
Under review as submission to TMLR

Transform-Enabled Detection of Backdoor Attacks in Deep
Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Deep Neural Networks (DNNs) have been widely deployed in a range of safety-critical ap-
plications. Recent work has illustrated their vulnerability to malicious backdoor attacks,
which lead to DNN malfunction when a specific backdoor trigger is applied to the DNN input
image. These backdoors cause uncharacteristic behavior in DNN hidden layers, causing the
DNN to misclassify the input image. In this work we present Transform-Enabled Detection
of Attacks (TESDA), a novel algorithm for on-line detection of uncharacteristic behavior in
DNN hidden layers indicative of a backdoor. We leverage the training-dataset distributions
of reduced-dimension transforms of deep features in a backdoored DNN to rapidly detect
malicious behavior, using theoretically grounded methods with bounded false alarm rates.
We verify that TESDA is able to achieve state-of-the-art detection with very low latency
on a variety of attacks, datasets and network backbones. Further ablations show that only
a small proportion of DNN training data is needed for TESDA to fit an attack detector to
the backdoored network.

1 Introduction

The increasingly widespread deployment of Deep Neural Networks (DNNs) has led to the use of third-
party providers to train and provision these DNNs at scale (Ribeiro et al., 2015). DNNs have been used
in a range of safety critical applications such as autonomous driving (Grigorescu et al., 2020) and medical
robotics (Akay & Hess, 2019), where reliability and security of the DNN system is of paramount concern.
In such applications, access to proprietary datasets may be granted to a third-party provider for model
training. However, the use of third-party providers has been shown in prior work to make DNNs vulnerable
to security threats (Chen & Koushanfar, 2023). As such, securing models against such threats has become
of prime interest to the community.

One model for attacks on DNNs is the adversarial attack, wherein imperceptible perturbations are added
to the DNN inputs in order to force misprediction (Chakraborty et al., 2021) often using time-consuming
optimization-based methods. Another paradigm which is the focus of this work is that of backdoor at-
tacks, which inject a backdoor into the DNN model during the training process to force misprediction when
presented with a trigger (a unique stimulus superimposed on or applied to the model inputs) (Chen &
Koushanfar, 2023). These backdoored DNNs thus consistently mispredict in the presence of the trigger,
while behaving nominally in its absence. Such backdoors may be injected during model training in a variety
of ways, at different stages of the model training process. Poisoned data may be used to train the model
to mispredict in the presence of the trigger, as in (Gu et al., 2019; Nguyen & Tran, 2021). Alteration of
the training process itself may also be used to insert a backdoor into the network (Liu et al., 2020c). After
training, bitflips may be injected into the network or weights may be perturbed to force misprediction in the
presence of a trigger (Rakin et al., 2020). All of these methods can be used by an attacker who has access
to the entire model training pipeline, as is the case with third-party training providers. In this paper, we
assume that the defender has access to training data and to the final trained (backdoored) model and no
access to the training pipeline, as is the case when using proprietary data and a third-party MLaaS provider.

1

Under review as submission to TMLR

The backdoor triggers placed in the deep learning model cause sharp changes in neuron behavior on being
presented with the trigger pattern that result in misprediction. Prior art has leveraged channel Lipschitzness
bounds on layer outputs to detect changes in behavior (Zheng et al., 2022a) in layers most affected by back-
door insertion. Related prior art has analyzed adversarial perturbations in network inputs (Cantareira et al.,
2021) to find activations that diverge significantly in behavior under adversarial input perturbations. We
leverage the observation that the forced misprediction caused by backdoor attacks can be easily detected us-
ing statistical tests of transformed, reduced-dimension deep feature (intermediate layer output) distributions
due to this ‘diverging’ behavior under forced model misprediction.

This paper presents TESDA, a modular low-cost approach to detection of backdoor attacks in deep neural
networks that leverages distributions of reduced-dimension representations of deep features of neuron activa-
tions in training data for detection of reduced-dimension transformed deep features indicative of a backdoor
attack (uncharacteristic, ‘diverging’ deep features (intermediate layer outputs) within the DNN). We pro-
vide theoretical bounds on false alarm rates in the TESDA algorithm, leverage its modular structure to
validate our methodology on different deep feature transforms, varying deep feature distribution dimensions
and varying amounts of training data to build the deep feature distribution. We further show that TESDA
provides real-time detection capability with low overhead.

The following section discusses prior related work in the field, and Section 3 provides an overview of the
TESDA algorithm and its modular blocks. Section 4 discusses algorithmic details and establishes bounds
on false alarm rates for outlier (backdoor attack) detection. Section 5 presents the experimental setup,
baselines and ablation configurations for TESDA, while Section 6 discusses the results of these experiments.
We conclude and discuss future work in Section 7.

2 Prior Work

We begin by presenting a brief overview of work in deep learning backdoor attacks (also referred to as Neural
Trojans), and then discuss prior work on defense and detection of these attacks before presenting the key
contributions of our proposed approach.

2.1 Backdoor Attacks

As mentioned in Section 1, a backdoor (Trojan) attack forces misprediction by the DNN when a trigger is
superimposed its input data. In this work we focus on image inputs to classifier networks as the backdoor
attacks’ target. We focus on training-time data poisoning based backdoor attacks in this work, as opposed
to post-training bitflip-based attacks such as (Rakin et al., 2020) that induce hardware malfunction. These
attacks, while addressable using our approach, are addressed in a more cost-effective fashion at the hardware
level by detecting the backdoor-induced hardware malfunction (Liu et al., 2020a).

These trigger patterns can be fixed (one trigger pattern for all inputs), with the DNN trained to mispredict
on being presented with the set trigger pattern, as shown in (Liu et al., 2018b). A fixed trigger can also be
‘blended’ with the input image, providing a larger but less perceptible trigger pattern wth no size constraint
(Chen et al., 2017). A more stealthy fixed ‘optical’ Trojan trigger was shown in (Boloor et al., 2021), mimick-
ing a physically realizable lens with a trigger pattern embedded in it to force misprediction. Label-consistent
poisoned inputs have also been used to reduce the chance of fixed triggers being detected through visual
inspection (Turner et al., 2019). Unlike the previous fixed trigger Trojans, the Blind attack (Bagdasaryan &
Shmatikov, 2021) compromises the loss computations to force misprediction using fixed triggers, as well as
semantic or transform-based triggers.

In contrast, Input-dependent triggers use a trigger function applied to the input image for trigger generation,
generating a unique trigger pattern for each input. These dynamic backdoors were first shown in (Salem
et al., 2022), using a conditional Backdoor generation Network (c-BaN). The input-aware backdoor (Nguyen
& Tran, 2020) accomplished this using a cross-trigger loss to ensure that triggers remain sample-specific.
Trigger generation was done using an encoder-decoder network that was trained using diversity loss. The
Single-Sample Based Attack (SSBA) (Li et al., 2021c) instead used sample-specific additive noise as a trigger
by encoding attacker-specified strings into benign images using an encoder-decoder network.

2

Under review as submission to TMLR

More subtle transform-based triggers use image transforms as trigger functions, rather than pixel-level
changes. ReFool (Liu et al., 2020b) uses mathematical models of reflection to plant imperceptible input-
dependent triggers (as opposed to fixed triggers) to force misprediction. WaNet moved away from local
image transforms such as ReFool to imperceptible warping transforms on the entire image (Nguyen & Tran,
2021). BPP (Wang et al., 2022b) uses small input-dependent quantization of color channels in input im-
ages to force misprediction, using adversarial training and contrastive learning for trigger injection. LIRA
(Doan et al., 2021b) frames imperceptible trigger generation as a nonconvex constrained optimization solved
using stochastic methods. The trigger function is thus a conditional generative function (input-dependent)
formulated as a nondeterministic mapping (pixel-level), unlike WaNet and BPP. Later work (Doan et al.,
2021a) uses a similar framing but uses an Wasserstein distance as a constraint on the optimization. Narcissus
(Zeng et al., 2023) optimizes trigger patterns to point to the inside of the target class, using class-oriented
trigger functions. It uses open-source Public Out-Of-Distribution data to make the attack, thereby ensuring
practical applicability.

2.2 Backdoor Detection and Defense

We define backdoor detection methods as those that identify poisoned inputs or data, or identify behavior
characteristic of misprediction caused by a Neural Trojan. This can be offline, to separate poisoned from
clean data, or online, to defend a potentially compromised network during inference. Backdoor defenses are
methods that remove Trojan triggers (if online), or reverse Trojan trigger injection to cleanse the network
(usually offline). In this taxonomy, TESDA is an online detector of backdoor attacks.

Offline detection methods such as (Liu et al., 2017) often leverage the distributional differences between
clean and poisoned data to detect poisoned data. A simple method proposed in (Chen et al., 2018) clusters
the activations of the last hidden layer after PCA or ICA, using k-means to form a clean and poisoned
data cluster. ASSET (Pan et al., 2023) more recently uses a two step optimization to separate poisoned
from clean samples in training data. It minimizes the loss on a clean base set, then maximizes it on the
training dataset, using a loss threshold to detect poisoned samples. SPECTRE (Hayase et al., 2021) strips
poisoned data out of the training dataset by estimating the mean and covariance of clean training data using
robust covariance estimation, and whitening the combined data using the estimated statistics. Activation
gradients of poisoned training data can also be used to identify it (Yuan et al., 2024), using the fact that
the gradient circular distribution of the target class for Trojan misprediction is more dispersed than the
clean class. Provenance-based data filtering proposed in (Baracaldo et al., 2018) filters input data using
provenance features that describe the origin and lineage of the data for the partially trusted case, using a
classifier to cluster and separate poisoned and clean data. Spectral signature based detection on training
data (Tran et al., 2018) is done based on the L2 norm of the top singular vector of each class, comparing
the clean (training) class spectrum with the poisoned training spectrum. Feature Consistency to Transforms
(FCT) (Chen et al., 2022b) metrics have also been used to separate clean, poisoned and suspicious data.
Retraining on clean data and unlearning the poisoned samples is used for cleansing the DNN. Self-supervised
learning methods (Chen et al., 2022a) have also been used to decouple the backdoor features from the target
class and filter out high-credibility samples via label-noise learning.

Universal Litmus Pattern inputs to DNNs can also be used to detect a Trojan without training data statistics
or clean data (Kolouri et al., 2020). This approach requires a classifier to be used for the binary poisoned/not
poisoned task and needs training data consisting of poisoned and clean models. Similarly, (Xu et al., 2021)
train a meta-classifier to identify whether or not the model being studied is Trojaned. This trigger reverse-
engineering can also use adversarial perturbations on every class-pair, as in (Xiang et al., 2020) to detect
the presence of a Trojan. FreeEagle (Fu et al., 2023) is a data-free offline backdoor detection method that
forward-propagates intermediate feature representations to maximize the posterior probability of each class,
detecting a Trojan if the features for other classes have an abnormally high posterior probability on a single
given class.

Online detection methods at inference time are used to detect or defend against Trojaned inputs or behavior
indicative of Trojan-induced misprediction in a compromised DNN. STRIP (Gao et al., 2019) perturbs input
images by blending with other training images from different classes, recording entropy of the network
logits for each perturbation. An abnormally low entropy value indicates the Trojan trigger forcing identical

3

Under review as submission to TMLR

behavior (misclassification). TeCo (Liu et al., 2023) builds on this by using image corruptions to perturb
the inputs, and uses a classifier corruption robustness metric to detect Trojaned inputs - inputs with a
Trojan trigger are more robust to image corruptions. Both TeCo and STRIP require high overhead (75-
100X the DNN latency), since they run DNN inference not just on the input image but on each perturbed
image as well. More recent work (Tang et al., 2021) requires access to a subset of poisoned data to build
a discriminating hyperplane between classes, and uses a likelihood ratio test to estimate whether an input
sample is poisoned. CLEANN (Javaheripi et al., 2020) performs GMM-driven outlier detection of the error
in sparse reconstructions of inputs from DNN feature maps, and orthogonal matching pursuit to find the
correct class from a Trojaned image. To be on-line, CLEANN uses dedicated hardware due to expensive
iterative computations, and is the single on-line defense method examined thus far.

Online detection methods such as NeuronInspect use features extracted from expensive Grad-CAM heatmaps
to build a composite feature for outlier (Trojaned input) detection (Huang et al., 2019). SentiNet (Chou
et al., 2020) likewise uses Grad-CAM features to generate class proposals from input segmentation and
the classifier output to detect Trojaned inputs to a DNN, checking to see if certain segmentation regions
disproportionately impact classification (indicating Trojan trigger presence). This may not work for nonlocal
triggers (such as Blended triggers or WaNet), and requires repeated DNN inference for each input image
as well as expensive Grad-CAM. RAID (Fu et al., 2022) instead uses features extracted by the feature
extraction backbone of a CNN and a novelty detector (on the PCA of the features) combined with a shallow
neural network whose inferences are compared with that of the network itself to decide if incoming data is
Trojaned or not. Similar use of an auxiliary DNN is seen in (Subedar et al., 2019), fitting class-conditional
distributions to the features of the DNN after training. At inference, log-likelihood scores of test feature
samples w.r.t. these distributions are collected. Clean samples have high likelihood, while Trojaned ones
have low likelihood. Using noisy SGD to learn differentially private NNs is shown in (Du et al., 2019) to
accomplish uniform asymptotic empirical risk minimization. This is then used for enhanced outlier detection
in autoencoders, detecting poisoned samples fed to a backdoored neural network.

Offline defenses against Neural Trojans span a wider range of techniques. Neural Cleanse (Wang et al., 2019)
reverse-engineers triggers in compromised DNNs by finding the minimal perturbation needed for each class
to be Trojaned, using an outlier detector to find a Trojan (if the perturbation required to mispredict to a
target class is significantly different). Triggers are removed by pruning or unlearning. Gangsweep (Zhu et al.,
2020) used a GAN to detect and remove neural trojan backdoors in a DNN via generation of a perturbation
mask. Retraining with reconstructed triggers and modified loss to reduce trigger sensitivity restores clean
performance. Anti-Backdoor Learning (Li et al., 2021a) used a two-stage gradient ascent mechanism to
isolate backdoor samples and break the correlation between backdoor samples and the target class. Backdoor
unlearning has also been done by learning implicit hypergradient (Zeng et al., 2021), formulating a minimax
optimization problem for Trojan defense. Generative Distribution Modeling (Qiao et al., 2019) uses max-
entropy staircase approximation for sampling-free high-dimensional generative modeling to recover the trigger
distribution. Pixel-wise adversarial perturbation to directly reverse-engineer Trojan triggers and data-free
trigger reverse-engineering using these perturbations has been explored in (Wang et al., 2020).

Pruning of neurons responsive to the Trojan trigger is a common offline defense, starting with Fine-Pruning
(Liu et al., 2018a), which alternated between pruning and fine-tuning as a defense against backdoors. Entropy
Pruning (Zheng et al., 2022b) and MBNS (Zheng et al., 2022b) use differential entropy of clean and poisoned
data distributions or distributions of minibatch norm statistics respectively to prune neurons that contribute
to Trojaned behavior, cleansing the network. ANP (Wu & Wang, 2021) instead uses adversarial perturbations
to find such prunable neurons. Neural Attention Distillation (Li et al., 2021b) instead aligns neurons more
responsive to the trigger with those that are benign. CLP more recently (Zheng et al., 2022a) uses a channel
Lipschitzness threshold to identify Trojaned neurons for data-free pruning.

2.3 Key Contributions

This paper presents TESDA, an online detector for backdoor attacks on DNNs. We make the following
assumptions w.r.t. the attack scenario:

4

Under review as submission to TMLR

• The attacker has full access to training and a copy of the training dataset, and provides a trained
and backdoored network to the defender. The defender has no access to the training process.

• The defender has access to a portion or the whole of the clean training dataset, as is often the case
w.r.t. proprietary data being used for ML-as-a-service.

• The defender has no access to poisoned data, backdoors or knowledge of the trigger size, shape,
target class or trigger position. The defender can make no assumptions as to the trigger.

• The defender requires an on-line defense with minimal latency and compute overhead to be deployed
with the DNN.

The need for minimal overhead and latency restrict the use of techniques such as those in (Huang et al.,
2019) and (Chou et al., 2020) that use expensive Grad-CAM and auxiliary DNNs. The need for repeated
DNN forward passes to detect backdoors in STRIP and TeCo raises the latency by O(75) (Liu et al., 2023)
to O(100) (Gao et al., 2019). Auxiliary DNNs for detecting attacks in RAID (Fu et al., 2022) and (Subedar
et al., 2019) likewise impose high overhead costs. (Tang et al., 2021) requires access to poisoned data, an
assumption we do not make. Lastly, while (Javaheripi et al., 2020) is real-time with specialized hardware,
we do not assume that the deployment scenario always has access to such hardware.

However, the need for secure inference in safety critical scenarios requires high detection coverage similar to
offline defense methods such as (Zheng et al., 2022b) or detection methods such as (Tran et al., 2018).

To address this problem, the key contributions of our work are:

• We provide a low-latency, online Neural Trojan detector, outperforming prior art.

• Our detector is seen to perform at state of the art levels for Neural Trojan detection.

• Our detector is modular, allowing substitution of components and design choices, which we cover in
later sections. This allows redesign and adaptability to different use cases.

• We provide theoretical bounds on false alarm rates and utilize interpretable, well-understood meth-
ods such as Principal Component Analysis (PCA) and Minimum Covariance Determinant (MCD)
outlier detection.

We thus leverage reduced-dimension low-overhead transforms of deep features of the neural network for
theoretically grounded outlier detection. Prior use of PCA methods such as (Tran et al., 2018) did not
leverage behavioral changes in deep features or required access to poisoned data (Chen et al., 2018), which
we do not.

3 Approach Overview

3.1 Problem Statement

The Neural Trojan attack problem has been described mathematically by Wang et al. (2022a), to generate an
input transform that results in a high probability of misprediction to a target class. The prediction process
in the deep neural network (DNN) can be represented as:

g(x) = fN ◦ fN−1 ◦ · · · ◦ f1(x) (1)

where each function fi represents computations at that layer of the DNN (total N layers), ◦ represents the
function composition created by consecutive layers acting on one another and x is the input to the network
drawn from the input space X (x ∈ X). The prediction function g(.) created by executing these DNN layers
that map the input x to a label y in the label space Y .

The misprediction process induced by the neural trojan can therefore be described as creating a prediction
function ĝ(.), which through data poisoning maximizes misprediction to a target class yt when a backdoor

5

Under review as submission to TMLR

trigger function B(.) is applied to the input x ∈ X . In the absence of the trigger function, ĝ simply produces
nominal, non-backdoored behavior. Mathematically, we describe this process as follows:

max
ĝ(.)

(
P (ĝ(xb) = yt) − P (g(x) ̸= ĝ(x))

)
, ∀x ∈ X , and xb = B(x) (2)

where maxĝ(.) indicates the maximum over all backdoor prediction functions ĝ(.) of the probability that
a backdoored input xb is misclassified to target class yt. The created prediction function ĝ(.) similarly
minimizes the probability of misprediction for non-backdoored inputs in the second term (P (g(x) ̸= ĝ(x)))
of Equation 2. To detect this altered prediction function ĝ(.) forcing misprediction when presented with a
trigger, earlier work such as (Chen et al., 2018) has focused on clustering its outputs over a poisoned training
dataset and detecting poisoned inputs (i.e., xb = B(x)) using distribution distances. We take this one step
further, building on observations of adversarial perturbation dynamics in (Cantareira et al., 2021), and frame
the problem as outlier detection:

Tesda(xb) = Outlier([Ti(fi ◦ fi−1 ◦ ... ◦ f0(xb)]Ni=0) (3)

where transforms Ti(.) are applied to the ith layer output [fi ◦ fi−1 ◦ ... ◦ f1(xb)]Ni=0 (1 ≤ i ≤ N), and the
vector of transformed layer outputs is used for outlier detection based on the distance from the distribution
of clean transformed layer outputs. We note that all layer outputs need not be used - a subset of layer
outputs {i ∈ L|L ⊂ [1, 2, ...N]} can also be used to reduce computation overhead.

The choice of transforms Ti(.) is done to improve detection capability (capturing large behavioral changes
in deep features shown in (Cantareira et al., 2021)) while also reducing compute overhead from processing
high-dimensional deep feature outputs from multiple layers. These choices are discussed in the following
section.

3.2 High-Level Flow

Figure 1: An overview of the TESDA process for backdoor detection applied
to a neural network. Deep features (layer outputs) consist of a vector of 2-D
feature maps for a convolutional layer. They are transformed in two steps
(t1i and t2i) to low-dimensional outputs (Step 1), a clean dataset of these
outputs is fitted to a distribution (Step 2) and concatenated to a vector for
outlier detection (Step 3).

Figure 1 shows an overview of the
TESDA backdoor detection process ap-
plied to a neural network. TESDA con-
sists of three main steps applied to the
DNN after it is trained and potentially
backdoored:

First (Step 1 of Fig. 1), TESDA ap-
plies a transform function to each of the
layer outputs chosen for outlier detec-
tion, Ti(fi ◦ fi−1 ◦ ... ◦ f0(.)), for a layer
index i out of the set of chosen layers
L ({i ∈ L|L ⊂ [1, 2, ...N]}). This trans-
form consists of two steps, as seen in Fig.
1: (1) A function t1i(fi(...)) applied to
outputs of convolutional layers (feature
maps) to reduce each kernel output’s di-
mension (e.g. taking the variance across
the feature map; taking the feature map
mean value); and (2) Use of a dimension-

ality reduction transform t2i(.) on the reduced layer outputs to yield a low-dimensional transformed output
for each layer, so that Ti(x) = t2i(t1i(.)) in Equation 3. We have used the Principal Component Analysis
(PCA) transform (Shlens, 2014) here and discarded all but a few chosen PCA coefficients to produce the
output of each Ti(.). The goal of this step is to highlight characteristics of data that are sensitive to shifts
caused by xb while reducing the high-dimensional deep feature outputs to something tractable for on-line
detection.

6

Under review as submission to TMLR

Second (Step 2 in Fig. 1), over a subset of clean training data, TESDA fits a distribution DC to the vector
of transformed clean layer outputs [Ti(fi ◦ fi−1 ◦ ... ◦ f0(x)]i∈L. This is a computationally intensive step done
before deployment of the DNN in the field.

Third (Step 3 in Fig. 1), an outlier detection system is used to flag backdoored outputs. Since, per Equation
2, there is a large difference in behavior for ĝ(.) when backdoored or clean, we use the distance of the vector
[Ti(fi ◦ fi−1 ◦ ... ◦ f0(xb)]i∈L from the distribution of clean outputs DC for outlier detection in the function
O(.) of Fig. 1. Since this detector is run for on-line detection, we require a fast, theoretically grounded
algorithm. We have used a Gaussian elliptic envelope outlier detector (Rousseeuw & Driessen, 1999) here to
fit a distribution to the vector of Ti(.) and flag backdoored inputs based on distribution distance.

Each of these modules (in Steps 1, 2 and 3) can be filled by multiple methods, and we explain the design
choices we have used here in the following section in detail.

4 Methods

4.1 Deep Feature Transformation

Figure 2: The transform process to map a deep feature vector (layer output)
to a low-dimensional vector for outlier (backdoor) detection. As in Section
3, this consists of two transforms - t1i for the ith layer that maps the layer
output tensor to a vector, and t2i that reduces dimensionality further (here,
a PCA).

In this step (Step 1 of Fig. 1), the deep
features of the ith layer in the network
are subjected to a transform t1i(.) to
highlight characteristics of data that are
sensitive to shifts caused by a backdoor
while reducing data dimension. Fig. 2
illustrates this for a convolutional layer,
where the three-dimensional output ten-
sor is reduced to a vector using a trans-
form t1i. For dense layers, we simply
use t1i(x) = x, a pass-through function,
since the output of a dense layer for a
single input is a vector already.

In Fig. 2, the goal is to reduce the
[Oc, Oh, Ow] dimension tensor of out-
puts, where w denotes width, h denotes
height and c denotes channel dimension.
This is reduced in the first step of Fig. 2
to a vector of dimension [Oc, 1], so that
each feature map of dimension [Oh, Ow]

is reduced to a scalar. In this work we experiment with two transforms: (1) Feature map entropy (giving a
vector of feature map entropies), calculated for each feature map in a convolutional layer output (Equation
4); and (2) The variance of each feature map (giving a vector of feature map variances) (Equation 5):

t1i(x) =
Oh∑
k=1

Ow∑
j=1

g(xk,j)log(g(xk,j))∀x ∈ X (4)

t1i(x) = V ar(x)∀x ∈ X (5)

where x is an Oh × Ow dimensional feature map, the Oc-dimensional vector of these feature maps output
from the ith layer is X, the convolutional layer output and g(xk,j) = exk,j∑

Oh,Ow
exk,j

is the softmax function

applied to the elements of the 2-D feature map x in the ith layer.

The first transform (Equation 4) builds a distribution of reduced-dimension feature map entropy vector to
detect changes in entropy similar to prior work (Gao et al., 2019). The second transform (Equation 5) builds
a distribution of reduced-dimension feature map variance vectors to check for uncharacteristic features being
highlighted in the deep features (indicative of a trigger applied to x). Ablations covering both transforms

7

Under review as submission to TMLR

(a) Backdoor attack detection coverage when varying the
number of PCA coefficients used, ranging from first five
(five highest energy) to last five (five lowest energy).

(b) Backdoor attack FAR when varying the number of
PCA coefficients used, ranging from first five (five high-
est energy) to last five (five lowest energy).

(c) Backdoor attack detection coverage when varying
which single PCA coefficient is used, ranging from first
five (five highest energy) to last ten (ten lowest energy).

(d) Backdoor attack FAR when varying the single PCA
coefficient used, from first five (five highest energy) to last
ten (ten lowest energy).

Figure 3: Backdoor attack detection coverage and false alarm rate for varying the number and position (energy) of PCA
coefficients, for Preactresnet-18 on CIFAR100, for the BPP attack (Wang et al., 2022b). The final (lowest energy) PCA
coefficients give best detection coverage, while false alarm rate remains consistent for constant outlier detector hyperparameters.
Using more coefficients does not appreciably increase detection coverage.

are found in Section 6. For brevity, in the succeeding sections we denote the application of t1i to each feature
map in the layer output X as t1i(X). For a dense layer, the passthrough function t1i(X) = X is thus used.

We thus obtain a vector of transformed deep features for each layer, as in Figure 2, of dimension [Oc, 1].
This is reduced to a low-dimensional vector of c PCA coefficients in the next step of Fig. 2 for each of NL

layers.

4.2 Transformed Feature Dimension Reduction

In general for an N layer network we choose NL layers for transformation and dimensionality reduction,
yielding NL vectors, each of dimension [Oc,i, 1], where i ∈ L, and L is the set of chosen layers (of cardinality
NL). A Principal Component Analysis is applied to each vector in the resultant set of NL vectors (Shlens,
2014). The PCA transform is fit to the set of such vectors for each layer obtained from the clean training
data subset available to the defender (See assumptions made in Section 2.3).

The PCA projects each vector to an orthobasis, producing a vector of PCA coefficients ordered by the energy
of their respective orthobasis components. We choose a few of these coefficients for outlier detection, fitting a
distribution to the PCA coefficient values over the clean training data subset for detecting outlier (backdoor)
behavior in deployment. Figs. 3c and 3d show the effectiveness of various chosen coefficients (first five, or
five highest energy; and last ten coefficients, or ten lowest energy) for outlier detection on a test Trojan
attack (the BPP attack (Wang et al., 2022b)) on CIFAR100 Preact ResNet-18. Here, the transform used
was t1i(X) = V ar(X) (as in Equation 5), where X is a 2-D feature map output from a convolutional kernel.

8

Under review as submission to TMLR

(a) Example of Gaussian MCD outlier
detection on a clean and backdoored test
dataset for the TrojanNN attack (Liu
et al., 2018b) on Preactresnet-18 (Tiny-
ImageNet (Le & Yang, 2015)).

(b) Example of last PCA coefficient
of the transformed deep feature distri-
bution shift between clean and back-
doored test dataset (training dataset his-
togram present for comparison) for the
Input-Aware Backdoor on Preactresnet-
18 (GTSRB (Stallkamp et al., 2011)).

(c) Example of the last PCA coefficient
of the transformed final layer output dis-
tribution shift between clean and back-
doored test dataset (training dataset his-
togram present for comparison) for the
Input-Aware Backdoor on Preactresnet-
18 (GTSRB (Stallkamp et al., 2011)).

Figure 4: Examples of outlier detection and PCA coefficient distribution shift. Fig. 4b shows the importance of the deep
features, where the narrower distribution and greater shift caused by an attack enabling high-coverage detection. The ‘bd’ in
Fig. 4b and 4c indicates the backdoored test dataset distribution. The ‘test’ in those figures indicates the PCA coefficient
distribution for the clean test dataset. The ‘clean’ indicates the clean training data distribution (used to train the elliptic
envelope MCD).

The final (lowest-energy) PCA coefficients are seen to be the most effective, and the last PCA coefficient is
chosen for our detection flow when using the variance transform.

Multiple PCA coefficients can also be used for detection, as shown in Figs. 3a and 3b (using the first
and last five coefficients). We see that taking 1-5 of the last (lowest-energy) PCA coefficients produces a
minor increase in detection coverage and false alarm rate for the test attack, at the cost of linear scaling in
computation requirements (as the outlier detector distribution dimension increases). The number of PCA
coefficients used and the choice of coefficients thus remains a tunable parameter dependent on the transform
t1i.

Thus, using the PCA for dimensionality reduction, we have a second transform t2i applied to the ith layer
deep features (i ∈ L), such that t2i(X) = (Ti.t1i(X))c, where c is the set of chosen PCA coefficients (for t1i(X)
in Equation 5, the last coefficient) and Ti is the PCA transform matrix at the ith layer. This thus yields c
PCA coefficients from a high-dimensional layer for outlier (backdoor) detection, giving a cNL-dimensional
vector θ for outlier detection, so that:

θ = [t2i(t1i(fi ◦ fi−1 ◦ · · · ◦ f0(xb)))]i∈L (6)

is the input to Outlier(.) in the detector function of Equation 3.

4.3 Outlier Detection for Backdoor Attack Detection

To detect an attack we check if the vector obtained for a particular sample is an outlier with respect to the
true (i.e., clean) distribution of θ as observed in the training set. This of course would only work if an attack
appreciably alters the distribution of the PCA coefficients used in the construction of the vector θ, which
we do confirm empirically to hold true (Figures 4b and 4c). Fig. 4b shows the importance of the use of
transformed deep features for TESDA, since its backdoored PCA coefficients are highly divergent from the
clean distribution - more so than the case for the network outputs’ PCA coefficient of Fig. 4c.

We then approximate the distribution of the clean θ across the training set as a multidimensional Gaussian
N (µ, Σ) (thus DC in Section 3.2 is a multidimensional Gaussian), allowing us to leverage the statistical tools
available for robust Gaussian parameter estimation and model fitting. Specifically, we use the minimum
covariance determinant (MCD) method (Rousseeuw, 1984; 1985; Rousseeuw & Driessen, 1999) which given
a training set with n samples each of dimension cNL of which at most m are outliers, finds estimates µ̂ and Σ̂

9

Under review as submission to TMLR

for the true mean and covariance. To do so, the MCD finds v = n+cNL+1
2 samples from the training set whose

covariance matrix has the least determinant and fits a Gaussian to them, implicitly making the assumption
that m ⪅ n − v = n−cNL−1

2 . Subsequently, any sample that is outside the Elliptic Envelope described by µ̂,
Σ̂, i.e., has a Mahalanobis distance d =

√
(θ − µ̂)T Σ−1(θ − µ̂) ≥ ∆, where ∆ is a pre-specified threshold, is

classified as an outlier. It should be noted that for Gaussian models, the MCD method has been shown to
be asymptotically consistent (Butler et al., 1993), i.e., as n → ∞, µ̂ → µ and Σ̂ → Σ. An example of the
MCD based elliptic envelope fit to noisy data processed through a DNN is shown in Figure 4a. Thus, in
Equation 3, the function Outlier(.) is:

Outlier(.) = MCD(θ) =
{

1 if d ≥ ∆
0 if d < ∆

(7)

where 1 denotes an outlier and 0 denotes an inlier.

4.3.1 Hyperparameter Tuning to Match Target False Positive Rate (FPR)

Due to its simplicity and interpretability, the MCD method lends itself to principled hyperparameter tuning
which allows us to choose the offset ∆ such that given an approximate upper bound on the degree of
contamination of the training data, ϵ ∈ (0, 0.5), we can stay under either a target false negative (FNR) or
false positive rate (FPR).

Let µ̂ ∈ RcNL (cNL, as before, is the dimension of the concatenation of NL c-dimensional PCA coefficient
vectors) and positive definite Σ̂ ∈ RcNL×cNL be the robust sample mean and covariance estimates provided
by the MCD method over the reduced-dimension transformed DNN training dataset deep features. Further
assume n > v ≫ cNL and µ̂ ≈ µ, Σ̂ ≈ Σ. For a sample θ to be classified as an outlier (i.e., an attack) we
require that d ≥ ∆, or equivalently d2 > ∆2, where d2 = (θ − µ̂)T Σ−1(θ − µ̂) is the squared Mahalanobis
distance of θ and ∆ is a constant computed over and fit to the entire training data. Specifically, ∆ depends
on the contamination parameter ϵ and is fit on the training data such that the number of outliers m ≈ ϵn.

Given that ϵ acts as an upper bound on the contamination of the training set (the proportion of the training
dataset that are outliers), we want to pick ∆2 such that P [d2 ≥ ∆2] ≤ ϵ. At the same time, by the
multivariate Chebyshev inequality (Stellato et al., 2017) we have P [d2 ≥ t2] ≤ cNL(n2−4+2nt2)

n2t2 . Equating
the two, we get ∆ =

√
cNL(n2−4)
ϵn2−2ncNL

. Provided this expression for ∆ we have a principled way of choosing the
contamination parameter ϵ so as to stay under a specified false negative (τF) or false positive (τP) rate, and
fixing ∆ from this ϵ.

False negative rate: The FNR is by definition the complement of the true positive rate, which on the
training set must be ϵ. Therefore to minimize FNR, we set ϵ = 1 − τF and then fix ∆ ≤

√
cNL(n2−4)
ϵn2−2ncNL

=√
cNL(n2−4)

(1−τF)n2−2ncNL
.

False positive rate: To minimize false positives we simply require that for clean samples P (d2 ≥ ∆2) ≤ τP .
We therefore set ϵ = τP and fix ∆ ≥

√
cNL(n2−4)
ϵn2−2ncNL

=
√

cNL(n2−4)
τP n2−2ncNL

.

The details regarding the derivation of the expression for ∆ are given in Section 4.3.3.

4.3.2 Deriving Tighter Bounds for Outlier Detection

The squared Mahalanobis distance of a sample θ from the true distribution of mean µ and covariance Σ is:

d2 = (θ − µ)T Σ−1(θ − µ) (8)

Since Σ is symmetric positive definite, we can rewrite Equation 8 as:

d2 = (Σ− 1
2 (θ − µ))T (Σ− 1

2 (θ − µ)) (9)

10

Under review as submission to TMLR

Setting Y = Σ− 1
2 (θ − µ) in Equation 9, d2 = Y T Y = ||Y ||22 where the elements of the vector Y , Yi ∼ N (0, 1)

are i.i.d ∀i ∈ [1, 2, ..., cNL]. This makes the distribution for d2 the same as the sum of squares of cNL

independent standard normal distributions, which is the definition of the χ2
cNL

distribution.

Leveraging the fact that the distribution of d2 for clean θ is given by the chi-squared distribution with cNL

degrees of freedom, i.e., χ2
cNL

, it is possible to have bounds tighter than those using Chebyshev’s inequality,
with the caveats that i) the expression for ∆ would have to be split into multiple expressions depending
on its range, or ii) the dependence of ∆ on ϵ might no longer be expressible as closed form expressions of
elementary functions.

For example, noting that the distribution χ2
cNL

is sub-exponential with parameters (2cNL, 4) (Ghosh, 2021),
one can write the corresponding sub-exponential tail bound (Wainwright, 2019), resulting in the following
expressions:

∆ =

√

4cNL

√
ln(1

ϵ2) + cNL if
√

cNL ≤ ∆ ≤
√

c2N2
L + cNL√

8ln(1
ϵ) + cNL if ∆ >

√
c2N2

L + cNL

(10)

Alternatively, one could also write a Chernoff bound (Wainwright, 2019) that yields ∆ =

√
−cNLW (−ϵ

2
cNL

e),
W (.) being the Lambert W function (Bronstein et al., 2008) whose values may be calculated numerically.
Given an expression for ∆, setting ϵ = 1−τF (or ϵ = τP) results in the value of ∆ that matches a target FNR
(or FPR) as described in Section 4.3.1. Details of the Chernoff bound derivation can be found in Appendix
A.1.

4.3.3 Deriving a General Expression for ∆ Dependent on ϵ

Given µ̂, Σ̂ as our sample mean and covariance estimates, for a sample θi ∈ RcNL to be classified as an
outlier we require that its squared Mahalanobis distance d2

i ≥ ∆2. Here, d2
i = (θi − µ̂)T Σ̂−1(θi − µ̂) and

∆ is a specified threshold computed over the training set such that the number of outliers present in it
are consistent with the provided estimate. To that end, we know that no more than m = ϵn samples of
our training set can have their d2

i ≥ ∆2. Assuming d2 to be the random variable governing the squared
Mahalanobis distances for over the training set, we have the inequality

P (d2 ≥ δ2) ≤ ϵ (11)

Next, we note that the multivariate Chebyshev inequality in cNL dimensions, with estimated mean and
variance over v samples (Stellato et al., 2017), can be stated as:

P (d2 ≥ δ2) ≤ min(1,
cNL(v2 − 1 + v2δ2)

v2δ2) (12)

We shall only consider the non-trivial case where min(1, cL(v2−1+v2δ2)
v2δ2) = cNL(v2−1+v2δ2)

v2δ2 , simplifying Equa-
tion 12 to:

P (d2 ≥ δ2) ≤ cNL(v2 − 1 + v2δ2)
v2δ2 (13)

Substituting δ2 = ∆2 and recalling from Section 4.3 that when given n as the total number of training data
points, v = n−cNL−1

2 ≈ n
2 since n ≫ cNL, we finally get:

P (d2 ≥ ∆2) ≤ cNL(n2 − 4 + 2n∆2)
n2∆2 (14)

Equating Equation 11 and Equation 14, we get ϵ = cNL(n2−4+2n∆2)
n2∆2 =⇒ ∆ =

√
cNL(n2−4)
ϵn2−2ncNL

, as in Section
4.3.1.

11

Under review as submission to TMLR

5 Experimental Setup

5.1 Experimental Test Cases

We have tested our backdoor attack detection framework on two major convolutional neural network (CNN)
backbones, on three different datasets. The network backbones we have used are Preactresnet18 (He et al.,
2015) and VGG-19BN (Simonyan & Zisserman, 2014). The datasets we have used are (1) The GTSRB
dataset (Stallkamp et al., 2011), consisting of 43 different traffic signs (classes) across 39,209 32x32 training
and 12,360 test images; (2) The CIFAR100 dataset (Krizhevsky, 2009), which consists of 100 different classes
across 50,000 32x32 training and 10,000 test images; and (3) The Tiny-ImageNet dataset (Le & Yang, 2015),
consisting of 200 classes of 64x64 images, 100,000 training and 10,000 test images.

We have tested a wide range of attacks, selected to provide a range of trigger functions and trigger positions.
As in Section 2.1, a local image trigger is one that is localized to a particular region of the input image (e.g.
a single square patch). A nonlocal trigger does not have a restriction on its location or size. The attacks we
have tested are part of the overview in Section 2.1:

• The TrojanNN attack (Liu et al., 2018b), providing a localized, fixed trigger superimposed on the
input image.

• The Input-aware Dynamic Backdoor (Nguyen & Tran, 2020), providing a nonlocal, input-dependent
trigger superimposed on the input image.

• The BPP attack (Wang et al., 2022b), providing a nonlocal, input-dependent transform-based trigger
applied to the input image.

• The Single-Sample Based Attack (SSBA) (Li et al., 2021c), using sample-specific additive noise
encoded into images (nonlocal, input-dependent trigger).

• The WaNet (Nguyen & Tran, 2021) attack, using a nonlocal input-dependent warping transform to
generate a trigger for the input image.

These are applied to multiple baselines for comparison to TESDA, along with the base case of no defense or
detection mechanism in place (to test attack effectiveness).

5.2 Baselines

Our experimental baselines are likewise selected to provide a mix of offline defense mechanisms and detection
systems, and online detection methods for comparison. A comparison of these methods to other state of the
art work can be found in Section 2.2. The baselines are:

• Spectral signature based detection (Tran et al., 2018) uses the L2 norm of the top singular vector
of each class, comparing the clean (training) class spectrum with the poisoned training spectrum.

• STRIP (Gao et al., 2019) is an on-line detection mechanism that uses the entropy distribution of
perturbed final layer outputs of the DNN, and is present as an on-line baseline. We have calculated
entropy thresholds for STRIP using a two-sided Student’s t-test rather than simply using a fixed
bound based on training data values to enhance its performance.

• Minibatch norm statistics-based pruning (MBNS) (Zheng et al., 2022b) uses the distribution of mini-
batch norm statistics to prune neurons most likely to contribute to misprediction from a backdoor.

• CLP prunes neurons based on channel lipschitzness bounds (Zheng et al., 2022a), since backdoored
neurons cause uncharacteristic deep feature outputs which violate said bounds.

STRIP is used as an online baseline, Spectral is used to evaluate a method using output singular values (but
not deep features) for detection, MBNS and CLP are recent work that use deep feature-based bounds (either

12

Under review as submission to TMLR

minibatch norm statistics or lipschitzness) for comparison. All baselines except STRIP were implemented
using the BackdoorBench (Wu et al., 2022) benchmarking repository. STRIP was implemented using code
provided by the authors of the Input-Aware backdoor paper in (Nguyen & Tran, 2020).

5.3 Metrics and Ablations

For each test case, we record the detection coverage (true positive rate, TPR) for TESDA on a backdoored
test dataset, and the false positive rate (FPR) for TESDA on a clean test dataset. For the STRIP baseline,
we do the same. For Spectral, MBNS and CLP, we record the success rate (percentage of attacks stopped)
after the defenses are used (i.e. defense effectiveness), and the network accuracy loss on clean test data
relative to the network without any defense mechanism, after the defense is used (the cost of the defense,
analogous to FPR of a detector that rejects inputs it flags as backdoored).

By default, TESDA uses the outputs from each residual block in Preactresnet-18 and the outputs from each
batchnorm layer in VGG-19BN for transformation and dimension reduction. We have chosen these layers to
balance deep feature information (the outputs of functional blocks or post-normalization) and overhead of
TESDA (minimal number of layers chosen). It also uses the outputs of each dense layer, if they are present,
and the network output. These are subject to PCA directly (as detailed in Section 2). By default, TESDA
uses feature map variance as its convolutional layer transform (Equation 5).

The ablations we have performed are as follows:

• We study the use of feature map entropy as the TESDA transform instead of feature map variance
and use a different set of PCA coefficients for detection in Section 6.3.

• We change TESDA to use the outputs of every layer in the CNN (ablation in Section 6.1). This
provides greater detection coverage and catches attacks such as the SSBA who cause large shifts in
deep features that may not be apparent when using just residual block or batchnorm outputs.

• We evaluate the size of the training data needed for fitting the TESDA detector distribution in
Section 6.2.

• We evaluate the end to end latency of TESDA compared to STRIP applied to VGG19BN and
Preactresnet-18 in Section 6.4.

6 Experimental Results and Ablations

Tables 1-3 illustrate the performance of TESDA in comparison to the baselines (see Section 5.2) on the
networks, attacks and datasets under consideration from Section 5.1. This section will compare the effects of
different attacks, datasets and network backbones on TESDA’s performance, in comparison to the state of
the art. We have used a contamination parameter ϵ = 0.01 for the MCD outlier detector, and the last PCA
coefficient (lowest energy). TESDA in this ‘standard‘ configuration uses the feature map variance (Eqn. 5)
as its transform for convolutional layers, a passthrough function for dense layers, and is placed after each
residual block, after the first convolutional layer and after the output layer (for Preactresnet-18) or after
each batchnorm or dense layer (for VGG-19BN).

Dataset effects: Table 1 shows the TPR and FPR rate for TESDA on GTSRB, Table 2 shows those metrics
for CIFAR-100 and Table 3 shows the data for the Tiny Imagenet dataset. We see that detection coverage
is near-total for the GTSRB dataset, but FPR is also highest - in some cases breaching the theoretical FPR
bound set in Section 4.3.1 due to the unbalanced nature of the GTSRB dataset. CIFAR-100 shows a more
consistent FPR but a lower TPR, due to the wide range of image features present at very low resolution,
allowing attacks to make minor changes to network behavior to force misprediction. Tiny-Imagenet detection
in Table 3 shows consistently high detection and low FPR, better than for GTSRB, with the greater number
of dataset samples and larger input size allowing the transform-based dimension reduction and distribution
fit to more accurately model clean network behavior (and forcing attacks to make larger changes to network
behavior to force misprediction).

13

Under review as submission to TMLR

TrojanNN BPP Input-Aware
Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

No Defense
Attack Success
Rate (%) 100 100 99.9 63.53 95.92 85.03

Clean
Accuracy (%) 98.57 97.77 97.43 97.82 98.76 96.32

TESDA TPR (%) 100 100 99.87 98.37 90.8 99
FAR (%) 2.29 8.9 2.7 4.82 3 5

STRIP TPR (%) 99.9 0.3 69.89 20.67 24.41 30.8
FAR (%) 1.83 2.51 2.56 1.83 2 2.7

Spectral
Defense Success
Rate (%) 0 0 8.86 14.71 22.94 36.28

Loss in
Accuracy (%) 0.84 0.87 0.25 1.2 0.63 0.06

CLP
Defense Success
Rate (%) 4.8 0.54 16.66 96.98 3.99 53.87

Loss in
Accuracy (%) 0.4 0.11 -0.03 0.1 0.08 -0.55

MBNS
Defense Success
Rate (%) 0 41.47 100 100 99.94 98.97

Loss in
Accuracy (%) 0.06 -0.01 -0.01 0.02 -0.08 -0.67

Table 1: Attack detection results for GTSRB dataset. The highest detection coverage or defense success rate (TPR) is bolded,
and the lowest loss in accuracy or FPR is bolded, for each column. The second highest detection coverage or defense success
rate (TPR) is underlined, and the second lowest loss in accuracy or FPR is underlined, for each column. The MBNS defense -
and other offline defense baselines achieve the lowest FPR but fail to detect all attacks consistently even on GTSRB. TESDA
shows the highest or second highest TPR, while in almost all cases maintaining a low FPR.

TrojanNN BPP Input-Aware
Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

No Defense
Attack Success
Rate (%) 100 99.98 98.87 98.28 98.63 85.52

Clean
Accuracy (%) 69.82 64.89 64 60.13 65.24 59.45

TESDA TPR (%) 66.81 99.9 98.5 91.32 99.6 61.7
FAR (%) 1.14 1.75 1 1.2 1.56 1

STRIP TPR (%) 99.9 86.3 56.58 39.81 74.15 80.9
FAR (%) 5 2.47 3.86 2.96 3.94 2.01

Spectral
Defense Success
Rate (%) 0.07 0.01 0.73 8.55 6.18 10.59

Loss in
Accuracy (%) 4.36 5.32 -0.89 2.27 -1.74 2.18

CLP
Defense Success
Rate (%) 0.19 59.82 99.65 99.91 1.94 99.6

Loss in
Accuracy (%) 1.6 10.57 4.18 4.53 1.91 1.73

MBNS
Defense Success
Rate (%) 0 22.48 96.5 6.2 99.6 100

Loss in
Accuracy (%) 0.44 1.16 2.37 0.96 1.44 1.61

Table 2: Attack detection results for the CIFAR100 dataset. The highest detection coverage or defense success rate (TPR) is
bolded, and the lowest loss in accuracy or FPR is bolded, for each column. The second highest detection coverage or defense
success rate (TPR) is underlined, and the second lowest loss in accuracy or FPR is underlined, for each column. TESDA
maintains a high FPR and second lowest or lowest FPR/accuracy loss among the baselines. The offline pruning based MBNS
method shows total effectiveness for some attacks but fails for others - much less consistent performance.

Effects of Network Type: We see that in Tables 1-3, detection coverage for VGG-19BN is higher than for
Preactresnet-18, due to VGG-19BN’s deep structure and lack of residual connections making deviations from
the nominal distribution of reduced-dimension transformed deep features more easily apparent. The higher
FPR (breaching theoretical target FPR) for VGG-19BN on GTSRB also shows that the VGG backbone is
less resilient to unbalanced datasets and small datasets than Preactresnet due to its deep structure and the
vanishing gradient problem.

Effects of Attack Type: As expected, the fixed localized triggers for TrojanNN are the most easily detected
by all baselines and by TESDA, with TESDA achieving near total detection coverage for all cases except
Preactresnet-18 on CIFAR-100. The transform-based BPP attack also sees very high coverage and low FPR
for TESDA, beating out the other baselines, due to the BPP transform causing high-frequency (low-energy)
changes in the image that are more easily apparent at the final PCA coefficients. The input-aware backdoor
is similar in coverage but slightly less, being a trigger function that applies a mask to each image rather than
applying a transform like the BPP.

6.1 TESDA Layer Ablations

However, some attacks cause shifts in the reduced-dimension transformed deep feature distribution at layers
that are not covered by the ‘default‘ TESDA configuration used in the earlier section. In this section we
examine the use of TESDA for all layers of the DNN in question, using ϵ = 0.03. This is done for the

14

Under review as submission to TMLR

TrojanNN BPP Input-Aware
Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

No Defense
Attack Success
Rate (%) 99.98 99.97 100 99.96 98.04 99.84

Clean
Accuracy (%) 55.89 52 58.14 55.36 57.78 53.2

TESDA TPR (%) 100 99.36 99.98 100 97.2 100
FAR (%) 0.85 0.73 1 0.58 0.96 0.9

STRIP TPR (%) 97.96 99.38 57.49 98.43 59.15 35.8
FAR (%) 5.66 2.31 2.5 1.8 2.13 2.26

Spectral
Defense Success
Rate (%) 0 0.06 0.46 1.07 0.41 1.39

Loss in
Accuracy (%) 3.58 6.35 6.27 9.66 5.95 7.38

CLP
Defense Success
Rate (%) 91.61 62.76 99.72 99.83 0.42 99.66

Loss in
Accuracy (%) 0.03 0.03 1.11 0.14 0.03 -0.2

MBNS
Defense Success
Rate (%) 0.02 0.03 0.02 0.05 0.42 99.94

Loss in
Accuracy (%) 0 0 0.48 0.13 0.06 -0.4

Table 3: Attack detection results for the Tiny Imagenet dataset. The highest detection coverage or defense success rate (TPR)
is bolded, and the lowest loss in accuracy or FPR is bolded, for each column. The second highest detection coverage or defense
success rate (TPR) is underlined, and the second lowest loss in accuracy or FPR is underlined, for each column. TESDA
consistently delivers near-total TPR and a low FPR within its theoretical bounds (ϵ = 0.01). The offline defenses like MBNS
and CLP deliver high effectiveness only for one or two cases, and while they maintain a low accuracy loss, this is at the cost
of collapse in defense effectiveness. The highest TPR/defense effectiveness and lowest FPR/accuracy loss in each category are
bolded, and the second highest are underlined. Methods such as MBNS that prune and then re-train the network may also
increase network nominal accuracy, as we see here, although their effect on backdoor detection is variable.

WaNet SSBA
Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

No Defense
Attack Success
Rate (%) 97.73 96.22 96.51 95.74

Clean
Accuracy (%) 64.05 57.91 69.26 64.38

TESDA TPR (%) 5.6 64.31 8.41 69.73
FAR (%) 5.63 4.29 5.63 6.74

TESDA
(all layers)

TPR (%) 62.94 77.4 78.34 90.25
FPR (%) 3.27 5.15 4.16 5.13

STRIP TPR (%) 18.86 12.52 46.99 0.59
FAR (%) 2.79 3.63 1.08 2.08

Spectral
Defense Success
Rate (%) 7.56 23.08 3.88 7.05

Loss in
Accuracy (%) -2.38 0.92 2.29 6.23

CLP
Defense Success
Rate (%) 16.51 97.66 2.48 15.76

Loss in
Accuracy (%) 38.15 -0.56 3.87 10.57

MBNS
Defense Success
Rate (%) 3.7 9.9 3.17 5.39

Loss in
Accuracy (%) 1.25 11.33 0.26 4.28

Table 4: Attack detection coverage for WaNet and SSBA on CIFAR100 when using all layers for deep feature reduced-dimension
transformation (rather than the subset used in Tables 1-3). TESDA using all layers achieves higher TPR than the baselines, at
the cost of a slightly higher FPR than the baselines (whose defense effectiveness or TPR collapses).

SSBA and the WaNet attack, both of which are seen to evade TESDA at the earlier configuration. Table
4 shows the detection results for the CIFAR-100 dataset compared to our baselines, while Table 5 shows
corresponding data for the Tiny Imagenet dataset.

We see that the use of all layers achieves significant improvement over the state of the art and over the
‘default‘ TESDA configuration for Tiny Imagenet. However, attacks such as WaNet and SSBA that rely
on warping transforms or encoding-based triggers are able to leverage the properties of CIFAR-100 and
evade TESDA - forcing TPR to as low as 63% for Preactresnet-18 on CIFAR100, and likewise evading the
baselines. The use of all layers also results in breaching the theoretical FPR bounds for CIFAR-100, likely
due to nongaussian behavior for some of the reduced-dimension transformed deep feature distributions. This
does not occur for Tiny Imagenet.

6.2 Dataset Fraction Ablations

Tables 6-8 show the results of using only a subset of the training dataset (for GTSRB, CIFAR-100 and
Tiny Imagenet) to fit the MCD for the reduced-dimension transformed deep features. We have varied the
proportion of the dataset used from the full training dataset (data seen in Tables 1-3) to 50%, 25% and 10%
of the training dataset. This is randomly sampled and the experiment repeated ten times with the mean of

15

Under review as submission to TMLR

WaNet SSBA
Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

No Defense
Attack Success
Rate (%) 99.48 99.98 97.69 98.09

Clean
Accuracy (%) 56.6 54.11 55.31 51.2

TESDA TPR (%) 56.4 68.09 7.46 23.66
FAR (%) 2.66 3.31 3.12 3.47

TESDA
(all layers)

TPR (%) 98.58 100 98.85 98.83
FPR (%) 2.35 3.17 2.43 2.93

STRIP TPR (%) 4.99 68.4 10.71 99.74
FAR (%) 2.51 2.26 2.6 3.17

Spectral
Defense Success
Rate (%) 0.54 2.4 2.04 1.95

Loss in
Accuracy (%) 4.21 15.31 3.7 5.52

CLP
Defense Success
Rate (%) 1.5 0.01 2.35 1.67

Loss in
Accuracy (%) 0.39 0.59 0.14 -0.29

MBNS
Defense Success
Rate (%) 0.54 0.02 2.2 1.65

Loss in
Accuracy (%) 0.2 0.12 0.61 1.43

Table 5: Attack detection coverage for WaNet and SSBA on Tiny ImageNet when using all layers for deep feature reduced-
dimension transformation (rather than the subset used in Tables 1-3). TESDA using all layers achieves higher TPR than the
baselines, at the cost of a slightly higher FPR than the baselines (whose defense effectiveness or TPR collapses).

Attack Input-Aware BPP TrojanNN
Network Preactresnet18 VGG-19BN Preactresnet18 VGG-19BN Preactresnet18 VGG-19BN

50% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 91.24 ± 0.81 99.89 ± 0.3 99.88 ± 0.06 99.86 ± 0.16 100 ± 0 100 ± 0

Mean FAR ±
Standard Deviation (%) 3.24 ± 0.24 6.14 ± 0.35 2.9 ± 0.17 5.52 ± 0.39 2.5 ± 0.19 9 ± 0.72

25% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 91.57 ± 1.9 100 ± 0 99.92 ± 0.05 99.12 ± 0.46 100 ± 0 100 ± 0

Mean FAR ±
Standard Deviation (%) 3.6 ± 0.27 7.53 ± 0.56 3.48 ± 0.37 6.95 ± 0.41 3.08 ± 0.46 11.13 ± 0.61

10% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 90.67 ± 2.9 100 ± 0 99.94 ± 0.07 99.64 ± 0.25 99.99 ± 0 100 ± 0

Mean FAR ±
Standard Deviation (%) 5.39 ± 0.5 12.93 ± 0.87 5.7 ± 0.73 12.09 ± 1.2 4.91 ± 0.66 16.32 ± 0.96

Table 6: Detection coverage for TESDA (standard configuration, as in Tables 1-3) for varying proportions (randomly sampled)
of the GTSRB dataset used for fitting the outlier detector distribution. The mean and standard deviation of TPR and FAR
are recorded. The values for the full dataset can be seen in Table 1.

Attack Input-Aware BPP TrojanNN
Network Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

50% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 99.66 ± 0.08 73.92 ± 8.1 98.17 ± 0.72 92.71 ± 0.58 69.92 ± 1.21 99.92 ± 0.03

Mean FAR ±
Standard Deviation (%) 1.72 ± 0.09 1.22 ± 0.13 1.18 ± 0.08 1.28 ± 0.09 3.77 ± 0.07 2.12 ± 0.18

25% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 99.66 ± 0.15 85.38 ± 4.18 96.93 ± 1.75 92.95 ± 2.67 71.54 ± 5 99.95 ± 0.03

Mean FAR ±
Standard Deviation (%) 1.88 ± 0.17 1.45 ± 0.14 1.32 ± 0.18 1.52 ± 0.14 1.31 ± 0.08 2.91 ± 0.34

10% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 99.73 ± 0.3 91.43 ± 3.14 97.26 ± 3.43 97.2 ± 1.26 75.16 ± 7.53 99.96 ± 0.02

Mean FAR ±
Standard Deviation (%) 2.7 ± 0.2 3.01 ± 0.61 2.24 ± 0.19 3 ± 0.6 2.18 ± 0.21 7.44 ± 1

Table 7: Detection coverage for TESDA (standard configuration, as in Tables 1-3) for varying proportions (randomly sampled)
of the CIFAR100 dataset used for fitting the outlier detector distribution. The mean and standard deviation of TPR and FPR
are recorded. The values for the full dataset can be seen in Table 2.

Attack Input-Aware BPP TrojanNN
Network Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN Preactresnet-18 VGG-19BN

50% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 97.34 ± 0.15 100 ± 0 99.99 ± 0 100 ± 0 100 ± 0 99.42 ± 0.09

Mean FAR ±
Standard Deviation (%) 1.05 ± 0.04 1.04 ± 0.04 1.02 ± 0.05 0.58 ± 0.04 0.85 ± 0.03 0.77 ± 0.03

25% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 97.97 ± 0.59 99.99 ± 0 99.98 ± 0.01 100 ± 0 100 ± 0 99.53 ± 0.13

Mean FAR ±
Standard Deviation (%) 1.11 ± 0.08 1.11 ± 0.11 1.07 ± 0.06 0.67 ± 0.08 0.87 ± 0.04 0.8 ± 0.06

10% of dataset
used for fit

Mean TPR ±
Standard Deviation (%) 98.08 ± 0.72 99.99 ± 0.01 99.98 ± 0.02 99.99 ± 0 100 ± 0 99.56 ± 0.34

Mean FAR ±
Standard Deviation (%) 1.32 ± 0.14 1.4 ± 0.1 1.29 ± 0.1 0.69 ± 0.15 1.03 ± 0.11 1.14 ± 0.18

Table 8: Detection coverage for TESDA (standard configuration, as in Tables 1-3) for varying proportions (randomly sampled)
of the Tiny Imagenet dataset used for fitting the outlier detector distribution. The mean and standard deviation of TPR and
FPR are recorded. The values for the full dataset can be seen in Tables 3.

16

Under review as submission to TMLR

TESDA TESDA-E TESDA-E2
TPR (%) FAR (%) TPR (%) FAR (%) TPR (%) FAR (%)

TrojanNN Preactresnet-18 66.81 1.14 94.43 2.18 94.83 1.26
VGG-19BN 99.9 1.75 99.96 2.9 99.94 1.49

Input-Aware
Backdoor

Preactresnet-18 99.6 1.56 99.92 3.45 99.93 1.3
VGG19-BN 61.7 1 67.31 2.26 56.72 1.2

BPP Preactresnet-18 98.5 1 99 2.81 99.24 1.31
VGG-19BN 91.32 1.2 46.87 2.26 24.13 1.18

Table 9: Comparisons of different transforms used for TESDA on CIFAR-100. The ‘standard‘ TESDA algorithm uses the
feature map variance for convolutional layer outputs (Eqn. 5) and the final PCA coefficient. TESDA-E uses feature map
entropy (Eqn. 4) and takes the first and final (highest and lowest energy) PCA coefficients from each layer, using one outlier
detector. TESDA-E2 uses feature map entropy and the first and final PCA coefficients, but uses one MCD outlier detector for
each PCA coefficient set - if either detector flags a positive, the input is deemed backdoored. As such, its TPR is higher, as is
its FPR. For the baseline metrics as comparison, see Tables 2.

TESDA TESDA-E TESDA-E2
TPR (%) FAR (%) TPR (%) FAR (%) TPR (%) FAR (%)

TrojanNN Preactresnet-18 100 0.85 100 2.69 100 1.15
VGG-19BN 99.36 0.73 99.93 1.85 99.82 0.96

Input-Aware
Backdoor

Preactresnet-18 97.2 0.96 99.93 2.85 99.92 1.21
VGG19-BN 100 0.9 100 2.71 100 1.21

BPP Preactresnet-18 99.98 1 100 1.96 100 0.954
VGG-19BN 100 0.58 100 2.09 99.96 1.01

Table 10: Comparisons of different transforms used for TESDA on Tiny ImageNet. The ‘standard‘ TESDA algorithm uses
the feature map variance for convolutional layer outputs (Eqn. 5) and the final PCA coefficient. TESDA-E uses feature map
entropy (Eqn. 4) and takes the first and final (highest and lowest energy) PCA coefficients from each layer, using one outlier
detector. TESDA-E2 uses feature map entropy and the first and final PCA coefficients, but uses one MCD outlier detector for
each PCA coefficient set - if either detector flags a positive, the input is deemed backdoored. As such, its TPR is higher, as is
its FPR. For the baseline metrics as comparison, see Table 3.

TPR and FPR recorded. To compare with the baselines, use the results in Tables 1-3. The MCD here uses
ϵ = 0.01.

We see that the TPR and FPR remain stable with very low standard deviation for TESDA until 10% of the
dataset is used. For CIFAR-100 we see the FPR rise above the rate for GTSRB and Tiny Imagenet, similar
to Tables 1-3. The TPR falls slightly as we move from 50% of the training dataset to 10%, and the FPR
rises sharply for GTSRB and CIFAR-100, likely due to a less accurate distribution fit. The FPR rises much
less for Tiny Imagenet as the proportion of dataset falls, as the number of samples remains larger in absolute
terms compared to CIFAR-100 and GTSRB.

6.3 Transform Ablations

Tables 9 (for CIFAR-100) and 10 (for Tiny Imagenet) show the TPR and FPR for the ‘default‘ TESDA
compared against two other transform configurations. The data for the baselines to compare against this
can be found in Tables 2 and 3 and are omitted here for brevity. The MCD here uses ϵ = 0.01.

The TESDA-E configuration in the tables uses feature map entropy (Equation 4) as the transform applied
to each convolutional layer output, and takes the first and last PCA coefficients (instead of just the final
PCA coefficient). Each layer thus generates two PCA coefficients, and a 2NL-length vector is used for the
MCD outlier detector. The TESDA-E2 configuration likewises uses feature map entropy as a transform,
but feeds the first and last PCA coefficients into separate MCD detectors. These two outlier detectors
both independently flag a backdoored input. TESDA-E2 thus flags a backdoor if either of its MCD outlier
detectors flags an outlier.

We see that the ‘default‘ TESDA performs roughly similarly to TESDA-E and TESDA-E2 for Tiny Imagenet
test cases, but the entropy-based transforms outperform TESDA (at the cost of more computation required
for feature map entropy and a larger-dimension MCD fit) for CIFAR-100. The entropy transform is able to
better capture image features for each deep feature map, and a PCA reduction of feature map entropy that
takes first and final PCA coefficients captures more relevant information than the simple variance transform
used in the ‘default‘ TESDA.

17

Under review as submission to TMLR

(a) Average detector latency. (b) Detector latency standard deviation.

Figure 5: Detection latency averaged over 500 inputs, and detector latency standard deviation over those inputs, comparing
STRIP to TESDA. TESDA shows consistently lower latency compared to STRIP, by a wide margin.

6.4 Detector Overhead

Figure 5 illustrates the average and standard deviation of end to end latency in milliseconds for the CNN
using TESDA compared to the CNN using the STRIP online detector baseline. Fig. 5a details the mean
latency, and Fig. 5b shows the standard deviation. The mean and standard deviation are calculated over
500 inputs streamed through the DNN (batch size of 1). These figures include CNN latency, and indicate
end to end (classification and backdoor detector) latency. The CNN was run on an NVIDIA Quadro RTX
5000 (2018 model) and with an Intel Xeon W-2123 CPU (2018 model) using 32GB of RAM.

TESDA outperforms STRIP despite using only off-the-shelf functions from Scikit-learn and therefore doing
its computations off the GPU rather than onboard (losing the acceleration provided by PyTorch). Its latency
ranges from half or much less than STRIP on average, and in all cases save one (VGG-19BN on CIFAR-100)
its standard deviation of latency is less. It also shows roughly consistent latency as dataset size and input sizes
change from Tiny Imagenet, while STRIP sees sharp increases in latency as input sizes rise in Tiny Imagenet
due to its entropy calculations and image superposition transforms. We note that the standard deviations
of latency for TESDA and STRIP are both very low (order of hundredths of milliseconds), illustrating
consistent performance from both online backdoor detection techniques.

7 Conclusion and Future Work

This work has presented TESDA, a low-latency online backdoor attack detection mechanism that requires
access to the deep features of the neural network. TESDA achieves comparable performance to the state
of the art, provides theoretical guarantees on false alarm rate and hyperparameter tuning, and makes no
assumptions as to backdoor attack trigger placement, type or injection mechanism.

Future work in enhancing TESDA envisions further exploration of its design parameters and development
of principled methods for building transform functions and dimension reduction methods. Parameterized
functions that use adversarial inputs as a test stimulus to optimize the function parameters for maximum true
positive rate and minimal false positive rate (in a manner similar to electronic test stimulus optimization
(Komarraju et al., 2023)) are one avenue to explore. Adversarial inputs as a means of building optimal
detector designs has been explored in (Xiang et al., 2020) and can potentially be applied to TESDA.

Broadening TESDA’s applicability to non-image backdoor detection (e.g. in language models or audio
inputs), or for adversarial input detection is another avenue of future work. The scalability of the method
can also be explored by applying TESDA to large transformer models in future (ViT for image inputs, or
LLMs such as Gemma-2B).

Acknowledgments

Acknowledgements removed for review

18

Under review as submission to TMLR

References
Altug Akay and Henry Hess. Deep learning: current and emerging applications in medicine and technology.

IEEE journal of biomedical and health informatics, 23(3):906–920, 2019.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th USENIX
Security Symposium (USENIX Security 21), pp. 1505–1521, 2021.

Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Amir Safavi, and Rui Zhang. Detecting poisoning attacks
on machine learning in iot environments. In 2018 IEEE International Congress on Internet of Things
(ICIOT), pp. 57–64, 2018. doi: 10.1109/ICIOT.2018.00015.

Adith Boloor, Tong Wu, Patrick Naughton, Ayan Chakrabarti, Xuan Zhang, and Yevgeniy Vorobeychik.
Can optical trojans assist adversarial perturbations? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 122–131, 2021.

Manuel Bronstein, Robert M Corless, James H Davenport, and D J Jeffrey. Algebraic properties of the
lambert w function from a result of rosenlicht and of liouville. Integral Transforms and Special Functions,
19(10):709–712, 2008. ISSN 1065-2469. doi: 10.1080/10652460802332342.

R. W. Butler, P. L. Davies, and M. Jhun. Asymptotics for the minimum covariance determinant estimator.
The Annals of Statistics, 21(3):1385–1400, 1993. ISSN 00905364, 21688966. URL http://www.jstor.
org/stable/2242201.

Gabriel D Cantareira, Rodrigo F Mello, and Fernando V Paulovich. Explainable adversarial attacks in deep
neural networks using activation profiles. arXiv preprint arXiv:2103.10229, 2021.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay.
A survey on adversarial attacks and defences. CAAI Transactions on Intelligence Technology, 6(1):25–45,
2021.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Mol-
loy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728, 2018.

Huili Chen and Farinaz Koushanfar. Tutorial: toward robust deep learning against poisoning attacks. ACM
Transactions on Embedded Computing Systems, 22(3):1–15, 2023.

Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity of
poisoned samples. Advances in Neural Information Processing Systems, 35:9727–9737, 2022a.

Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity of
poisoned samples. Advances in Neural Information Processing Systems, 35:9727–9737, 2022b.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Edward Chou, Florian Tramèr, and Giancarlo Pellegrino. Sentinet: Detecting localized universal attacks
against deep learning systems. In 2020 IEEE Security and Privacy Workshops (SPW), pp. 48–54, 2020.
doi: 10.1109/SPW50608.2020.00025.

Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modification.
Advances in Neural Information Processing Systems, 34:18944–18957, 2021a.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust backdoor
attacks. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11966–11976,
2021b.

Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection via differential
privacy. arXiv preprint arXiv:1911.07116, 2019.

19

http://www.jstor.org/stable/2242201
http://www.jstor.org/stable/2242201

Under review as submission to TMLR

Chong Fu, Xuhong Zhang, Shouling Ji, Ting Wang, Peng Lin, Yanghe Feng, and Jianwei Yin. {FreeEagle}:
Detecting complex neural trojans in {Data-Free} cases. In 32nd USENIX Security Symposium (USENIX
Security 23), pp. 6399–6416, 2023.

Hao Fu, Akshaj Kumar Veldanda, Prashanth Krishnamurthy, Siddharth Garg, and Farshad Khorrami. A
feature-based on-line detector to remove adversarial-backdoors by iterative demarcation. IEEE Access,
10:5545–5558, 2022.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal. Strip:
A defence against trojan attacks on deep neural networks. In Proceedings of the 35th annual computer
security applications conference, pp. 113–125, 2019.

Malay Ghosh. Exponential tail bounds for chisquared random variables. Journal of Statistical Theory
and Practice, 15(2):35, Mar 2021. ISSN 1559-8616. doi: 10.1007/s42519-020-00156-x. URL https:
//doi.org/10.1007/s42519-020-00156-x.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring attacks
on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: Defending against backdoor
attacks using robust statistics. In International Conference on Machine Learning, pp. 4129–4139. PMLR,
2021.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. URL https:
//api.semanticscholar.org/CorpusID:206594692.

Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neuroninspect: Detecting backdoors in neural net-
works via output explanations, 2019. URL https://arxiv.org/abs/1911.07399.

Mojan Javaheripi, Mohammad Samragh, Gregory Fields, Tara Javidi, and Farinaz Koushanfar. Cleann: Ac-
celerated trojan shield for embedded neural networks. In Proceedings of the 39th International Conference
on Computer-Aided Design, pp. 1–9, 2020.

Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus patterns: Re-
vealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 301–310, 2020.

Suhasini Komarraju, Akhil Tammana, Chandramouli N. Amarnath, and Abhijit Chatterjee. OATT: outlier
oriented alternative testing and post-manufacture tuning of mixed-signal/rf circuits and systems. In IEEE
International Test Conference, ITC 2023, Anaheim, CA, USA, October 7-15, 2023, pp. 37–46. IEEE,
2023. doi: 10.1109/ITC51656.2023.00014. URL https://doi.org/10.1109/ITC51656.2023.00014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID:16664790.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34:14900–
14912, 2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention distillation:
Erasing backdoor triggers from deep neural networks. arXiv preprint arXiv:2101.05930, 2021b.

20

https://doi.org/10.1007/s42519-020-00156-x
https://doi.org/10.1007/s42519-020-00156-x
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://arxiv.org/abs/1911.07399
https://doi.org/10.1109/ITC51656.2023.00014
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790

Under review as submission to TMLR

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack with
sample-specific triggers. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 16463–16472, 2021c.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring attacks
on deep neural networks. In International symposium on research in attacks, intrusions, and defenses, pp.
273–294. Springer, 2018a.

Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent weight encoding-based detection for bit-flip attack on neu-
ral network accelerators. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2020, 2020a.

Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin, Libing Wu, and Chaowei Xiao.
Detecting backdoors during the inference stage based on corruption robustness consistency. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16363–16372, 2023.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In 25th Annual Network And Distributed System Security Symposium
(NDSS 2018). Internet Soc, 2018b.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack on
deep neural networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part X 16, pp. 182–199. Springer, 2020b.

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE International Conference on
Computer Design (ICCD), pp. 45–48. IEEE, 2017.

Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina Jacobsen, Daniel Xing, and Ankur
Srivastava. A survey on neural trojans. In 2020 21st International Symposium on Quality Electronic
Design (ISQED), pp. 33–39. IEEE, 2020c.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural Information
Processing Systems, 33:3454–3464, 2020.

Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, and Ruoxi Jia. ASSET: Robust backdoor data detection
across a multiplicity of deep learning paradigms. In 32nd USENIX Security Symposium (USENIX Security
23), pp. 2725–2742, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-37-3. URL
https://www.usenix.org/conference/usenixsecurity23/presentation/pan.

Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution modeling.
Advances in neural information processing systems, 32, 2019.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural network attack with bit trojan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13198–13207,
2020.

Mauro Ribeiro, Katarina Grolinger, and Miriam Capretz. Mlaas: Machine learning as a service. 12 2015.
doi: 10.1109/ICMLA.2015.152.

Peter Rousseeuw. Multivariate estimation with high breakdown point. Mathematical Statistics and Appli-
cations Vol. B, pp. 283–297, 01 1985. doi: 10.1007/978-94-009-5438-0_20.

Peter Rousseeuw and Katrien Driessen. A fast algorithm for the minimum covariance determinant estimator.
Technometrics, 41:212–223, 08 1999. doi: 10.1080/00401706.1999.10485670.

Peter J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79
(388):871–880, 1984. ISSN 01621459, 1537274X. URL http://www.jstor.org/stable/2288718.

21

https://www.usenix.org/conference/usenixsecurity23/presentation/pan
http://www.jstor.org/stable/2288718

Under review as submission to TMLR

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks against
machine learning models. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P),
pp. 703–718. IEEE, 2022.

Jonathon Shlens. A tutorial on principal component analysis. CoRR, abs/1404.1100, 2014. URL http:
//arxiv.org/abs/1404.1100.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014. URL https://api.semanticscholar.org/CorpusID:14124313.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign Recognition
Benchmark: A multi-class classification competition. In IEEE International Joint Conference on Neural
Networks, pp. 1453–1460, 2011.

Bartolomeo Stellato, Bart P.G. Van Parys, and Paul J. Goulart. Multivariate chebyshev inequality with
estimated mean and variance. American Statistician, 71(2):123–127, April 2017. ISSN 0003-1305. doi:
10.1080/00031305.2016.1186559. Publisher Copyright: © 2017 American Statistical Association.

Mahesh Subedar, Nilesh Ahuja, Ranganath Krishnan, Ibrahima J Ndiour, and Omesh Tickoo. Deep proba-
bilistic models to detect data poisoning attacks. arXiv preprint arXiv:1912.01206, 2019.

Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis of
{DNNs} for robust backdoor contamination detection. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1541–1558, 2021.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in neural
information processing systems, 31, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE symposium
on security and privacy (SP), pp. 707–723. IEEE, 2019.

Jie Wang, Ghulam Mubashar Hassan, and Naveed Akhtar. A survey of neural trojan attacks and defenses
in deep learning. ArXiv, abs/2202.07183, 2022a. URL https://api.semanticscholar.org/CorpusID:
246864022.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical detection of
trojan neural networks: Data-limited and data-free cases. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pp. 222–238. Springer, 2020.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15074–15084, 2022b.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. Back-
doorbench: A comprehensive benchmark of backdoor learning. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. Advances in
Neural Information Processing Systems, 34:16913–16925, 2021.

Zhen Xiang, David J. Miller, and George Kesidis. Revealing backdoors, post-training, in dnn classifiers via
novel inference on optimized perturbations inducing group misclassification. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3827–3831, 2020. doi:
10.1109/ICASSP40776.2020.9054581.

22

http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100
https://api.semanticscholar.org/CorpusID:14124313
https://api.semanticscholar.org/CorpusID:246864022
https://api.semanticscholar.org/CorpusID:246864022

Under review as submission to TMLR

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai trojans using
meta neural analysis. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 103–120. IEEE, 2021.

Danni Yuan, Shaokui Wei, Mingda Zhang, Li Liu, and Baoyuan Wu. Activation gradient based poisoned
sample detection against backdoor attacks, 2024. URL https://arxiv.org/abs/2312.06230.

Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of backdoors
via implicit hypergradient. arXiv preprint arXiv:2110.03735, 2021.

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A practical
clean-label backdoor attack with limited information. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pp. 771–785, 2023.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel lipschitz-
ness. In European Conference on Computer Vision, pp. 175–191. Springer, 2022a.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-activation distributions expose backdoor neurons.
Advances in Neural Information Processing Systems, 35:18667–18680, 2022b.

Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and Hongyi Wu. Gangsweep: Sweep out neural
backdoors by gan. In Proceedings of the 28th ACM International Conference on Multimedia, pp. 3173–
3181, 2020.

A Appendix

A.1 Chernoff Style Bound for ∆

The Chernoff bound (Wainwright, 2019) is a tail bound given by the inequality:

P(d2 ≥ t) ≤ exp −ϕ∗
x(t) (15)

where ϕ∗
x is defined as supλ≥0[λt − ϕ(λ)], and ϕ(λ) is the logarithm of the moment generating function of

d2. Comparing Eqn. 15 with P(d2 ≥ ∆2) ≤ ϵ gives us:

∆2 = t (16)

As well as
ϵ = exp ϕ∗

x(t) =⇒ ln1
ϵ

= ϕ∗
x(t) (17)

Since d2 ∼ χ2
cNL

, we know that

ϕ(λ) = −cNL

2 ln(1 − 2λ) (18)

Subsequently, differentiating t + cNL

2 ln(1 − 2λ) w.r.t. λ and setting it to zero gives:

λ∗ = t − cNL

2t
(19)

Which when substituted in the definition of ϕ∗
x(t) yields

ϕ∗
x(t) = 1

2(t − cNL + cNLln(cNL

t
)) = ln1

ϵ
(20)

Substituting Equation 16 into Equation 20 and solving for ∆2, we get

∆2 = −cNLW (ϵ
2

cNL

e
) =⇒ ∆ =

√
−cNLW (ϵ

2
cNL

e
) (21)

where W (.) is the Lambert W function (Bronstein et al., 2008).

23

https://arxiv.org/abs/2312.06230

	Introduction
	Prior Work
	Backdoor Attacks
	Backdoor Detection and Defense
	Key Contributions

	Approach Overview
	Problem Statement
	High-Level Flow

	Methods
	Deep Feature Transformation
	Transformed Feature Dimension Reduction
	Outlier Detection for Backdoor Attack Detection
	Hyperparameter Tuning to Match Target False Positive Rate (FPR)
	Deriving Tighter Bounds for Outlier Detection
	Deriving a General Expression for Dependent on

	Experimental Setup
	Experimental Test Cases
	Baselines
	Metrics and Ablations

	Experimental Results and Ablations
	TESDA Layer Ablations
	Dataset Fraction Ablations
	Transform Ablations
	Detector Overhead

	Conclusion and Future Work
	Appendix
	Chernoff Style Bound for

