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Abstract

We analyze task ordering strategies in continual learning for realizable linear re-1

gression. We focus on task orderings that greedily maximize dissimilarity between2

consecutive tasks, a concept briefly explored in prior work but still surrounded by3

open questions. Using tools from the Kaczmarz method literature, we formalize4

these orderings and develop both geometric and algebraic intuitions around them.5

We show empirically that, under random data, greedy orderings lead to faster6

convergence of the loss compared to random orderings. In a simplified setting, we7

prove bounds on the loss and establish optimality guarantees for greedy orderings.8

However, we also construct an adversarial task sequence that exploits high dimen-9

sionality to induce maximal forgetting under greedy orderings—an effect to which10

random orderings are notably more robust. Altogether, our findings advance the11

theoretical understanding of task orderings in continual learning, offer new insights12

into Kaczmarz methods, and provide a foundation for future research.13

1 Introduction14

Continual learning is a subfield of machine learning in which a learner is exposed to tasks or datasets15

sequentially. In such setups, only a single task is typically accessible at any given time—due to, for16

instance, data retention or privacy constraints, computational limitations, or the temporal nature of the17

environment. While much work in continual learning focuses on mitigating forgetting or improving18

transfer, the role of the task ordering remains underexplored.19

Understanding how task order affects learning—and what characterizes optimal orderings—is im-20

portant for both theoretical and practical reasons. Such understanding can illuminate failure modes,21

clarify the interplay between forgetting and transfer, and guide the design of continual environments22

and algorithms. Furthermore, it can enable active control over task sequences in settings that permit it,23

situating the problem at the intersection of continual learning, multitask learning, curriculum learning,24

and active learning. This line of inquiry raises compelling questions with significant computational25

and financial implications in the era of large language models and foundation models:26

• What constitutes an “optimal” task ordering?27

• Is it better to learn when adjacent tasks are similar or dissimilar?28

• Should we hope to outperform random orderings?29

• What are the failure modes of “greedy” orderings?30

One compelling direction in the continual learning literature is the design of task orderings informed31

by task similarity. This idea has appeared in several earlier works, with varying degrees of emphasis32

and differing motivations [e.g., 34, 43, 48, 54, 55, 61, 68, 69]. Most closely related to our work is Bell33

and Lawrence [10], who were among the first to explicitly and systematically examine such orderings34
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in continual learning. They hypothesized that optimal performance would arise when adjacent tasks35

are similar. Surprisingly, they empirically found the opposite—orderings with dissimilar adjacent36

tasks led to better performance. More recently, Li and Hiratani [47] reached a similar conclusion and37

further proposed arranging tasks from the least to the most “typical”. While these studies are thought-38

provoking, they are either empirical [10, 54, 55], based on restrictive data assumptions [47, 48], or39

focused solely on task-incremental settings [61], with some of their findings appearing inconclusive40

or contradictory. This underscores the need for a more rigorous theoretical understanding.41

To this end, we aim to formalize “similarity-guided” orderings through greedy task selection, leverag-42

ing tools and formulations from related fields. We begin with a projection-based perspective on con-43

tinual learning, following prior work [24, 25]. We then introduce two greedy orderings—Maximum44

Distance (MD) and Maximum Residual (MR)—commonly studied in the Kaczmarz [56, 57] and45

projection onto convex sets literatures [2, 31]. Using these orderings, we develop geometric, analyti-46

cal, and empirical insights into the advantages of greediness, and derive motivating guarantees in a47

special case. The resulting intuition is illustrated in Figure 1 below.48

Focusing on single-pass task orderings (with no repetitions), we present an adversarial task collection49

where greediness fails due to the problem’s dimensionality, in stark contrast to random orderings.50

Surprisingly, we find that this does not extend to greedy orderings with repetition—proving a51

dimensionality-independent upper bound on their forgetting. Moreover, in a slight contrast to the52

common wisdom in random orderings—where with-replacement orderings usually perform better53

than ones without replacement—we show that in greedy orderings, repetition empirically performs54

better on simple data. Finally, we present a hybrid scheme combining greedy and random orderings,55

demonstrating some of its empirical and analytical benefits.56

We hope that the theoretical foundations—perspectives, tools, and findings—laid out in this paper57

will inspire future practical and theoretical work on similarity-guided task orderings.58

Summary of our contributions.59

1. We formalize similarity-guided orderings in continual linear regression via greedy strategies,60

drawing on tools and intuitions from projection and Kaczmarz literature (Section 3).61

2. In experiments on randomly-generated isotropic data and highly-correlated data, we show that62

greedy orderings converge faster than random orderings (Section 4.1).63

3. We prove optimality and convergence guarantees for high-rank tasks (Section 4.2).64

4. For general-rank data in high dimensions, we construct an adversarial failure mode where greedy65

orderings provably induce maximal forgetting (Section 5.1).66

5. In contrast, greedy orderings with repetition provably converge, regardless of dimensionality67

(Section 5.2).68

6. We combine greedy and random orderings into a hybrid strategy that performs well empirically69

and inherits the bounds of random orderings, avoiding greedy failure modes (Section 5.3).70
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(a) A greedy ordering with dissimilar adjacent tasks.
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(b) A greedy ordering with similar adjacent tasks.

Figure 1: Intuition. Consider a collection of jointly-realizable linear regression tasks (e.g., A,B,C,D).
Each task has an affine solution space (e.g., where XAw = yA), and w⋆ is an “offline solution” at the
intersection of all tasks. Employing a projection perspective on learning in continual models [24, 25],
we see that transitions between dissimilar tasks (e.g., A→D→B→C) intuitively lead to faster conver-
gence toward the intersection compared to transitions between similar tasks (e.g., A→B→C→D).
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2 Setting: Continual linear regression71

We focus on continual linear regression, common in theoretical continual learning [e.g., 5, 21, 24, 26,72

28, 36, 48, 60]. This setting, though simple, already gives rise to key continual learning phenomena,73

such as complex interactions between forgetting, task similarity, and overparameterization [see 29].74

Notations. We reserve bold symbols for matrices and vectors, e.g., X,w. We use ∥·∥ to denote the75

Euclidean norm of vectors and the spectral (L2) norm of matrices. X+ denotes the Moore–Penrose76

pseudoinverse of a matrix. Finally, we denote [n] = 1, . . . , n.77

Formally, the learner is given access to a task collection of T linear regression tasks, i.e.,78

(X1,y1), . . . , (XT ,yT ) where Xm ∈ Rnt×d,ym ∈ Rnt . We denote the data “radius” by79

R ≜ maxm∈[T ] ∥Xm∥. For k iterations, the learner sequentially learns the tasks according to80

a task ordering τ : [k]→ [T ], which—as this paper shows—can be crucial in continual learning.81

Scheme 1 Continual linear regression (to convergence)

Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt← Start from wt−1 and minimize the current task’s loss Lτ(t)(w) ≜

∥∥Xτ(t)w − yτ(t)

∥∥2
with (S)GD to convergence

Output wk

We assume throughout the paper that there exist offline solutions that perfectly solve all T tasks82

jointly. This is a common assumption1 in many theoretical continual learning papers, which facil-83

itates the analysis [e.g., 24, 25, 26, 29, 40, 42]. Moreover, it is a reasonable assumption in highly84

overparameterized models and is thus linked to the linear dynamics of deep neural networks in the85

neural tangent kernel (NTK) regime [see 16, 38].86

Assumption 2.1 (Joint Linear Realizability). Assume the intersection of all individual task solution87

subspaces is nonempty, i.e.,W⋆ ≜
⋂T

m=1Wm ≜
⋂T

m=1

{
w ∈ Rd

∣∣∣Xmw = ym

}
̸= ∅.88

We focus on the offline solution with the minimum norm, often linked to improved generalization.89

Definition 2.2 (Minimum-Norm Offline Solution). Denote specifically w⋆ ≜ argmin
w∈W⋆

∥w∥.90

We follow previous prominent theoretical work [e.g., 21, 24, 25, 26, 29] and study the model’s ability91

to not “forget” previously seen training data (as opposed to generalization performance). This focus92

isolates continual dynamics from statistical effects that also arise in non-continual, stationary settings.93

Definition 2.3 (Average loss). The average (training) loss of an individual task m ∈ [T ] is defined as
Lm(w) ≜ ∥Xmw − ym∥2. The training loss we analyze is the average across all T tasks. In our
realizable setting, it takes the following form:

L(wk) ≜ 1
∥w⋆∥2R2 ·

1

T

T∑
m=1

Lm(w) = 1
∥w⋆∥2R2 ·

1

T

T∑
m=1

∥Xm (wk −w⋆)∥2 ,

where we also normalize by the generally unavoidable scaling factors ∥w⋆∥ and R ≜ max
m∈[T ]

∥Xm∥.94

Remark 2.4 (Forgetting vs. loss). Another common quantity in the theoretical continual learning liter-95

ature is the forgetting, defined as the loss degradation at iteration k across only previously seen tasks,96

i.e., 1
k

∑k
t=1

(
Lτ(t)(wk)− Lτ(t)(wt)

)
. In our realizable setting it reduces to 1

k

∑k
t=1 Lτ(t)(wk), or97

1
k

∑k
t=1

∥∥Xτ(t)wk − yτ(t)

∥∥2. Since we mostly focus on single-pass orderings, where each task is98

seen exactly once, forgetting coincides with average loss. Thus, to ease presentation, we analyze only99

the average loss, though our analysis still applies to forgetting at the end of the task sequence.100

1Another trend in continual learning theory is to assume an underlying linear model, like we do, but allow an
additive label noise [e.g., 20, 28, 45, 46, 48, 85]. However, this comes at the cost of strong assumptions on the
features—e.g., commutable covariance matrices or i.i.d. features across tasks. To some extent, the analysis in
Section 5.1 of Evron et al. [24] suggests that, under such assumptions, task ordering has limited impact. Thus, it
may not be a suitable starting point for studying similarity-guided orderings, in contrast to our assumption.
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Another insightful quantity is the distance to w⋆.101

Definition 2.5 (Distance to the offline solution). After k iterations, the (squared) distance is,102

D2(wk) =
1

∥w⋆∥2 · ∥wk −w⋆∥2 .

This distance upper bounds the loss, as can be shown using simple norm inequalities.103

Proposition 2.6 (Linking the Quantities). After k iterations of Scheme 1 on jointly realizable tasks,104

the loss is upper bounded by the distance to the offline solution.105

L(wk) =
1

∥w⋆∥2R2 ·
1

T

T∑
m=1

∥Xm (wk −w⋆)∥2 ≤ 1
∥w⋆∥2 · ∥wk −w⋆∥2 = D2(wk) .

In some cases, the distance can remain large while the loss (and forgetting) vanishes, showing that106

converging to w⋆ is not mandatory for continual learning [24]. Focusing on the loss paves the way to107

universal convergence, independent of the problem’s complexity, e.g., its condition number [24, 65].108

Geometric interpretation to learning. In each iteration of Scheme 1, the learner minimizes the109

squared loss of the current task to convergence.2 Each iterate wt of this scheme above is known [24]110

to implicitly follow the following closed-form update rule,111

wt = X+
τ(t)yτ(t) +

(
Id −X+

τ(t)Xτ(t)

)
wt−1 . (1)

Conveniently, in our realizable setting, this update rule admits an intuitive geometric interpretation.112

Evron et al. [24] identified the orthogonal projection operator,

Pm ≜ Id −X+
mXm

which we use for mathematical purposes only (Scheme 1
never explicitly computes pseudoinverses or SVDs).
Under the realizability assumption yτ(t) = Xτ(t)w⋆.
We plug it into Eq. (1) and obtain:

wt = X+
τ(t)Xτ(t)w⋆ +

(
Id −X+

τ(t)Xτ(t)

)
wt−1

wt−w⋆ = Pτ(t) (wt−1−w⋆) . (2)
𝐰⋆

𝐰𝑡

𝐏𝜏 𝑡

𝒲𝜏 𝑡−1

𝒲𝜏 𝑡

Figure 2: Projection dynamics.

113

Geometrically, wt−1 is projected by an affine projection onto the solution space of task τ(t).114

This projection-based perspective has proven useful in prior theoretical work on continual learning115

[24, 25]. In the next section, we adopt this viewpoint to build intuition about greedy orderings.116

3 Greedy task orderings: A formal approach and intuition117

As discussed in the introduction (Section 1), the learning order plays a crucial role in the dynamics118

of many machine learning settings. This phenomenon has also been observed in continual learning,119

both analytically and empirically. Several works have proposed leveraging “similarity-aware” task120

orderings, in which dissimilar tasks are placed consecutively. However, the existing literature still121

lacks the rigor and analytical tools needed to fully understand such orderings. To address this gap,122

this section draws on connections between continual linear regression and other research areas to123

formalize greedy task orderings and develop the mathematical tools necessary to study them.124

Geometric intuition. As illustrated in Figure 2, the projection perspective allows us to decompose125

∥wt −w⋆∥2 using projection properties and the Pythagorean theorem as:126

∥wt −w⋆∥2 = ∥wt−1 −w⋆∥2 − ∥wt−1 −wt∥2

= ∥wt−1 −w⋆∥2 −
∥∥(I−Pτ(t))(wt−1 −w⋆)

∥∥2 . (3)

Thus, to try and minimize ∥wt −w⋆∥2, one could greedily maximize
∥∥(I−Pτ(t))(wt−1 −w⋆)

∥∥2.127

2This simplifies the analysis; other analytical approaches exist, e.g., a fixed number of steps per task [40].
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This has inspired a myriad of studies on Kaczmarz3 or projection methods [e.g., 2, 12, 22, 57] that128

employed a greedy ordering policy in the following spirit.129

Definition 3.1 (Maximum Distance Ordering). Greedily maximize the distance between iterates:130

τMD(t) = argmaxm∈[T ]\τMD(1:t−1) ∥(I−Pm) (wt−1 −w⋆)∥2 , ∀t ∈ [T ] ,

where τMD (1 : t− 1) ≜ {τMD (1) , . . . , τMD (t− 1)}.4131

Our earlier Figure 1a illustrates the MD ordering and how it leads to faster convergence to w⋆.132

Distance and task similarity. The distance between iterates wτ(t−1) and wτ(t) reflects some angle133

between the affine solution subspaces of their corresponding tasks—and more generally—relates134

to the principal angles between these subspaces [24]. These angles can be used to quantify task135

similarity, as illustrated in the setting of Section 4.2 and Figure 1.136

An alternative greedy ordering found in the literature is the Maximum Residual ordering [e.g.,137

2, 30, 57, 82]. This rule is easier to compute in full, or to estimate using a small validation set.138

Definition 3.2 (Maximum Residual Ordering). Greedily select the task exhibiting the greatest error:139

τMR(t) = argmaxm∈[T ]\τMR(1:t−1) ∥Xmwt−1 − ym∥2 , ∀t ∈ [T ] .

Notice that the MD and MR orderings are related since Xm = XmX+
mXm = Xm (I−Pm), and,

∥Xmwt−1 − ym∥2 = ∥Xm (wt−1 −w⋆)∥2 ≤ ∥Xm∥2 ∥(I−Pm) (wt−1 −w⋆)∥2 .

Single-pass greedy orderings. Throughout most of this paper, we focus on “single-pass” greedy140

orderings, where each task is encountered exactly once. Although disallowing repetitions departs141

slightly from the motivating literature on Kaczmarz and projection methods, it can be seen as more142

natural in continual learning settings [see 47]. Moreover, even in curriculum or multitask learning143

scenarios, restricting each task to a single pass may help reduce training costs. In Section 5.2, we144

discuss and empirically compare the effect of repetitions under different orderings.145

Computational tractability of greedy policies. As explained above, the benefits of greedy or-146

derings are quite intuitive. The cost of computing the greedy rules in Definition 3.1 and Eq. (4),147

of course, introduces a tradeoff between convergence rate and overall computational cost. Before148

continuing our investigation of these orderings, we briefly address their computational feasibility.149

(i) Estimation: Greedy rules can often be estimated efficiently in practical scenarios. For example,150

the maximum residual rule (Definition 3.2) requires the current loss of each available task.151

This quantity can be estimated using a small validation set or approximated via dimensionality152

reduction techniques, as done in the Kaczmarz literature [22]. In deep networks, computing153

that rule requires only forward passes and may reduce the number of gradient steps—thereby154

lowering overall time and memory costs by limiting costly backward passes [37].155

(ii) Heuristics: The greedy rules in our paper rely on residuals to quantify the similarity between156

the current task and the remaining ones. This approach is exemplified in Figure 1 and Eq. (5)157

of Section 4.2, and is related to principal angles between subspaces [see 24]. Alternatively,158

one could utilize heuristic notions of task similarity. Such “metrics” can be predefined [43] or159

computed using hessians [10], zero-shot performance [47], or task embeddings [1, 54].160

(iii) Structured tasks: If each step updates relatively few residuals (e.g., in a Kaczmarz setting161

with sparse columns and rows, or more generally with many orthogonal pairs of rows), only162

few residuals must be recomputed, reducing the overall cost [57].163

(iv) A theoretical tool: We employ greedy orderings as an “ideal” proxy for understanding optimal164

and similarity-guided task orderings. This allows us not only to derive convergence results, but165

also to explore failure modes and examine key aspects of such strategies.166

3The Kaczmarz method [23, 41], further explained in Section 6, iteratively solves a linear system of equations.
4In practice, the MD rule is easy to compute for rank-1 tasks, since it reduces to 1

∥xm∥2
∥∥x⊤

mwt−1 − ym
∥∥2

.
In higher ranks, this rule is harder to compute—but the MR rule, presented next, is feasible.
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4 Benefits of greedy orderings167

Existing rates. As discussed, greedy strategies have a long-standing history in related areas. They168

have been employed in the Kaczmarz method [57, 58] and its block variants [52, 56, 79, 82, 84],169

using deterministic [57] or probabilistic [7, 8, 74, 83] selection rules. These works—like much170

of the Kaczmarz literature—primarily analyze the distance to the solution w⋆ (Definition 2.5). In171

contrast, our focus, and that of related continual learning literature [e.g., 24, 25, 40, 42], centers on172

convergence of the loss (Definition 2.3). Nevertheless, existing analyses and convergence rates for173

greedy Kaczmarz methods already illustrate the potential advantages of greedy selection, particularly174

in light of the relationship between distance and loss (Proposition 2.6).175

A natural competitor to greedy strategies is the random strategy, uniformly sampling tasks (rows or176

blocks in the Kaczmarz context) from the task collection [T ]. That is,177

τUnif(1), . . . , τUnif(k) ∼ Uniform ([T ]) . (4)

In the aforementioned literature, the greedy orderings provably achieve better upper bounds on the178

distance to w⋆, compared to random orderings, across many regimes.179

4.1 Illustrative example: Randomly generated tasks180

Next, we compare the performance of different task ordering strategies on synthetic data. The feature181

matrices, i.e., X1, . . . ,XT , are drawn from either an isotropic Gaussian distribution or from an182

anisotropic Gaussian distribution with a diagonal covariance matrix and exponentially decaying183

eigenvalues. We compare the two “dissimilarity-maximizing” greedy strategies (MD, MR) to the184

random ordering (Eq. (4)) and a complementary, minimum distance, strategy. Our results show that185

transitioning between dissimilar tasks consistently outperforms both random and similar transitions186

across the presented settings and additional data-generating parameter regimes in App. B.187
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10 4

10 3

10 2
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ss

Greedy Min. Dist.
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Greedy MR
Greedy MD

(a) Isotropic Data.

0 10 20 30 40 50
Seen tasks

10 4

10 3

10 2

Lo
ss

Greedy Min. Dist.
Random
Greedy MR
Greedy MD

(b) High-Correlation Data.

Figure 3: Comparison of orderings under random data. Sampled T = 50 tasks of rank r = 10 in
d = 100 dimensions, from Gaussian distributions with (a) identical and (b) exponentially-decaying
eigenvalues. The Maximum Distance and Residual strategies (MD, MR) outperform the random and
similarity-maximizing strategies. Full details, including more combinations of T, d, r, are provided
in App. B, showing these conclusions extend to other parameter regimes.
Similarly, all figures in the main body are complemented by supplemental figures in the appendices,
covering broader regimes of T , d, and r.

4.2 Provable benefits for high rank, “nearly determined” tasks188

To further motivate greedy orderings, we analyze a simple setup where each task’s data matrix is of189

nearly full rank, i.e., rank(Xm) = d− 1, ∀m ∈ [T ]. Even in this setup (d = 2), it has been shown190

that arbitrary orderings of T →∞ may lead to catastrophic forgetting, or maximal losses [24].191

In this setup, each projection operator Pm = Id −X+
mXm is rank 1 and can be expressed as Pm=192

vmv⊤
m for some unit vector vm∈Rd. Then, the Maximum Distance rule (Def. 3.1) can be rewritten193

(see Eq. (6) in App. C) as,194

τMD(t) = argminm∈[T ]\τMD(1:t−1)

(
v⊤
mvτ(t−1)

)2
, (5)

where we define vτ(0) ≜
1

∥w0−w⋆∥ (w0 −w⋆). Notice that
(
v⊤
mvτ(t−1)

)2
= cos2(θm,τ(t−1)) quan-195

tifies similarity between task m and the former task τ(t− 1).196
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Optimality of Greedy Orderings. Earlier in Eq. (3), we motivated the MD ordering as greedily197

maximizing the decrease in ∥wt −w⋆∥. Does this guarantee a minimal distance ∥wT −w⋆∥ at the198

end of the sequence? Even in our simple, “nearly determined” setting, finding an optimal task ordering199

is (1) computationally hard, as it reduces to the maximum-weight Hamiltonian path problem,5 and (2)200

challenging to analyze and discuss. Nonetheless, we prove that the MD ordering yields a square-root201

approximation of the optimal distance at the end of learning.202

Lemma 4.1 (Optimality guarantee when r = d − 1). Let wτMD

T and wτ⋆
T be the iterates after203

learning T jointly realizable tasks of rank d − 1 under the Maximum Distance ordering and a204

minimum-distance ordering (respectively). Then, their distances to the offline solution hold,205

0 ≤ D2(wτ⋆
T ) ≤ D2(wτMD

T ) ≜
∥wτMD

T −w⋆∥2

∥w⋆∥2
≤
∥wτ⋆

T −w⋆∥
∥w⋆∥

≜ D(wτ⋆
T ) ≤ 1 .

The full proofs for this section are given in App. C.206

What about the loss? The optimality of the distance does not imply optimality of the average loss,207

as exemplified in Figure 7 in the discussion. Instead, we now derive an upper bound for the loss.208

Lemma 4.2 (Loss bound when r = d− 1). Under the Maximum Distance greedy ordering over T209

jointly-realizable tasks of rank d−1, the loss of Scheme 1 after T iterations is upper bounded as,210

L(wT ) =
1

∥w⋆∥2R2 ·
1

T

T∑
m=1

∥XmwT − ym∥2 ≤
1

eT
.

Question. Do the favorable guarantees on distance and loss extend to tasks of general rank?211

5 Failure modes and surprises in greedy orderings212

5.1 Greedy orderings can fail where random ones do not213

Under random orderings, with or without replacement, Evron et al. [26] proved a universal,
dimensionality-independent rate,

EτUnif
[L(wτUnif

k )] ≤ 14
4
√
k
.

In contrast, we present an adversarial construction where the greedy ordering fails to learn on a task214

collection of T tasks in d = T +1 dimensions, exploiting the dimensionality to undermine the greedy215

ordering. The full construction details and proof are provided in App. D.216

Theorem 5.1 (Greedy lower bound). For any d ≥ 30, there exists an adversarial task collection with217

T = d− 1 jointly-realizable tasks of different rank such that both greedy orderings (MD, MR) forget218

catastrophically. That is, the loss at the end of the sequence is, L(wτMD

T ),L(wτMR

T ) ≥ 1
8 −

1
4d .219

We demonstrate the behavior of an adversar-
ial task collection using T = 999 tasks in
d = 1000 dimensions. Our constructed col-
lection “tricks” the greedy orderings: slowly
increasing not only the loss on all tasks, but
also the forgetting of previous tasks. The model
is thus unable to accumulate knowledge, and
practically forgets everything it learns.

0 50 100
Seen tasks (%)

0.000
0.025
0.050
0.075
0.100
0.125

Loss (all tasks)
Forgetting (seen tasks)

Figure 4: Learning the adversarial construction.

220

5Continual learning papers closely related to ours [10, 47] have also discussed Hamiltonian paths in the
context of “optimal” task orderings. We show how greedy orderings approximate them.
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5.2 Single-pass vs. repetition in greedy orderings221

So far, we have focused on single-pass greedy orderings, in which each task is learned exactly once.222

These are conceptually related to without-replacement sampling and (re)shuffling techniques in SGD223

and the Kaczmarz method. In those areas, such repetition-free strategies often yield faster convergence224

than with-replacement sampling, both empirically [13, 58, 75] and in theory [11, 32, 33, 39, 53; but225

see 19, 64]. We ask: Does the advantage of orderings without repetition extend to greedy orderings?226

Next, we derive a bound which—though possibly loose—already illustrates that repetition in greedy227

orderings avoids the failure mode seen in single-pass orderings (Theorem 5.1).228

Proposition 5.2 (Dimensionality-independent bound for greedy orderings with repetition). For any229

task collection of T jointly realizable tasks, the loss under greedy maximum distance (MD) ordering230

with repetition, i.e., τMD-R, after k ≥ 2 iterations, is upper bounded as L(wτMD-R
k ) = O(1/log k).231

We evaluate the effect of repetition across orderings
under random data. As in prior work, random sam-
pling without replacement outperforms with replace-
ment. In contrast, repetition benefits greedy orderings,
likely due to larger updates and faster convergence
to w⋆. The slowdown in the single-pass case likely
reflects the exhaustion of high dissimilarities.
Full details, experiments, and proof appear in App. E.

0 10 20 30 40 50
Iterations (seen tasks incl. repetitions)

10 5

10 4

10 3

10 2

Lo
ss Random, With Repl.

Random, Without Repl.
Greedy, Single Pass
Greedy, With Repetition

Figure 5: The effect of repetitions.

232

Intuitively, restricting replacement in random orderings exposes the learner to more data, while233

repetition in greedy selection allows the learner to consider all tasks at each step.234

5.3 Hybrid task orderings: The best of both worlds235

Motivated by the success of greedy Kaczmarz and importance sampling methods [3, 57], as well as236

convergence bounds for random orderings in continual learning [24, 26], we introduce a “hybrid”237

strategy. In this approach, tasks are selected greedily as long as the decrements ∥wt−1−wt∥2 (see238

Eq. (3)) remain above a threshold; afterward, selection switches to random sampling. Hybrid schemes239

have also been explored in Kaczmarz [18, 57], coordinate descent [27], and Schwarz [30] methods.240

Scheme 2 Hybrid ordering (τH)

Input: β ∈
[
0, ∥w0 −w⋆∥2

]
For each iteration t = 1, . . . , k: # Use greedy selection as long as the threshold is met
m′ ← argmaxm∈[T ]\τH(1:t−1) ∥(I−Pm)(wt−1 −w⋆)∥2 # Compute greedy selection
If ∥(I−Pm′)(wt−1 −w⋆)∥2 ≥ β Then τH(t)← m′ Else Break

τH(t : k) ∼ Unif ([T ] \ τH(1 : t−1)) # Choose remaining tasks randomly without replacement

Empirically, the hybrid ordering performs better than
random but worse than greedy. This matches our in-
tuition from Eq. (3) and Figure 1a: greedy selection
takes larger “steps” (or projections), particularly early
on, when most tasks are still available. Once these
projections diminish, we switch to the random order-
ing, which—unlike the greedy approach—cannot be
adversarially “tricked” into failure (see Section 5.1).
Further details and experiments appear in App. F.1.

0 10 20 30 40 50
Seen tasks

10 4

10 3

10 2

Lo
ss

Random
Hybrid MD
Greedy MD

Figure 6: Hybrid ordering experiment.

241

Analytically, any bound for without-replacement random orderings, e.g., an O
(
1/k1/4

)
bound [26],242

can extend to our hybrid Scheme 2, showing again that it avoids the failure mode of Section 5.1.243

Theorem 5.3 (informal). Assume any bound of the form EτUnif
[L(wτUnif

k )] = O (1/kα), α ∈ (0, 1],244

established for the without-replacement τUnif . Then, setting a threshold of β = Ω
(∥w0−w⋆∥2

T 1−α

)
,245

guarantees a similar bound EτH [L(wτH
k )] = O (1/kα) for the hybrid ordering τH.246

The exact theorem and its proof are given in App. F.2. While our analysis sets β using ∥w0−w⋆∥,247

the hybrid method remains useful, e.g., with a heuristic β.248
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6 Discussion and related work249

Throughout the paper, we have extensively discussed connections to other literatures, with a focus on250

continual learning and the Kaczmarz method. Below, we outline additional ideas and connections.251

Due to space constraints, further related work is deferred to App. A.252

Task orderings in continual learning theory. Continual learning theory often treats task orderings253

as arbitrary. However, several analytical works [e.g., 15, 24, 25, 26, 40, 42] have shown that certain254

orderings—typically cyclic or random—can mitigate forgetting. Lin et al. [48] also explored the role255

of task similarity and reached conclusions similar to ours, though key differences remain: (1) their256

generalization analysis relied on restrictive assumptions requiring i.i.d. features across all tasks; (2)257

they assumed a separate teacher per task, unlike our setting; and (3) task orderings were not their258

primary focus.259

Task typicality at the end of learning. Li and Hiratani [47] suggested that tasks should be arranged260

from least to most “typical”. While we did not focus on this
aspect of orderings, our geometric interpretation can illustrate it.
Our motivation was to minimize the distance ∥wk−w⋆∥2,
which upper bounds the loss 1

T

∑T
m=1 ∥Xm (wk−w⋆)∥2. How-

ever, this bound can be loose, and minimizing the distance does
not guarantee the lowest loss. For example, in the figure, al-
though ∥wA −w⋆∥2 = ∥wC −w⋆∥2, the point wC is a better
ending point than wA, inducing a lower loss (the arrows represent
the residuals). This happens because task C is more typical—i.e.,
more similar to other tasks—than task A.

𝐰⋆

A

B

D

C

𝐰A

Figure 7: Task typicality.

261

Regret today or loss tomorrow? In Section 3, we motivated the use of greedy orderings to262

minimize the distance to the offline solution ∥wk −w⋆∥2, which in turn upper bounds the average263

loss over all tasks: 1
T

∑T
m=1 ∥Xm (wk −w⋆)∥2. This objective is related, but not identical, to the264

notion of regret which quantifies the loss along the optimization path on consecutive tasks, i.e.,265
1
k

∑k
t=1 ∥Xτ(t) (wt−1 −w⋆)∥2. From this definition and Figure 1, we observe that regret—though266

also upper bounded by the distances ∥wt−1 −w⋆∥2—can often benefit from transitions between267

similar tasks rather than dissimilar ones. In other words, when the goal is to make accurate predictions268

during learning—e.g., in decision-making—transitioning between similar tasks may be preferable.269

Conversely, when the objective is to minimize average loss over all tasks—e.g., in curriculum or270

multitask learning—our findings suggest that transitioning between dissimilar tasks is preferable.271

Other continual setups. The specific continual learning setup can dramatically influence the272

behavior of task orderings. Our work considers a “domain-incremental” setting, where the model273

learns the same problem across different domains—i.e., P(X) changes while P(Y |X) is fixed [77].274

Alternatively, one could consider a “task-incremental” setup, where distinct tasks—with possibly275

different P(Y |X)—are learned, and the task identity is known at both train and test time. In this276

setting, [55, 61] trained a separate linear model per task and found that similarity-maximizing277

orderings prevailed, seemingly contradicting our findings (e.g., in Figure 1). However, in such278

scenarios forgetting is less of a concern, and the focus shifts to inter-task transfer, which benefits279

from similar consecutive tasks (see also earlier discussion on regret). Hence, their results complement280

ours.281

Others have studied “class-incremental” learning (CIL), where each task introduces new objects or282

classes, aiming for strong overall performance (e.g., in popular split benchmarks [76]). However,283

comparing this setting to ours is challenging for two reasons: (1) softmax layers are hard to analyze284

in continual settings, with limited theoretical understanding to date; (2) in most CIL work, another285

major factor—beyond inter-task similarity—plays a central role, as discussed next.286

The majority of studies on task ordering in continual learning support our conclusion that sequential287

task dissimilarity is beneficial [10, 24, 48, 50, 54, 63, 67, 70]. Some CIL papers suggest that adjacent288

task similarity is preferable [34, 51]. However, a closer look reveals that these studies modify the class289

composition within each task, assembling tasks with high intra-task heterogeneity [6, 34]. This likely290
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leads to wider minima and stronger “transferability” to other tasks, thus explaining their improved291

results. Such configurations resemble curriculum learning more than continual learning.6 We found292

one CIL study contradicting our conclusions is [81], perhaps due to their empirical setup.7 Finally,293

we remark that the questions and effects discussed here are related to the interleaving effect examined294

in educational psychology [59, 66].295

Future work. One could extend our findings to other settings, such as class- and task-incremental,296

discussed earlier. Moreover, our realizability assumption could be relaxed (allowing label noise) or297

removed entirely (with nonlinear models), perhaps borrowing tools from Kaczmarz literature [9, 82].298
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A Further related work513

Alternative viewpoint: The Kaczmarz method. The continual linear regression scheme described
in this work maps directly to the Kaczmarz method [23, 41], a classical iterative algorithm for solving
linear systems of equations. In our context, the solved system is, Xw = y, where

X =

X1...
XT

 ∈ RN×d, y =

y1...
yT

 ∈ RN , where N =

T∑
m=1

nm.

Evron et al. [24] pointed out that in each iteration, the Kaczmarz method solves the current “block”514

system Xτ(t)w = yτ(t) using an update rule equivalent to our continual update in Eq. (1). Owing to515

this equivalence, all the observations and results in our paper extend naturally to the greedy Kaczmarz516

method. However, whereas the Kaczmarz literature typically analyzes convergence in terms of the517

distance to the intersection w⋆ (see Definition 2.5), our focus is on the loss—that is, the residuals518

(see Definition 2.3).519

Task orderings in continual learning theory. Continual learning theory often treats task orderings520

as arbitrary. However, several analytical works [e.g., 15, 24, 25, 26, 40, 42] have shown that certain521

orderings—typically cyclic or random—can mitigate forgetting. While some works downplayed522

ordering effects—arguing they are often minor—and deferred their study to future work [71], others523

designed continual learning algorithms specifically for evolving sequences, where adjacent tasks are524

highly similar [4]. We follow a different line of work, cited throughout this paper and expanded upon525

here, that investigates how pairwise task similarities or dissimilarities influence common continual526

learning algorithms.527

A particularly relevant work discussed throughout our paper is Bell and Lawrence [10], which528

advocated for pairwise task dissimilarities as a guiding principle for task ordering. Their study was529

among the first to empirically investigate orderings that transition between similar or dissimilar530

tasks. Tasks were represented as vertices in a complete graph, with edge weights corresponding to531

a predefined distance between tasks; in this framework, each Hamiltonian path defines a possible532

task sequence. While they hypothesized that a minimum-weight path (favoring similar tasks in533

succession) would yield the best continual performance, their empirical findings on simple neural534

networks indicated the opposite: maximum-weight paths, which place dissimilar tasks adjacently,535

often led to improved performance. However, these results were not always statistically significant536

(see the error bars in their Figure 5). Their findings motivated our work to revisit the question of537

task ordering from a more analytically grounded perspective, using formal definitions and theoretical538

tools to better understand and justify similarity-guided orderings.539

Li and Hiratani [47] conducted a deeper investigation into similarity-guided task orderings. They540

also found that adjacent tasks should be dissimilar, and further explored the notion of task “typicality”541

(discussed in Section 6). Their empirical results—also obtained using neural networks—are more542

statistically robust than those of Bell and Lawrence [10]. In addition, they derived analytical results543

for a linear regression model that support their empirical observations. However, their theoretical544

analysis relies on a restrictive random data model in which all task features are drawn from a545

simplified distribution. In contrast, our analysis accommodates arbitrary feature matrices, allowing546

for richer and more realistic forms of task similarity. Like Bell and Lawrence [10], their work focuses547

primarily on the role of pairwise task similarities in continual learning. By contrast, we draw on tools548

from the optimization literature on the Kaczmarz and projection methods, to formalize and study549

greedy task orderings specifically—both as a practical approach and as a proxy for optimal orderings.550

Ruvolo and Eaton [67] proposed an “information maximization” approach to task ordering, using551

a diversity-based heuristic closely related to our greedy maximum residual (MR) strategy (Defini-552

tion 3.2). While they demonstrated improved performance over random orderings, their model choice553

likely limited the potential for rigorous theoretical analysis, which we provide in this work.554

Lin et al. [48] also examined the role of task similarity and arrived at conclusions broadly aligned555

with ours. While their work is influential, several key differences set it apart from our approach.556

First, their generalization analysis relies on restrictive assumptions, such as i.i.d. features across557

all tasks. They also assume a distinct teacher model per task, in contrast to our setting, where558

all tasks are explained by a single overparameterized model—an assumption more reflective of559

modern deep learning and common in domain-incremental learning. As a result, their notion of560
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task similarity is based on the similarity between teachers, rather than more practical measures such561

as similarities between feature matrices or residuals (see Definitions 3.1 and 3.2). Moreover, their562

analysis becomes vacuous in highly overparameterized regimes (see their Figure 1(c)), whereas ours563

remains informative. Crucially, task ordering was not the primary focus of their study. Although564

they observed ordering effects in their generalization bounds for regression and supported this with565

brief experiments on classification, our work offers a substantially more comprehensive treatment of566

similarity-guided task orderings. We provide formal definitions, geometric and algebraic intuitions,567

greedy strategies, optimality results, computational considerations, empirical validation, and an568

analysis of failure modes and repetition.569

SGD and example selection. Evron et al. [26] showed that continual linear regression trained to570

convergence (our Scheme 1) reduces to Incremental Gradient Descent (IGD). Specifically, learning571

an entire task is equivalent to taking a single large gradient step with respect to a modified objective.572

While they used this reduction to analyze random task orderings via last-iterate SGD analysis, we573

leverage it here to draw connections between greedy task orderings and greedy example selection574

strategies in SGD.575

Most of the literature on example selection in SGD assumes multi-epoch settings, where each sample576

is seen multiple times. In such regimes, it is common to randomly shuffle the dataset once, or577

reshuffle it at the start of each epoch [e.g., 32, 53]. Although widely used, random permutations578

are not necessarily optimal [62]. For instance, Lu et al. [49] showed that greedy permutations—579

computed at the beginning of each epoch—can yield faster convergence than random ones. However,580

their analysis relies on (1) multiple epochs and (2) very small step sizes, making it inapplicable to581

single-pass settings like ours.582

Das et al. [17] demonstrated that a selection rule akin to our maximum residual strategy (Defini-583

tion 3.2) accelerates early-stage convergence of the average-iterate loss, but may underperform584

random orderings asymptotically. This finding further motivates our hybrid approach (Scheme 2) and585

aligns with our experimental results in Figure 6. They also analyzed an approximate selection rule,586

supporting our observations on computational feasibility in Section 3. Finally, it is also possible to587

select greedily by gradient magnitude instead of loss minimization [80], or to “mine” hard examples,588

i.e., those with high loss, at the mini-batch level [72].589
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B Appendix to Section 4.1: Experiments comparing ordering methods590

All figures report averages over 10 repeated experiments, where the same task collections are used591

for the different ordering strategies. Shaded regions (see App. E.1 and F.1) indicate ±1 standard592

error intervals, even when not visually discernible. In App. B.3 we further discuss the statistical593

significance of our experiments.594

Compute resources. All experiments—including those not shown—were completed within 4 hours595

on a home PC equipped with an Intel i5-9400F CPU and 16GB of RAM.596

B.1 Isotropic data597

Figures 8 and 9 extend the previous experiment on isotropic data (Figure 3a) to varying dimensions d,598

ranks r and task counts T . Results confirm consistent patterns: greedy (dissimilarity maximizing)599

methods outperform random, and MD is better than MR across all settings (sometimes only slightly).600

0 10 20 30 40 50

10 6

10 5

10 4

10 3

10 2

10 1

Lo
ss

d=20, r/d=0.1

0 10 20 30 40 50

10 28

10 23

10 18

10 13

10 8

10 3

d=20, r/d=0.5

0 10 20 30 40 50

10 28

10 23

10 18

10 13

10 8

10 3

d=20, r/d=0.9

0 10 20 30 40 50

10 6

10 5

10 4

10 3

10 2

10 1

Lo
ss

d=60, r/d=0.1

0 10 20 30 40 50

10 28

10 23

10 18

10 13

10 8

10 3

d=60, r/d=0.5

0 10 20 30 40 50

10 28

10 23

10 18

10 13

10 8

10 3

d=60, r/d=0.9

0 10 20 30 40 50
Seen tasks

10 6

10 5

10 4

10 3

10 2

10 1

Lo
ss

d=100, r/d=0.1

0 10 20 30 40 50
Seen tasks

10 28

10 23

10 18

10 13

10 8

10 3

d=100, r/d=0.5

Greedy Min. Dist.
Random
Greedy MR
Greedy MD

0 10 20 30 40 50
Seen tasks

10 28

10 23

10 18

10 13

10 8

10 3

d=100, r/d=0.9

Figure 8: Comparing orderings for varying dimensions d and ranks r of the data matrices, for
isotropic data. T = 50. We observe that, for such isotropic data, the random ordering performance
is determined solely by the ratio r/d. In contrast, greedy orderings that prioritize dissimilarity benefit
from a lower dimension when r/d is fixed (to see that, focus on single columns in the grid). We
hypothesize that this is because an increased task “density” in lower dimensions: when r/d is fixed,
increasing d increases d− r, expanding the set of possible task projections (see Eq. (2)). As a result,
a fixed number of tasks T covers this space more sparsely in higher dimensions. In lower dimensions,
the same T tasks yield denser coverage, increasing the likelihood that greedy dissimilarity-based
selection identifies tasks with large projections.
In all strategies, higher task rank consistently yields improved performance (focus on single rows).
This is because the solution subspaces are of rank d− r, so increasing r (with fixed d) lowers the
subspace rank, increasing the distances between them and resulting in larger projections.
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Figure 9: Comparing orderings for varying task count T , for isotropic data. d = 100, r = 10.
Dissimilarity-based greedy strategies become more effective as the number of tasks increases. This is
since in an isotropic setting, where task directions are sampled uniformly, increasing the number of
tasks increases the coverage of the unit sphere. This results in a higher probability of encountering
task pairs with large angular separation between their solution subspaces, which greedy ordering
utilizes.

B.2 Anisotropic data601

The anisotropic data in Figure 3b was sampled from a Gaussian distribution with exponentially602

decaying eigenvalues, as detailed in Scheme 3, resulting in high task correlation. This arises because603

tasks tend to align with the dominant eigen-directions, leading to strong pairwise similarity.604

Scheme 3 Generating tasks with high correlation

Require: Input dimension d, task rank r, number of tasks T , edge eigenvalues λ1 = 10−3, λd = 103

1: Sample A ∼ N (0, 1)d×d and symmetrize: Asym ← 1
2 (A+A⊤)

2: Compute SVD: Asym = USU⊤

3: Define diagonal spectrum: Λ← diag
(
λ1 exp

(
ln (λd/λ1)

i
d−1

))d−1

i=0

4: Construct covariance: Σ← UΛU⊤

5: for t = 1 to T do
6: Sample Zt ∼ N (0, 1)

r×d

7: Set Xt ← ZtΣ
1/2

8: end for
9: Output: {Xt}Tt=1

Figures 10 and 11 below extend the experiment in Figure 3b, revealing some interesting trends605

compared to the isotropic case.606
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Figure 10: Comparing orderings for varying dimensions d and ranks r of the data matrices,
for anisotropic data. T = 50. Compared to the isotropic case (Figure 8), we observe slower rates
for all strategies. This is easily explained by all pairwise distances between task solution subspaces
becoming smaller, due to the higher correlation in the anisotropic case.
Interestingly, as rank increases (focusing on a single row in the grid), the Maximum Residual (MR;
Definition 3.2) ordering underperforms and seemingly aligns with the random one. This may stem
from the combination of high rank and strong intra-task correlation, which leads to ill-conditioned
data matrices (for each task). In such a case, small perturbations, or steps, in the solution space may
cause disproportionately large changes in residuals. As a result, MR is misled into selecting tasks
with large residuals that advance the iterate only marginally toward the intersection (w⋆).
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Figure 11: Comparing orderings for varying task count T , for anisotropic data. d = 100, r = 10.
Unlike in the isotropic case (Figure 9), greedy orderings do not significantly benefit from increasing
the number of tasks T . This is likely since, in the anisotropic case, a large number of tasks must be
added to induce the substantial “angles” that greedy orderings can exploit. Put differently, under our
anisotropic distribution, the probability that any set of 50 tasks are mutually orthogonal—and thus
beneficial to greedy orderings—is extremely small for any reasonable number of tasks T .
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B.3 A note on statistical significance607

All appendix figures include confidence intervals of ±1 standard error, although these are often too608

narrow to be visible. While different task collections introduce slight variations in outcomes, the609

overall trends are highly consistent. This is illustrated in the following figure, where we replicate610

the plot from Figure 3a, overlaying individual runs from all 10 repeated experiments. Despite some611

run-to-run variability, the standard error remains small, reinforcing the robustness of our qualitative612

conclusions.613
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Figure 12: Same as Figure 3a, with shaded plots for each individual experiment. While minor
variations exist across experiments, the low standard error confirms the consistency of the results.
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C Proofs for Section 4.2: Greedy orderings of “nearly determined” tasks614

Recall Lemma 4.1. Let wτMD
T and wτ⋆

T be the iterates after learning T jointly realizable tasks of rank615

d− 1 under the Maximum Distance ordering and a minimum-distance ordering (respectively). Then,616

their distances to the offline solution hold,617

0 ≤ D2(wτ⋆
T ) ≤ D2(wτMD

T ) ≜
∥wτMD

T −w⋆∥2

∥w⋆∥2
≤
∥wτ⋆

T −w⋆∥
∥w⋆∥

≜ D(wτ⋆
T ) ≤ 1 .

618

Proof. The distance at the end of an ordering τ is619

D2 (wτ
T ) ≜

∥wτ
T −w⋆∥2

∥w⋆∥2
=

1

∥w⋆∥2
∥∥∥vτ(T )v

⊤
τ(T ) · · ·vτ(1)v

⊤
τ(1) (w0 −w⋆)

∥∥∥2
=

1

∥w⋆∥2
(
v⊤
τ(1) (w0 −w⋆)

)2
·
T−1∏
t=1

(
v⊤
τ(t)vτ(t+1)

)2
.

Let τ = τMD, τ⋆ be the greedy MD ordering and an optimal ordering leading to the minimal distance620

(respectively). Denote for simplicity c (i, j) =

{
1

∥w⋆∥2

(
v⊤
j (w0 −w⋆)

)2
i = 0, j ∈ [T ](

v⊤
i vj

)2
i, j ∈ [T ]

.621

Then, we have,622

D2 (wτ⋆
T ) =

1

∥w⋆∥2
(
v⊤
τ⋆(1)

(w0 −w⋆)
)2
·
T−1∏
t=1

(
v⊤
τ⋆(t)

vτ⋆(t+1)

)2
= c (0, τ⋆ (1))

T−1∏
t=1

c (τ⋆ (t) , τ⋆ (t+ 1))

= c (0, τ⋆ (1))
∏
t∈C

c
(
τ
(
τ−1 (τ⋆ (t))

)
, τ⋆ (t+ 1)

)
·
∏
t/∈C

c
(
τ⋆ (t) , τ

(
τ−1 (τ⋆ (t+ 1))

))
,

where we define the index set C =
{
t | 1 ≤ t ≤ T − 1, τ−1 (τ⋆ (t)) < τ−1 (τ⋆ (t+ 1))

}
.623

Employing greediness, we get624

D2 (wτ⋆
T ) ≥ c (0, τ (1))

∏
t∈C

c
(
τ
(
τ−1 (τ⋆ (t))

)
, τ
(
1 + τ−1 (τ⋆ (t))

))
︸ ︷︷ ︸

here, τ−1(τ⋆(t))<T

·

·
∏
t/∈C

c
(
τ
(
1 + τ−1 (τ⋆ (t+ 1))

)
, τ
(
τ−1 (τ⋆ (t+ 1))

))
︸ ︷︷ ︸

here, τ−1(τ⋆(t+1))<T

.

Then, since τ−1 (τ⋆ (·)) “covers” [T ] and c (i, j) ≤ 1, iterating over the entire 1, . . . , T − 1 will625

simply add elements to the product and make it smaller. That is,626

D2 (wτ⋆
T ) ≥ c (0, τ (1)) ·

T−1∏
ℓ=1

c (τ (ℓ) , τ (1 + ℓ)) ·
T−1∏
ℓ=1

c (τ (1 + ℓ) , τ (ℓ))

≥

(
c (0, τ (1))

T−1∏
ℓ=1

c (τ (ℓ) , τ (1 + ℓ))

)2

=

(
1

∥w⋆∥2
(
v⊤
τ(1) (w0 −w⋆)

)2 T−1∏
t=1

(
v⊤
τ(t)vτ(t+1)

)2)2

=
(
D2 (wτ

T )
)2

⇒ 1 ≥ D (wτ⋆
T ) ≥ D2 (wτMD

T ) ≥ D2 (wτ⋆
T ) ≥ 0 .

627

21



Recall Lemma 4.2. Under the Maximum Distance greedy ordering over T jointly-realizable tasks of628

rank d−1, the loss of Scheme 1 after T iterations is upper bounded as,629

L(wT ) =
1

∥w⋆∥2R2 ·
1

T

T∑
m=1

∥XmwT − ym∥2 ≤
1

eT
.

Proof. We aim to bound the average loss using projection matrices,630

LτMD(wT ) =
1

∥w⋆∥2R2T

T∑
m=1

∥XmwT − ym∥2 = 1
∥w⋆∥2R2T

T∑
m=1

∥Xm (wT −w⋆) ∥2

= 1
∥w⋆∥2R2T

T∑
m=1

∥XmX+
mXm (wT −w⋆) ∥2

≤ 1
∥w⋆∥2R2T

T∑
m=1

∥Xm∥2∥ (I−Pm) (wT −w⋆) ∥2

[Eq. (2)] ≤ 1
∥w⋆∥2T

T∑
t=1

∥∥∥(I−Pτ(t)

) T∏
s=1

Pτ(s)(w0 −w⋆)
∥∥∥2.

Since each task matrix Xi has rank d − 1, each projection Pi is rank 1 and can be written as631

Pi = viv
⊤
i for a unit vector vi. Substituting this and vτ(0) =

1
∥w⋆∥ (w0 −w⋆), the bound becomes:632

LτMD(wT ) ≤
1

T

T∑
t=1

∥∥∥(I− vτ(t)v
⊤
τ(t)

)
vτ(T )v

⊤
τ(T ) · · ·vτ(1)v

⊤
τ(1)vτ(0)

∥∥∥2
≤
(
v⊤
τ(1)vτ(0)

)2
︸ ︷︷ ︸

≤1

1

T

T∑
s=1

∥∥∥(I− vτ(t)v
⊤
τ(t)

)
vτ(T )

∥∥∥2 T−1∏
s=1

(
v⊤
τ(s+1)vτ(s)

)2

[projection properties] ≤
(
1− 1

T

T∑
s=1

(
v⊤
τ(T )vτ(s)

)2) T−1∏
s=1

(
v⊤
τ(s+1)vτ(s)

)2
.

Then, we use algebraic and projection properties to rewrite the greedy ordering as:633

τMD(t) = argmax
m∈[T ]\τMD(1:t−1)

∥(I−Pm) (wt−1 −w⋆)∥2

= argmax
m∈[T ]\τMD(1:t−1)

(∥wt−1 −w⋆∥2− ∥Pm (wt−1 −w⋆)∥2)

= argmin
m∈[T ]\τMD(1:t−1)

∥Pm (wt−1 −w⋆)∥2

= argmin
m∈[T ]\τMD(1:t−1)

∥vmv⊤
mvτ(t−1)v

⊤
τ(t−1) (wt−2 −w⋆)∥2

= argmin
m∈[T ]\τMD(1:t−1)

(
v⊤
mvτ(t−1)

)2
. (6)

Then, employing greediness as reformulated above and inequality of arithmetic and geometric mean,634

we obtain:635

T−1∏
s=1

(
v⊤
τ(s+1)vτ(s)

)2
≤

T∏
s=1

(
v⊤
τ(T )vτ(s)

)2
≤

(
1

T

T∑
s=1

(
v⊤
τ(T )vτ(s)

)2)T

.

Substituting back into the forgetting, it is now bounded as,636

LτMD(wT ) ≤

(
1− 1

T

T∑
s=1

(
v⊤
τ(T )vτ(s)

)2)( 1

T

T∑
s=1

(
v⊤
τ(T )vτ(s)

)2)T

≤ 1

eT
,

where we invoked an algebraic property that (1− x)xT ≤ 1
eT ,∀x ∈ [0, 1].637
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D Lower bound proof (Theorem 5.1)638

Recall Theorem 5.1. For any d ≥ 30, there exists an adversarial task collection with T = d − 1639

jointly-realizable tasks of different rank such that both greedy orderings (MD, MR) forget catastroph-640

ically. That is, the loss at the end of the sequence is, L(wτMD

T ),L(wτMR

T ) ≥ 1
8 −

1
4d .641

Proof outline. For a given dimension d, we construct a sequence of d iterates (wt)
d
t=1, correspond-642

ing to T = d− 1 tasks (Xt)
d
t=2 of decreasing rank, which are jointly-realizable with w⋆ = 0 (i.e.,643

∀t ∈ {2...T} , yt = 0), and show that:644

1. Given this specific choice of tasks and matching iterates, the loss (or forgetting) is catas-645

trophic as mentioned in Theorem 5.1. We start with this part as motivation.646

2. The chosen iterates are a valid ordering of iterates under the chosen tasks.647

3. The chosen ordering adheres to greedy selection rules, both MD and MR, under the chosen648

tasks. This part is quite lengthy.649

In the construction we start the iterates from t = 1 and tasks from t = 2, contrary to other parts of the650

paper, for no particular reason other than ease of notation. For this same reason we chose w⋆ = 0,651

and the iterates starting with w1 = e1. The same construction holds for a shifted frame of reference652

where all iterates (and w⋆) are shifted by −e1.653

D.1 Construction details654

We first construct the iterates as follows:655

w1 = e1 =

1, 0, . . . , 0︸ ︷︷ ︸
d−1 times

⊤

,

∀t ∈ {2...d} : wt =

 (wt−1)1 +
√
(wt−1)

2
1 − 4βt

2
, ct−2 1√

d
, . . . , ct−2 1√

d︸ ︷︷ ︸
t−1 times

, 0, . . . , 0


⊤

,

where c ≜ 2−1/d and βt ≜
((t−1)c−(t−2))c2t−5

d .656

We denote xt ≜ (wt)1, defined recursively by x1 = 1, xt =
xt−1+

√
x2
t−1−4βt

2 , ∀t ∈ {2...d}.657

Since wt ̸= wt−1, we are free to define the unit vector658

ut =
wt −wt−1

∥wt −wt−1∥
∈ span (e1, . . . , et) .

We now construct the tasks:

Xt =


−u⊤

t −
−e⊤t+1−

...
−e⊤d −

 =

[
−u⊤

t −
It+1:d

]
∈ R(d−t+1)×d,∀t ∈ {2...d} .

Then, it is easy to see that Pt ≜ Id −X+
t Xt = Id − It+1:d − utu

⊤
t = It︸︷︷︸

rank t

−utu
⊤
t .659
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D.2 Showing lower bound for the loss660

For each task Xm, its individual loss at time t = d is given by:661

Lm (wd) ≜ ∥Xmwd∥2 =

∥∥∥∥[ −u⊤
m−

Im+1:d

]
wd

∥∥∥∥2 =
(
u⊤
mwd

)2
+ ∥Im+1:dwd∥2

≥ ∥Im+1:dwd∥2 =

d∑
j=m+1

(wd)
2
j

[j ≥ 2] = (d−m)
c2d−4

d
=
(
1− m

d

)
c2d−4 =

(
1− m

d

)
2−(2d−4)/d

=
1

4

(
1− m

d

)
24/d ≥ 1

4

(
1− m

d

)
.

So the average loss after all iterates, which coincides with the forgetting (see Remark 2.4) is:662

L (wd) =
1

T

∑
m∈{2...d}

Lm (wd) =
1

d− 1

d∑
m=2

Lm (wd)

≥ 1

4 (d− 1)

d∑
m=2

(
1− m

d

)
=

1

4 (d− 1)

(
d− 1−

∑d
m=2 m

d

)

=
1

4
− d+ 2

8d
=

1

8
− 1

4d
.

D.3 Proving that the iterates can be formed from projections of the given tasks663

As a sanity check, we notice that Pt is a real symmetric matrix, and assert its idempotence,664

P2
t =

(
It − utu

⊤
t

)2
= I2t − utu

⊤
t It − Itutu

⊤
t + utu

⊤
t utu

⊤
t

= It − utu
⊤
t − utu

⊤
t + utu

⊤
t = It − utu

⊤
t = Pt .

Firstly we show that, as required from projections, w⊤
t (wt −wt−1) = 0:665

w⊤
t (wt −wt−1) =

d∑
i=1

(wt)
2
i −

d∑
i=1

(wt)i (wt−1)i = (wt)
2
1 +

t∑
i=2

(wt)
2
i −

t−1∑
i=1

(wt)i (wt−1)i

= (wt)
2
1 − (wt)1 (wt−1)1 +

t∑
i=2

c2t−4

d
−

t−1∑
i=2

ct−2ct−3

d

= (wt)
2
1 − (wt)1 (wt−1)1 +

(t− 1) c2t−4 − (t− 2) c2t−5

d

= (wt)
2
1 − (wt)1 (wt−1)1 +

((t− 1) c− (t− 2)) c2t−5

d︸ ︷︷ ︸
=βt

= (wt)
2
1 − (wt)1 (wt−1)1 + βt ,

and it is readily seen that our construction choice of (wt)1 =
(wt−1)1+

√
(wt−1)

2
1−4βt

2 implies666

w⊤
t (wt −wt−1) = 0 .
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Finally, we show that the iterates are indeed a sequence the corresponding projections:667

Ptwt−1 =
(
It − utu

⊤
t

)
wt−1 = Itwt−1 − utu

⊤
t wt−1

= wt−1 −

(
(wt −wt−1)

⊤

∥wt −wt−1∥
wt−1

)
ut = wt−1 −

(wt −wt−1)
⊤
wt−1

∥wt −wt−1∥2
(wt −wt−1)

= wt−1 −
(wt −wt−1)

⊤
wt−1 −

=0︷ ︸︸ ︷
(wt −wt−1)

⊤
wt

∥wt −wt−1∥2
(wt −wt−1)

= wt−1 +
(wt −wt−1)

⊤
(wt −wt−1)

∥wt −wt−1∥2
(wt −wt−1)

= wt−1 + (wt −wt−1) = wt .

D.4 Proving that the iterates adhere to greedy ordering rules668

D.4.1 Maximum Distance (MD)669

We wish to prove that the greedy MD rule agrees with the ordering we chose. That is,670

τt ≜ argmaxt′∈[T ]\{τ2,...,τt−1} ∥(I−Pt′)wt−1∥2 = t .

By induction on the validity of the greediness for τ2, . . . , τt−1, the step is (and the induction base for671

t = 2 is shown exactly the same):672

τt ≜ argmaxt′∈[T ]\{τ2,...,τt−1} ∥(I−Pt′)wt−1∥2

[induction assumption] = argmaxt′∈{t,...,T} ∥(Id −Pt′)wt−1∥2

= argmaxt′∈{t,...,T}
∥∥(Id − It′ + ut′u

⊤
t′
)
wt−1

∥∥2
[t′ > t− 1] = argmaxt′∈{t,...,T}

∥∥
(((((((
(Id − It′)wt−1 + ut′u

⊤
t′wt−1

∥∥2[
∥ut′∥2 = 1

]
= argmaxt′∈{t,...,T}

(
u⊤
t′wt−1

)2
= argmaxt′∈{t,...,T}

(
(wt′ −wt′−1)

⊤

∥wt′ −wt′−1∥
wt−1

)2

.

D.4.2 Maximum Residual (MR)673

We wish to prove that the greedy MR rule agrees with the ordering we chose. That is,674

τt ≜ argmaxt′∈[T ]\{τ2,...,τt−1} ∥Xt′wt−1∥2 = t .

By induction on the validity of the greediness for τ2, . . . , τt−1, the step is (and the induction base for675

t = 2 is shown exactly the same):676

τt ≜ argmaxt′∈[T ]\{τ2,...,τt−1} ∥Xt′wt−1∥2

[induction assumption] = argmaxt′∈{t,...,T} ∥Xt′wt−1∥2 = argmaxt′∈{t,...,T}

∥∥∥∥[ −u⊤
t′−

It′+1:d

]
wt−1

∥∥∥∥2
[t′ > t− 1] = argmaxt′∈{t,...,T}

((
u⊤
t′wt−1

)2
+ ∥((((((It′+1:dwt−1∥2

)
= argmaxt′∈{t,...,T}

(
(wt′ −wt′−1)

⊤

∥wt′ −wt′−1∥
wt−1

)2

.

We get that the MR and MD rules coincide in this case.677

25



D.4.3 How we prove greediness holds: Delta positivity678

We wish to show monotonous decrease (w.r.t. k ≥ t) of
(
((wk−1−wk)

⊤wt−1)
2

∥wk−1−wk∥2

)
k

.679

The difference between consecutive iterates is680

wk−1 −wk =

[
xk−1 − xk,

ck−3 (1− c)√
d

, . . . ,
ck−3 (1− c)√

d︸ ︷︷ ︸
k−2 times

,−ck−2

√
d
, 0, . . . , 0

]
.

We notice that ∀k ≥ t the term (wk−1 −wk)
⊤
wt−1 is positive since,681

(wk−1 −wk)
⊤
wt−1 = (xk−1 − xk)︸ ︷︷ ︸

>0, from G.6

xt−1︸︷︷︸
>0

+(t− 2)
ck−3 (1− c)√

d

ct−3

√
d︸ ︷︷ ︸

>0

> 0 .

This means that we can alternatively show monotonous decrease ∀k ≥ t for682 (
(wk−1 −wk)

⊤
wt−1

∥wk−1 −wk∥

)
k

.

To this end, we wish to show that the next quantity is positive ∀t ∈ {2...d− 1} (we are reminded683

that the first step is at t = 2 due to our choice, and that at the last step there is only one choice),684

∀k ∈ {t...d− 1}:685

(wk−1 −wk)
⊤
wt−1

∥wk−1 −wk∥
− (wk −wk+1)

⊤
wt−1

∥wk −wk+1∥
∝ ∥wk −wk+1∥ (wk−1 −wk)

⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1 ≜ ∆t,k .

We are going to show this holds numerically for low dimensions (d < 25,000), and prove it686

analytically ∀d ≥ 25,000.687

D.4.4 Showing delta positivity numerically for low dimensions688

We use the following facts to write code that verifies ∆t,k > 0 ∀k ≥ t, ∀d < 25,000:689

∥wk−1 −wk∥ =

√
(xk−1 − xk)

2
+ (k − 2)

(
ck−3 (1− c)√

d

)2

+

(
ck−3

√
d

)2

=

√
(xk−1 − xk)

2
+

k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6 ,

(wk−1 −wk)
⊤
wt−1 = (xk−1 − xk)xt−1 + (t− 2)

ck−3 (1− c)√
d

ct−3

√
d

.

For each value of dimension d, we calculated the series (x)k using its recursive definition, and cal-690

culated ∆(d) ≜ min{t,k | t∈{2...d−1}, k∈{t...d−1}} ∆t,k using these formulas. As shown in Figure 13,691

we found ∆(d) remains positive ∀d ∈ {30...47,000} (for completeness, any dimension above 25,000692

is redundant here). In addition, as will be seen analytically (Eq. (7)), we have that ∆(d) should693

correlate with d−
5
2 , and for completeness we show this holds numerically for the lower dimensions694

as well, by showing ∆(d) · d
5
2 is approximately constant.695
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Compute resources. This numerical validation took 4 days to run on a home PC with i5-9400F696

CPU and 16GB RAM.697
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Figure 13: Numerical positivity of ∆(d) ≜ min{t,k | t∈{2...d−1}, k∈{t...d−1}} ∆t,k

D.4.5 Showing delta positivity analytically for high dimensions698

Due to the length of this part we defer it to App. G, where we prove that ∀k ≥ t, ∀d ≥ 25,000,

∆t,k ≜ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1 > 0 .

Conclusion Together with the numerical verification, we have established that ∆t,k > 0 for all699

k ≥ t and all d ≥ 30. This completes the proof of the iterates’ adherence to the greedy ordering rules,700

and thereby concludes the overall proof of the adversarial construction that yields a lower bound on701

the loss under single-pass greedy orderings.702
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E Appendix for Section 5.2: Single-pass vs. repetition703

E.1 Experiments on single-pass vs. repetition704

Figure 5 was produced using the same data and settings as Figure 3a: d = 100, r = 10, T = 50.705

In this section, the “Greedy” orderings use the Maximum Distance rule (Definition 3.1).706

We extend the experiment on the effect of repetitions by exploring varying data settings.707

Isotropic data. The conclusions of Section 5.2 extend to more regimes: repetitions are beneficial708

in greedy ordering while replacement harms random ordering.709
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Figure 14: The effect of repetitions for varying dimensions d and ranks r of the data matrices,
for isotropic data. T = 50. Random orderings without-replacement consistently outperform
their with-replacement counterparts. In contrast, greedy orderings benefit from repetition: allowing
repeated tasks yields better performance than the single-pass variant. As we explained in Section 5.2,
repetition in greedy orderings outperforms no repetition because they enable taking larger steps (and
converge faster to the offline solution w⋆).
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Figure 15: The effect of repetitions for varying task count T , for isotropic data. d = 100, r = 10.
As task count increases, the differences between with and without repetition diminish. Notice,
however, that in all subplots we only learn the first 50 tasks. It is readily observed in the left subplot
that the effect of repetition becomes pronounced in the latter parts of the task sequences. As can be
expected, repetition offers less benefit when many diverse, unexplored tasks remain.

Anisotropic data. Next, we observe that the effect of repetitions diminishes for correlated data.710
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Figure 16: The effect of repetitions for varying dimensions d and ranks r of the data matrices,
for anisotropic data. T = 50. In highly correlated settings, repetitions become less impactful due to
the inherent similarity between tasks. Interestingly, in low-rank settings (left column), task repetition
can slightly hinder the performance of greedy strategies. We hypothesize that repetition causes
greedy orderings to alternate between a small subset of tasks with relatively large mutual angles,
while neglecting others. In this regime, tasks are highly similar, and convergence toward the offline
solution w⋆ is inherently slow, reducing its utility as an upper bound on the loss (Proposition 2.6). As
a result, neglecting some tasks (which are of low rank) may harm the average loss, even if it improves
proximity to w⋆.

Remark. We omit the figure for the corresponding experiment with varying number of tasks T , as711

it offers no additional insights beyond those shown in Figure 15.712
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E.2 Proof of upper bound for loss of greedy orderings with repetition713

Recall Proposition 5.2. For any task collection of T jointly realizable tasks, the loss under greedy714

maximum distance (MD) ordering with repetition, i.e., τMD-R, after k ≥ 2 iterations, is upper715

bounded as L(wτMD-R
k ) = O(1/log k).716

In order to prove Proposition 5.2, we first prove the following propositions:717

Proposition E.1. Under greedy MD ordering, either single-pass or with repetition, we have:718

∥w0 −wt∥2 ≤ t ∥w0 −w1∥2 .

Proof. t = 1 is trivial. Consider t ≥ 2,719

∥w0 −wt∥2 = ∥(w0 −w⋆)− (wt −w⋆)∥2

=
∥∥(w0 −w⋆ −Pτ(t) (w0 −w⋆)

)
−
(
wt −w⋆ −Pτ(t) (w0 −w⋆)

)∥∥2
[Eq. (2)] =

∥∥(I−Pτ(t)

)
(w0 −w⋆)−Pτ(t) ((wt−1 −w⋆)− (w0 −w⋆))

∥∥2
[orthogonal proj.] =

∥∥(I−Pτ(t)

)
(w0 −w⋆)

∥∥2 + ∥∥Pτ(t) (w0 −wt−1)
∥∥2

[contraction] ≤
∥∥(I−Pτ(t)

)
(w0 −w⋆)

∥∥2 + ∥w0 −wt−1∥2

[recursively] ≤
t∑

i=2

∥∥(I−Pτ(i)

)
(w0 −w⋆)

∥∥2 + ∥w0 −w1∥2

=

t∑
i=1

∥∥(I−Pτ(i)

)
(w0 −w⋆)

∥∥2 ,

and specifically, under the greedy policy, either single-pass or with repetition, we get,720

∥w0 −wt∥2 ≤ t
∥∥(I−Pτ(1)

)
(w0 −w⋆)

∥∥2 = t ∥w0 −w1∥2 .

721

Proposition E.2. Under greedy MD ordering, either single-pass or with repetition, we have:722

∥wt−1 −wt∥2 ≤ 2t ∥w0 −w1∥2 .

Proof. t = 1 is trivial. Consider t ≥ 2,723

∥wt−1 −wt∥2 = ∥(wt−1 −w⋆)− (wt −w⋆)∥2

[Eq. (2)] = ∥(wt−1 −w⋆)−Pt (wt−1 −w⋆)∥2

[projection] ≤ ∥(wt−1 −w⋆)−Pt (w0 −w⋆)∥2

= ∥(wt−1 −w⋆)− (w0 −w⋆)− (Pt (w0 −w⋆)− (w0 −w⋆))∥2

≤ 2
(
∥wt−1 −w0∥2 + ∥(I−Pt) (w0 −w⋆)∥2

)
[greedy+above] ≤ 2

(
(t− 1) ∥w0 −w1∥2 + ∥w0 −w1∥2

)
= 2t ∥w0 −w1∥2 .

724
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Proposition E.3. Under greedy MD ordering, either single-pass or with repetition, we have ∀k ≥ 2:725

∥wk−1 −wk∥2 <
2 ∥w0 −w⋆∥2

ln k
.

Proof. We showed ∥wt−1 −wt∥2 ≤ 2t ∥w0 −w1∥2, and thus ∀k > t,726

∥wk−1 −wk∥2 ≤ 2 (k − t+ 1) ∥wt−1 −wt∥2

1

2 (k − t+ 1)
∥wk−1 −wk∥2 ≤ ∥wt−1 −wt∥2 .

From the Pythagorean theorem we have,727

∥wk −w⋆∥2 = ∥wk−1 −w⋆∥2 − ∥wk−1 −wk∥2 = ∥w0 −w⋆∥2 −
k∑

t=1

∥wt−1 −wt∥2 .

Combining, we get,728

∥wk −w⋆∥2 = ∥w0 −w⋆∥2 −
k∑

t=1

∥wt−1 −wt∥2

≤ ∥w0 −w⋆∥2 −
k∑

t=1

1

2 (k − t+ 1)
∥wk−1 −wk∥2

= ∥w0 −w⋆∥2 − ∥wk−1 −wk∥2
1

2

k∑
i=1

1

i

≤ ∥w0 −w⋆∥2 − ∥wk−1 −wk∥2
ln k

2
.

And finally, from Proposition 2.6,729

0 ≤ L(wk) ≤ 1
∥w⋆∥2 ∥wk −w⋆∥2 ≤ 1

∥w⋆∥2

(
∥w0 −w⋆∥2 − ∥wk−1 −wk∥2

ln k

2

)
=⇒ ∥wk−1 −wk∥2 ≤

2 ∥w0 −w⋆∥2

ln k
.

730

We are now ready prove Proposition 5.2:731

Proof. Under greedy MD ordering with repetitions we have:732

L(wk) =
1

∥w⋆∥2R2T

T∑
m=1

∥Xmwk − ym∥2 = 1
∥w⋆∥2R2T

T∑
m=1

∥Xm (wk −w⋆)∥2

≤ 1
∥w⋆∥2R2T

T∑
m=1

∥Xm∥2 ∥(I−Pm) (wk −w⋆)∥2

≤ 1
∥w⋆∥2T

T∑
m=1

∥(I−Pm) (wk −w⋆)∥2

[greedy+repetitions] ≤ 1
∥w⋆∥2 ∥wk −wk+1∥2

[above, w0 = 0] ≤ 1
∥w0−w⋆∥2

2 ∥w0 −w⋆∥2

ln (k + 1)
=

2

ln (k + 1)
.
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F Appendix for Section 5.3: Hybrid task ordering734

F.1 Hybrid ordering experiments735

Figure 6 was acquired using the same data as Figure 3a, and using the dimension and rank-dependent736

upper bound of 2 (d− r)/k from Evron et al. [26] to set β, since the universal bound of 14/k1/4737

requires more than 50 iterations to be effective. The hybrid method results with intermediate738

performance between random and greedy. The figures demonstrate that the hybrid approach combines739

trends we have seen earlier (App. B) for random and greedy MD, in terms of the effect of dimension,740

rank, task count and task correlation on the performance.741
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Figure 17: Hybrid performance for varying dimensions d and ranks r of the data matrices, for
isotropic data. T = 50. In high-rank and/or low-dimensional settings, the rank-dependent upper
bound employed by the hybrid strategy in this case is lower, prompting an earlier transition from the
greedy to the random phase. Interestingly, the performance of the random phase within the hybrid
method is slightly inferior to that of fully random ordering—possibly because the initial greedy steps
deplete the set of “extreme” tasks that would otherwise drive greater progress.
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Figure 18: Hybrid performance for varying task count T , for isotropic data. d = 100, r = 10.
We see similar trends. Note that the previously observed slight drop in performance of the random
iterates following the greedy phase is less pronounced with higher task counts, possibly since more
extreme tasks remain available for selection.

Anisotropic data. Similar trends were observed under anisotropic data, and we therefore omit the742

corresponding figures for brevity.743
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F.2 Proof of the hybrid upper bound744

Recall Theorem 5.3 (informal). Assume any bound of the form EτUnif
[L(wτUnif

k )] = O (1/kα),745

α ∈ (0, 1], established for the without-replacement τUnif . Then, setting a threshold of β =746

Ω
(∥w0−w⋆∥2

T 1−α

)
, guarantees a similar bound EτH [L(wτH

k )] = O (1/kα) for the hybrid ordering747

τH.748

In more exact terms, we will show the following holds:749

Full version of Theorem 5.3. Given a known upper bound for the expected normalized loss750

(Definition 2.3) in random ordering without replacement of T jointly-realizable tasks, of the form751

EτUnif
[L(wτUnif

k )] ≤ C
kα with C > 0 and 0 < α ≤ 1, for T such that C

Tα ≤ 1
2−α , Scheme 2 is sure752

to give a lower upper bound on the expected loss when β ≥ βmin = ∥w0 −w⋆∥2 Tα−C(1−α)
CT .753

Proof. We denote β = β̃ ∥w0 −w⋆∥2. The last step t for which
maxm∈[T ]\τ(1:t−1) ∥(I−Pm) (wt−1 −w⋆)∥2 ≥ β̃ ∥w0 −w⋆∥2 consecutively holds is some
t = s, where 0 ≤ s ≤ k. The following holds:

∥ws −w⋆∥2 = ∥w0 −w⋆∥2 −
s∑

t=1

∥wt −wt−1∥2 ≤ ∥w0 −w⋆∥2
(
1− β̃s

)
.

We are reminded of the definition for the normalized loss for a solution vector w with a task collection
of T tasks [T ], starting from some starting point w0 and having a minimum norm offline joint solution
w⋆:

L([T ],w0) [w] ≜
1

∥w0 −w⋆∥2 R2

1

T

∑
m∈[T ]

∥Xm (w −w⋆)∥2 .

If we perform k iterations of this algorithm, where 0 ≤ s ≤ k ≤ T (unless k = T , then s ≤ T − 1754

since there is no meaning to the ordering in the last step when there is only one task), then:755

EτL([T ],w0)
τ [wk] =

1

∥w0 −w⋆∥2 R2

1

T

T∑
m=1

E
[
∥Xm (wk −w⋆)∥2

]

=
1

∥w0 −w⋆∥2 R2

1

T

 s∑
t=1

E
[∥∥Xτ(t) (wk −w⋆)

∥∥2]+ ∑
m∈[T ]\τ(1:s)

E
[
∥Xm (wk −w⋆)∥2

]
≤ 1

∥w0 −w⋆∥2 R2

1

T

R2
s∑

t=1

E
[
∥wk −w⋆∥2

]
+
∑

m∈[T ]\τ(1:s)

E
[
∥Xm (wk −w⋆)∥2

]
(1)
≤ 1

∥w0 −w⋆∥2 R2

1

T

R2
s∑

t=1

E
[
∥ws −w⋆∥2

]
+
∑

m∈[T ]\τ(1:s)

E
[
∥Xm (wk −w⋆)∥2

]
(2)
=

1

∥w0 −w⋆∥2 R2

1

T

R2s ∥ws −w⋆∥2 +
∑

m∈[T ]\τ(1:s)

E
[
∥Xm (wk −w⋆)∥2

]
=
∥ws −w⋆∥2

T ∥w0 −w⋆∥2

s+ (T − s)

 1

∥ws −w⋆∥2 R2

1

T − s

∑
m∈[T ]\τ(1:s)

E
[
∥Xm (wk −w⋆)∥2

]
=
∥ws −w⋆∥2

T ∥w0 −w⋆∥2
(
s+ (T − s)EτL([T ]\τ(1:s),ws)

τ [wk]
)

≤ 1− β̃s

T

(
s+ (T − s)EτL([T ]\τ(1:s),ws)

τ [wk]
)
.

Where (1) is since s ≤ k, and (2) is since ws is deterministic. This means we can plug in any
upper bound for the expected normalized loss of the random ordering, for the collection of T − s
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tasks [T ] \ τ (1 : s) with the starting point ws, replacing dependence on k with k − s. If we have an
upper bound for the expected normalized loss of random ordering of f (k), which is a positive and
decreasing function of k, we have:

EτL([T ],w0)
τ [wk] ≤

1− β̃s

T
(s+ (T − s) f (k − s)) .

Plugging in s = 0, we get no greedy iterates and thus the bound is exactly what you get for random756

ordering.757

We want a condition on β̃ for which continuing with greedy iterates as long as the condition from758

Scheme 2 holds, necessarily improves the bound. This means we want the bound to decrease with s.759

Thus we demand ∀s ∈ [k] : d
ds

(
1−β̃s
T (s+ (T − s) f (k − s))

)
≤ 0:760

d

ds

(
1− β̃s

T
(s+ (T − s) f (k − s))

)

=
1

T

(
−β̃ (s+ (T − s) f (k − s)) +

(
1− β̃s

)
(1 + (−f (k − s)− (T − s) f ′ (k − s)))

)
=

1

T

(
−β̃s− β̃T f (k − s) + β̃sf (k − s) + 1− f (k − s)− (T − s) f ′ (k − s)− β̃s

+β̃sf (k − s) + β̃s (T − s) f ′ (k − s)
)

=
1

T

(
1− 2β̃s−

(
1 + β̃T − 2β̃s

)
f (k − s)−

(
1− β̃s

)
(T − s) f ′ (k − s)

)
,

and when demanding this to be ≤ 0 we get:761

β̃ (−2s− (T − 2s) f (k − s) + s (T − s) f ′ (k − s)) ≤ −1 + f (k − s) + (T − s) f ′ (k − s)

β̃ ≥ 1− f (k − s)− (T − s) f ′ (k − s)

Tf (k − s) + 2s (1− f (k − s))− s (T − s) f ′ (k − s)
.

Note that when f (k − s) ≤ 1, which is the only interesting case for upper bounds, and since762

f ′ (k − s) is negative, both the numerator and denominator are positive.763

Continuing:764

β̃ ≥ 1− f (k − s)− (T − s) f ′ (k − s)

Tf (k − s) + 2s (1− f (k − s))− s (T − s) f ′ (k − s)

=
1− f (k − s)− (T − s) f ′ (k − s)

s (1− f (k − s)− (T − s) f ′ (k − s))− s+ Tf (k − s) + s− sf (k − s)

=

(
s+

(T − s) f (k − s)

1− f (k − s)− (T − s) f ′ (k − s)

)−1

β̃−1 ≤ s+
(T − s) f (k − s)

1− f (k − s)− (T − s) f ′ (k − s)
.

We demand this holds ∀s ∈ [k]. If we further assume convexity of f , which is the common case for765

such upper bounds, we can notice that this expression decreases with k, so we can get a stronger766

bound which doesn’t depend on our choice of k if we demand:767

β̃−1 ≤ s+
(T − s) f (T − s)

1− f (T − s)− (T − s) f ′ (T − s)
.

Moreover, if we assume a polynomial bound of the form f (k) = C
kα where 0 < α ≤ 1, we get that768

f ′ (k) = − αC
kα+1 , and thus:769

β̃−1 ≤ s+
(T − s) C

(T−s)α

1− C
(T−s)α + (T − s) αC

(T−s)α+1

= s+
C (T − s)

1−α

1− C
(T−s)α + αC

(T−s)α

= s+
C (T − s)

(T − s)
α
(
1− C(1−α)

(T−s)α

) = s+
C (T − s)

(T − s)
α − C (1− α)

≜ g (s) .
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We are looking for an upper bound on β̃−1 that will hold for all values of s. We can show g (s)770

increases with s:771

dg (s)

ds
= 1 +

−C ((T − s)
α − C (1− α))− C (T − s)

(
−α (T − s)

α−1
)

((T − s)
α − C (1− α))

2

= 1− C
−α (T − s)

α
+ (T − s)

α − C (1− α)

((T − s)
α − C (1− α))

2

= 1 + αC
(T − s)

α

((T − s)
α − C (1− α))

2 − C
1

(T − s)
α − C (1− α)

≥ 1 + αC
(T − s)

α − C (1− α)

((T − s)
α − C (1− α))

2 − C
1

(T − s)
α − C (1− α)

= 1− C (1− α)

(T − s)
α − C (1− α)

=
(T − s)

α − 2C (1− α)

(T − s)
α − C (1− α)

.

This derivative is positive when (T − s)
α ≥ 2C (1− α).772

We note that if (T − s)
α ≤ C, the upper bound on the loss is better if we don’t switch to random773

ordering at all (if we ever get to such a large value of s). This means we assume (T − s)
α
> C >774

C (1− α). Moreover, even if the derivative switches sign, we can see that the upper bound on β̃−1775

for smax = T − C1/α will still be larger than the upper bound for s = 0:776

g
(
T − C1/α

)
= T − C1/α +

C · C1/α

C − C (1− α)
= T − C1/α +

C1/α

α

= T + C1/α
(
α−1 − 1

)
≥ T

g (0) =
CT

Tα − C (1− α)

g
(
T − C1/α

)
− g (0) ≥ T

(
1− C

Tα − C (1− α)

)
= T

(
Tα − C (2− α)

Tα − C (1− α)

)
.

This can only be negative when T < (C (2− α))
1/α, for which the bound f (T ) = C

Tα > 1
2−α . If777

we only care about values of T such that f (T ) ≤ 1
2−α , since the bound is quite useless if it is larger778

than 1
2 anyway, it is guaranteed that the lowest upper bound for β̃−1 is for s = 0, and we get:779

β̃−1 ≤ CT

Tα − C (1− α)

β̃ ≥ β̃min =
Tα − C (1− α)

CT
.

780
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G Delta positivity proof781

This section supplements App. D, we recommend reviewing it beforehand if you have not already782

done so.783

Reminder. In this section we prove that

∆t,k ≜ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1 > 0,

∀k ≥ t, ∀d ≥ 25,000.784

In some places in our proofs, we will need a closed-form approximation of the first coordinates785

xk ≜ (wk)1 which we obtain recursively. Let us propose such an approximation:786

x̃k =

√
1− 1

ln 4
+ 4−

k
d

(
1

ln 4
− k

d

)
.

This will be formalized and proven in App. H. In addition this gives us a lower bound xk ≥787

0.45, ∀k ∈ [d] when d ≥ 25,000 (Corollary H.2).788

G.1 Proof outline789

The proof is straightforward - we decompose ∆t,k to smaller parts, and attempt to lower bound each790

of these parts. We then combine all of these lower bounds to achieve a lower bound on ∆t,k and791

find a sufficient condition on d for which this lower bound is positive. This condition, revealed in792

Eq. (7), is already satisfied when d ≥ 25,000, concluding the proof. We begin by bounding some793

intermediate quantities that appear later in the derivation, and starting in App. G.3.6 we decompose794

and lower bound ∆t,k.795

G.2 Auxiliary: Algebraic inequalities796

Claim G.1. ∀d ∈ N and 1 ≤ n ≤ d, it holds that 1− cn ≜ 1− 2−n/d ∈
[
n ln(2)

d − n2 ln2(2)
2d2 , n ln(2)

d

]
.797

Particularly, this shows 1− c ∈
[
ln(2)
d − ln2(2)

2d2 , ln(2)
d

]
.798

Proof. To show the upper bound, we define α = n/d ∈ (0, 1] and f (α) = 1− 2−α − α ln (2), and799

notice that f is decreasing in (0, 1] since800

f ′ (α) =
(
2−α − 1

)
ln (2) ∝ 2−α − 1 < 0, ∀α ∈ (0, 1] .

Then, this means f (α) = 1− 2−n/d − n ln(2)
d ≤ limα→0+ f (α) = 0 as required.801

Conversely, we get the lower bound by showing that the function g
(
α = n

d

)
= 1 − 2−n/d −802 (

n ln(2)
d − n2 ln2(2)

2d2

)
is increasing in (0, 1],803

g (α) = 1− 2−α −
(
α ln (2)− α2 ln2 (2)

2

)
, lim
α→0+

g (0) = 1− 2−0 − 0 = 0 ,

g′ (α) = ln (2)
(
2−α + α ln (2)− 1

)
∝ 2−α + α ln (2)− 1 = −f (α) + 1

≥ − lim
α→0+

f (α) + 1 = −
(
1− 2−0 − 0

)
+ 1 = 1 > 0 .

804

Claim G.2. For ∀d, n,m ∈ N and k ∈ [d], we have cnk−m ≥ 2−n.805

Proof. Notice that cz = 2−z/d is decreasing with z. Plugging in z = nk − m ≤ nd, we get806

cz ≥ cnd = 2−n.807

Claim G.3. ∀k ∈ [1, d] it holds that 1− (1− c) (k − 1) = ((k − 1) c− (k − 2)) ∈ [0, 1].808
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Proof. It is clear that (1− c) (k − 1) ≜
(
1− 2−1/d

)
(k − 1) ≥ 0. Then, we can simply show that809

from Claim G.1:810

(1− c)︸ ︷︷ ︸
≥0

(k − 1) ≤ (1− c) (d− 1) ≤ ln (2)

d
(d− 1) < ln (2) < 1 .

811

Claim G.4. ∀k ∈ [1, d] it holds that kc− (k − 1) > 0.812

Proof.

kc− (k − 1) ≥ k

(
1− ln 2

d

)
− k + 1 = 1− ln 2

k

d
≥ 1− ln 2 > 0 .

813

Claim G.5. ∀k ∈ [d] it holds that βk ∈
[
0.3c2k−5

d , c2k−5

d

]
.814

Proof.

βk =
((k − 1) c− (k − 2)) c2k−5

d
=
(
1− (1− c) (k − 1)︸ ︷︷ ︸

∈[0,ln(2)]⊂[0,0.7]

)
· c

2k−5

d
∈
[
0.3c2k−5

d
,
c2k−5

d

]
.

815

Claim G.6. xk is decreasing and ∀k ∈ [d] , xk ≤ 1.816

Proof. Decreasing follows immediately from positivity of βk (see Claim G.5) and the construction,817

and since x1 = 1 we get ∀k ∈ [d] , xk ≤ 1.818

Claim G.7. ∀k ∈ [2, d] it holds that βk ≤ 1
cd .819

Proof.

βk ≤
c2k−5

d
≤ c2·2−5

d
=

1

cd
.

820

Claim G.8. ∀a > 0, b ∈ R \ {0} such that a+ b ≥ 0, it holds that
√
a+ b <

√
a+ b

2
√
a

.821

Proof.
0 < b2 ⇐⇒ 4a (a+ b) < 4a2 + 4ab+ b2

⇐⇒ 2
√
a (a+ b) < 2a+ b ⇐⇒

√
a+ b <

√
a+

b

2
√
a
.

822

Claim G.9. ∀d ≥ 1 : 21/d ≥ 1 + ln 2
d823

Proof. Using Taylor’s expansion:824

21/d = e
ln 2
d = 1 +

ln 2

d
+

∞∑
i=2

1

i!

(
ln 2

d

)i

≥ 1 +
ln 2

d

825

Claim G.10. If |xk − x̃k| ≤ ϵ and xk ≥ 0,
∣∣x2

k − x̃2
k

∣∣ ≤ 2xkϵd + ϵ2d.826

Proof. Defining r = x̃k − xk, we have,827 ∣∣x2
k − x̃2

k

∣∣ = ∣∣∣x2
k − (xk + r)

2
∣∣∣ = ∣∣2xkr − r2

∣∣ ≤ |2xkr|+ r2 = 2 |xk (x̃k − xk)|+ (x̃k − xk)
2

≤ 2xkϵ+ ϵ2 .

828
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G.3 Proof body829

G.3.1 Analyzing xk−1 − xk, (xk−1 − xk)
2
, xk

xk−1
830

Proposition G.11. For any k ≥ 2, it holds that,831

xk−1 − xk ≜ fxk−1
(βk) ∈

[
βk

xk−1
+

β2
k

x3
k−1

+
2β3

k

x5
k−1

,
βk

xk−1
+

β2
k

x3
k−1

+
2β3

k(
x2
k−1 − 4βk

)5/2
]

[when d ≥ 25,000] ⊆
[

βk

xk−1
+

β2
k

x3
k−1

,
βk

xk−1
+

β2
k

x3
k−1

+
113c6k−15

d3

]

Proof. By construction, we have832

xk−1 − xk =
xk−1 −

√
x2
k−1 − 4βk

2
.

Define fz (x) = 1
2

(
z −
√
z2 − 4x

)
for z ∈ [0.45, 1] (see Claim G.6, Corollary H.2) and z2 ≫ x > 0.833

Expand with Taylor:834

fz (0) = fz (0)

f (1)
z (x) =− 1

4

−4√
z2 − 4x

=
1√

z2 − 4x
f (1)
z (0) =

1

z

f (2)
z (x) = 2

(
z2 − 4x

)−3/2
f (2)
z (0) =

2

z3

f (3)
z (x) = 2

3

2
· 4
(
z2 − 4x

)−5/2
= 12

(
z2 − 4x

)−5/2
f (3)
z (0) =

12

z5

And notice that generally ∀z2 ≫ x > 0 we have f
(n)
z (x) > 0.835

Then, by Lagrange’s form of the remainder, the error of the quadratic approximation (around x = 0)836

is given by837

fz (x) =
f (0)

0!
x0 +

f (1) (0)

1!
x1 +

f (2) (0)

2!
x2 +R2 (x)

= 0 +
x

z
+

2x2

2z3
+R2 (x) =

x

z
+

x2

z3
+R2 (x) ,

where838

R2 (x) =
f (3) (x0)

3!
(x− 0)

3
=

12
(
z2 − 4x0

)−5/2

6
x3 ∈

[
2x3

z5
,

2x3

(z2 − 4x)
5/2

]
.

since x0 ∈ [0, x].839

We get that840

xk−1 − xk = fxk−1
(βk) ∈

[
βk

xk−1
+

β2
k

x3
k−1

+
2β3

k

x5
k−1

,
βk

xk−1
+

β2
k

x3
k−1

+
2β3

k(
x2
k−1 − 4βk

)5/2
]
.
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Finally, since βk ≤ c2k−5

d and xk−1 ∈ [0.45, 1] we have841

2β3
k(

x2
k−1 − 4βk

)5/2 ≤ 2
(

c2k−5

d

)3
(
0.452 − 4 c2k−5

d

)5/2 ≤ 2c6k−15

d3
(
0.452 − 4 1

cd

)5/2
≤ 2c6k−15

d1/2
(
0.2d− 4 · 21/d

)5/2[
d ≥ 10,000⇒ 4 · 21/d ≤ 0.00041d

]
≤ 2c6k−15

d1/2 (0.2d− 0.00041d)
5/2
≤ 113c6k−15

d3

842

Proposition G.12. For any k ≥ 2 (and d ≥ 25,000), it holds that,843

xk

xk−1
∈
(
1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

, 1− βk

x2
k−1

)
.

Proof. We employ the bounds we found for xk−1 − xk:844

xk

xk−1
=

1

xk−1
(xk − xk−1 + xk−1) = 1− 1

xk−1
(xk−1 − xk)

∈

[
1− βk

x2
k−1

− β2
k

x4
k−1

− 2β3
k

xk−1

(
x2
k−1 − 4βk

)5/2 , 1− βk

x2
k−1

− β2
k

x4
k−1

− 2β3
k

x6
k−1

]

⊂

[
1− βk

x2
k−1

− β2
k

x4
k−1

− 2β3
k

xk−1

(
x2
k−1 − 4βk

)5/2 , 1− βk

x2
k−1

]
.

Notice that from the bounds on βk, xk−1, we have:845

2β3
k

xk−1

(
x2
k−1 − 4βk

)5/2 =
2β2

kβkx
3
k−1

x4
k−1

(
x2
k−1 − 4βk

)5/2 ≤ 2β2
k
c2k−5

d 13

x4
k−1

(
0.452 − 4 c2k−5

d

)5/2
≤

2β2
k
1
d

x4
k−1

(
0.452 − 4 1

cd

)5/2 =
2β2

k

d · 0.452x4
k−1

(
1− 4

0.452
1

2−1/dd

)5/2
[d ≥ 10,000] ≤ 2β3

k

d · 0.452x4
k−1

(
1− 4

0.452
1

2−1/10000·10000

)5/2 ≤ β3
k

x4
k−1

· 10
d

Since d ≥ 10,000, we obtain 2β3
k

xk−1(x2
k−1−4βk)

5/2 ≤ 10
d

β2
k

x4
k−1

. Overall, we get846

xk

xk−1
∈
(
1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

, 1− βk

x2
k−1

)
.

847
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Proposition G.13. For k ≥ 2 (and d ≥ 25,000), it holds that,848

(xk−1 − xk)
2
=

xk−1 −
√
x2
k−1 − 4βk

2

2

∈
[

β2
k

x2
k−1

,
β2
k

x2
k−1

+
113c6k−15

d3

]
.

Proof. We exploit the Taylor expansion of the following function (for z2 ≫ x > 0),849

f (x) =

(
z −
√
z2 − 4x

2

)2

f (1) (x) =
z√

z2 − 4x
− 1, f (2) (x) =

2z

(z2 − 4x)
3/2

, f (3) (x) =
12z

(z2 − 4x)
5/2

Then, by Lagrange’s form of the remainder, the error of the quadratic approximation (around x = 0)850

is given by851

f (x) =
f (0)

0!
x0 +

f (1) (0)

1!
x1 +

f (2) (0)

2!
x2 +R2 (x)

= 0 + 0 · x1 +
2

2z2
x2 +R2 (x) =

x2

z2
+R2 (x) ,

where852

R2 (x) =
f (3) (x0)

3!
(x− 0)

3
=

12z

6 (z2 − 4x0)
5/2

x3 =
2z

(z2 − 4x0)
5/2

x3 ∈

[
2x3

z4
,

2z · x3

(z2 − 4x)
5/2

]
,

since x0 ∈ [0, x].853

Then, setting z = xk−1 ∈ [0.45, 1], we can now conclude that,854

(xk−1 − xk)
2
=

xk−1 −
√
x2
k−1 − 4βk

2

2

≜ f (βk)

∈

[
β2
k

x2
k−1

+
2β3

k

x4
k−1

,
β2
k

x2
k−1

+
2β3

kxk−1(
x2
k−1 − 4βk

)5/2
]
.

Finally, since βk ≤ c2k−5

d and xk−1 ∈ [0.45, 1] we have855

(xk−1 − xk)
2 ∈

 β2
k

x2
k−1

+
2c6k−15

x4
k−1d

3
,

β2
k

x2
k−1

+
2c6k−15xk−1

d3
(
x2
k−1 − 4 c2k−5

d

)5/2


⊆

[
β2
k

x2
k−1

,
β2
k

x2
k−1

+
2 · c6k−15

d3
(
0.452 − 4 1

cd

)5/2
]

⊆

[
β2
k

x2
k−1

,
β2
k

x2
k−1

+
2c6k−15

d1/2
(
0.2d− 4 · 21/d

)5/2
]

[
d ≥ 10,000⇒ 4 · 21/d ≤ 0.00041d

]
⊆

[
β2
k

x2
k−1

,
β2
k

x2
k−1

+
2c6k−15

d1/2 (0.2d− 0.00041d)
5/2

]

⊆
[

β2
k

x2
k−1

,
β2
k

x2
k−1

+
113c6k−15

d3

]
.

856

40



G.3.2 Expanding the inner product (wk−1 −wk)
⊤
wt−1857

Proposition G.14. Let t ∈ [d] and t < k ≤ d (and d ≥ 25,000). Then,858

(wk−1 −wk)
⊤
wt−1 ∈

[
xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) ,

xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) +

113c6k−15

d3

]
Proof. We use the expanded form of the inner product, that is,859

0 < (wk−1 −wk)
⊤
wt−1 = (xk−1 − xk)xt−1 + (t− 2)

ck−3 (1− c)√
d

ct−3

√
d

= (xk−1 − xk)xt−1 +
t− 2

d
ck+t−6 (1− c) .

Since we already showed xk−1 − xk ∈
[

βk

xk−1
+

β2
k

x3
k−1

, βk

xk−1
+

β2
k

x3
k−1

+ 113c6k−15

d3

]
, we now have,860

(wk−1 −wk)
⊤
wt−1 ∈

[
xt−1

(
βk

xk−1
+

β2
k

x3
k−1

)
+

t− 2

d
ck+t−6 (1− c) ,

xt−1

(
βk

xk−1
+

β2
k

x3
k−1

+
113c6k−15

d3

)
+

t− 2

d
ck+t−6 (1− c)

]
=

[
xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) ,

xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) +

113c6k−15xt−1

d3

]
[xt−1 ≤ 1] ⊆

[
xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) ,

xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c) +

113c6k−15

d3

]
861
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G.3.3 Bounding h (k) ≜

√
β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6862

Proposition G.15. For any k ≥ 2 (when d ≥ 25,000), h (k) ∈
[
ck−3
√
d
, ck−3

√
d

+ 5.42
d3/2

]
.863

Proof. The lower bound is easy to obtain:864

h (k) =

√
β2
k

x2
k−1

+
k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6 >

√
1

d
c2k−6 ≥ ck−3

√
d

.

To get the upper bound, we employ the inequality (1− c) ≜ 1− 2−1/d ≤ ln(2)
d , and get,865

h (k) =

√
β2
k

x2
k−1

+
k − 2

d
c2k−6 (1− c)

2
+

c2k−6

d

≤

√
β2
k

(0.45)
2 + (1− c)

2
+

c2k−6

d

≤

√
β2
k

(0.45)
2 +

ln2 (2)

d2
+

c2k−6

d[
βk ≤

1

cd

]
≤

√
1

(0.45)
2
c2d2

+
ln2 (2)

d2
+

c2k−6

d[
d ≥ 10,000→ c2 ≥ 0.99986

]
≤
√

c2k−6

d
+

5.42

d2

[G.8] <

√
c2k−6

d
+

1

2
√

c2k−6

d

· 5.42
d2

=
ck−3

√
d

+
1

2ck−3
· 5.42
d3/2

[
ck−m ≥ 2−1

]
≤ ck−3

√
d

+
5.42

d3/2
.
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G.3.4 Bounding h(k+1)
h(k)867

Proposition G.16. For any k ≥ 2 (when d ≥ 500),868

h (k + 1)

h (k)
∈
[
c− 5.5c2k−5

x2
k−1d

2
, c+

2.44

x4
kc

2k−3d2

]
.

Proof. We start by expanding the expression in a way that will be useful for both the upper and the869

lower bounds,870

h (k + 1)

h (k)
=

√√√√√ β2
k+1

x2
k

+ k−1
d c2k−4 (1− c)

2
+ 1

dc
2k−4

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

=

√√√√√ β2
k+1

x2
k

+ k−2
d

c2k−4 (1− c)
2
+ 1

dc
2k−4

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+
1
d
c2k−4 (1− c)

2

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

=

√√√√√c2 +

β2
k+1

x2
k
− c2β2

k

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+
1
dc

2k−4 (1− c)
2

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

.

For the upper bound. We show that,871

h (k + 1)

h (k)

=

√√√√√c2 +

β2
k+1

x2
k
− c2β2

k

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+
1
dc

2k−4 (1− c)
2

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

(1)

≤

√√√√√c2 + β2
k

1
x2
k
− c2

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+
1
d (1− c)

2

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

(2)

≤

√√√√√√c2 +
1

c2d2

1
x2
k
− c2

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+

1
d

(
ln(2)

d

)2
β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

≤

√√√√
c2 +

1

c2d2

1
x2
k
− c2

x2
k−1

1
dc

2k−6
+

ln2(2)
d3

1
dc

2k−6
=

√
c2 +

x2
k−1 − c2x2

k

x2
k−1x

2
kc

2k−4d
+

ln2 (2)

c2k−6d2

(3)

≤

√
c2 +

x2
k−1 − c2x2

k

x4
kc

2k−4d
+

ln2 (2)

c2k−6d2
=

√
c2 +

x2
k−1 − c2x2

k−1

x4
kc

2k−4d
+

c2x2
k−1 − c2x2

k

x4
kc

2k−4d
+

ln2 (2)

c2k−6d2

(4)

≤

√
c2 + (1− c2)

1

x4
kc

2k−4d
+ c2

x2
k−1 − x2

k

x4
kc

2k−4d
+

ln2 (2)

c2k−6d2
,

where (1) is since βk+1 < βk, c < 1; (2) is since βk < 1
cd , 1 − c ≤ ln 2

d ; (3) is since xk ≤ xk−1;872

and (4) is since xk−1 ≤ 1. To upper bound x2
k−1 − x2

k we use the recursive formula of xk, showing873
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that874

x2
k−1 − x2

k = x2
k−1 −

x2
k−1 + 2xk−1

√
x2
k−1 − 4βk + x2

k−1 − 4βk

4

= x2
k−1 −

x2
k−1 + xk−1

√
x2
k−1 − 4βk − 2βk

2

=
x2
k−1

2
−

xk−1

√
x2
k−1 − 4βk − 2βk

2
=

x2
k−1

2
−

x2
k−1

√
1− 4 βk

x2
k−1
− 2βk

2[
1− z ≤

√
1− z

]
≤

x2
k−1

2
−

x2
k−1

(
1− 4 βk

x2
k−1

)
− 2βk

2
=

4βk + 2βk

2
= 3βk .

Back to our expression,875

h (k + 1)

h (k)
≤

√
c2 + (1− c2)

1

x4
kc

2k−4d
+

3βk

x4
kc

2k−6d
+

ln2 (2)

c2k−6d2[
βk ≤

1

cd

]
≤

√
c2 + (1− c2)

1

x4
kc

2k−4d
+

3

x4
kc

2k−5d2
+

ln2 (2)

c2k−6d2[
1− c2 ≤ ln (4)

d

]
≤

√
c2 +

ln (4)

x4
kc

2k−4d2
+

3

x4
kc

2k−5d2
+

ln2 (2)

c2k−6d2

[c < 1] ≤

√
c2 +

ln (4)

x4
kc

2k−4d2
+

3

x4
kc

2k−4d2
+

ln2 (2)

c2k−4d2
≤

√
c2 +

4.39 + 0.49x4
k

x4
kc

2k−6d2

[xk ≤ 1] ≤

√
c2 +

4.88

x4
kc

2k−4d2
= c

√
1 +

4.88

x4
kc

2k−2d2
≤ c+

2.44

x4
kc

2k−3d2
,

where in the last inequality we used the fact that ∀z > 0,
√
1 + z ≤ 1 + z

2 (since
(
1 + z

2

)2
=876

1 + z + z2

4 ≥ 1 + z =
(√

1 + z
)2

).877
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For the lower bound. We show that,878

h (k + 1)

h (k)

=

√√√√√c2 +

β2
k+1

x2
k
− c2β2

k

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

+
1
dc

2k−4 (1− c)
2

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

≥

√√√√√c2 +

β2
k+1

x2
k
− c2β2

k

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

≥ c

√√√√√1 +

β2
k+1

x2
k
− β2

k

x2
k−1

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

(1)

≥ c

√√√√1 +
1

x2
k−1

β2
k+1 − β2

k

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6

,

where (1) is since xk ≤ xk−1. Since (βk)k is positive and decreasing, β2
k+1 − β2

k < 0, and so we879

can simplify the expression using the fact that
√
1− z ≥ 1− z, ∀z ∈ (0, 1):880

h (k + 1)

h (k)
≥ c

√
1−

∣∣β2
k − β2

k+1

∣∣
1
dc

2k−6x2
k−1

≥ c−
∣∣β2

k − β2
k+1

∣∣
1
dc

2k−5x2
k−1

.

Focusing on |β
2
k+1−β2

k|
1
d c

2k−5 , and since 1− (1− c) (k − 1) = ((k − 1) c− (k − 2)),881

∣∣β2
k+1 − β2

k

∣∣
1
dc

2k−5

=
β2
k − β2

k+1
1
dc

2k−5
=

(
((k−1)c−(k−2))c2k−5

d

)2
−
(

(kc−(k−1))c2k−3

d

)2
1
dc

2k−5

=
c2k−5

d

(
(1− (1− c) (k − 1))

2 − (1− (1− c) k)
2
c4
)

=
c2k−5

d

(1− c4
)
− 2k (1− c)

(
1− c4

)︸ ︷︷ ︸
≥0

+k2 (1− c)
2 (

1− c4
)
+

+2 (1− c) + (1− c)
2︸ ︷︷ ︸

≥0

(−2k + 1)


≤ c2k−5

d

((
1− c4

)
+ k2 (1− c)

2 (
1− c4

)
+ 2 (1− c) + (1− c)

2
)
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Using the previously derived bounds of 1− c ∈
[
ln(2)
d − ln2(2)

2d2 , ln(2)
d

]
, we can get,882 ∣∣β2

k+1 − β2
k

∣∣
1
dc

2k−5
≤ c2k−5

d

((
1− c4

)
+ k2

ln2 (2)

d2
(
1− c4

)
+ 2

ln (2)

d
+

ln2 (2)

d2

)
[
d ≥ 500 ≥ 1000 ln2 (2)

]
≤ c2k−5

d

((
1− c4

)
+ k2

ln2 (2)

d2
(
1− c4

)
+ 2

ln (2)

d
+

0.001

d

)
[k ≤ d] ≤ c2k−5

d

((
1− c4

)
+ ln2 (2)

(
1− c4

)
+

ln (4) + 0.001

d

)
≤ c2k−5

d

((
1 + ln2 (2)

) (
1− c4

)
+

ln (4) + 0.001

d

)
.

Notice that we can use the previously derived bound of 1− cn ≤ n ln(2)
d , thus obtaining883 ∣∣β2

k+1 − β2
k

∣∣
1
dc

2k−5
≤ c2k−5

d

((
1 + ln2 (2)

) 4 ln (2)
d

+
ln (4) + 0.001

d

)
≤ 5.5

c2k−5

d2
.

Finally, we get,884

h (k + 1)

h (k)
≥ c−

∣∣β2
k − β2

k+1

∣∣
1
dc

2k−5x2
k−1

≥ c− 5.5c2k−5

x2
k−1d

2
.
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G.3.5 Expanding the norm885

Proposition G.17. For any k ≥ 2, ∥wk−1 −wk∥ ∈
[
h (k) , h (k) + 56.5c6k−15

ck−3d5/2

]
, where h (k) ≜886 √

β2
k

x2
k−1

+ k−2
d c2k−6 (1− c)

2
+ 1

dc
2k−6.887

Proof. By construction we have888

∥wk−1 −wk∥ =

√
(xk−1 − xk)

2
+ (k − 2)

(
ck−3 (1− c)√

d

)2

+

(
ck−3

√
d

)2

=

√
(xk−1 − xk)

2
+

k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6 .

Before, we proved that (xk−1 − xk)
2 ∈

[
β2
k

x2
k−1

,
β2
k

x2
k−1

+ 113c6k−15

d3

]
. Now, we show the resulting889

bounds for ∥wk−1 −wk∥ which employ that bound.890

The lower bound is immediate, since891

∥wk−1 −wk∥ =
√
(xk−1 − xk)

2
+

k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6

≥

√
β2
k

x2
k−1

+
k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6 ≜ h (k) .

The upper bound requires an additional algebraic inequality of ∀a, b > 0 :
√
a+ b <

√
a + b

2
√
a

892

and the inequality of h (k) ≥ 1√
d
ck−3, i.e.,893

∥wk−1 −wk∥ ≤

√
β2
k

x2
k−1

+
k − 2

d
c2k−6 (1− c)

2
+

1

d
c2k−6 +

113c6k−15

d3

=

√
h2 (k) +

113c6k−15

d3
≤ h (k) +

113c6k−15

2h (k) d3
≤ h (k) +

56.5c6k−15

ck−3d5/2
.

894
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G.3.6 Combining the expansions895

Proposition G.18. When d ≥ 25,000,896

∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1

≥ A1 (k) +A2 (k) +A3 (k)

− 1

d7/2

(
96c6k−15

xk
+ 113c7k−18

)
− 1

d9/2

(
56.5c9k−18

x3
k

+ 614c6k−30

)
,

where A1 (k) ≜ xt−1

(
h(k+1)
xk−1

βk − h(k)
xk

βk+1

)
, A2 (k) ≜ xt−1

(
h(k+1)
x3
k−1

β2
k −

h(k)
x3
k
β2
k+1

)
, A3 (k) ≜897

t−2
d (1− c) ck+t−6 (h (k + 1)− ch (k)).898

Proof. Keeping in mind that we wish to bound ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 −899

∥wk−1 −wk∥ (wk −wk+1)
⊤
wt−1, we start lower bounding the right expression. Using the bounds900

for (wk−1 −wk)
⊤
wt−1 and ∥wk−1 −wk∥ we derived above, we get,901

− ∥wk−1 −wk∥ (wk −wk+1)
⊤
wt−1

≥ −∥wk−1 −wk∥
(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

(t− 2) ck+t−5 (1− c)

d
+

113c6k−15

d3

)
≥ −∥wk−1 −wk∥

(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

(t− 2) ck+t−5 (1− c)

d

)
− ∥wk−1 −wk∥

113c6k−15

d3

≥ −
(
h (k) +

56.5c6k−15

ck−3d5/2

)(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
︸ ︷︷ ︸

≜a(k)

−∥wk−1 −wk∥
113c6k−15

d3︸ ︷︷ ︸
≜b(k)

.

The right function is easily bounded as,902

b (k) =− ∥wk−1 −wk∥
113c6k−15

d3

≥ −
(
h (k) +

56.5c6k−15

ck−3d5/2

)
113c6k−15

d3
= −113c6k−15

d3
h (k)− 6384.5c12k−30

d11/2ck−3

≥ −113c6k−15

d3

(√
c2k−6

√
d

+
5.42

d3/2

)
− 6384.5c12k−30

d11/2ck−3

= −113c6k−15ck−3

d7/2
− 612.46c6k−15

d9/2
− 6384.5c12k−30

d11/2ck−3[
ck−3 ≥ cd = 0.5

]
≥ −113c7k−18

d7/2
− 612.46c6k−15

d9/2
− 12769c12k−30

d11/2
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The left function is further decomposed as,903

a (k) = −h (k)
(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
︸ ︷︷ ︸

≜a1(k)

−56.5c5k−12

d5/2

(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
︸ ︷︷ ︸

≜a2(k)

.

Then,904

a2 (k) = −
56.5c5k−12

d5/2

(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
[
xt−1 ≤ 1,

t− 2

d
< 1

]
≥ −56.5c5k−12

d5/2

(
1

xk
βk+1 +

1

x3
k

β2
k+1 + ck+t−5 (1− c)

)
[
βk+1 ≤

c2k−3

d

]
≥ −56.5c5k−12

d5/2

(
c2k−3

xkd
+

c4k−6

x3
kd

2
+ ck+t−5 (1− c)

)
≥ −56.5c5k−12

d5/2

(
c2k−3

xkd
+

c4k−6

x3
kd

2
+

ln (2)

d
ck+t−5

)
[xk ≤ 1] ≥ −56.5c5k−12

d5/2

(
c2k−3 + ln (2) ck+t−5

xkd
+

c4k−6

x3
kd

2

)
= −56.5c6k−15

d5/2 · xkd

(
ck + ln (2) ct−2 +

c3k−3

x2
kd

)
[c < 1] ≥ −56.5c6k−15

d7/2 · xk

(
1 + ln (2) +

c3k−3

x2
kd

)
≥ −96c6k−15

d7/2 · xk
− 56.5c9k−18

d9/2 · x3
k

.
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Overall we got,905

∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1,

≥ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 + a1 (k) + a2 (k) + b (k)

≥ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 + a1 (k)

− 96c6k−15

d7/2 · xk
− 56.5c9k−18

d9/2 · x3
k

− 113c7k−18

d7/2
− 612.46c6k−15

d9/2
− 12769c12k−30

d11/2

≥ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 + a1 (k)

− 96c6k−15

d7/2 · xk
− 56.5c9k−18

d9/2 · x3
k

− 113c7k−18

d7/2
− 612.46c6k−30

d9/2
− 12769c6k−30

d11/2

(1)

≥ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1

+ a1 (k)−
96c6k−15

d7/2 · xk
− 56.5c9k−18

d9/2 · x3
k

− 113c7k−18

d7/2
− 614c6k−30

d9/2

≥ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1

+ a1 (k)−
1

d7/2

(
96c6k−15

xk
+ 113c7k−18

)
− 1

d9/2

(
56.5c9k−18

x3
k

+ 614c6k−30

)
,

where (1) is since d ≥ 10,000. Focusing on the left terms, we get the overall expression, which we906

need to show is positive. We again use previously-derived inequalities, to show,907

∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 + a1 (k)

= ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1

− h (k)

(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
≥ h (k + 1)

(
xt−1

xk−1
βk +

xt−1

x3
k−1

β2
k +

t− 2

d
ck+t−6 (1− c)

)
− h (k)

(
xt−1

xk
βk+1 +

xt−1

x3
k

β2
k+1 +

t− 2

d
ck+t−5 (1− c)

)
= xt−1

(
h (k + 1)

xk−1
βk −

h (k)

xk
βk+1

)
︸ ︷︷ ︸

≜A1(k)

+xt−1

(
h (k + 1)

x3
k−1

β2
k −

h (k)

x3
k

β2
k+1

)
︸ ︷︷ ︸

≜A2(k)

+
t− 2

d
(1− c) ck+t−6 (h (k + 1)− ch (k))︸ ︷︷ ︸

≜A3(k)

,

which we will bound separately below.908
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G.3.7 The second term, A2 (k), is insignificant O
(

1
d7/2

)
909

Proposition G.19. When d ≥ 25,000,

A2 (k) = xt−1

(
h (k + 1)

x3
k−1

β2
k −

h (k)

x3
k

β2
k+1

)
≥ −14.88xt−1c

3k−12

x3
kd

7/2
.

Proof. We start from,910

A2 (k) = xt−1

(
h (k + 1)

x3
k−1

β2
k −

h (k)

x3
k

β2
k+1

)
=

xt−1

x3
k

h (k)β2
k+1

(
h (k + 1)

h (k)

x3
k

x3
k−1

β2
k

β2
k+1

− 1

)
︸ ︷︷ ︸

≜a(k)

.

Dissecting the terms in a (k),911

βk

βk+1
=

((k−1)c−(k−2))c2k−5

d
(kc−(k−1))c2k−3

d

=
1

c2
+

1− c

(kc− (k − 1))︸ ︷︷ ︸
>0, from G.4

c2
≥ 1

c2

β2
k

β2
k+1

≥ 1

c4
.

We already showed that xk

xk−1
∈
(
1− βk

x2
k−1
−
(
1 + 10

d

) β2
k

x4
k−1

, 1− βk

x2
k−1

)
, and we simplify it even912

further913

xk

xk−1
≥ 1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

βk≤ 1
d

≥ 1− βk

x2
k−1

−
(
1 +

10

d

)
βk

x4
k−1d

[xk−1 ≥ 0.45] ≥ 1− βk

(
1

(0.45)
2 +

(
1 + 10

d

)
(0.45)

4
d

)
d≥10,000

≥ 1− 4.95βk .

Now, using the algebraic inequality that ∀z ∈ (0, 1) , (1− z)
3
= 1− 3z + 3z2 − z3 > 1− 3z, we914

get,915

x3
k

x3
k−1

> 1− 14.85βk .

Moreover, recall that we already showed that h(k+1)
h(k) ≥ c− 5.5c2k−5

x2
k−1d

2 . Now, focusing on a (k),916

a (k) =
h (k + 1)

h (k)
· x3

k

x3
k−1

β2
k

β2
k+1

− 1 ≥
(
c− 5.5c2k−5

x2
k−1d

2

)
(1− 14.85βk)

1

c4
− 1

=

(
1

c3
− 5.5c2k−5

x2
k−1d

2

)
(1− 14.85βk)− 1 ≥

(
1− 5.5c2k−5

x2
k−1d

2

)
(1− 14.85βk)− 1

= −14.85βk −
5.5c2k−5

x2
k−1d

2
+

81.675c2k−9

x2
k−1d

2
βk ≥ −14.85βk −

5.5c2k−9

x2
k−1d

2[
βk ≤

c2k−5

d

]
≥ −14.85c2k−5

d
− 5.5c2k−9

x2
k−1d

2
≥ −14.85c2k−5

d
− 5.5c2k−9

(0.45)
2
d2

≥ −14.85c2k−5

d
− 27.17c2k−9

d2
≥ −14.85c2k−9

d
− 27.17c2k−9

d2

[d ≥ 10,000] ≥ −14.86c2k−9

d
.
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And finally,917

1

xt−1
A2 (k) =

1

x3
k

h (k)β2
k+1 · a (k) ≥ −

1

x3
k

h (k)β2
k+1 ·

14.86c2k−9

d[
βk+1 ≤

1

d
, h (k) ≤ ck−3

√
d

+
5.42

d3/2

]
≥ − 1

x3
k

ck−3
√
d

+ 5.42
d3/2

d2
14.86c2k−9

d

= − 1

x3
k

c3k−12

d5/2
14.86

d
− 1

x3
k

5.42

d7/2
14.86c2k−9

d

[c < 1] ≥ −14.86c3k−12

x3
kd

7/2
− 80.55c2k−12

x3
kd

9/2[
d ≥ 10,000, ck−3 ≥ cd = 0.5

]
≥ −14.86c3k−12

x3
kd

7/2
− 0.0081 · c3k−12

x3
kd

7/2c

≥ −
(
14.86 + 0.0081

0.5

)
c3k−12

x3
kd

7/2

A2 (k) ≥ −
14.88xt−1c

3k−12

x3
kd

7/2
,

thus concluding this part.918
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G.3.8 The third term, A3 (k), is insignificant O
(

1
d7/2

)
919

Proposition G.20. When d ≥ 25,000,

|A3 (k)| =
∣∣∣∣ t− 2

d
(1− c) ck+t−6 (h (k + 1)− ch (k))

∣∣∣∣ ≤ 6.77ck−6

x4
k

(
ck−3

d7/2
+

5.42

d9/2

)
.

Proof. Notice that,920

|A3 (k)| =
∣∣∣∣ t− 2

d
(1− c) ck+t−6 (h (k + 1)− ch (k))

∣∣∣∣
=

t− 2

d
(1− c) ck+t−6 |h (k + 1)− ch (k)| ≤ (1− c) ck+t−6 |h (k + 1)− ch (k)|

≤ ln (2) ck+t−6h (k)

d

∣∣∣∣h (k + 1)

h (k)
− c

∣∣∣∣ ≤ ln (2) ck+t−6

(
ck−3

d3/2
+

5.42

d5/2

) ∣∣∣∣h (k + 1)

h (k)
− c

∣∣∣∣ ,
where we used the facts that 1− c ≤ ln 2

d and h (k) ≤ ck−3
√
d

+ 5.42
d3/2 .921

Using h(k+1)
h(k) ∈

[
c− 5.5c2k−5

x2
k−1d

2 , c+ 2.44
x4
kc

2k−3d2

]
, we finally get,922

|A3 (k)| ≤ ln (2) ck+t−6

(
ck−3

d3/2
+

5.42

d5/2

) ∣∣∣∣h (k + 1)

h (k)
− c

∣∣∣∣
≤ ln (2) ck+t−6

(
ck−3

d3/2
+

5.42

d5/2

)
max

(
5.5c2k−5

x2
k−1d

2
,

2.44

x4
kc

2k−3d2

)
[xk < xk−1] ≤ ln (2) ck+t−6

(
ck−3

d7/2
+

5.42

d9/2

)
max

(
5.5c2k−5

x4
k

,
2.44

x4
kc

2k−3

)
[c < 1] ≤ ln (2) ck+t−6

x4
k

(
ck−3

d7/2
+

5.42

d9/2

)
max

(
5.5c2k−5,

2.44

c2k

)
[
cnk−m ≥ 2−n, k ≥ 2, c < 1

]
≤ ln (2) ck+t−6

x4
k

(
1

cd7/2
+

5.42

d9/2

)
max

(
5.5

c
, 9.76

)
[
c ≥ 2−1/10000 ≥ 0.9999

]
≤ ln (2) ck+t−6

x4
k

(
1

0.9999d7/2
+

5.42

d9/2

)
max

(
5.5

0.9999
, 9.76

)
≤ 6.77ck+t−6

x4
k

(
1

d7/2
+

5.42

d9/2

)
.

923
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G.3.9 Back to the first term, A1 (k)924

Proposition G.21. When d ≥ 25,000,

A1 (k) = xt−1

(
h (k + 1)

xk−1
βk −

h (k)

xk
βk+1

)
≥ xt−1

(
0.0429c3k−6

x3
kd

5/2
− 173.07c3k−9

x2
kd

7/2

)
Proof. We have925

A1 (k) = xt−1

(
h (k + 1)

xk−1
βk −

h (k)

xk
βk+1

)
=

xt−1

xk
h (k)βk+1︸ ︷︷ ︸

=Θ(d−3/2)

(
xk

xk−1

h (k + 1)

h (k)

βk

βk+1
− 1

)
︸ ︷︷ ︸

≜a(k)

.

We are going to use the previously-derived lower bounds of xk

xk−1
≥ 1− βk

x2
k−1
−
(
1 + 10

d

) β2
k

x4
k−1

and926

h(k+1)
h(k) ≥ c − 5.5c2k−5

x2
k−1d

2 . To lower bound βk

βk+1
= 1

c2 + 1−c
(1−k(1−c))c2 , we need a slightly stronger927

bound than before. Specifically, notice that for any z ∈ (0, 1), z
1−z ≥ z. Then, since 1 − c ∈928 [

ln(2)
d − ln2(2)

2d2 , ln(2)
d

]
=⇒ k (1− c) ∈

[
k
d ln (2)− k

2d2 ln
2 (2) , k

d ln (2)
]
⊆ (0, 1), and929

1− c

(1− k (1− c)) c2
=

1

c2k

k (1− c)

(1− k (1− c))
≥ 1

c2k
k (1− c) =

1− c

c2
.

We now get,930

βk

βk+1
≥ 1

c2
+

1− c

c2
=

2− c

c2
.

We are now ready to lower bound a (k) as,931

a (k) =
xk

xk−1

h (k + 1)

h (k)

βk

βk+1
− 1

≥
(
1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

)(
c− 5.5c2k−5

x2
k−1d

2

)(
2− c

c2

)
− 1

=

(
1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

)(
1− 5.5c2k−6

x2
k−1d

2

)(
2− c

c

)
− 1

Using Claim G.9: 2−c
c = 2

c − 1 = 2 · 21/d − 1 ≥ 2
(
1 + ln(2)

d

)
− 1 = 1 + ln(4)

d , we get:932

a (k) ≥
(
1− βk

x2
k−1

−
(
1 +

10

d

)
β2
k

x4
k−1

)(
1− 5.5c2k−6

x2
k−1d

2

)(
1 +

ln (4)

d

)
− 1

=
ln (4)

d
− βk

x2
k−1︸ ︷︷ ︸

O(d−1)

−

(
5.5c2k−6

x2
k−1d

2
+

(
1 + 10

d

)
β2
k

x4
k−1

+
ln (4)βk

x2
k−1d

)
︸ ︷︷ ︸

Θ(d−2)

+
5.5c2k−6βk

x4
k−1d

2
− 5.5 ln (4) c2k−6

x2
k−1d

3
−
(
1 + 10

d

)
ln (4)β2

k

x4
k−1d︸ ︷︷ ︸

O(d−3)

+
5.5
(
1 + 10

d

)
c2k−6β2

k

x6
k−1d

2
+

5.5 ln (4) c2k−6

x2
k−1d

3

(
βk

x2
k−1

+

(
1 + 10

d

)
β2
k

x4
k−1

)
︸ ︷︷ ︸

O(d−4)

.
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Lower bounding negligible positive terms by 0, we get,933

a (k) ≥ ln (4)

d
− βk

x2
k−1︸ ︷︷ ︸

O(d−1)

−

(
5.5c2k−6

x2
k−1d

2
+

(
1 + 10

d

)
β2
k

x4
k−1

+
ln (4)βk

x2
k−1d

)
︸ ︷︷ ︸

Θ(d−2)

−

(
5.5 ln (4) c2k−6

x2
k−1d

3
+

(
1 + 10

d

)
ln (4)β2

k

x4
k−1d

)
︸ ︷︷ ︸

Θ(d−3)

.

We will now simplify the least significant terms above further. We start from an upper bound to the934

Θ
(
d−2

)
term (since its sign is negative in the expression above),935

5.5c2k−6

x2
k−1d

2
+

(
1 + 10

d

)
β2
k

x4
k−1

+
ln (4)βk

x2
k−1d

≤ 5.5c2k−6

x2
k−1d

2
+

1.001β2
k

x2
k−1x

2
k−1

+
ln (4)βk

x2
k−1d[

βk ≤
c2k−5

d
≤ 1

cd
, xk−1 ≥ 0.45

]
≤ 5.5c2k−6

x2
k−1d

2
+

1.001c4k−10

x2
k−1d

20.452
+

ln (4) c2k−5

x2
k−1d

2

≤ c2k−6

x2
k−1d

2

(
5.5 + 4.95c2k−4 + ln 4 · c

)
[k ≥ 2, c ≤ 1] ≤ c2k−6

x2
k−1d

2
(5.5 + 4.95 + ln 4)

≤ 11.84c2k−6

x2
k−1d

2
.

Similarly, for the Θ
(
d−3

)
term, we again employ the upper bound βk ≤ c2k−5

d ≤ 1
cd , and obtain,936

5.5 ln (4) c2k−6

x2
k−1d

3
+

(
1 + 10

d

)
ln (4)β2

k

x4
k−1d

≤ 5.5 ln (4) c2k−6

x2
k−1d

3
+

1.001 ln (4) c2k−5

x4
k−1d

3c3

≤ c2k−6

x4
k−1d

3

(
5.5 ln (4) + 1.001 ln (4) c−2

)
≤ c2k−8

x4
k−1d

3
(5.5 ln (4) + 1.001 ln (4)) ≤ 9.02c2k−8

x4
k−1d

3
.

And so, we get the following lower bound,937

a (k) ≥ ln (4)

d
− βk

x2
k−1

−
(
11.84c2k−6

x2
k−1d

2
+

9.02c2k−8

x4
k−1d

3

)
[xk ≤ xk−1] ≥

ln (4)

d
− βk

x2
k

− c2k−6

x2
kd

2

(
11.84 +

9.02c−2

x2
kd

)
.
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Back to the overall term we are trying to lower bound,938

1

xt−1
A1 (k) =

h (k + 1)

xk−1
βk −

h (k)

xk
βk+1 =

1

xk
h (k)βk+1︸ ︷︷ ︸

=Θ(d−3/2)

(
xk

xk−1

h (k + 1)

h (k)

βk

βk+1
− 1

)
︸ ︷︷ ︸

≜a(k)

≥ 1

xk
h (k)βk+1

(
ln (4)

d
− βk

x2
k

− c2k−6

x2
kd

2

(
11.84 +

9.02c−2

x2
kd

))
=

1

xk
h (k)βk+1

(
ln (4)

d
− βk

x2
k

)
− 1

xk
h (k)βk+1

c2k−6

x2
kd

2

(
11.84 +

9.02c−2

x2
kd

)
(1)

≥ 1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− 1

xk

ck−3
√
d

+ 5.42
d3/2

d

c2k−6

x2
kd

2

(
11.84 +

9.02c−2

x2
kd

)
(2)

≥ 1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− c3k−9

x3
kd

7/2

(
11.84 +

9.02 · 22/10000

0.452d

)
− 5.42c2k−6

x3
kd

9/2

(
11.84 +

9.02 · 22/10000

0.452d

)
≥ 1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− 11.84c3k−9

x3
kd

7/2
− 44.55c3k−9

x3
kd

9/2

− 64.18c2k−6

x3
kd

9/2
− 241.46c2k−6

x3
kd

11/2

≥ 1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− 11.84c3k−9

x3
kd

7/2
− 44.55c2k−9

x3
kd

9/2

− 64.18c2k−9

x3
kd

9/2
− 241.46c2k−9

x3
kd

11/2

(3)

≥ 1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− 11.84c3k−9

x3
kd

7/2
− 109c2k−9

x3
kd

9/2

A1 (k) ≥
xt−1

xk

ck−3

√
d
βk+1

(
ln (4)

d
− βk

x2
k

)
− 11.84xt−1c

3k−9

x3
kd

7/2
− 109xt−1c

2k−9

x3
kd

9/2
,

where (1) is since h (k) ∈
[
ck−3
√
d
, ck−3

√
d

+ 5.42
d3/2

]
, βk+1 ≤ 1

d ; (2) is since d ≥ 10,000 and xk ≥ 0.45;939

and (3) is since d ≥ 10,000. It remains to get a lower bound for βk+1

(
ln(4)
d − βk

x2
k

)
. First, we show940

b (k) ≜
ln (4)

d
− βk

x2
k

=
ln (4)

d
− (1− (1− c) (k − 1)) c2k−5

x2
kd

=
ln (4)

d
− c2k−5

x2
kd

+
1

x2
kc

3
· (1− c)

k − 1

d
c2(k−1)

=
ln (4)

d
− c2k−5

x2
kd

+
1

x2
kc

3
· (1− c)

(
k − 1

d

)
4−

k−1
d

≥ ln (4)

d
− c2k−5

x2
kd

+
1

x2
kc

3
· 1− c

4

(
k − 1

d

)
,
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where we used an algebraic property that 4−z ≥ 1
4 ,∀z ∈ [0, 1]. Continuing,941

b (k) ≥ ln (4)

d
− c2k−5

x2
kd

+
1

4x2
kc

3
·
(
ln (2)

d
− ln2 (2)

2d2

)(
k − 1

d

)
=

ln (4)

d
− c2k−5

x2
kd

+
ln (2)

4x2
kc

3d

(
k − 1

d

)
− ln2 (2)

8x2
kc

3d2

(
k − 1

d

)
[c ≤ 1] ≥ ln (4)

d
− c2k−5

x2
kd

+
ln (2)

4x2
kd

(
k − 1

d

)
− ln2 (2)

8x2
kc

3d2

(
k − 1

d

)
≥ ln (4)

d
− c2k−5

x2
kd

+
ln (2)

4x2
kd

(
k − 1

d

)
− ln2 (2)

8 (0.45)
2
c3d2

· 1

≥ ln (4)

d
− c2k−5

x2
kd

+
ln (2)

4x2
kd

(
k − 1

d

)
− 0.3

c3d2

≥ ln (4)

d
+

ln (2)
(
k−1
d

)
− 4c2k−5

4x2
kd

− 0.3

c3d2
.

Below, we are going to use the closed-form approximation of xk, for which we have established942

|xk − x̃k| ≤ 170.4
d = ϵ (Lemma H.1), and also note that

∣∣x2
k − x̃2

k

∣∣ ≤ 2xkϵ+ ϵ2 (Claim G.10).943

Reminder: x̃k =
√
1− 1

ln 4 + 4−
k
d

(
1

ln 4 −
k
d

)
=
√
1− 1

ln 4 + c2k
(

1
ln 4 −

k
d

)
.944

b (k) +
0.3

c3d2
≥ ln (4)

d
+

ln (2)
(
k−1
d

)
− 4c2k−5

4x2
kd

=
4x2

k ln (4) + ln (2)
(
k−1
d

)
− 4c2k−5

4x2
kd

≥
4x̃2

k ln (4) + ln (2)
(
k−1
d

)
− 4c2k−5

4x2
kd

− 4 ln (4)

4x2
kd

∣∣x2
k − x̃2

k

∣∣
≥

4x̃2
k ln (4) + ln (2)

(
k−1
d

)
− 4c2k−5

4x2
kd

− ln (4)

x2
kd

(
2xkϵ+ ϵ2

)
=

4
(
ln (4)− 1 + c2k

(
1− k

d ln (4)
))

+ ln (2)
(
k−1
d

)
− 4c2k−5

4x2
kd

− ϵ2

x2
kd
− ln (16) ϵ

xkd

≥
1.545 + ln (2)

(
k−1
d

)
+ 4c2k

(
1− k

d ln (4)
)
− 4c2k−5

4x2
kd

− ϵ2

x2
kd
− ln (16) ϵ

xkd

=
1.545 + ln (2)

(
k−1
d

)
− 4c2k ln (4) k

d

4x2
kd

−
c2k−5

(
1− c5

)
x2
kd

− ϵ2

x2
kd
− ln (16) ϵ

xkd

[G.1] ≥
1.545 + ln (2)

(
k−1
d

)
− 4c2k ln (4) k

d

4x2
kd

− 5 ln (2) c2k−5

x2
kd

2
− ϵ2

x2
kd
− ln (16) ϵ

xkd
.

57



Focusing on the left nominator,945

1.545 + ln (2)

(
k − 1

d

)
− 4c2k ln (4)

k

d
= 1.545 + ln (2)︸ ︷︷ ︸

>0

(
1

d
(k − 1)− 8c2k

k

d

)

= 1.545 + ln (2)

((
1− 8c2k

) k
d
− 1

d

)
1.545− ln (2)

((
8c2k − 1

) k
d
+

1

d

)
= 1.545− ln (2)

((
8 · 4−

k
d − 1

)
k

d
+

1

d

)
.

To upper bound g (x) = 8x · 4−x (inside x ∈ [0, 1]), we show that946

0
!
= g′ (x) = 8 · 4−x − 8x ln (4) 4−x = 8 · 4−x (1− x ln (4)) ,

solved by x = 1
ln(4) , which falls inside x ∈ [0, 1], meaning it is a global optimum.947

The second derivative is948

g′′ (x) =
(
8 · 4−x − 8 ln (4) · 4−xx

)′
= −42−x ln (2)− 8 ln (4) · 4−x (1− x ln (4))

g′′
(

1

ln (4)

)
= −42−

1
ln(4) ln (2) = −16 ln (2)

e
< 0 ,

meaning that the x = 1
ln(4) is the global maximum. Also note:

(
4

1
ln 4

)ln 4

= 4⇒ 4
1

ln 4 = e949

So overall, we get,950

1.545 + ln (2)

(
k − 1

d

)
− 4c2k ln (4)

k

d
≥ 1.545− ln (2)

((
8 · 4−

k
d − 1

)
k

d
+

1

d

)
≥ 1.545− ln (2)

((
8 · 4− 1

ln 4 − 1
) 1

ln 4
+

1

d

)
= 1.545− ln (2)

d
− ln (2)

2 ln (2)

(
8

e
− 1

)
≥ 1.545− 0.972− 0.7

d

≥ 0.573− 0.7

d
.

Finally,951

b (k) +
0.3

c3d2
+

ϵ2

x2
kd

+
ln (16) ϵ

xkd
+

5 ln (2) c2k−5

x2
kd

2
≥

1.545 + ln (2)
(
k−1
d

)
− 4c2k ln (4) k

d

4x2
kd

≥
0.573− 0.7

d

4x2
kd

≥
0.14325

x2
kd

− 0.175

x2
kd

2
.

Going back to βk+1

(
ln(4)
d − βk

x2
k

)
, we have952

βk+1

(
ln (4)

d
− βk

x2
k

)
= βk+1b (k)

≥ βk+1

(
0.14325

x2
kd

−
(

0.3

c3d2
+

ϵ2

x2
kd

+
ϵ ln (16)

xkd
+

5 ln (2) c2k−5

x2
kd

2
+

0.175

x2
kd

2

))
[c < 1, k ≥ 2] ≥ βk+1

(
0.14325

x2
kd

−
(

0.3

c3d2
+

ϵ2

x2
kd

+
ϵ ln (16)

xkd
+

5 ln (2)

cx2
kd

2
+

0.175

x2
kd

2

))
= βk+1

(
0.14325

x2
kd

− 1

xk

(
0.3xk

c3d2
+

ϵ2

xkd
+

ϵ ln (16)

d
+

5 ln (2)

cxkd
2

+
0.175

xkd2

))
[0.45 ≤ xk ≤ 1] ≥ βk+1

(
0.14325

x2
kd

− 1

xk

(
0.3

c3d2
+

ϵ ln (16)

d
+

5 ln (2)

c · 0.45d2
+

0.175

0.45d2
+

ϵ2

0.45d

))
≥ βk+1

(
0.14325

x2
kd

− 1

xk

(
0.3

c3d2
+

2.78ϵ

d
+

7.71

cd2
+

0.39

d2
+

2.3ϵ2

d

))
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and since c = 2−1/d ≥ 0.9999,∀d ≥ 10,000, and plugging in ϵ = 170.4
d :953

βk+1

(
ln (4)

d
− βk

x2
k

)
≥ βk+1

(
0.14325

x2
kd

− 1

xk

(
0.3

0.99993d2
+

2.78 · 170.4
d2

+
7.71

0.9999d2
+

0.39

d2
+

2.3 · 170.42

d3

))
≥ βk+1

(
0.14325

x2
kd

− 1

xk

(
482.2

d2
+

66783.17

d3

))
(1)

≥ βk+1

(
0.14325

x2
kd

− 1

xk

(
488.88

d2

))
≥ βk+1

xkd

(
0.14325

xk
− 488.88

d

)
,

where (1) is since d ≥ 10,000. The inside of the parenthesis is positive ∀d ≥
⌈

488.88
0.14325

⌉
= 3413, so954

we can bound the expression by lower bounding βk+1

x2
k

.955

βk+1

(
ln (4)

d
− βk

x2
k

)
≥ βk+1

xkd

(
0.14325

xk
− 488.88
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0.14325

x2
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− 488.88

xkd

)
≥ c2k−3

(
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x2
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2
− 146.7
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)
.

And then,956

A1 (x) ≥ xt−1

(
1

xk

ck−3

√
d
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(
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d
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x2
k

)
− 11.84c3k−9

x3
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7/2
− 109c2k−9

x3
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9/2

)
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1
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√
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(
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2
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)
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)
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(
0.0429c3k−6
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)
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(
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− 146.7c3k−9
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)
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)
,

where (1) is since xk ≥ 0.45, ck ≥ cd = 0.5.957

958
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G.4 Conclusion959

We are reminded that we want to show positivity of ∆t,k ≜ ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 −960

∥wk−1 −wk∥ (wk −wk+1)
⊤
wt−1. Applying Proposition G.18, we show ∀k ≥ t:961

∆t,k = ∥wk −wk+1∥ (wk−1 −wk)
⊤
wt−1 − ∥wk−1 −wk∥ (wk −wk+1)

⊤
wt−1

≥ A1 (k) +A2 (k) +A3 (k)

− 1

d7/2

(
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xk
+ 113c7k−18

)
− 1
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x3
k

+ 614c6k−30

)
(1)

≥ A1 (k) +A2 (k) +A3 (k)

− 1
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≥ A1 (k) +A2 (k) +A3 (k)
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xk
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k
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)

(3)
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)
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)
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1
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≥ A1 (k) +A2 (k) +A3 (k)−
1

d7/2
(
213.34c6k−15 + 113.19c7k−18

)
,

where (1) is since c < 1, k ≥ 2; (2) is since 21/10000 ≤ 1.00007, c−k ≤ c−d = 2; (3) is since962

xk−1 ≥ 0.45; and (4) is since d ≥ 10,000. Plugging in the results of Propositions G.19, G.20 and963

G.21, we derive964

∆t,k = ∥wk −wk+1∥ (wk−1 −wk)
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(4)

≥ 0.0429c3k−6

x2
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d
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+

6.78ck+t−6
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kd
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(
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d

(
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+
14.88c3k−12

0.45
+

6.78ck+t−6
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+ 213.34c6k−15 + 113.19c7k−18

))
≥ 1

x2
kd

5/2

(
0.0429c3k−6 − 1

d

(
173.07c3k−9

+33.07c3k−12 + 33.49ck+t−6 + 213.34c6k−15 + 113.19c7k−18
))

=
c3k−6

x2
kd

5/2

(
0.0429− 1

d

(
173.07c−3

+33.07c−6 + 33.49c−2k+t + 213.34c3k−9 + 113.19c4k−12
))

(6)

≥ c3k−6

x2
kd

5/2

(
0.0429− 1

d

(
173.07c−3 + 33.07c−6 + 33.49c−2k + 213.34c−3 + 113.19c−4
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(7)

≥ c3k−6

x2
kd

5/2

(
0.0429− 1

d

(
173.07c−3 + 33.07c−6 + 33.49 · 4 + 213.34c−3 + 113.19c−4
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(8)

≥ c3k−6

x2
kd

5/2

(
0.0429− 1

d

(
173.07 · 0.9999−3

+33.07 · 0.9999−6 + 33.49 · 4 + 213.34 · 0.9999−3 + 113.19 · 0.9999−4
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965

⇒ ∆t,k ≥
c3k−6

x2
kd

5/2

(
0.0429− 666.82

d

)
, (7)

where (1) is since xt−1 > xk; (2) is since xt−1 ≤ 1; (3) is since d ≥ 10,000; (4) is since xk ≤ 1;966

(5) is since xk ≥ 0.45; (6) is since c < 1, k ≥ 2; (7) is since c−2k = 4k/d ≤ 4; and (8) is since967

d ≥ 10,000⇒ c ≥ 0.9999. And so, a sufficient condition for (wk−1−wk)
⊤wt−1

∥wk−1−wk∥ − (wk−wk+1)
⊤wt−1

∥wk−wk+1∥968

to be positive and monotonicity to hold, is that d ≥
⌈
666.82
0.0429

⌉
= 15,544 . Since this is smaller than969

25,000, this concludes our proof of positivity of ∆t,k.970
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H Approximation of greedy construction first iterate971

This section supplements App. G, we recommend reviewing it beforehand if you have not already972

done so.973

We prove the following lemma in this section:974

Lemma H.1. Given the series (x)k recursively defined by x1 = 1, xt =
xt−1+

√
x2
t−1−4βt

2 , ∀t ∈
{2, . . . , d} where c ≜ 2−1/d and βt ≜ ((t−1)c−(t−2))c2t−5

d , and the series x̃k =√
1− 1

ln 4 + 4−
k
d

(
1

ln 4 −
k
d

)
, we have ∀d ≥ 30, ∀k ∈ [d]:

|xk − x̃k| ≤
170.4

d
.

Before proving this lemma, we note the following will immediately hold:975

Corollary H.2. ∀d ≥ 25,000, ∀k ∈ [d]: xk ≥ 0.45.976

This is since xk is decreasing (Claim G.5), so ∀k ∈ [d]:977

xk ≥ xd ≥ x̃d −
170.4

d
=

√
1− 1

ln 4
+ 4−1

(
1

ln 4
− 1

)
− 170.4

d

[d ≥ 25,000] ≥ 0.45 .

This corollary is very useful for the proof in App. G.978

H.1 Proof outline979

Firstly, we show this holds numerically for 30 ≤ d < 100,000, as can be seen in Figure 19. We then980

prove analytically for d ≥ 100,000, using Euler’s method.981

Compute resources The numerical validation took 6 hours to run on a home PC with i5-9400F982

CPU and 16GB RAM.983

102 103 104 105

d

10 3

10 1

101

Di
st

an
ce

max
k [d]

|xk xk|
170.4 / d

(a) |xk − x̃k| ≤ 170.4
d

. This is a loose, analytically
derived upper bound.

102 103 104 105

d

3.50

3.75

4.00

4.25

m
ax

k
[d

]|x
k

x k
|

d

(b) Actual upper bound is < 4.5
d

Figure 19: Numerical proof of Lemma H.1 for d<100,000. Using the recursive definition of xk, we
calculated the series for each value of d, ∀k ∈ [d], and compared with x̃k.

H.1.1 Euler’s method construction984

Define985

f (τ, x) = d

√
x2 − 4β

(
τ + 1

d

)
− x

2
,

β (τ) =

(
(dτ − 1) 2−1/d − (dτ − 2)

)
2(5−2dτ)/d

d
.
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Then using step size of h = 1
d in Euler’s method we have the iterates986

xk+1 = xk + h · f (τk, xk) ,

τk+1 = τk + h ,

and thus987

xk+1 = xk +

√
x2
k − 4β

(
k+1
d

)
− xk

2
=

xk +
√
x2
k − 4βk+1

2
,

which are exactly the iterates we want to solve for.988

These are the Euler’s iterates for the differential equation989

x′ (τ) = f (τ, x (τ)) ,

x (0) = 1 .

While it’s hard to find an exact solution to this equation, we have managed (see Proposition H.17) to990

prove that for d ≥ 100,000:991

|x (τ)− x̃ (τ)| ≤ 38.9822

d
,

where we defined the function992

x̃ (τ) =

√
1− 1

ln 4
+ 4−τ

(
1

ln 4
− τ

)
,

such that x̃k = x̃
(
k
d

)
. We now proceed to bound the iterates using the global truncation error of993

Euler’s method.994 ∣∣∣∣xk − x

(
k

d

)∣∣∣∣ ≤ hM

2L

(
exp

(
L
(
k
d − 0

))
− 1
)
≤ M

2Ld

(
eL − 1

)
,

where995

L = max
x,τ∈[0,1]

∣∣∣∣ ddxf (τ, x)

∣∣∣∣ (where τ is treated as a constant) ,

M = max
τ∈[0,1]

∣∣∣∣ d2dτ2
x (τ)

∣∣∣∣ = ∣∣∣∣ ddτ f (τ, x (τ))

∣∣∣∣ .
For d ≥ 100,000 we have L ≤ 4.7955 from Proposition H.19, and Proposition H.20 gives M ≤996

10.5027.997

So in total998 ∣∣∣∣xk − x

(
k

d

)∣∣∣∣ ≤ 10.5027

2 · 4.7955d
·
(
e4.7955 − 1

)
≤ 131.3685

d
.

Now we combine this with the above and get999

|xk − x̃k| =
∣∣∣∣xk − x̃

(
k

d

)∣∣∣∣ = ∣∣∣∣xk − x

(
k

d

)
+ x

(
k

d

)
− x̃

(
k

d

)∣∣∣∣
≤
∣∣∣∣xk − x

(
k

d

)∣∣∣∣+ ∣∣∣∣x(k

d

)
− x̃

(
k

d

)∣∣∣∣
≤ 131.3685

d
+

38.9822

d
≤ 170.4

d
.
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H.2 Claims used to prove Lemma H.11000

Remark H.3. The solution to the ODE x (τ)x′ (τ) = −f (x) , x (0) = 1 is

x (τ) =

√
1− 2

∫ τ

0

f (s) ds.

Claim H.4. ∀0 ≤ a ≤M ≤ 1 : 1− 1−
√
1−M
M a ≤

√
1− a ≤ 1− a

2 .1001

Proof. The right side inequality is trivial:
(
1− a

2

)2
= 1− a+ a2

4 ≥ 1− a =
(√

1− a
)2

.1002

For the left side: denote f (a) =
√
1− a. f is concave: f ′ (a) = − 1

2
√
1−a

, f ′′ (a) =
−2

2
√

1−a

4(1−a) ≤ 0.1003

So we have ∀0 ≤ a ≤M ≤ 1:1004

√
1− a = f (a) ≥ (M − a) f (0) + af (M)

M

= 1− a

M
+

a

M

√
1−M = 1− 1−

√
1−M

M
a .

1005

Proposition H.5. Assuming ∀τ ∈ [0, 1] : 0 ≤ g(τ)
x2 ≤ 1, the solution of x (0) = 1, x′ (τ) =1006

d

√
x2−g(τ)−x

2 obeys1007

x (τ) ∈

√1− d

(
1−
√
1−M

)
M

∫ τ

0

g (s) ds,

√
1− d

2

∫ τ

0

g (s) ds


for M := maxs∈[0,1]

g(s)

x(s)2
.1008

Proof. If 0 ≤ g (0) ≤ 1, we know from continuity that g (τ) ≤ x2 (τ), at least until some τ = β > 0.1009

Note that the solution does not exist when g (τ) > x2 (τ). We only care about solutions that exist1010

until at least τ = 1, so we assume there exists 0 ≤M ≤ 1 such that ∀τ ∈ [0, 1] : 0 ≤ g(τ)
x2 ≤M ≤ 1.1011

From Claim H.4 we have:1012

1− 1−
√
1−M

M

g (τ)

x2
≤
√
1− g (τ)

x2
≤ 1− g (τ)

2x2(
1− 1−

√
1−M

M

g (τ)

x2

)
x ≤ x

√
1− g (τ)

x2
≤
(
1− g (τ)

2x2

)
x

x− 1−
√
1−M

M

g (τ)

x
≤
√
x2 − g (τ) ≤ x− g (τ)

2x

−1−
√
1−M

M

g (τ)

x
≤
√

x2 − g (τ)− x ≤ −g (τ)

2x

−d1−
√
1−M

2M

g (τ)

x
≤ d

√
x2 − g (τ)− x

2
≤ −dg (τ)

4x(√
1−M − 1

)
dg (τ)

2Mx (τ)
≤ x′ (τ) ≤ −dg (τ)

4x (τ)(√
1−M − 1

)
dg (τ)

2M
≤ x′ (τ)x (τ) ≤ −dg (τ)

4
.
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From Remark H.3, we know that the solution to the ODE x (τ)x′ (τ) = −f (x) , x (0) = 1 is1013

x (τ) =
√
1− 2

∫ τ

0
f (s) ds. substituting we get:1014 (√

1−M − 1
)
dg (τ)

2M
≤ −f (x) ≤ −dg (τ)

4∫ τ

0

(√
1−M − 1

)
dg (s)

2M
ds ≤ −

∫ τ

0

f (s) ds ≤
∫ τ

0

−dg (s)
4

ds√
1− 2

∫ τ

0

d

2

(
1−
√
1−M

)
M

g (s) ds ≤

√
1− 2

∫ τ

0

f (s) ds ≤

√
1− 2

∫ τ

0

d

4
g (s) ds .

From this follows:1015 √
1− 2

∫ τ

0

d

2

(
1−
√
1−M

)
M

g (s) ds ≤ x (τ) ≤

√
1− 2

∫ τ

0

d

4
g (s) ds√

1− d

(
1−
√
1−M

)
M

∫ τ

0

g (s) ds ≤ x (τ) ≤

√
1− d

2

∫ τ

0

g (s) ds .

1016

Claim H.6. f (d) ≜ −d
(
1− 2−1/d

)
is decreasing ∀d ≥ 1.1017

Proof. f ′ (d) = −
(
1− 2−1/d

)
− d

(
(−1) · 1

d2 ln 2 · 2−1/d
)
= −

(
1− 2−1/d

)
+ ln 2

d 2−1/d = −1−1018 (
1− ln 2

d

)
2−1/d < 0.1019

Claim H.7. ∀d ≥ 1 : d
(
21/d − 1

)
≥ ln 2.1020

Proof. Using Taylor’s expansion:1021

21/d = e
ln 2
d = 1 +

ln 2

d
+

∞∑
i=2

1

i!

(
ln 2

d

)i

⇒ d
(
21/d − 1

)
= ln 2 +

∞∑
i=2

1

i!

(ln 2)
i

di−1
≥ ln 2 .

1022

Claim H.8. −d
(
1− 2−1/d

)
≥ − ln 2 (alternatively: 2−1/d ≥ 1− ln 2

d ).1023

Proof. From Claim H.6 we know that −d
(
1− 2−1/d

)
is decreasing with d, so we have1024

−d
(
1− 2−1/d

)
≥ limd→∞−d

(
1− 2−1/d

)
:1025

lim
d→∞

−d
(
1− 2−1/d

)
= lim

h→0+

2−h − 1

h

= lim
h→0+

2−h − 20

h
.

We recognize this as the definition of the derivative of 2−x for x = 0+,so we have:1026

lim
d→∞

−d
(
1− 2−1/d

)
=

d (2−x)

dx

(
x = 0+

)
= − ln 2 · 20 = − ln 2 .

1027
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Claim H.9. β (τ) ≥ 0, decreasing and convex for τ ≤ 1
ln 2 .1028

Proof. Reminder that β (τ) =
((dτ−1)2−1/d−(dτ−2))2(5−2dτ)/d

d , and d ≥ 1.1029

Denote β (τ) = 1
df (τ) g (τ), where f (τ) = (dτ − 1) 2−1/d − (dτ − 2) and g (τ) = 2

5−2dτ
d .1030

We have ∀τ, g (τ) > 0.1031

Note that from Claim H.8 1− ln 2
d ≤ 2−1/d ≤ 1, so:1032

f (τ) = 2−1/ddτ − 2−1/d − dτ + 2

≥
(
1− ln 2

d

)
dτ − 1− dτ + 2

= −τ ln 2 + 1 ,

so f (τ) ≥ 0 for τ ≤ 1
ln 2 . Thus β (τ) ≥ 0 for τ ≤ 1

ln 2 . Now we note that f ′ (τ) = d
(
2−1/d − 1

)
<1033

0, ∀d ≥ 1, ∀τ and g′ (τ) = −2 ln 2 · 2 5−2dτ
d < 0, ∀d, ∀τ1034

So:1035

β′ (τ) =
1

d
(f ′ (τ) g (τ) + g′ (τ) f (τ)) < 0 ,

as long as g (τ) > 0 and f (τ) ≥ 0 - which we get for τ ≤ 1
ln 2 .1036

Now note f ′′ (τ) = 0 and g′′ (τ) = 4 ln2 2 · 2 5−2dτ
d > 0, so:1037

β′′ (τ) =
1

d
(f ′′ (τ) g (τ) + f ′ (τ) g′ (τ) + g′′ (τ) f (τ) + f ′ (τ) g′ (τ))

=
1

d
(2f ′ (τ) g′ (τ) + g′′ (τ) f (τ)) > 0 ,

as long as f (τ) ≥ 0 - which we get for τ ≤ 1
ln 2 .1038

Claim H.10. For x (τ), g (τ) = 4β
(
τ + 1

d

)
. We also have ∀d ≥ 3, maxs∈[0,1] g (s) = g (0) =1039

4 23/d

d .1040

Proof. Substituting x′ (τ) = d

√
x2−4β(τ+ 1

d )−x

2 in x′ (τ) = d

√
x2−g(τ)−x

2 we get g (τ) =1041

4β
(
τ + 1

d

)
.1042

For τ ∈ [0, 1] and d ≥ 3, τ + 1
d ≤

1
ln 2 . We get from Claim H.9 that β is decreasing, so:1043

max
s∈[0,1]

g (s) = g (0) = 4β

(
1

d

)
= 4

(
(1− 1) 2−1/d − (1− 2)

)
2(5−2)/d

d
= 4

23/d

d

1044
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Proposition H.11. For d ≥ 100,000 and τ ∈ [0, 1], 0 ≤ d
∫ τ

0
g (s) ds ≤ 1.5821.1045

Proof. For τ ∈ [0, 1] and d ≥ 3, τ + 1
d ≤

1
ln 2 . We get from Claim H.9 that β is positive and thus1046

d
∫ τ

0
g (s) ds = 4d

∫ τ

0
β
(
s+ 1

d

)
ds ≥ 0. For the right side inequality, we have:1047

d

∫ τ

0

g (s) ds = 4d

∫ τ

0

β

(
s+

1

d

)
ds

[β ≥ 0] ≤ 4d

∫ 1

0

β

(
s+

1

d

)
ds

= 4d

∫ 1

0

((
(ds+ 1− 1) 2−1/d − (ds+ 1− 2)

)
2(5−2ds−2)/d

d

)
ds

= 4

∫ 1

0

(
ds2−1/d − ds+ 1

)
23/d2−2sds

= 4 · 23/d
[∫ 1

0

2−2sds− d
(
1− 2−1/d

)∫ 1

0

s2−2sds

]
= 4 · 23/d

[[
−2−2s

ln 4

]∣∣∣∣1
0

− d
(
1− 2−1/d

) [
−2−2s (s ln 4 + 1)

ln2 4

]∣∣∣∣1
0

]

= 4 · 22/d
[
21/d

3

4 ln 4
− d

(
21/d − 1

)[4− (ln 4 + 1)

4 ln2 4

]]

From Claim H.7 we know that d
(
21/d − 1

)
≥ ln 2, so:1048

d

∫ τ

0

g (s) ds ≤ 4d

∫ 1

0

β

(
s+

1

d

)
ds ≤ 4 · 22/d

[
21/d

3

4 ln 4
− ln 2

[
3− ln 4

4 ln2 4

]]
[d ≥ 100,000] ≤ 4 · 22/100000

[
21/100000

3

4 ln 4
− ln 2

[
3− ln 4

4 ln2 4

]]
≤ 1.5821

1049

Claim H.12. 1−
√
1−x
x − 1

2 ≤
x
2 for x ∈ (0, 1]1050

Proof.

a (x) ≜
1−
√
1− x

x
=

1−
√
1− x

x

1 +
√
1− x

1 +
√
1− x

=
x

x
(
1 +
√
1− x

) =
1

1 +
√
1− x

.

This function is monotonically increasing and convex for x ∈ (0, 1]:1051

a′ (x) =

1
2
√
1−x(

1 +
√
1− x

)2 ,
a′′ (x) =

−1 ·
(
2 −1
2
√
1−x

(
1 +
√
1− x

)2
+ 2

(
1 +
√
1− x

) −1
2
√
1−x
· 2
√
1− x

)
4 (1− x)

(
1 +
√
1− x

)4
=

1√
1−x

(
1 +
√
1− x

)2
+ 2

(
1 +
√
1− x

)
4 (1− x)

(
1 +
√
1− x

)4 ≥ 0

Note that in x = 0 there is a removable discontinuity, and:1052

lim
x→0

1−
√
1− x

x
=

1

2
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So we have:1053

1−
√
1− x

x
= a (x) ≤ (1− x) a (0) + xa (1) = (1− x)

1

2
+ x =

1

2
+

1

2
x

=⇒ 2

(
1−
√
1− x

x
− 1

2

)
≤ x .

1054

Proposition H.13. For d ≥ 100,000, M ≜ maxs∈[0,1]
g(s)

x(s)2
≤ 19.158

d1055

Proof. We first note that the solution of x (0) = 1, x′ (τ) = d

√
x2−g(τ)−x

2 is decreasing from τ = 01056

and as long as g (τ) ≥ 0, which we know from Claim H.9 is the case for τ ∈ [0, 1] and d ≥ 3, since1057

τ + 1
d ≤

1
ln 2 . This means the minimum of x (τ) in [0, 1] is x (1). In addition, since we assume1058

g (τ) ≤ x2 (τ), and for τ ∈ [0, 1] we have g (τ) > 0, we know x (τ) > 0 there and thus the minimum1059

of x (τ)2 is also x (1)
2, and that x (1)2 ≤ x (0)

2
= 1.1060

So we know, applying Claim H.10:1061

M ≜ max
s∈[0,1]

g (s)

x (s)
2 ≤

maxs∈[0,1] g (s)

mins∈[0,1] x (s)
2 =

4 23/d

d

x (1)
2

From Proposition H.5 we know that:1062 √
1− d

(
1−
√
1−M

)
M

∫ 1

0

g (s) ds ≤ x (1)

Substituting and denoting A = d
∫ 1

0
g (s) ds we get:1063 √√√√√√√√1−

(
1−

√
1− 4 23/d

d

x(1)2

)
4 23/d

d

x(1)2

A ≤ x (1)

1−

(
1−

√
1− 4 23/d

d

x(1)2

)
4 23/d

d

x(1)2

A ≤ x (1)
2

4 23/d

d

x (1)
2 −A+A

√
1−

4 23/d

d

x (1)
2 ≤ 4

23/d

d

A

√
1−

4 23/d

d

x (1)
2 ≤ −4

23/d

d

(
1

x (1)
2 − 1

)
+A

For simplicity denote z = 1
x(1)2

, r = 4 23/d

d . We are reminded that z ≥ 1, and we are looking for an1064

upper bound for it, so we can have a lower bound for x (1)2. We have:1065

A2 (1− rz) ≤ (−r (z − 1) +A)
2
= r2 (z − 1)

2 − 2Ar (z − 1) +A2

−A2rz ≤ r2z2 − 2r2z + r2 − 2Arz + 2Ar

0 ≤ rz2 +
(
A2 − 2A− 2r

)
z + 2A+ r

Finding the roots:1066
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z1,2 =
2r +A (2−A)±

√
(2r +A (2−A))

2 − 4r (2A+ r)

2r

Since we are looking for an upper bound, we care about the smaller root:1067

z ≤
2r +A (2−A)−

√
4r2 + 4rA (2−A) +A2 (2−A)

2 − 8rA− 4r2

2r

=
2r +A (2−A)−

√
−4rA2 +A2 (2−A)

2

2r
=

2r +A (2−A)−A

√
(2−A)

2 − 4r

2r

= 1 +
A (2−A)

2r

(
1−

√
1− 4r

(2−A)
2

)

For d ≥ 100,000, 4r
(2−A)2

=
4·4 23/d

d

(2−A)2
≤ 4·4· 23/100000100000

(2−1.5821)2
≤ 10−3 < 1 , (we used Proposition H.11), so1068

we can apply Claim H.12:1069

z ≤ 1 +
A (2−A)

2r

(
4r

2 (2−A)
2

(
4r

(2−A)
2 + 1

))

= 1 +
A

(2−A)

(
4r

(2−A)
2 + 1

)
= 1 +

A

2−A
+

4Ar

(2−A)
3[

d ≥ 100,000⇒ r ≤ 4.1 · 10−5
]
≤ 1 +

A

2−A
+ 4 · 4.1 · 10−5 A

(2−A)
3

[A ≤ 1.5821, H.11] ≤ 1 +
1.5821

0.4179
+ 4 · 4.1 · 10−5 · 1.5821

0.41793
≤ 4.7894

So we have For d ≥ 100,000:1070

1

x (1)
2 ≤ 4.7894

=⇒M ≤ 4.7894 · 42
3/d

d
≤ 19.1576 · 2

3/100000

d
≤ 19.158

d
.

1071
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Proposition H.14. For d ≥ 100,000, we have
∣∣∣x (τ)−√1− d

2

∫ τ

0
g (s) ds

∣∣∣ ≤ 33.1539
d1072

Proof. Let’s denote A = d
∫ τ

0
g (s) ds. We know that1073 √

1−
(
1−
√
1−M

)
M

A ≤ x (τ) ≤
√

1− 1

2
A∣∣∣∣∣x (τ)−

√
1− 1

2
A

∣∣∣∣∣ ≤
√

1− 1

2
A−

√
1−

(
1−
√
1−M

)
M

A

≤
1− 1

2A− 1 +
(1−

√
1−M)
M A√

1− 1
2A+

√
1− (1−

√
1−M)
M A

≤

(
(1−

√
1−M)
M − 1

2

)
A√

1− 1
2A+

√
1− (1−

√
1−M)
M A

≤ A√
1− 1

2A

((
1−
√
1−M

)
M

− 1

2

)
.

From the last claim we have for d ≥ 100,000 that A ≤ 1.5821, then A√
1− 1

2A
≤ 1.5821√

1− 1.5821
2

≤ 3.4611.1074

We further know from Claim H.12 that 1−
√
1−x
x − 1

2 ≤
x
2 for x ∈ [0, 1].1075

So we have, applying Proposition H.13:1076 ∣∣∣∣∣x (τ)−
√

1− 1

2
A

∣∣∣∣∣ ≤ 3.4611
M

2
≤ 3.4611 · 19.158

2d
≤ 33.1539

d

1077

Claim H.15. ∀x ∈ [0, 1] : 2x ≤ 1 + x.1078

Proof. 2x is convex, so we get in [0, 1]:1079

2x ≤ (1− x) 20 + x21 = 1− x+ 2x = 1 + x .

1080

Proposition H.16. For d ≥ 100,000, We have
∣∣∣x̃ (τ)−√1− d

2

∫ τ

0
g (s) ds

∣∣∣ ≤ 5.8283
d .1081

Proof. We have1082

x̃ (τ) =

√
1− 1

ln 4
+ 4−τ

(
1

ln 4
− τ

)
Now1083

β (τ) =

(
(dτ − 1) 2−1/d − (dτ − 2)

)
2(5−2dτ)/d

d

g (τ) = 4β

(
τ +

1

d

)
= 4

(
dτ2−1/d − (dτ − 1)

)
2(3−2dτ)/d

d

Let’s define A (τ) = d
2

∫ τ

0
g (s) ds, B (τ) = 1

ln 4 − 4−τ
(

1
ln 4 − τ

)
1084
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We have A (0) = B (0) = 0. and A (τ)−B (τ) is non negative and increasing for τ ∈ [0, 1]:1085

d (A (τ)−B (τ))

dτ
=

d

2
g (τ)− 4−τ (2− τ ln 4)

=
d

2
4

(
dτ2−1/d − (dτ − 1)

)
2(3−2dτ)/d

d
− 4−τ (2− τ ln 4)

= 4−τ
(
2
(
23/d − 1

)
+ τ

(
ln 4− 2 · 23/dd

(
1− 2−1/d

)))
If we assume ln 4 ≥ 2 · 23/dd

(
1− 2−1/d

)
, then the derivative is in fact positive and we are done. If1086

we assume the opposite we have:1087

d (A (τ)−B (τ))

dτ
= 4−τ

(
2
(
23/d − 1

)
− τ

(
2 · 23/dd

(
1− 2−1/d

)
− ln 4

))
[τ ∈ [0, 1]] ≥ 4−τ

(
2
(
23/d − 1

)
−
(
2 · 23/dd

(
1− 2−1/d

)
− ln 4

))
= 4−τ

(
2 · 23/d

(
1− d

(
1− 2−1/d

))
− 2 + ln 4

)
[H.8] ≥ 4−τ

(
2 · 23/d (1− ln 2)− 2 + ln 4

)
≥ 4−τ (2 (1− ln 2)− 2 + ln 4)

= 4−τ (2− 2 ln 2− 2 + ln 4) = 0

This means that1088

0 ≤ A (τ)−B (τ) ≤ A (1)−B (1)

In Proposition H.11 we saw that:1089

d

∫ 1

0

g (s) ds ≤ 4 · 22/d
[
21/d

3

4 ln 4
− ln 2

[
3− ln 4

4 ln2 4

]]
⇒ A (1) ≤ 2 · 22/d

[
21/d

3

4 ln 4
− ln 2

[
3− ln 4

4 ln2 4

]]
[H.15, d ≥ 2, ln 4 = 2 ln 2] ≤ 2

(
1 +

2

d

)[
3
(
1 + 1

d

)
8 ln 2

− ln 2

[
3− ln 4

16 ln2 2

]]

= 2

(
1 +

2

d

)[
6 + 6

d

16 ln 2
− 3− ln 4

16 ln 2

]
=

(
1 +

2

d

)[
3 + 2 ln 2 + 6

d

8 ln 2

]
.

So:1090

A (1)−B (1) ≤
(
1 +

2

d

)[
3 + 2 ln 2 + 6

d

8 ln 2

]
−
(

1

ln 4
− 1

4

(
1

ln 4
− 1

))
=

(
1 +

2

d

)[
3 + 2 ln 2 + 6

d

8 ln 2

]
−
(

4

4 ln 4
− 1

4 ln 4
+

ln 4

4 ln 4

)
=

(
1 +

2

d

)[
3 + 2 ln 2 + 6

d

8 ln 2

]
− 3 + 2 ln 2

8 ln 2

=
6

d · 8 ln 2
+

2

d

[
3 + 2 ln 2 + 6

d

8 ln 2

]
[d ≥ 100,000] ≤ 2.6641

d

So we have:1091

0 ≤ A (τ)−B (τ) ≤ 2.6641

d
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Now note that1092

x̃ (τ)−

√
1− d

2

∫ τ

0

g (s) ds =
√
1−B (τ)−

√
1−A (τ) =

1−B (τ)− (1−A (τ))√
1−B (τ) +

√
1−A (τ)

=
A (τ)−B (τ)√

1−A (τ) +
√

1−B (τ)

Since 0 ≤ A (τ)−B (τ) we have x̃ (τ) ≥
√
1− d

2

∫ τ

0
g (s) ds.1093

Now note that1094 √
1−A (τ) +

√
1−B (τ) ≥

√
1−B (τ)

=

√
1− 1

ln 4
+ 4−τ

(
1

ln 4
− τ

)

≥

√
1− 1

ln 4
+ 4−1

(
1

ln 4
− 1

)
≥ 0.4571

So1095

0 ≤ x̃ (τ)−

√
1− d

2

∫ τ

0

g (s) ds ≤ 2.6641

0.4571d
≤ 5.8283

d

1096

Proposition H.17. For d ≥ 100,000, we have |x̃ (τ)− x (τ)| ≤ 38.9822
d .1097

Proof. From Proposition H.16 and Proposition H.14:1098

|x̃ (τ)− x (τ)| =

∣∣∣∣∣x̃ (τ)−
√
1− d

2

∫ τ

0

g (s) ds+

√
1− d

2

∫ τ

0

g (s) ds− x (τ)

∣∣∣∣∣
≤

∣∣∣∣∣x̃ (τ)−
√
1− d

2

∫ τ

0

g (s) ds

∣∣∣∣∣+
∣∣∣∣∣
√
1− d

2

∫ τ

0

g (s) ds− x (τ)

∣∣∣∣∣
≤ 5.8283

d
+

33.1539

d
=

38.9822

d

1099

Corollary H.18. For d ≥ 100,000, we have x (τ) ≥ 0.4567, ∀τ ∈ [0, 1].1100

Proof. Note that x̃ (τ) =
√

1− 1
ln 4 + 4−τ

(
1

ln 4 − τ
)

is decreasing for τ ∈ [0, 1] :1101

x̃′ (τ) =
−4−τ (2− τ ln 4)

2
√

1− 1
ln 4 + 4−τ

(
1

ln 4 − τ
) ≤ 0

So it is lowest at τ = 1. Combined with |x (τ)− x̃ (τ)| ≤ 38.9822
d , we get:1102

x ≥

√
1− 1

ln 4
+

1

4

(
1

ln 4
− 1

)
− 38.9822

d

≥ 0.4571− 38.9822

d

[d ≥ 100,000] ≥ 0.4571− 38.9822

100,000
≥ 0.4567

1103
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Proposition H.19. For d ≥ 100,000, L ≜ maxx,τ∈[0,1]

∣∣ d
dxf (τ, x)

∣∣ ≤ 4.7955.1104

Proof. L, the Lipschitz constant of f , is given by1105

L ≜ max
x,τ∈[0,1]

∣∣∣∣ ddxf (τ, x)

∣∣∣∣ .
We have:1106

d

dx
f (τ, x) =

d

dx

d
√

x2 − 4β
(
τ + 1

d

)
− x

2

 =
d

2

 x√
x2 − 4β

(
τ + 1

d

) − 1

 .

Assume that x ≥ xmin, τ ∈ [0, 1]. from d ≥ 3, τ + 1
d ≤

1
ln 2 . From Claim H.9, we get β

(
τ + 1

d

)
≥1107

0.This means that d
dxf (τ, x) ≥ 0. So1108

L = max
x,τ∈[0,1]

d

dx
f (τ, x) .

For any fixed x, the maximum β
(
τ + 1

d

)
will maximize L. From Claim H.9,we know that β is1109

decreasing with τ , so to maximize L, τ = 0. To maximize d
2

(
x√

x2−4β( 1
d )
− 1

)
, note that this1110

function is decreasing with respect to x:1111

d

dx

d
2

 x√
x2 − 4β

(
1
d

) − 1

 =
d

2


√
x2 − 4β

(
1
d

)
− x x√

x2−4β(τ+ 1
d )

x2 − 4β
(
1
d

)


=
d

2

x2 − 4β
(
1
d

)
− x2(

x2 − 4β
(
1
d

)) 3
2

 =
d

2

 −4β
(
1
d

)(
x2 − 4β

(
1
d

)) 3
2

 ≤ 0

So the optimal x, is xmin. So1112

L =
d

2

 xmin√
x2
min − 4β

(
1
d

) − 1


Now1113

4β

(
1

d

)
= 4

(
(1− 1) 2−1/d − (1− 2)

)
2(5−2)/d

d
= 4

23/d

d

And applying Corollary H.18 we get:1114

L ≤ d

2

 0.4567√
0.45672 − 4 23/d

d

− 1


[d ≥ 100,000] ≤ d

2

 0.4567√
0.45672 − 4 23/100000

d

− 1

 ≤ d

2

 0.4567√
0.45672 − 4.0001

d

− 1


≤ d

2

 1√
1− 19.1783

d

− 1

 =
d

2

 1√
1− 19.1783

d

− 1

 1√
1− 19.1783

d

+ 1

1√
1− 19.1783

d

+ 1

=
d

2

 1
1− 19.1783

d

− 1

1√
1− 19.1783

d

+ 1

 ≤ d

2

 19.1783
d

1− 19.1783
d

1 + 1

 =
19.1783

4

1

1− 19.1783
d

≤ 19.1783

4

1

1− 19.1783
100000

≤ 4.7955

1115
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Proposition H.20. From d ≥ 100,000, M ≜ maxτ∈[0,1]

∣∣∣ d2

dτ2x (τ)
∣∣∣ ≤ 10.50271116

Proof. M is defined as an upper bound on the second derivative (absolute value) of x (τ) in the1117

relevant interval:1118

M ≜ max
τ∈[0,1]

∣∣∣∣ d2dτ2
x (τ)

∣∣∣∣ = max
τ∈[0,1]

∣∣∣∣ ddτ f (τ, x (τ))

∣∣∣∣ .
We have:1119

d

dτ
f (τ, x (τ))

=
∂

∂τ

d
√
x2 − 4β

(
τ + 1

d

)
− x

2

+ x′ (τ)
∂

∂x

d
√
x2 − 4β

(
τ + 1

d

)
− x

2


=

∂

∂τ

d
√
x2 − 4β

(
τ + 1

d

)
− x

2

+ f (τ, x (τ))
∂

∂x

d
√

x2 − 4β
(
τ + 1

d

)
− x

2

 .

For the first term:1120

∂

∂τ

d
√
x2 − 4β

(
τ + 1

d

)
− x

2

 =
d

2

 −4

2
√
x2 − 4β

(
τ + 1

d

)
 ∂

∂τ
β

(
τ +

1

d

)

= − d√
x2 − 4β

(
τ + 1

d

) ∂

∂τ
β

(
τ +

1

d

)

From Claim H.9 we know β is positive and decreasing, so d√
x2−4β(τ+ 1

d )
is maximized at τ = 0; In1121

addition ∂
∂τ β

(
τ + 1

d

)
≤ 0, and thus the entire expression is non negative. We know β is convex,1122

so the absolute value of the negative ∂
∂τ β

(
τ + 1

d

)
is also maximized at τ = 0. All in all, the entire1123

expression is maximized at τ = 0, and is bounded by:1124

0 ≤− d√
x2 − 4β

(
1
d

) ∂

∂τ
β

(
τ +

1

d

)∣∣∣∣
τ=0

= − d√
x2 − 4β

(
1
d

) 1d (d(2−1/d − 1
)
2

5−2d(1/d)
d

−2 ln 2 · 2
5−2d(1/d)

d

(
(d (1/d)− 1) 2−1/d − (d (1/d)− 2)

))
=

23/d√
x2 − 4β

(
1
d

) (2 ln 2 + d
(
1− 2−1/d

))

=
22/d√

x2 − 4β
(
1
d

) (21/d · 2 ln 2− d
(
21/d − 1

))

[H.7] ≤ 22/d√
x2 − 4 23/d

d

(
21/d · 2 ln 2− ln 2

)

≤ 22/100000√
x2 − 4 23/100000

100000

(
21/100000 · 2 ln 2− ln 2

)
≤ 0.6932√

x2 − 4.1 · 10−5

[H.18] ≤ 0.6932√
0.45672 − 4.1 · 10−5

≤ 1.518
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Now from Proposition H.19, we have1125

0 ≤ d

dx

d
√
x2 − 4β

(
τ + 1

d

)
− x

2

 ≤ L = 4.7955

Now we need to bound f (τ, x (τ)).1126

f (τ, x) = d

√
x2 − 4β

(
τ + 1

d

)
− x

2

This is always negative.1127

From Claim H.9 we know β is positive and decreasing, so its maximum, which minimizes this and1128

thus maximizes its absolute value, is received at τ = 0.1129

We further know f (0, x) is increasing with x (see the beginning of the proof for Proposition H.19),1130

so its absolute value decreases with x.1131

So we have:1132

0 ≥ d

√
x2 − 4β

(
τ + 1

d

)
− x

2
≥ d

√
x2 − 4β

(
1
d

)
− x

2

[d ≥ 100,000⇒ x ≥ 0.4567] ≥ d

√
0.45672 − 4 23/d

d − 0.4567

2

≥ d

√
0.45672 − 4 23/100,000

d − 0.4567

2

≥ 0.4567

2

√
1− 19.1782

d − 1

1
d

= −0.4567

2
· 19.1782

1−
√
1− 19.1782

d

19.1782
d

[H.12] ≥ −0.4567

2
· 19.1782

(
1

2
+

19.1782

2d

)
[d ≥ 100,000] ≥ −0.4567

2
· 19.1782

(
1

2
+

19.1782

2 · 100000

)
≥ −2.1901

We get1133

−2.1901 ≤ f (τ, x) ≤ 0

So1134
d

dτ
f (τ, x (τ)) ∈ [0, 1.518] + [−2.1901, 0] · [0, 4.7955] ⊆ [−10.5027, 1.518]

So1135

M ≤ 10.5027 .

1136
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