score and the cutoff, $D_i = \mathbb{1}[X_i \geq c]$ (Cattaneo et al., 2019).

111 The parameter of interest is the average treatment effect at the cutoff c , $\mathbb{E}[Y(1) - Y(0) | X = c]$ with
 112 $Y(1)$ and $Y(0)$ being the potential outcomes of the individuals (Rubin, 2005). The central RDD
 113 assumption is continuity.

114 **Assumption 1.** *Continuity. The conditional mean of the potential outcomes $\mathbb{E}[Y_i(d) | X_i = x]$ for
 115 $d \in \{0, 1\}$ is continuous at the cutoff level c .*

117 Under Assumption 1, RDD provides inference around the threshold as plausible as that from a
 118 randomized experiment (Lee, 2008). The average treatment effect at the threshold $\tau_0 = \mathbb{E}[Y_i(1) -$
 119 $Y_i(0) | X_i = c]$ is identified as $\tau_0 = \lim_{x \rightarrow c^+} \mathbb{E}[Y_i | X_i = x] - \lim_{x \rightarrow c^-} \mathbb{E}[Y_i | X_i = x]$ (Hahn
 120 et al., 2001). The basic RDD estimator runs separate local linear regressions on each side of the
 121 cutoff:

$$\hat{\tau}_{\text{base}}(h) = \sum_i w_i(h) Y_i,$$

124 where the $w_i(h)$ are local linear regression weights that depend on the data through the realizations
 125 of the running variable only, and $h > 0$ is a bandwidth.

126 Under standard conditions (Hahn et al., 2001), which include that the running variable is continuously
 127 distributed, and that the bandwidth h tends to zero at an appropriate rate, the estimator $\hat{\tau}_{\text{base}}(h)$ is
 128 approximately normally distributed in large samples, with bias of order h^2 and variance of order
 129 $(nh)^{-1}$, with sample size n .

130 More recent work, which we will also employ in the empirical section, uses a flexible covariate
 131 adjustment based on potentially nonlinear adjustment functions η . The estimator takes the following
 132 form:

$$\hat{\tau}_{\text{RDFlex}}(h; \eta) = \sum_i w_i(h) M_i(\eta), \quad M_i(\eta) = Y_i - \eta(Z_i). \quad (1)$$

136 Here, η is the influence of Z on the outcome Y and is estimated using ML methods (Noack et al.,
 137 2024).

139 3 GENERAL IDENTIFICATION STRATEGIES IN MULTI-SCORE RDD

141 In this section, we give a formal definition of common behavior types of units (e.g., complier, defier)
 142 in multi-score, two-stage decision settings that employ cutoff-rules for the initial treatment assignment.
 143 We derive an identification result using these unit categories. In particular, we show that under certain
 144 assumptions, the identification does not depend on subsets of unit types with constant response. This
 145 is a new result in the literature and our main theoretical contribution.

146 In practical settings, the easiest way to improve a complex cutoff-rule is to analyze and adjust cutoffs
 147 individually, e.g., one can estimate the effect on complier with respect to a specific subrule involving
 148 a single cutoff. Taking the AND-rule $D := \mathbb{1}[X_1 > c_1] \mathbb{1}[X_2 > c_2]$ as an example, one can analyze
 149 the effect on complier of $G := \mathbb{1}[X_1 > c_1]$ at the cutoff to gain insights on how to improve c_1 . This
 150 can be achieved in different ways: First, using a fuzzy setting in which we regard G as the assigned
 151 and D as the actual treatment. Second, by conditioning on the complying units and using a sharp
 152 estimator. Thus, knowledge of unit behavior can open up a different way of estimating the complier
 153 effect.

154 Expanding on the previous example, now suppose that the treatment assignment $T := \mathbb{1}[X_1 >$
 155 $c_1] \mathbb{1}[X_2 > c_2]$ is known, while the final decision rule D is unknown and does not always comply
 156 with T . Thus, the question arises how knowledge of units that comply with T in the final treatment
 157 D can improve the estimation of the effect of $G := \mathbb{1}[X_1 > c_1]$ on the treatment outcome.

158 3.1 SETUP

160 For each individual i , let $X_i = (X_{1,i}, \dots, X_{K,i}) \in \mathbb{R}^K$ denote the score variables. Further, given
 161 $c \in \mathbb{R}^K$, let $I_i(c) := (I_{1,i}(c_1), \dots, I_{K,i}(c_K))$ denote the corresponding indicator variables with

$I_{k,i}(c_k) := \mathbb{1}[X_{k,i} > c_k]$ and let the observed outcome for individual i be Y_i . We regard the entries $I_i(c)$ as boolean variables and allow any composition of AND, OR and negation operations ($\wedge, \vee, \bar{\square}$) over this set of atoms to form general boolean functions $g(I_i(c))$.

Definition 1. A mapping $T : \mathbb{R}^K \rightarrow \{0, 1\}$ is called a decision rule. We say that a decision rule T is a cutoff rule (on \mathbb{R}^K) if there exists a boolean mapping g such that $T_i = T(X_i) = g(I_i)$.

With slight abuse of notation, we use $T(c)$, $T(X_i | c)$ and $T_i(c)$ to indicate the use of a specific cutoff $c \in \mathbb{R}^K$. Note that

$$T(X + \epsilon | c) = T(X | c - \epsilon) \quad \text{and} \quad T(\lambda X | c) = T\left(X \mid \frac{c}{\lambda}\right) \quad (2)$$

holds for $\epsilon \in \mathbb{R}^K$, $\lambda \in \mathbb{R}_{>0}$. Thus, without loss of generality, we assume that the cutoff of interest is $c = 0$. We suppose that Y_i depends in the following way on a cutoff rule T and a general decision rule D :

$$\begin{aligned} Y_i = Y_i(T_i, D_i) &= \left(Y_i(0, 0)(1 - D_i) + Y_i(0, 1)D_i \right)(1 - T_i) \\ &\quad + \left(Y_i(1, 0)(1 - D_i) + Y_i(1, 1)D_i \right)T_i, \end{aligned}$$

where T is the treatment assignment and D is the actually implemented treatment. Unless otherwise stated, in the proofs we make no further assumptions on D except that it is a decision-rule.

3.2 UNIT CATEGORIZATION

Given this setup, there are certain groups of individuals that are especially interesting, namely the never-taker, the always-taker, the complier and the defier with respect to the pair (T, D) or (G, D) , where G is a subrule of T . We follow the intuition that changes in the cutoff, or equivalently in the observed score values – relevant for T – are necessary to categorize the behavior of a unit i .

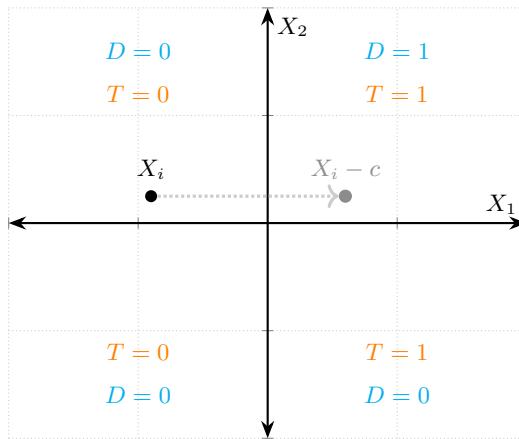


Figure 1: Cutoff rules $D = I_1 \wedge I_2$ and $T = I_1$. The decision boundaries coincide with the coordinate axes. When $X_2 > 0$, T complies with D ; otherwise, $D = 0$ regardless of the value of X_1 , which governs the behavior of T .

Figure 1 illustrates this idea for $D := I_1 \wedge I_2$ and $T := I_1$, and shows that only changes $c \in \mathbb{R}^2$ that affect T are relevant for categorizing the behavior of a unit i with respect to (T, D) . Additional variables that affect only D may not be controllable or even observable. The following definition formalizes the intuition behind relevant directions of change in a cutoff rule.

Definition 2. Let T be a cutoff rule on \mathbb{R}^K . Denote with e_1, \dots, e_K the unit direction in \mathbb{R}^K and with

$$S(T) := \{k \mid \exists c \in \mathbb{R}^K, \lambda \in \mathbb{R} : T(0 | c + \lambda e_k) \neq T(0 | c)\}$$

216 the support directions of T . The support of T is defined as the linear hull over the support directions:
 217

$$218 \quad \text{supp}(T) := \left\{ \sum_{k \in S(T)} \lambda_k e_k \mid \lambda_k \in \mathbb{R}, k \in S(T) \right\}$$

$$219$$

$$220$$

221 The above notion of the support of a cutoff rule is motivated by the existence of a change along a
 222 single coordinate direction. It is almost trivial to see that an empty support also excludes changes
 223 along multiple directions, justifying the definition.
 224

225 **Lemma 1.** T is constant if and only if $S(T) = \emptyset$, or equivalently, if and only if $\text{supp}(T) = \{0\}$.
 226

227 From now on, we require that T is not degenerate in the sense that $\text{supp}(T) \neq \{0\}$.
 228

229 For the introductory AND-rule example, $D := I_1(c) \wedge I_2(c)$ and $T := I_1(c)$ we have $\text{supp}(T) = \mathbb{R} \times \{0\}$ and $\text{supp}(D) = \mathbb{R}^2$. If a unit i complies in the assigned treatment T with the actual D ,
 230 one would require that T_i produces the same output as D_i , even under any¹ hypothetical change of
 231 the cutoff c_1 . In other words, both rules should be synchronous on the support of T , which is the
 232 case if $X_{2,i} > c_2$. Thus, it is $X_{2,i}$ (or equivalently c_2) that controls the behavior of i . To make this
 233 distinction more apparent, it is useful to have a notation for entries $X \in \mathbb{R}^K$ that do not affect T :
 234

$$235 \quad N^T := \{X \in \mathbb{R}^K \mid T(X \mid c) = T(0 \mid c) \text{ for all } c \in \mathbb{R}^K\}$$

236 In particular, one can show the following.
 237

238 **Proposition 1.** For each $X \in \mathbb{R}^K$, there exists a unique decomposition $X = X^T + X^{\perp T}$ with
 239 $X^T \in \text{supp}(T)$ and $X^{\perp T} \in N^T$. The orthogonal projection $P_T(X) := \sum_{k \in S(T)} \langle X, e_k \rangle e_k$ onto
 240 $\text{supp}(T)$ satisfies the above properties, where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^K .
 241

242 That is, according to Proposition 1, one has the following decomposition
 243

$$244 \quad \mathcal{S} := \mathbb{R}^{|S(T)|} \times \mathbb{R}^{K-|S(T)|} \simeq^2 \text{supp}(T) \oplus N^T = \mathbb{R}^K$$

245 of the score space into two distinct parts. The former part captures the decision changes of T and
 246 the latter consists of free variables not affecting T , but potentially controlling the unit category. This
 247 observation allows for a general definition of unit categories.
 248

249 **Definition 3.** Let i be a unit and $X_i = X_i^T + X_i^{\perp T}$. Then i is said to be a *never-taker* (an *always-taker*)
 250 of T with respect to D iff $D(X_i^{\perp T} - c) = 0$ (iff $D(X_i^{\perp T} - c) = 1$) for all $c \in \text{supp}(T)$.
 251 Further, i is said to be a *complier* (a *defier*) of T with respect to D iff $T(0 \mid c) = D(X_i^{\perp T} - c)$ (iff
 252 $T(0 \mid c) \neq D(X_i^{\perp T} - c)$) for all $c \in \text{supp}(T)$.
 253 Let the sets of compliers, never-takers, always-takers, and defiers be denoted by $\text{ComP}(T, D)$,
 254 $\text{Nt}(T, D)$, $\text{At}(T, D)$, and $\text{DeF}(T, D)$, respectively.
 255

256 Particularly, if D is a cutoff-rule one obtains the following more intuitive equivalencies, which capture
 257 the notion of a simultaneous cutoff changes along relevant directions.
 258

259 **Proposition 2.** Let D be a cutoff rule over \mathbb{R}^K and i be a unit. Then i is a never-taker (an always-taker)
 260 of T w.r.t. D iff $D_i(c) = 0$ (iff $D_i(c) = 1$) for all $c \in \text{supp}(T)$. Further, i is a complier (a defier) of
 261 T w.r.t. D iff $T_i(c) = D_i(c)$ (iff $T_i(c) \neq D_i(c)$) for all $c \in \text{supp}(T)$.
 262

263 Note that the terminology introduced in Definition 3 indeed introduces well-defined categories:
 264

265 **Proposition 3.** The sets $\text{At}(T, D)$, $\text{Nt}(T, D)$, $\text{ComP}(T, D)$ and $\text{DeF}(T, D)$ are pairwise disjoint.
 266

267 From now on, whenever we assume that D is a cutoff rule, we restrict ourselves to the case in which
 268 D has at least as much information for decision-making as T . This means that D might depend on
 269 $I_{k,i}(0)$ for $k \in S(T)$. In addition, we suppose that D does not depend on $I_{k,i}(c)$ with $c \neq 0$ for
 270 $k \in \text{supp}(T)$, effectively restricting to the case where both decision rules have a zero cutoff.³

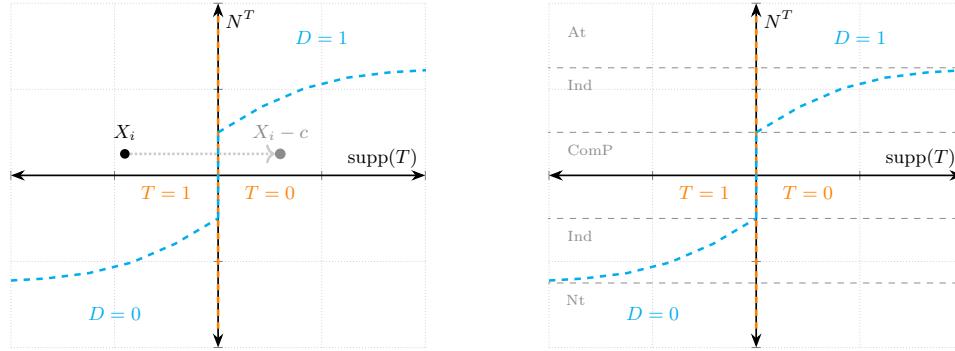
271 ¹A more refined, local definition could relax this requirement to “any reasonable changes”. For ease of
 272 presentation, we stick to the global version.
 273

274 ²Both linear spaces are isomorphic; \oplus denotes the direct sum.
 275

276 ³This restricts the general case. Suppose that the decision maker D is an opportunist and ignores all the
 277 other scores as long as a certain incentive X_k exceeds an even higher cutoff $0 < c_k < X_k$. Only then D would
 278 comply with T .
 279

Even for cutoff rules D under these restrictions, the categories above are not exhaustive if $\dim(\text{supp}(T)) > 1$. For example, let $D := (\bar{I}_1 \wedge I_2)$ and $T := I_1 \wedge I_2$. Then $\text{supp}(T) = \mathbb{R}^2$ and for $T(0|0) = D(0|0)$ but $0 = T(0|(-1, 1)) \neq D(0|(-1, 1)) = 1$. Thus, D is not constant nor equal to T or \bar{T} on the support of T . We call individuals of this remaining category *indecisive* and denote the set of *indecisives* (of T with respect to D) by $\text{Ind}(T, D)$.

Figure 2 visualizes the general case in which D is not a cutoff rule.



(a) No matter which change c of X_i in the $\text{supp}(T)$ plane we imagine, the responses of D and T are equal. A shift of score X_i by c is equivalent to a simultaneous shift of the decision boundaries by c , which by N^T . The space is partitioned (from top to bottom) into areas of amounts to a coordinate shift for D and a cutoff shift for T motivating alwaysstakers, indecisives, complifiers, indecisives and neverstakers of T with respect to D .
 Definition 3.

Figure 2: General case with D not being a cutoff rule. The decision boundaries of T and D are indicated with orange and blue dashed lines.

Note that given T with $\dim(\text{supp}(T)) > 1$, one can always construct a cutoff rule D that exhibits indecisive items. At least one has the following:

Proposition 4. *Let D be a cutoff rule on \mathbb{R}^K and let i denote an individual. If $\dim(\text{supp}(T)) = 1$ then $i \in \text{At}(T, D) \cup \text{Nt}(T, D) \cup \text{DeF}(T, D) \cup \text{ComP}(T, D)$.*

Moreover, our definitions of complier, neverstaker and alwaysstaker imply the corresponding definitions in (Imbens & Lemieux, 2008). For this, let $c^+, c^- \in \text{supp}(T)$ be two directions that induce change in T , that is:

$$\lim_{\lambda \rightarrow 0} T(X_i | \lambda c^+) = 1 \text{ and } \lim_{\lambda \rightarrow 0} T(X_i | \lambda c^-) = 0$$

Using the above complier definition:

$$T(X_i | c) = T(X_i^T | c) = T(0 | c - X_i^T) = D(X_i^{\perp T} + X_i^T - c) = D(X_i - c)$$

for $c \in \text{supp}(T)$. In particular, T and D coincide in a neighborhood of zero, and thus

$$\lim_{\lambda \rightarrow 0} D_i(\lambda c^+) = \lim_{\lambda \rightarrow 0} D(X_i - \lambda c^+) = 1 \text{ and } \lim_{\lambda \rightarrow 0} D_i(\lambda c^-) = \lim_{\lambda \rightarrow 0} D(X_i - \lambda c^-) = 0$$

where $D_i(c) := D(X_i - c)$ for $c \in \text{supp}(T)$. The corresponding statements for neverstaker and alwaysstaker follow analogously. Indeed, requiring consistency in the limit for any direction one would arrive at a local definition of the unit categories sufficient for the multi-score RDD setting. Before continuing with the identification part we are going to expand on the AND-rule example.

Example (AND-Rules) Let $D := \bigwedge_{j=1}^K I_j$ and $T := \bigwedge_{j=1}^k I_j$ for $k \in \{1, \dots, K-1\}$. Then $\text{supp}(T) = \mathbb{R}^k \times \{0\}^{K-k}$. Further, we have the following unit categorizations: (i) $\text{ComP}(T, D) = \{i \mid \forall k < j \leq K : X_{j,i} > 0\}$ Note that $X_{j,i} > 0$ for all $k < j \leq K$ is equivalent to $\bigwedge_{j=k+1}^K I_{j,i}(c)$ being one for $c \in \text{supp}(T)$. Thus, the rule D_i effectively reduces to T_i . (ii) $\text{At}(T, D) = \emptyset$ Since for each $X_i \in \mathbb{R}^K$ there exists a $c \in \text{supp}(T)$ such that $D_i(c) = 0$. For example choose any c with $X_{1,i} \leq c_1$ and $c_j = 0$ for $j \neq 1$. (iii) $\text{Nt}(T, D) = \{i \mid \exists k < j \leq K : X_{j,i} \leq 0\}$ Note that i being in the set on the right is equivalent to $\bigwedge_{j=k+1}^K I_{j,i}(c)$ being zero for all $c \in \text{supp}(T)$. This is equivalent to $D_i(c) = 0$ for all $c \in \text{supp}(T)$, since given an i one can always find a cutoff $c \in \text{supp}(T)$

such that $T_i(c) = 1$, which implies that one of the indicators $I_{j,i}$ for $j > k$ has to be zero. **(iv)** $\text{DeF}(T, D) = \emptyset$ Note that $T_i(c) = 0$ implies $D_i(c) = 0$, and that $c \in \text{supp}(T)$ can always be chosen such that the former is satisfied.

Additional examples can be found in Appendix A.2 illustrating instances of the remaining unit categories (excluding the indecisive case). We conclude that the introduced definitions are indeed reasonable.

3.3 EFFECT IDENTIFICATION

Inspired by the work of (Hahn et al., 2001; Imbens & Angrist, 1994), we use the introduced unit categories to prove an identification theorem for the effect on complier at the cutoff. For this section, we require that the outcome Y does not directly depend on the treatment assignment T . Denote the set of all unit categories by

$$\mathcal{C} := \{\text{ComP}(T, D), \text{Nt}(T, D), \text{At}(T, D), \text{DeF}(T, D), \text{Ind}(T, D)\}$$

and the set of non-change categories by $\mathcal{C}^0 := \{\text{Nt}(T, D), \text{At}(T, D)\}$. We assume that the categorization of a unit is independent of the support part of T in a neighborhood of the cutoff, that is:

Assumption 2. *There exists an $\epsilon > 0$ such that $\Pr(i \in \text{Cat} \mid X_i^T = x) = \Pr(i \in \text{Cat} \mid X_i^T = 0)$ for $\|x\| \leq \epsilon$ and $\text{Cat} \in \mathcal{C}$.*

Note that this requirement relates to the independence assumptions used in (Imbens & Angrist, 1994). We further rely on the following local continuity assumption, which is a variation of the standard continuity assumption (Assumption 1):

Assumption 3. *There exists an $\epsilon > 0$ such that $x \mapsto \mathbb{E}(Y_i(d) \mid X_i^T = x, i \in \text{Cat})$ is continuous for $\|x\| \leq \epsilon$, $d \in \{0, 1\}$ and $\text{Cat} \in \mathcal{C}$.⁴*

Two more assumptions are required to make further use of the continuity. First, we deny the existence of indecisive items, since this category does not allow structured conclusions about D based on knowledge of T .

Assumption 4. $\text{Ind}(T, D) = \emptyset$

Second, we assume that the directions $x^+, x^- \in \text{supp}(T)$ along which we aim to estimate the complier effect induce a change in T .

Assumption 5. $1 = \lim_{\lambda \rightarrow 0} T(\lambda x^+ \mid 0) \neq \lim_{\lambda \rightarrow 0} T(\lambda x^- \mid 0) = 0$

This assumption is implicit in one-dimensional RDD designs and imposes no real restriction in practice, as T is generally assumed to be known. The proof of the following proposition can be found in Appendix A.3.

Theorem 1. *Let Assumptions 2, 3, 4 and 5 hold. Then the complier effect at the cutoff is identified as*

$$\begin{aligned} \mathbb{E}(Y_i(1) \mid X_i^T = 0, i \in \text{ComP}) - \mathbb{E}(Y_i(0) \mid X_i^T = 0, i \in \text{ComP}) = \\ \frac{1}{\Pr(i \in \text{ComP} \mid X_i^T = 0)} \left(\lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^+) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^-) \right) - C \end{aligned}$$

with C being the correction term for defier:

$$C := \frac{\Pr(i \in \text{DeF} \mid X_i^T = 0)}{\Pr(i \in \text{ComP} \mid X_i^T = 0)} \left(\mathbb{E}(Y_i(0) \mid X_i^T = 0, i \in \text{DeF}) - \mathbb{E}(Y_i(1) \mid X_i^T = 0, i \in \text{DeF}) \right)$$

This identification result allows for two immediate conclusions. First, one is free to choose among the directions x^+ and x^- satisfying Assumption 5. Second, the proof suggests that dropping subsets $\Omega \subset \text{Nt} \cup \text{At}$ does not affect identification, as long as doing so does not violate Assumptions 3 and 2. We provide a corresponding result in Appendix A.3 (see Theorem 2). We call estimates of the complier effect of T when removing Ω the *sub-set complier effect of G excluding Ω* .

⁴This assumption can be weakened by assuming only directional continuity, which would render the effect dependent on the chosen directions.

4 APPLICATION SETTING

In the following section, we will bridge the gap between our theoretical considerations and the empirical setting studied. We consider an inline rework process in lot-based opto-electric semiconductor manufacturing during the phosphor conversion step. Production lots, each consisting of 784 individual LEDs, that fail to achieve a certain quality level are subjected to an additional rework step to improve overall yield. For details on the conversion process, we refer to related work (Cho et al., 2017; Schwarz et al., 2024).

The score consists of two components: The *distance score*, X_D , measures the distance from the mean color point $C := (C_x, C_y)$ of a lot to the optimal target in the color space. The *yield improvement score*, X_Y , is a relative measure that evaluates the quality distribution of individual chips in a lot by calculating a hypothetical scenario in which the target is ideally met by the mean of the lot. If there is high variability in the quality of parts within a lot, this improvement is negligible or even negative. Figure 3 depicts the score components in more detail.

The treatment is assigned by a binary “AND” decision rule $T = I_D \wedge I_Y$. We assume that the final decision makers (i.e., human operators) D have an informational advantage regarding the improvement score and that they use this advantage to override T , while remaining cautious about possible degradation. This cautious operator assumption aligns with the observed one-sided fuzziness in the I_Y dimension and the strict compliance to the distance rule I_D , as observed in real data (see Figure 4). In particular, whenever T suggests that a rework step should be carried out, the operator

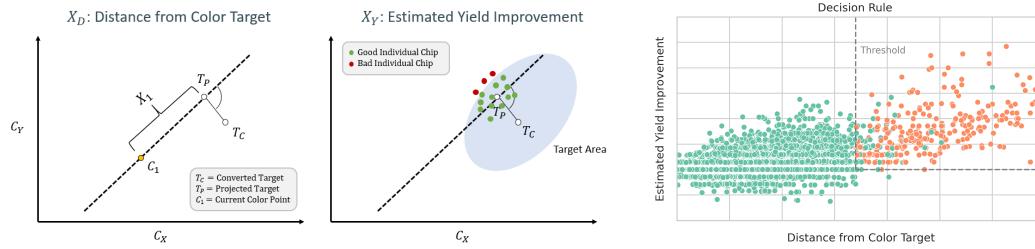


Figure 3: Left: X_D is defined as the distance between the current mean color point and the target point. Right: X_Y evaluates the expected improvement by calculating the share of in-specification chips in the lot. This is done by moving the current distribution of color points to the target.

Figure 4: Real data plot w.r.t. the score components X_D and X_Y . The decision boundary T is dashed. The actual treatment assignment (green and orange) follows an unobserved rule D , rendering the MRD fuzzy.

may override it due to the informational advantage not captured in T . Conversely, if T does not suggest a rework treatment, we assume that the operator accepts this decision, being cautious of possible degradation. We formalize the inclination toward this negative override into an additional score variable X_{op} that captures the information advantage: $D = T \wedge I_{op}$. A DGP based on the cautious operator assumption is outlined in Appendix E. In this case, we have:

$$\text{ComP}(T, D) = \{i \mid X_{op,i} > 0\} \text{ and } \text{Nt}(T, D) = \{i \mid X_{op,i} \leq 0\},$$

as well as

$$\text{ComP}(G, D) = \{i \mid X_{op,i} > 0, X_Y > 0\} \text{ and } \text{Nt}(G, D) = \{i \mid X_{op,i} \leq 0\} \cup \{i \mid X_{Y,i} \leq 0\}$$

for the sub-rule $G := I_D$ of T (see Example 3.2). Employing Theorem 2 from Appendix A one can estimate the sub-set complier effect of G excluding the never-taker $\Omega := \{i \mid X_{Y,i} \leq 0\}$ instead of the complier effect of G .⁵

5 EFFECT ESTIMATION WITH RDD

We benchmark estimators in accordance to Section 3 on both semi-synthetic and real-world data as described in Section 4. We compare estimators without adjustment, with conventional adjustment, penalized linear adjustment and adjustment using a stacked ensemble learner.

⁵Since the condition $X_{Y,i} \leq 0$ is global, the required continuity and stability assumptions are likely to be satisfied in practical applications.

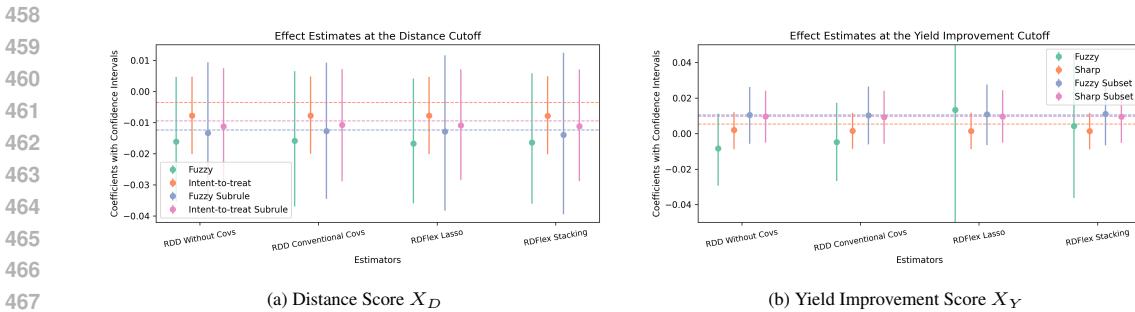
432 5.1 SEMI-SYNTHETIC DATA
433

434 To provide a realistic benchmark of the estimators across different settings, we generate semi-synthetic
435 data following Algorithm 1⁶. The process is calibrated to match real data characteristics. We draw
436 $n = 10,000$ observations and repeat the experiment $r = 250$ times. The oracle value is estimated
437 using a local linear kernel regression on the differences in true potential outcomes. The covariates
438 consist of statistics describing the quality of individual items.

439 We evaluate the cut-offs c_D and c_Y separately, estimating the complier effect of $G \in \{I_Y, I_D\}$ as
440 identified in Theorem 1, the **subset** complier effect of G given its counterpart (in accordance to
441 Theorem 2 and intent-to-treat estimates with and without the subset conditioning. The complier
442 effects are estimated under a fuzzy design; the intent-to-treat effects under a sharp design.

443 As shown in Figure 5, the intent-to-treat oracles are closer to zero than the complier effects due to
444 the inclusion of individuals who are never-takers with respect to each cutoff rule. As visible in 5a,
445 for I_D we estimate an overall negative effect, although it is not significant at 95%-level. The subset
446 effect for the fuzzy case exhibits a smaller bias as the percentage of never-takers in the estimation
447 sample is smaller. The estimated effect remains unchanged as only never-takers but no compliers
448 were removed. This underlines our theoretical argument. For the intent-to-treat estimator, a higher
449 share of compliers in the subsample increases the estimated effect of treatment rule G . The subset
450 estimators have a comparable estimated variance (see Table 4 in Appendix C.1), with the coverage
451 overall appearing slightly more credible. Generally, the covariate adjustment reduces the standard
452 error in the estimation, especially for the sharp estimators.

453 The estimates for I_Y are small and positive. The fuzzy estimator on the full data has a high standard
454 error, which increases further with ML adjustment. This may be due to a small jump in treatment
455 probability in the full data, destabilizing the ML estimate. The subset estimator along this axis
456 removes much more observations within the bandwidth of the estimation thus decreasing the variance.
457 Additional results can be found in Appendix C.



468 Figure 5: Median coefficient and median CI for fuzzy and intent-to-treat estimators along X_D (left) and X_Y
469 (right) with simulated data. The different colors depict estimators on the full sample and on the subset. The
470 dashed line shows the oracle estimate for each setting, with the complier (fuzzy) oracles overlapping.
471

472 5.2 REAL DATASET
473

474 This section presents results from estimation on the real data with $n = 9,103$ observations from
475 the production system. Additional to information on color measurements, we include the shopfloor
476 workload. Our primary interest in the real system is evaluating I_D .
477

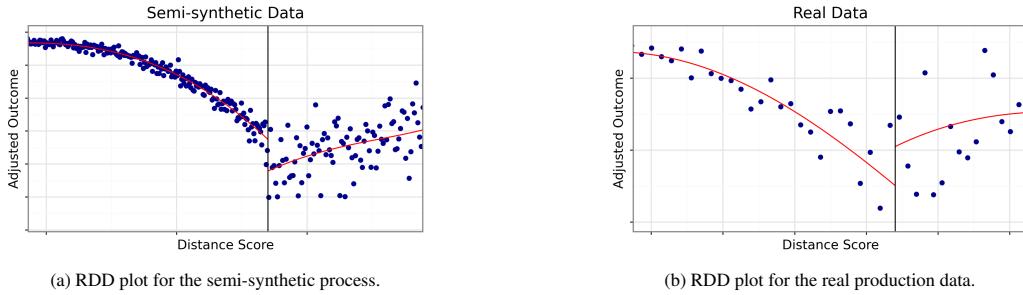
478 As shown in Table 1 on the real data, we estimate a positive effect. The subset estimates have a lower
479 variance, as we remove uncertainty due to never-takers according to X_Y . In case of the intent-to-treat
480 estimators, the addition of ML adjustment improves the variance of the estimation. For the fuzzy
481 estimators, there is no clear improvement.

482 The comparison in Figure 6 provides insight into the differing effect signs between semi-synthetic
483 and real data. While the semi-synthetic process (left) appears to have a rework threshold closer than
484 the optimal distance, the real data (right) suggests a threshold that is further away, resulting in a
485 significant outcome jump at the current threshold.

⁶The python implementation of this process will be made available.

setting	method	Coef	s.e.	CI 2.5%	CI 97.5%	RMSE left	Log loss left	RMSE right	Log loss right	% s.e. change
Fuzzy	RDD Conventional Covs	0.1031	0.0508	0.0035	0.2028					22.2532
	RDD Without Covs	0.0387	0.0416	-0.0428	0.1202					0.0000
	RDFlex Lasso	0.0999	0.0470	-0.0004	0.2003	0.1452	0.0141	0.1523	0.6142	12.9249
	RDFlex Stacking	0.1097	0.0500	0.0023	0.2171	0.1429	0.0188	0.1570	0.6322	20.1333
Fuzzy on Subset	RDD Conventional Covs	0.0630	0.0426	-0.0205	0.1466					36.5324
	RDD Without Covs	0.0369	0.0312	-0.0243	0.0981					0.0000
	RDFlex Lasso	0.0713	0.0304	0.0031	0.1395	0.1410	0.0209	0.1507	0.5424	-2.5667
	RDFlex Stacking	0.0768	0.0319	0.0048	0.1487	0.1394	0.0121	0.1530	0.5018	2.1538
Sharp	RDD Conventional Covs	0.0393	0.0208	-0.0015	0.0802					2.2467
	RDD Without Covs	0.0165	0.0204	-0.0235	0.0564					0.0000
	RDFlex Lasso	0.0357	0.0167	-0.0026	0.0740	0.1425		0.1513		-17.9717
	RDFlex Stacking	0.0367	0.0168	-0.0018	0.0753	0.1408		0.1530		-17.5203
Sharp on Subset	RDD Conventional Covs	0.0362	0.0205	-0.0040	0.0764					-2.3944
	RDD Without Covs	0.0098	0.0210	-0.0314	0.0509					0.0000
	RDFlex Lasso	0.0364	0.0184	-0.0031	0.0758	0.1408		0.1525		-12.2509
	RDFlex Stacking	0.0307	0.0181	-0.0093	0.0708	0.1395		0.1540		-14.0691

Table 1: Coefficients, standard errors, and quality of fit for the different estimators for the distance dimension in the real dataset.



(a) RDD plot for the semi-synthetic process.

(b) RDD plot for the real production data.

Figure 6: Comparison of local linear regressions around the cutoff for the semi-synthetic and real data. The opposite sign of the estimated effect can be explained by the calibration of the semi-synthetic process. Specifically, the modeling of the operator decision could be imperfect by taking only incomplete information into account. Particularly, the real-world operator might have more knowledge, such as machine states and outputs, as well as practical job experience.

6 CONCLUSION AND LIMITATIONS

Our paper presented a novel application of RDD in the context of threshold-based decision-making in industrial manufacturing. By integrating multi-score RDD techniques with recent advancements in causal machine learning – particularly flexible covariate adjustment – we demonstrated how to evaluate threshold based decision policies on real data.

Our formalization of unit behavior categories (complier, nevertaker, alwaystaker, defier and indecisive units) in multi-dimensional cutoff rules yields a novel effect identification result in MRD settings. Among the required assumptions, the local stability of the unit categories (Assumption 2) is the most debatable one. As it involves counterfactual reasoning about potential category changes, it cannot be verified using observed data. This shortcoming is shared with related independence assumptions common in RDD literature. Causal identification is not possible without any of these assumptions. The question is whether such an assumption is interpretable enough to justify an approximate conformance in empirical studies. Compared to previously presented formulations, we draw from the intuitive language of unit categories to aid the argument for or against applicability.

7 REPRODUCIBILITY STATEMENT

We provide full source code and detailed instructions in the supplementary material to reproduce all numerical experiments. The data-generating processes for synthetic experiments are fully specified. Information about runtime environments and computing resources is documented in the Appendix. Hyperparameters used in the experiments are listed in the relevant sections and in the supplementary material. The implementation of our semi-synthetic process is included and will also be released as part of an open-source causal inference package to facilitate community use. The dataset used in the real-data application is subject to data protection regulations and therefore cannot be released.

540 REFERENCES
541

542 Lily An, Zach Branson, and Luke Miratrix. Using gaussian process regression in two-dimensional
543 regression discontinuity designs. edworkingpaper no. 24-1043. *Annenberg Institute for School
544 Reform at Brown University*, 2024.

545 J. D. Angrist and V. Lavy. Using maimonides' rule to estimate the effect of class size on
546 scholastic achievement. *The Quarterly Journal of Economics*, 114(2):533–575, May 1999.
547 ISSN 1531-4650. doi: 10.1162/003355399556061. URL <http://dx.doi.org/10.1162/003355399556061>.

549 Peter C Austin. An introduction to propensity score methods for reducing the effects of confounding
550 in observational studies. *Multivariate Behav. Res.*, 46(3):399–424, May 2011.

552 Philipp Bach, Victor Chernozhukov, Malte S Kurz, and Martin Spindler. Doubleml-an object-oriented
553 implementation of double machine learning in python. *J. Mach. Learn. Res.*, 23:53–1, 2022.

555 Sebastian Calonico, Matias D Cattaneo, Max H Farrell, and Rocio Titiunik. rdrobust: Software for
556 regression-discontinuity designs. *The Stata Journal*, 17(2):372–404, 2017.

557 Eduard Calvo, Ruomeng Cui, and Juan Camilo Serpa. Oversight and efficiency in public projects: A
558 regression discontinuity analysis. *Manage. Sci.*, 65(12):5651–5675, December 2019.

560 David Card, David S. Lee, Zhuan Pei, and Andrea Weber. Inference on causal effects in a generalized
561 regression kink design. *Econometrica*, 83(6):2453–2483, 2015. ISSN 0012-9682. doi: 10.3982/ecta11224. URL <http://dx.doi.org/10.3982/ECTA11224>.

563 Matias D. Cattaneo, Nicolas Idrobo, and Rocio Titiunik. A practical introduction to regression
564 discontinuity designs: Foundations. November 2019. doi: 10.1017/9781108684606.

566 Matias D. Cattaneo, Rocio Titiunik, and Ruiqi (Rae) Yu. Estimation and inference in boundary
567 discontinuity designs. Unpublished manuscript, 2025. URL https://mdcattaneo.github.io/papers/Cattaneo-Titiunik-Yu_2025_BoundaryRD.pdf.

570 Jaehhee Cho, Jun Hyuk Park, Jong Kyu Kim, and E. Fred Schubert. White light-emitting diodes:
571 History, progress, and future. *Laser & Photonics Reviews*, 11, 2017.

572 Jin-young Choi and Myoung-jae Lee. Regression discontinuity with multiple running variables
573 allowing partial effects. *Political Analysis*, 26(3):258–274, July 2018. ISSN 1476-4989. doi:
574 10.1017/pan.2018.13. URL <http://dx.doi.org/10.1017/pan.2018.13>.

576 Caroline Flammer. Does corporate social responsibility lead to superior financial performance? a
577 regression discontinuity approach. *Management Science*, 61(11):2549–2568, November 2015.
578 ISSN 1526-5501. doi: 10.1287/mnsc.2014.2038. URL <http://dx.doi.org/10.1287/mnsc.2014.2038>.

580 Jinyong Hahn, Petra Todd, and Wilbert Van der Klaauw. Identification and estimation of treatment ef-
581 fects with a regression-discontinuity design. *Econometrica*, 69(1):201–209, 2001. ISSN 00129682,
582 14680262. URL <http://www.jstor.org/stable/2692190>.

584 Wesley Hartmann, Harikesh S. Nair, and Sridhar Narayanan. Identifying causal marketing mix effects
585 using a regression discontinuity design. *Marketing Science*, 30(6):1079–1097, November 2011.
586 ISSN 1526-548X. doi: 10.1287/mksc.1110.0670. URL <http://dx.doi.org/10.1287/mksc.1110.0670>.

588 Martin Huber. Causal machine learning in marketing. *International Journal of Business and
589 Management Studies*, 05(07):1–6, July 2024. ISSN 2694-1449. doi: 10.56734/ijbms.v5n7a1. URL
590 <http://dx.doi.org/10.56734/ijbms.v5n7a1>.

592 Paul Hünermund, Jermain Kaminski, and Carla Schmitt. Causal machine learning and business
593 decision making. *SSRN Electronic Journal*, 2021. ISSN 1556-5068. doi: 10.2139/ssrn.3867326.
URL <http://dx.doi.org/10.2139/ssrn.3867326>.

594 Guido Imbens and Stefan Wager. Optimized regression discontinuity designs. *The Review of*
 595 *Economics and Statistics*, 101(2):264–278, May 2019. ISSN 1530-9142. doi: 10.1162/rest_a_
 596 00793. URL http://dx.doi.org/10.1162/rest_a_00793.

597 Guido Imbens and Tristan Zajonc. Regression discontinuity design with vector-argument assignment
 598 rules. *Unpublished paper*, pp. 8, 2009.

600 Guido W. Imbens and Joshua D. Angrist. Identification and estimation of local average treatment
 601 effects. *Econometrica*, 62(2):467, March 1994. ISSN 0012-9682. doi: 10.2307/2951620.

602 Guido W. Imbens and Thomas Lemieux. Regression discontinuity designs: A guide to practice.
 603 *Journal of Econometrics*, 142(2):615–635, February 2008. ISSN 0304-4076. doi: 10.1016/
 604 [http://dx.doi.org/10.1016/j.jeconom.2007.05.
 605 001](http://dx.doi.org/10.1016/j.jeconom.2007.05.001).

606 Luke J Keele and Rocio Titiunik. Geographic boundaries as regression discontinuities. *Political
 607 Analysis*, 23(1):127–155, 2015.

609 David S. Lee. Randomized experiments from non-random selection in u.s. house elections. *Journal
 610 of Econometrics*, 142(2):675–697, February 2008. ISSN 0304-4076. doi: 10.1016/j.jeconom.2007.
 611 05.004. URL <http://dx.doi.org/10.1016/j.jeconom.2007.05.004>.

612 David S Lee and Thomas Lemieux. Regression discontinuity designs in economics. *Journal of
 613 Economic Literature*, 48(2):281–355, June 2010. ISSN 0022-0515. doi: 10.1257/jel.48.2.281.
 614 URL <http://dx.doi.org/10.1257/jel.48.2.281>.

616 Yiqi Liu and Yuan Qi. Using forests in multivariate regression discontinuity designs, 2024. URL
 617 <https://arxiv.org/abs/2303.11721>.

618 Sunil Mithas, Yanzhen Chen, Yatang Lin, and Alysson De Oliveira Silveira. On the causality and
 619 plausibility of treatment effects in operations management research. *Production and Operations
 620 Management*, 31(12):4558–4571, December 2022. ISSN 1937-5956. doi: 10.1111/poms.13863.
 621 URL <http://dx.doi.org/10.1111/poms.13863>.

623 Claudia Noack, Tomasz Olma, and Christoph Rothe. Flexible covariate adjustments in regression
 624 discontinuity designs, 2024. <https://arxiv.org/abs/2107.07942>.

625 John P. Papay, John B. Willett, and Richard J. Murnane. Extending the regression-discontinuity
 626 approach to multiple assignment variables. *Journal of Econometrics*, 161(2):203–207, 2011.
 627 ISSN 0304-4076. doi: <https://doi.org/10.1016/j.jeconom.2010.12.008>. URL <https://www.sciencedirect.com/science/article/pii/S0304407610002538>.

628 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 629 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 630 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 631 12:2825–2830, 2011.

632 Kristin E Porter, Sean F Reardon, Fatih Unlu, Howard S Bloom, and Joseph R Cimpian. Estimating
 633 causal effects of education interventions using a two-rating regression discontinuity design: Lessons
 634 from a simulation study and an application. *Journal of Research on Educational Effectiveness*, 10
 635 (1):138–167, 2017.

636 Sean F. Reardon and Joseph P. Robinson. Regression discontinuity designs with multiple rating-score
 637 variables. *Journal of Research on Educational Effectiveness*, 5(1):83–104, January 2012. ISSN
 638 1934-5739. doi: 10.1080/19345747.2011.609583. URL <http://dx.doi.org/10.1080/19345747.2011.609583>.

639 Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 640 *Journal of Educational Psychology*, 66(5):688–701, October 1974. ISSN 0022-0663. doi: 10.
 641 1037/h0037350. URL <http://dx.doi.org/10.1037/h0037350>.

642 Donald B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal
 643 of the American Statistical Association*, 100(469):322–331, 2005. ISSN 01621459. URL <http://www.jstor.org/stable/27590541>.

648 Davood Sabaei, John Erkoyuncu, and Rajkumar Roy. A review of multi-criteria decision making
 649 methods for enhanced maintenance delivery. *Procedia CIRP*, 37:30–35, 2015.
 650

651 Oliver Schacht, Sven Klaassen, Philipp Schwarz, Martin Spindler, Daniel Grunbaum, and Sebastian
 652 Imhof. Causally learning an optimal rework policy. In Thuc Le, Jiuyong Li, Robert Ness, Sofia
 653 Triantafillou, Shohei Shimizu, Peng Cui, Kun Kuang, Jian Pei, Fei Wang, and Mattia Prosperi
 654 (eds.), *Proceedings of The KDD’23 Workshop on Causal Discovery, Prediction and Decision*,
 655 volume 218 of *Proceedings of Machine Learning Research*, pp. 3–24. PMLR, 07 Aug 2023. URL
 656 <https://proceedings.mlr.press/v218/schacht23a.html>.
 657

658 Philipp Schwarz, Oliver Schacht, Sven Klaassen, Daniel Grünbaum, Sebastian Imhof, and Martin
 659 Spindler. Management decisions in manufacturing using causal machine learning – to rework, or
 660 not to rework?, 2024. <https://arxiv.org/abs/2406.11308>.
 661

662 Donald L Thistlethwaite and Donald T Campbell. Regression-discontinuity analysis: An alternative
 663 to the ex post facto experiment. *J. Educ. Psychol.*, 51(6):309–317, December 1960.
 664

665 Matej Vuković and Stefan Thalmann. Causal discovery in manufacturing: A structured literature
 666 review. *J. Manuf. Mater. Process.*, 6(1):10, January 2022.
 667

668 Vivian C Wong, Peter M Steiner, and Thomas D Cook. Analyzing regression-discontinuity designs
 669 with multiple assignment variables: A comparative study of four estimation methods. *Journal of
 670 Educational and Behavioral Statistics*, 38(2):107–141, 2013.
 671

672 Mateusz Wyrembek, George Baryannis, and Alexandra Brinstrup. Causal machine learning for
 673 supply chain risk prediction and intervention planning. *International Journal of Production
 674 Research*, pp. 1–20, January 2025. ISSN 1366-588X. doi: 10.1080/00207543.2025.2458121. URL
 675 <http://dx.doi.org/10.1080/00207543.2025.2458121>.
 676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX A PROOFS

A.1 UNIT CATEGORIZATION

Lemma 1. *T is constant if and only if $S(T) = \emptyset$ or equivalently if and only if $\text{supp}(T) = \{0\}$.*

Before proofing the above statement let us make some simple observations. Let

$$S(T | X) := \{k \mid \exists \lambda \in \mathbb{R} : T(X | 0) \neq T(X | 0 + \lambda e_k)\}$$

denote the set of local change directions of X . Then one has the following properties:

1. $S(T | X)$ depends only upon the quadrant of X , since within a quadrant the I_k 's and the \bar{I}_k 's are constant.
2. $S(T) = \bigcup_{X \in \mathbb{R}^K} S(T | X)$
Since $T(0 | c + \lambda e_k) \neq T(0 | c)$ is equivalent to $T(-c | 0 + \lambda e_k) \neq T(-c | 0)$.
3. $S(T | X)$ can be empty.

For example let $T = (I_1 \wedge I_2) \vee I_3$ and $X_j > 0$ for $j = 1, 2, 3$. Then $S(T | X) = \emptyset$, since T is true as long as there are at least two indicators that are true. Changing the cutoff in only one direction k does not affect $T(0 + \lambda e_k)$. This example can be extended such that changes in multiple directions do not affect T .

Proof. One direction is clearly trivial. For the other suppose T is not constant. Then one has $0 = T(X | 0) \neq T(\hat{X} | 0) = 1$ for appropriate $X, \hat{X} \in \mathbb{R}^K$. Define the sequence

$$X^k := X + \sum_{j=1}^k \langle \hat{X} - X, e_j \rangle e_j \quad 0 \leq k \leq K$$

for $0 \leq k \leq K$. Then $X^K = \hat{X}$, $X^0 = X$ and $X^k - X^{k-1} = \lambda_k e_k$ with $\lambda_k := \langle \hat{X} - X, e_k \rangle$. We assume that $S(T | X^k) = \emptyset$ for all k . Then

$$T(X^{k-1} | 0) = T(X^{k-1} | 0 - \lambda_k e_k) = T(X^k | 0)$$

and thus per induction $0 = T(X | 0) = T(\hat{X} | 0) = 1$. Which contradicts the assumption. Thus, there exists some k with $S(T | X^k) \neq \emptyset$. Which shows that $S(T) \neq \emptyset$. \square

As a general assumption for the next statements we require that T is not trivial, that is $\text{supp}(T) \neq \{0\}$.

Proposition 1. *For each $X \in \mathbb{R}^K$ there exists a unique decomposition $X = X^T + X^{\perp T}$ with $X^T \in \text{supp } T$ and $X^{\perp T} \in N^T$. The orthogonal projection $P_T(X) := \sum_{k \in S(T)} \langle X, e_k \rangle e_k$ onto $\text{supp}(T)$ satisfies the above properties.*

Proof. Using equations 2 one can see that $X + \lambda Y \in N^T$ for $X, Y \in N^T$ and $\lambda \in \mathbb{R}_{>0}$. Further $T(-X | c) = T(0 | c + X) = T(X | c + X) = T(X - X | c) = T(0 | c)$ for $X \in N^T$ and $c \in \mathbb{R}^K$. Thus, N^T is a linear subspace of \mathbb{R}^K . Let $k \in S(T)$ then there exists $\lambda \in \mathbb{R}$, $c \in \mathbb{R}^K$ such that $T(0 | c + \lambda e_k) \neq T(0 | c)$. This means that $-\lambda e_k \notin N$. Since N^T is a linear space this means that $e_k \in N^T$ can also not be in N . Now let $k \notin S(T)$. Then $T(0 | c) = T(0 | c - e_k) = T(e_k | c)$ for all $c \in \mathbb{R}^K$ and thus $e_k \in N^T$. This shows that $\text{supp}(T) \cap N^T = \{0\}$. Let $X^T := \sum_{k \in S(T)} \langle X, e_k \rangle e_k$ be the projection on to the subspace $\text{supp}(T)$ and $X^{\perp T} := X - X^T$. Suppose there exists some c such that $T(X^{\perp T} | c) \neq T(0 | c)$. Let

$$c^k := c - \hat{X} + \sum_{j=1}^k \lambda_j e_j \quad 0 \leq k \leq K$$

with $\lambda_j := \langle X^{\perp T}, e_j \rangle$. Then $c^0 = c - X^{\perp T}$, $c^K = c$ and $c^k = c^{k-1} + \lambda_k e_k$ holds. Further, one has

$$T(0 | c^k) = T(0 | c^{k-1} + \lambda_k e_k) = T(0 | c^{k-1})$$

for all $1 \leq k \leq K$. Otherwise, $k \subset S(T)$ and thus $\lambda_k = 0$ by definition of $X^{\perp T}$. Using induction we derive $T(X^{\perp T} | c) = T(0 | c^0) = T(0 | c^K)$ which contradicts the assumption. For uniqueness suppose there exists another decomposition $X = Z^T + Z^{\perp T}$ with the above properties. Then $Z^T - X^T = Z^{\perp T} - X^{\perp T} \in \text{supp}(T) \cap N^T = \{0\}$. \square

756 **Proposition 2.** Let D be a cutoff rule over X . A unit i is
 757

- 758 1. a *nevertaker* (of T with respect to D) iff $D_i(c) = 0$
 759
- 760 2. an *alwaysstaker* (of T with respect to D) iff $D_i(c) = 1$
 761
- 762 3. a *complier* (of T with respect to D) iff $T_i(c) = D_i(c)$
 763
- 764 4. a *defier* (of T with respect to D) iff $D_i(c) \neq T_i(c)$

765 for all $c \in \text{supp}(T)$.
 766

767 *Proof.* Note that $T_i(c) = T_i(X_i \mid c) = T(X_i^T \mid c) = T(0 \mid c - X_i^T) = T(0 \mid \hat{c})$ and $D_i(c) = D(X_i - c \mid 0) = D(\hat{X}_i - \hat{c})$ with $\hat{c} := c - X_i^T \in \text{supp}(T)$ by applying equation (2) and Proposition 1. \square

771 **Proposition 3.** The sets $\text{At}(T, D)$, $\text{Nt}(T, D)$, $\text{ComP}(T, D)$ and $\text{DeF}(T, D)$ are pairwise disjoint.
 772

773 *Proof.* It is easy to see that $\text{At}(T, D) \cap \text{Nt}(T, D) = \emptyset$ and $\text{ComP}(T, D) \cap \text{DeF}(T, D) = \emptyset$. For
 774 $i \in C := \text{Nt}(T, D) \cup \text{At}(T, D)$ it follows that $D(X_i^{\perp T} - c)$ is constant for all $c \in \text{supp}(T)$. Suppose
 775 that $i \in C \cap \text{ComP}(T, D)$. The latter would mean, that $T(0 \mid c) = D(X_i^{\perp T} - c)$ for all $c \in \text{supp}(T)$.
 776 This contradicts $\text{supp}(T) \neq \{0\}$. Now suppose that $i \in C \cap \text{DeF}(T, D)$. The latter would mean that
 777 $T(0 \mid c) \neq D(X_i^{\perp T} - c)$ for all $c \in \text{supp}(T)$, which implies that T is constant on $\text{supp}(T)$. This
 778 again contradicts $\text{supp}(T) \neq \{0\}$. \square

781 From now on whenever we assume that D is a cutoff rule we suppose that D does not depend on
 782 $I_{k,i}(c)$ with $c \neq 0$, that is T and D are synchronous regarding their cutoffs.
 783

784 **Proposition 4.** Let D be a cutoff rule on \mathbb{R}^K and let i denote an individual. If $\dim(\text{supp}(T)) = 1$
 785 then $i \in \text{At}(T, D) \cup \text{Nt}(T, D) \cup \text{DeF}(T, D) \cup \text{ComP}(T, D)$.
 786

787 *Proof.* Since $\text{supp}(T) \simeq \mathbb{R}$ one has $T_i = I_{k,i}$ with $k \in S(T)$. Suppose i is in neither of the
 788 mentioned sets. Then $T_i(c) \neq D_i(c)$ and $T_i(\hat{c}) = D_i(\hat{c})$ for some $c, \hat{c} \in \text{supp}(T)$. Thus, $\hat{c} = c + \lambda e_k$
 789 for appropriate $\lambda \in \mathbb{R}$. If $T_i(c) = T_i(\hat{c})$ then $D_i(c) \neq D_i(\hat{c})$. Since D is a cutoff rule and
 790 $I_{i,j}(c) = I_{i,j}(\hat{c})$ for $j \neq k$ we conclude $T_i(c) = I_{k,i}(c) \neq I_{k,i}(\hat{c}) = T_i(\hat{c})$. This contradicts the
 791 assumption. If otherwise $T_i(c) \neq T_i(\hat{c})$ one has $D_i(c) = D_i(\hat{c})$. Which would imply that $D_i(c)$ is
 792 constant for $c \in \text{supp}(T)$, and thus $i \in \text{At}(T, D) \cup \text{Nt}(T, D)$. \square

794 A.2 EXAMPLES

795 **Example (OR-Rules)** Let $D := \bigvee_{j=1}^K I_j$ and $T := \bigvee_{j=1}^k I_j$ for $k \in \{1, \dots, K-1\}$. Then
 796 $\text{supp}(T) = \mathbb{R}^k \times \{0\}^{K-k}$. Further, we have the following unit categorizations:
 797

- 800 1. $\text{ComP}(T, D) = \{i \mid \forall k \leq j \leq K : X_{j,i} \leq 0\}$
 801 Note that in this case the additional or-conditions are zero, reducing the rule D_i to T_i .
 802
- 803 2. $\text{At}(T, D) = \{i \mid \exists k < j \leq K : X_{j,i} > 0\}$
 804 As long as there is any additional or condition that is always true, cutoff changes in $\text{supp}(T)$
 805 do not affect D .
 806
- 807 3. $\text{Nt}(T, D) = \emptyset$
 808 Choose $c \in \text{supp}(T)$ such that $X_{i,j} > c$ for $0 \leq j \leq k$, then $D_i = 1$.
 809
4. $\text{DeF}(T, D) = \emptyset$
 810 Note that $T_i(c) = 1$ implies $D_i(c) = 1$ for all $c \in \text{supp}(T)$.

810 **Example (XOR dominant rule)** Let $D := (I_1 \vee I_2) \wedge (\bar{I}_1 \vee \bar{I}_2)$ and $T := I_1$. Then $\text{supp}(T) = \mathbb{R} \times \{0\}$. Note if $X_{2,i} > 0$, one has $D_i(c) = \bar{T}_i(c)$ and otherwise $D_i(c) = T_i(c)$ for all $c \in \text{supp}(T)$.
 811 Thus:

812

- 813 1. $\text{ComP}(T, D) = \{i \mid X_{2,i} \leq 0\}$
- 814 2. $\text{At}(T, D) = \emptyset$
- 815 3. $\text{Nt}(T, D) = \emptyset$
- 816 4. $\text{DeF}(T, D) = \{i \mid X_{2,i} > 0\}$

817 **A.3 EFFECT IDENTIFICATION**

818 For this section, we require that the outcome does not directly depend on the treatment assignment T .
 819 Denote the set of all unit categories with

820 $\mathcal{C} := \{\text{ComP}(T, D), \text{Nt}(T, D), \text{At}(T, D), \text{DeF}(T, D), \text{Ind}(T, D)\}$

821 and the set of non-change categories with:

822 $\mathcal{C}^0 := \{\text{Nt}(T, D), \text{At}(T, D)\}$

823 We assume that the categorization of a unit is independent of the support part of T in a neighborhood
 824 of the cutoff, that is:

825 **Assumption 2.** *There exists some $\epsilon > 0$ such that*

826 $\Pr(i \in \text{Cat} \mid X_i^T = x) = \Pr(i \in \text{Cat} \mid X_i^T = 0)$

827 for $\|x\| \leq \epsilon$ and $\text{Cat} \in \mathcal{C}$.

828 Using this assumption and further assuming $\Pr(i \in \text{Cat} \mid X_i^T = 0) > 0$ one has

829
$$\mathbb{E}(Y_i \mid X_i^T = x) = \sum_{\text{Cat} \in \mathcal{C}} \mathbb{E}(Y_i \mid X_i^T = x, i \in \text{Cat}) \Pr(i \in \text{Cat} \mid X_i^T = 0)$$

830 and thus

831
$$\mathbb{E}(Y_i \mid X_i^T = x^+) - \mathbb{E}(Y_i \mid X_i^T = x^-) =$$

 832
$$\sum_{\text{Cat} \in \mathcal{C}} \left(\mathbb{E}(Y_i \mid X_i^T = x^+, i \in \text{Cat}) - \mathbb{E}(Y_i \mid X_i^T = x^-, i \in \text{Cat}) \right) \Pr(i \in \text{Cat} \mid X_i^T = 0)$$

833 for appropriate directions $x^+, x^- \in \text{supp}(T)$. Further, we employ a local continuity assumption, for
 834 the potential outcomes of the unit categories.

835 **Assumption 3.** *There exists an $\epsilon > 0$ such that $x \mapsto \mathbb{E}(Y_i(d) \mid X_i^T = x, i \in \text{Cat})$ is continuous for
 836 $\|x\| \leq \epsilon$, $d \in \{0, 1\}$ and $\text{Cat} \in \mathcal{C}$.*

837 Note that

838
$$\mathbb{E}(Y_i \mid X_i^T = x^\pm, i \in \text{At}) = \mathbb{E}(Y_i(1) \mid X_i^T = x^\pm, i \in \text{At})$$

839 and

840
$$\mathbb{E}(Y_i \mid X_i^T = x^\pm, i \in \text{Nt}) = \mathbb{E}(Y_i(0) \mid X_i^T = x^\pm, i \in \text{Nt})$$

841 holds for the non-change unit categories. Together with Assumption 3 one derives:

842
$$\begin{aligned} & \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^+) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^-) = \\ & \sum_{\text{Cat} \in \mathcal{C} \setminus \mathcal{C}^0} \left(\lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^+, i \in \text{Cat}) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i \mid X_i^T = \lambda x^-, i \in \text{Cat}) \right) \cdot \\ & \quad \cdot \Pr(i \in \text{Cat} \mid X_i^T = 0) \end{aligned} \quad (3)$$

843 Two more assumptions are in order to make further use of the continuity. First, we deny the existence
 844 of indecisive items, since this category does not separate the potential outcomes $Y_i(0)$ and $Y_i(1)$.

845 **Assumption 4.** $\text{Ind}(T, D) = \emptyset$

864 Second, we assume that x^+ and x^- induce a change in T .
 865

866 **Assumption 5.**

$$867 \quad 1 = \lim_{\lambda \rightarrow 0} T(\lambda x^+ | 0) \neq \lim_{\lambda \rightarrow 0} T(\lambda x^- | 0) = 0$$

868 With this we know how D_i behaves for complier and defier when approaching from x^+ and x^-
 869 direction. That is:
 870

$$871 \quad \lim_{\lambda \rightarrow 0} \Pr(D_i = 1 | X_i^T = \lambda x^+, i \in \text{ComP}) = 1 \text{ and } \lim_{\lambda \rightarrow 0} \Pr(D_i = 1 | X_i^T = \lambda x^-, i \in \text{ComP}) = 0$$

872 as well as
 873

$$874 \quad \lim_{\lambda \rightarrow 0} \Pr(D_i = 1 | X_i^T = \lambda x^+, i \in \text{DeF}) = 0 \text{ and } \lim_{\lambda \rightarrow 0} \Pr(D_i = 1 | X_i^T = \lambda x^-, i \in \text{DeF}) = 1$$

875 Thus we can apply Assumption 3 to these two remaining categories on the right side of Equation 3 as
 876 well:
 877

878 **Theorem 1.** *Let Assumptions 2, 3, 4 and 5 hold. Then the complier effect at the cutoff is identified as*

$$879 \quad \mathbb{E}(Y_i(1) | X_i^T = 0, i \in \text{ComP}) - \mathbb{E}(Y_i(0) | X_i^T = 0, i \in \text{ComP}) = \\ 880 \quad \frac{1}{\Pr(i \in \text{ComP} | X_i^T = 0)} \left(\lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^+) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^-) \right) - C$$

884 with C being the correction term for defier:
 885

$$886 \quad C := \frac{\Pr(i \in \text{DeF} | X_i^T = 0)}{\Pr(i \in \text{ComP} | X_i^T = 0)} \left(\mathbb{E}(Y_i(0) | X_i^T = 0, i \in \text{DeF}) - \mathbb{E}(Y_i(1) | X_i^T = 0, i \in \text{DeF}) \right)$$

889 We now investigate how dropping units in $\bigcup_{\text{Cat} \in \mathcal{C}^0} \text{Cat}$ affects the above identification result. For
 890 ease of presentation we make the assumption that there do not exist any defier, at the cutoff. Further,
 891 let $\Omega \subset \text{At} \cup \text{Nt}$. Then $\Pr(i \in \text{ComP}, i \in \Omega | X_i^T = 0) = 0$ and thus one has
 892

$$893 \quad \Pr(i \in \text{ComP} | X_i^T = 0) = \Pr(i \in \text{ComP} | X_i^T = 0, i \notin \Omega) \Pr(i \notin \Omega | X_i^T = 0) \quad (4)$$

894 for the denominator. For the nominator note that
 895

$$896 \quad \mathbb{E}(Y_i | X_i^T = \lambda x^\pm, i \in \Omega) = \mathbb{E}(Y_i(0) | X_i^T = \lambda x^\pm, i \in \Omega \cap \text{Nt}) \Pr(i \in \text{Nt} | X_i^T = \lambda x^\pm, i \in \Omega) \\ 897 \quad + \mathbb{E}(Y_i(1) | X_i^T = \lambda x^\pm, i \in \Omega \cap \text{At}) \Pr(i \in \text{At} | X_i^T = \lambda x^\pm, i \in \Omega)$$

898 holds. Requiring Assumption 3 and Assumption 2 to hold when conditioning on $\Omega \cap \text{Nt}$ and $\Omega \cap \text{At}$
 899 (instead of Nt and At) we get:
 900

$$901 \quad \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^+, i \in \Omega) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^-, i \in \Omega) = 0 \quad (5)$$

902 Since
 903

$$904 \quad \mathbb{E}(Y_i | X_i^T = \lambda x^\pm) = \mathbb{E}(Y_i | X_i^T = \lambda x^\pm, i \in \Omega) \Pr(i \in \Omega | X_i^T = \lambda x^\pm) \\ 905 \quad + \mathbb{E}(Y_i | X_i^T = \lambda x^\pm, i \notin \Omega) \Pr(i \notin \Omega | X_i^T = \lambda x^\pm)$$

907 holds we require an assumption similar to Assumption 2 to for $\Pr(i \in \Omega | X_i^T = \lambda x^\pm)$ in order to
 908 get
 909

$$910 \quad \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^+) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^-) \\ 911 \quad = \left(\lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^+, i \notin \Omega) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^-, i \notin \Omega) \right) \cdot \\ 912 \quad \cdot \Pr(i \notin \Omega | X_i^T = 0) \quad (6)$$

915 using Equation 5. Combining Equations 6 and 4 we obtain the following result:
 916

917 **Theorem 2.** *Let Assumptions 2, 3, 4 and 5 hold, and $\Pr(i \in \text{DeF} | X_i^T = 0) = 0$. Further, let
 918 $\Omega \subset \text{Nt} \cup \text{At}$ such that*

918 1. there exists an $\epsilon > 0$ such that the functions $x \rightarrow \mathbb{E}(Y_i(0) | X_i^T = x, i \in \Omega \cap \text{Nt})$ and
 919 $x \rightarrow \mathbb{E}(Y_i(1) | X_i^T = x, i \in \Omega \cap \text{At})$ are continuous for $\|x\| < \epsilon$.
 920

921 2. there exists an $\epsilon > 0$ such that

922 $\Pr(i \in \text{Nt} | X_i^T = x, i \in \Omega) = \Pr(i \in \text{Nt} | X_i^T = 0, i \in \Omega)$
 923

924 and

925 $\Pr(i \in \text{At} | X_i^T = x, i \in \Omega) = \Pr(i \in \text{At} | X_i^T = 0, i \in \Omega)$
 926

927 as well as

928 $\Pr(i \in \Omega | X_i^T = x) = \Pr(i \in \Omega | X_i^T = 0)$
 929

930 for $\|x\| < \epsilon$.

931 Then

932 $\mathbb{E}(Y_i(1) | X_i^T = 0, i \in \text{ComP}) - \mathbb{E}(Y_i(0) | X_i^T = 0, i \in \text{ComP}) =$
 933 $\frac{1}{\Pr(i \in \text{ComP} | X_i^T = 0, i \notin \Omega)} \left(\lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^+, i \notin \Omega) - \lim_{\lambda \rightarrow 0} \mathbb{E}(Y_i | X_i^T = \lambda x^-, i \notin \Omega) \right)$
 934

935 holds.

936 APPENDIX B ADDITIONAL SIMULATION STUDY

937 In this appendix, we present an additional simulation study with more complex treatment assignments.
 938

939 B.1 DATA GENERATING PROCESS

940 We consider a multi-dimensional regression discontinuity design (MRD) with three scores
 941 X_1, X_2, X_3 , where

942 $(X_1, X_2, X_3)^\top \sim \mathcal{N}(0, \mathbf{I}_3)$.

943 For notational simplicity, we leave out the unit index i . Further, we generate independent covariates
 944

945 $Z_j \sim \text{Uniform}(-1, 1)$

946 for $j \in \{1, \dots, d = 4\}$. The potential outcomes are defined as:

947
$$Y(0) = 0.1 \cdot \left(\sum_{i=1}^3 X_i \right)^2 + g(Z) + \varepsilon$$

 948
 949
$$Y(1) = \tau - 0.4 \cdot \left(\sum_{i=1}^3 X_i \right)^2 + a \cdot \left(\sum_{j=1}^d Z_j \right) \cdot \left(\sum_{i=1}^3 X_i \right) + g(Z) + \varepsilon$$

 950

951 where $\varepsilon \sim \mathcal{N}(0, 0.25)$, $\tau = 2$ is the treatment effect parameter at the joint cutoff point $(0, 0, 0)^\top$,
 952 and $a = 0.5$ controls the interaction between running variables and covariates. The function $g(Z)$ is
 953 defined as

954
$$g(Z) = \sum_{j=1}^d Z_j + \sum_{j=1}^d Z_j^2 + \sum_{1 \leq j < k \leq d} Z_j Z_k.$$

 955

956 Define binary indicators for exceeding each cutoff as

957 $I_k = \mathbb{1}[X_k > 0], \quad k = 1, 2, 3$

958 where $c_1 = c_2 = c_3 = 0$ are the cutoff values for the scores. For the treatment assignment, we
 959 consider two settings:

- 960 • **Setting A:** $D_A = I_1 \wedge I_2 \wedge I_3$
- 961 • **Setting B:** $D_B = (I_1 \wedge I_2) \vee I_3$

962 The observed outcome is $Y = Y(0)(1 - D) + Y(1)D$.

972 B.2 RDD ESTIMATES
973974 The overall procedure consists of the following steps:
975

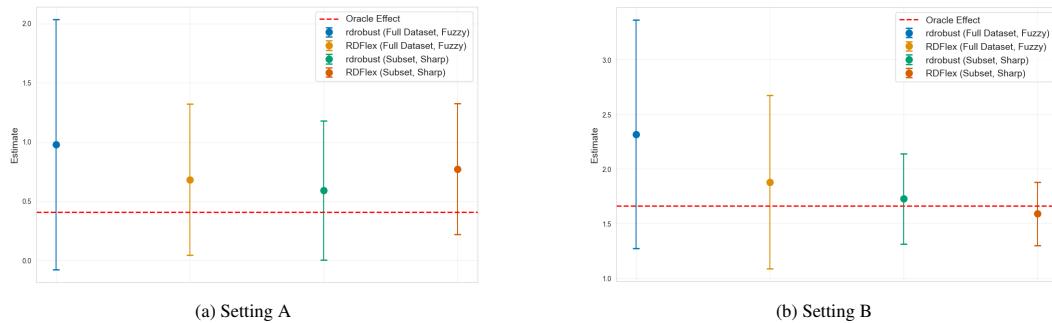
- 976 1. Choose a subrule T , which you would like to evaluate.
- 977 2. Based on T and D , determine a subset of never- and alwaystakers $B(T, D) \subseteq \text{At}(T, D) \cup$
978 $\text{Nt}(T, D)$, which can be identified.
- 979 3. Remove all observations from $B(T, D)$ from your original data.
- 980 4. Estimate a (fuzzy or sharp) univariate RDD on the remaining observations.

982 Remark that the subsets $B(T, D)$, will depend on the choice of T .
983984 For simplicity, we will focus only on the evaluation of the first cutoff threshold, i.e. $T = I_1$.
985986 As mentioned in Appendix D, one possibility to evaluate the effect would be to consider this as a
987 fuzzy setting, where all observed units are used (“Fuzzy IV” approach). Instead, we would like to
988 compare this approach to our proposal, which allows specifying exactly which units can be discarded,
989 i.e. the “subset complier effect”, which can be seen as a generalization of the “Frontier method”.990 In both settings, we will evaluate T_1 but with different choices of D . Considering the definition of
991 D_A , there do not exist alwaystakers, but identifiable neverstakers, such that we can choose
992

993
$$B(T_1, D_A) := \{i | I_{2,i} = 0 \vee I_{3,i} = 0\} \subseteq \text{Nt}(T_1, D_A).$$

994 Instead in setting B, we can identify alwaystakers $\{i | I_{3,i} = 1\} \subseteq \text{At}(T_1, D_B)$ and neverstakers
995 $\{i | I_{2,i} = 0 \wedge I_{3,i} = 0\} \subseteq \text{Nt}(T_1, D_B)$, such that we can choose

996
$$B(T_1, D_B) := \{i | I_{3,i} = 1\} \cup \{i | I_{2,i} = 0 \wedge I_{3,i} = 0\}.$$

997 In the following, we generate a dataset with 5,000 observations and evaluate the subsetting approach
998 (*Subset*) against a fuzzy estimation approach on the whole dataset (*Full Dataset*). We estimate both
999 approaches with the `rdrobust` (linear covariate adjustment) and `doubleml` (flexible covariate
1000 adjustment) packages, but without much tuning of the machine learning algorithms. The main focus
1001 of the comparison is the estimation on the full data as a fuzzy design and on the data subset as a sharp
1002 design.1013 Figure 7: Comparison of point estimates and confidence intervals. For each method only using the data subset
1014 improves the precision of the estimator.
10151016 Note that the identified effect differs from τ since the potential outcomes depend on the scores. The
1017 oracle effect is computed on the subset of compliers (of T_1 with respect to D) using an independent
1018 sample of 100,000 observations. It is obtained via kernel regression of the individual treatment
1019 effects ($Y(1) - Y(0)$) on the score T_1 . Statistical coverage is evaluated over 200 independent datasets.
1020 The confidence interval length for the subset methods is substantially smaller, while still maintaining
1021 the desired coverage level.1023 APPENDIX C ADDITIONAL NUMERICAL RESULTS
1024

1025 In this appendix, we present additional results concerning Section 5.1 and 5.2.

Table 2: Simulation Results Setting A

Data	Method	Mean Bias	s.e.	Mean CI Length	Coverage
Full Dataset	rdrobust (Fuzzy)	-0.012	0.483	1.816	0.945
	RDFlex (Fuzzy)	0.020	0.351	1.253	0.930
Subset	rdrobust (Sharp)	-0.039	0.298	1.108	0.940
	RDFlex (Sharp)	-0.026	0.285	1.025	0.945

Table 3: Simulation Results Setting B

Data	Method	Mean Bias	s.e.	Mean CI Length	Coverage
Full Dataset	rdrobust (Fuzzy)	0.077	0.568	2.148	0.960
	RDFlex (Fuzzy)	0.042	0.470	1.821	0.955
Subset	rdrobust (Sharp)	0.033	0.223	0.837	0.925
	RDFlex (Sharp)	0.008	0.172	0.633	0.940

C.1 TABLE OF RDD ESTIMATES AT I_D AND I_Y

Tables 4 and 5 provide additional insights to the estimation conducted in Section 5.1. Particularly, the quality of fit in the ML estimation, the coverage as well as the mean bias can be assessed here.

setting	method	Mean Bias	s.e.	Coverage	RMSE left	Log loss left	RMSE right	Log loss right
Fuzzy	RDD Conventional Covs	-0.0025	0.0111	0.9912				
	RDD Without Covs	-0.0027	0.0109	0.9735				
	RDFlex Lasso	-0.0030	0.0092	0.9823	0.0242	0.0787	0.0897	0.5645
	RDFlex Stacking	-0.0029	0.0092	0.9823	0.0243	0.0169	0.0898	0.4938
Fuzzy Subset	RDD Conventional Covs	-0.0001	0.0117	0.9609				
	RDD Without Covs	-0.0003	0.0118	0.9478				
	RDFlex Lasso	-0.0002	0.0110	0.9435	0.0249	0.4230	0.1010	0.5140
	RDFlex Stacking	-0.0004	0.0113	0.9522	0.0258	0.0329	0.1011	0.3580
Sharp	RDD Conventional Covs	-0.0040	0.0063	0.9120				
	RDD Without Covs	-0.0040	0.0063	0.9240				
	RDFlex Lasso	-0.0040	0.0055	0.9200	0.0242		0.0886	
	RDFlex Stacking	-0.0040	0.0055	0.9240	0.0243		0.0888	
Sharp Subset	RDD Conventional Covs	-0.0014	0.0094	0.9680				
	RDD Without Covs	-0.0014	0.0095	0.9600				
	RDFlex Lasso	-0.0014	0.0079	0.9560	0.0246		0.1004	
	RDFlex Stacking	-0.0015	0.0080	0.9600	0.0256		0.1006	

Table 4: Mean bias, standard errors, coverage, and quality of fit for the different estimators at c_D in the setting of Section 5.1.

C.2 VALIDATION TESTS FOR THE REAL DATA

A typical validation for the application of RDD is the pseudo-cutoff test (Cattaneo et al., 2019). We compare the estimated intent to treat effect of the real data at c_D with a fictional lower and a higher cutoff. In Table C.2 it is visible that both pseudo cutoffs show effects close to zero and with large confidence band, while at the real cutoff the effect is almost significant on 95% confidence level.

Cutoff	Coef	2.5 % CI	97.5 % CI
lower pseudo	0.002919	-0.014796	0.020634
real	0.039332	-0.001524	0.080188
higher pseudo	0.041137	-0.015333	0.097606

Table 6: Coefficient and confidence interval of the sharp real data estimation at pseudo cutoffs concerning c_D .

1080	setting	method	Mean Bias	s.e.	Coverage	RMSE left	Log loss left	RMSE right	Log loss right
1081	Fuzzy	RDD Conventional Covs	-0.0158	0.0124	0.6867				
		RDD Without Covs	-0.0189	0.0117	0.5200				
		RDFlex Lasso	-13.0991	690.4369	0.9600	0.0275	0.0202	0.0707	0.4681
		RDFlex Stacking	-0.3166	16.4743	0.9667	0.0257	0.0104	0.0732	0.3574
1082	Fuzzy Subset	RDD Conventional Covs	-0.0003	0.0085	0.9754				
		RDD Without Covs	-0.0002	0.0085	0.9713				
		RDFlex Lasso	0.0002	0.0057	0.9795	0.0333	0.2688	0.0936	0.1580
		RDFlex Stacking	0.0000	0.0058	0.9754	0.0337	0.0321	0.0938	0.1460
1083	Sharp	RDD Conventional Covs	-0.0043	0.0073	0.8720				
		RDD Without Covs	-0.0050	0.0074	0.8880				
		RDFlex Lasso	-0.0045	0.0077	0.8800	0.0271		0.0726	
		RDFlex Stacking	-0.0048	0.0070	0.8680	0.0255		0.0732	
1084	Sharp Subset	RDD Conventional Covs	-0.0005	0.0078	0.9800				
		RDD Without Covs	-0.0004	0.0078	0.9720				
		RDFlex Lasso	-0.0003	0.0054	0.9760	0.0333		0.0940	
		RDFlex Stacking	-0.0004	0.0054	0.9720	0.0337		0.0939	

1092

1093 Table 5: Mean bias, standard errors, coverage, and quality of fit for the different estimators at c_Y in the setting of
1094 Section 5.1.

1095

1096

C.3 SHARP TWO-DIMENSIONAL DESIGN

1097

1098 We provide additional results for Section 5.1 in a different DGP configuration, where we assume that
1099 the operator shows perfect compliance with the decision taken by the decision tool ($D = T$). This
1100 yields a perfect sharp two-dimensional RDD.

1101

1102

C.3.1 DISTANCE CUT-OFF

1103

1104 The effect at I_D is negative and significant (See Figure 8 and Table 7). While the setting in Section 5.1
1105 yielded $D \neq T$ for units where the operator is cautious about the rework, here all units are reworked
1106 independent of additional information that hint at a possibly negative outcome of the rework. Thus,
1107 the effect of the rework is even more negative and the proposed movement of the threshold should be
1108 larger than in the setting above.

1109

1110 There is no fuzzy subset estimator, as the conditioned set on the compliers of I_D is sharp only. The
1111 subset estimator again reduces bias at a lightly higher standard error in the intent-to-treat (sharp)
1112 estimator. The true sharp subset effect is smaller as less nevertakers are included that have an effect
1113 of zero and thus take the average effect closer to zero. The ML adjustment reduces the standard error
1114 for all estimators.

1115

1116	setting	method	Mean Bias	s.e.	Coverage	RMSE left	Log loss left	RMSE right	Log loss right
1117	Fuzzy	RDD Conventional Covs	-0.0019	0.0102	0.4400				
		RDD Without Covs	-0.0017	0.0103	0.4440				
		RDFlex Lasso	-0.0021	0.0083	0.4440	0.0242	0.1130	0.0958	0.4996
		RDFlex Stacking	-0.0018	0.0085	0.4440	0.0243	0.0135	0.0960	0.3813
1118	Sharp	RDD Conventional Covs	-0.0042	0.0067	0.9320				
		RDD Without Covs	-0.0042	0.0067	0.9360				
		RDFlex Lasso	-0.0042	0.0057	0.9360	0.0241		0.0951	
		RDFlex Stacking	-0.0042	0.0057	0.9320	0.0243		0.0954	
1119	Sharp Subset	RDD Conventional Covs	0.0010	0.0101	0.9720				
		RDD Without Covs	0.0009	0.0102	0.9720				
		RDFlex Lasso	0.0009	0.0085	0.9720	0.0247		0.1078	
		RDFlex Stacking	0.0009	0.0085	0.9720	0.0258		0.1080	

1120

1121 Table 7: Mean bias, standard errors, coverage, and quality of fit for the different estimators at I_D in the setting
1122 without nevertakers (sharp MRD).

1123

1124

1125

C.3.2 YIELD CUT-OFF

1126

1127

1128 The effect at I_Y is comparable to the DGP setting in Section 5.1 (See Figure 9 and Table 8).

1129

1130

1131

C.4 NOISELESS DGP

1132

1133

1134 We provide additional results for Section 5.1 in a setting where we assume that there is less noise
1135 in the system. This is to provide a benchmark where the true ground truth is less noisy. We only

Figure 8: Median coefficient and median 95% confidence interval for coefficients at I_D . The estimation was repeated $r = 250$ in the simulated process with a sharp boundary ($D = T$). The different colors depict a fuzzy, a sharp, and a sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap for some settings.

Figure 9: Median coefficient and median 95% confidence interval for coefficients at I_Y . The estimation was repeated $r = 250$ in the simulated process with a sharp boundary ($D = T$). The different colors depict a fuzzy, a sharp, and a sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap for some settings.

evaluate I_D as due to little variation around I_Y and the design of the process the estimators for I_Y have large variance.

C.4.1 DISTANCE CUT-OFF

In this setting, all estimates are positive (See Figure 10 and Table 9). This could hint that the negative effect in Section 5.1, which does not match with our estimation in the real data in Section 5.2, can be explained by the tuning of the noise parameters of the process. The coverage is held better on the subset estimators in this DGP setting. The sharp subset effect again is larger due to less never-takers.

setting	method	Mean Bias	s.e.	Coverage	RMSE left	Log loss left	RMSE right	Log loss right
Fuzzy	RDD Conventional Covs	-0.0160	0.0125	0.3760				
	RDD Without Covs	-0.0193	0.0115	0.3040				
	RDFlex Lasso	-0.0697	4.5786	0.5920	0.0276	0.0213	0.0744	0.4486
	RDFlex Stacking	0.0001	1.7755	0.5760	0.0257	0.0096	0.0777	0.3278
Sharp	RDD Conventional Covs	-0.0035	0.0081	0.8480				
	RDD Without Covs	-0.0044	0.0079	0.8600				
	RDFlex Lasso	-0.0041	0.0086	0.8680	0.0271		0.0766	
	RDFlex Stacking	-0.0042	0.0077	0.8600	0.0256		0.0771	
Sharp Subset	RDD Conventional Covs	-0.0008	0.0081	0.9760				
	RDD Without Covs	-0.0008	0.0080	0.9760				
	RDFlex Lasso	-0.0006	0.0056	0.9800	0.0336		0.0971	
	RDFlex Stacking	-0.0007	0.0055	0.9760	0.0333		0.0970	

Table 8: Mean bias, standard errors, coverage, and quality of fit for the different estimators at I_Y in the setting without never-takers (sharp MRD).

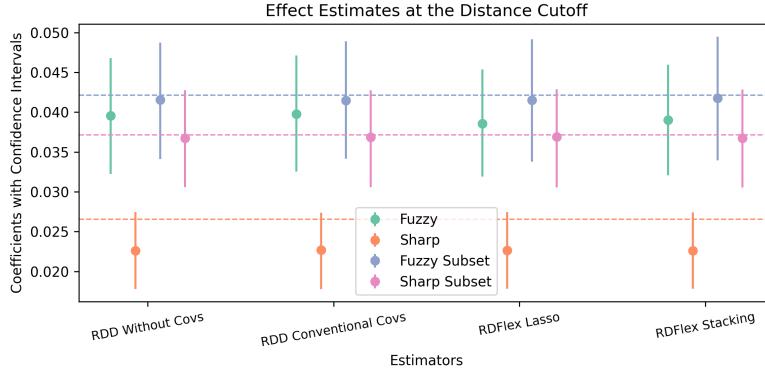


Figure 10: Median coefficient and median 95% confidence interval for coefficients at D . The estimation was repeated $r = 250$ in the simulated process with no noise. The different colors depict a fuzzy, a sharp, and a fuzzy and sharp subset estimator. The dashed line shows the oracle estimate for each setting, which overlap for some settings.

APPENDIX D COMMON ESTIMATORS FOR MULTI-SCORE REGRESSION DISCONTINUITY

The following estimators for multi-score RD designs (e.g. consisting of two score components $\{X_1, X_2\}$) are commonly proposed in recent surveys by Wong et al. (2013), Porter et al. (2017), or Reardon & Robinson (2012)).

setting	method	Mean Bias	s.e.	Coverage	RMSE left	Log loss left	RMSE right	Log loss right
Fuzzy	RDD Conventional Covs	-0.0021	0.0038	0.9040				
	RDD Without Covs	-0.0022	0.0038	0.8920				
	RDFlex Lasso	-0.0034	0.0032	0.8840	0.0240	0.0937	0.0256	0.5585
	RDFlex Stacking	-0.0030	0.0032	0.9080	0.0237	0.0113	0.0247	0.4681
Fuzzy Subset	RDD Conventional Covs	-0.0006	0.0038	0.9600				
	RDD Without Covs	-0.0006	0.0039	0.9680				
	RDFlex Lasso	-0.0007	0.0033	0.9560	0.0240	0.4183	0.0120	0.4649
	RDFlex Stacking	-0.0006	0.0034	0.9640	0.0248	0.0301	0.0129	0.2750
Sharp	RDD Conventional Covs	-0.0038	0.0025	0.5920				
	RDD Without Covs	-0.0039	0.0025	0.6040				
	RDFlex Lasso	-0.0039	0.0021	0.5960	0.0240		0.0254	
	RDFlex Stacking	-0.0038	0.0021	0.6080	0.0237		0.0246	
Sharp Subset	RDD Conventional Covs	-0.0006	0.0032	0.9680				
	RDD Without Covs	-0.0006	0.0032	0.9720				
	RDFlex Lasso	-0.0006	0.0027	0.9760	0.0240		0.0121	
	RDFlex Stacking	-0.0006	0.0027	0.9720	0.0248		0.0128	

Table 9: Mean bias, standard errors, coverage, and quality of fit for the different estimators at I_D in the setting without noise in the DGP.

1242 1. **Binding the score:** This method combines both score components into one dimension
 1243 by aggregating the minimum or the maximum of both scores. In settings where there
 1244 is a uniform effect along the boundary, this technique makes it possible to estimate the
 1245 effect of one treatment level with standard RDD estimators, using the score variable $x^* =$
 1246 $\min(X_1, X_2)$ around a normalized cut-off.

1247 2. **Frontier method:** This method divides the two-dimensional setting into two one-
 1248 dimensional ones. It allows to evaluate two separate RDD along cutoff c_1 and c_2 , respectively.
 1249 Non-compliers due to the other dimension of X are discarded.

1250 3. **Location Specific Effect:** Similarly to the latter two methods that used a L_1 distance
 1251 from the boundary to transform the two-dimensional setting into an easier-to-estimate one-
 1252 dimensional one, it is also possible to use the L_2 -distance of each observation from a specific
 1253 location at the boundary. This is particularly popular in the geographic RDD literature since
 1254 we are able to identify location specific effects $\tau(X_1, X_2)$ instead of averaged effects along
 1255 one dimension.

1256 4. **Fuzzy IV:** This method divides the two-dimensional setting into two one-dimensional ones
 1257 similarly to (2). However, the method does not discard the observations that do not comply
 1258 to the derived one-dimensional rule. The position relative to the cutoff is now only an IV for
 1259 receiving the treatment, there is “non-compliance” caused by treatment assignment based
 1260 on the other dimension.

1261 5. **Parametric Surface:** This method is the only setting where the two-dimensional structure of
 1262 a RDD with two scores is directly taken into account. Using a parametric or nonparametric
 1263 approach, the two-dimensional surface of treatment and control groups are estimated and
 1264 the effect can be estimated as the average difference in outcomes at the boundary.

APPENDIX E DGP FOR THE CAUTIOUS OPERATOR

1270 As discussed in Section 4 we assume an information advantage of the final decision maker D . To
 1271 model this algorithmically we suppose that T has only access to the improvement estimates of every
 1272 m -th item in the production lot resulting in the yield score X_Y whereas the final decision maker
 1273 knows the estimate for every item X_E . In particular, the overall estimated yield improvement is
 1274 $X_E = X_Y + X_R$ where X_R is the yield improvement of items not taken into account by X_Y . In the
 1275 notation of Section 4 we set $X_{op} := X_E$. That is, the operator specific policy in Algorithm 1 outlined
 1276 below is $D_O(X_Y, X_E) := I_{X_Y} \wedge I_{X_E}$.

Algorithm 1: DGP for a cautious operator

Data: seed, lot-size n , cutoff c , measurement steps m , yield criteria \mathcal{Y} , distance criteria \mathcal{D} ,
 1279 operator specific policy D_O

Result: lot L , scores $X = (X_D, X_Y)$, assigned treatment T , actual treatment D , outcome Y

1280 $L \leftarrow (C_1, \dots, C_n)$ generate a random production lot of n items;

1281 $X_D \leftarrow \mathcal{D}(L)$ calculate the distance to the target;

1282 $\hat{L}_A \leftarrow$ carry out an optimal rework step on L ;

1283 $X_Y \leftarrow$ calculate improvement $\mathcal{Y}(\hat{L}_A) - \mathcal{Y}(L)$ on every m -th item;

1284 $T \leftarrow \mathbb{1}[X_D > c_D] \wedge \mathbb{1}[X_Y > c_Y]$;

1285 $X_E \leftarrow$ calculate improvement $\mathcal{Y}(\hat{L}_A) - \mathcal{Y}(L)$ on every item;

1286 $D \leftarrow \mathbb{1}[X_D > c_D] \wedge D_O(X_Y, X_E)$;

1287 $L_A \leftarrow$ carry out a realistic (noisy) rework step on L ;

1288 **if** D **then**

1289 | $Y \leftarrow \mathcal{Y}(L_A)$

1290 **else**

1291 | $Y \leftarrow \mathcal{Y}(L)$

1292 **end**

1293

1294

1295

1296 APPENDIX F COMPUTATIONAL RESOURCES AND HYPERPARAMETERS
12971298 . In this appendix, we specify the computational resources that were used to achieve the main results.
12991300 The simulated study in Section 5.1 was facilitated on a single node of a high performance cluster.
1301 Specifically, 16 cores of an AMD EPYC 9654 CPU with 8GB RAM were used. The total computation
1302 time was 9.5 hours for 250 repetitions with 4 estimators in 8 scenarios (each 4 scenarios concerning
1303 I_D and I_Y).1304 The real data application in Section 5.2 was facilitated on single node spark cluster. Specifically,
1305 4 cores of a 64bit Intel(R) Xeon(R) Platinum 8171M CPU with 8 GB RAM were used. The total
1306 computation time was 2 hours.1307 For the no-covariate and conventional-covariate RDD estimation, the `rdrobust` (Calonico et al.,
1308 2017) package was used with default parameters regarding bandwidth selection and polynomial
1309 order. For the flexible covariate adjustment, the `DoubleML` (Bach et al., 2022) package was
1310 used with `fit_iterations` = 2 and 5-fold cross-fitting. For ML, the `scikit-learn`
1311 (Pedregosa et al., 2011) implementation of cross-validated Lasso was used, and the stacked
1312 learner was defined as follows: `stacking_regressor = StackingRegressor(`
1313 `estimators=[('lgbm_regressor', LGBMRegressor(n_estimators=100,`
1314 `learning_rate=0.01, verbose=-1, n_jobs=-1)), ('global_forest',`
1315 `GlobalRegressor(RandomForestRegressor(n_jobs=-1))),`
1316 `('linear_regressor', LassoCV(n_jobs=-1)),], final_estimator=RidgeCV(),`
1317 `n_jobs=-1).`1318 APPENDIX G STATEMENT ON AI USAGE
13191320 For this research paper, large language models were used solely to assist with literature search,
1321 writing, and coding. All conceptualization, ideation, and theoretical contributions were carried out
1322 without AI support. The paper and code were authored entirely by the researchers, with AI serving
1323 only as a support and feedback tool.1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349