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Abstract

Neural Ordinary Differential Equations (ODEs) was recently introduced as a new1

family of neural network models, which relies on black-box ODE solvers for in-2

ference and training. Some ODE solvers called adaptive can adapt their evalua-3

tion strategy depending on the complexity of the problem at hand, opening great4

perspectives in machine learning. However, this paper describes a simple set of5

experiments to show why adaptive solvers cannot be seamlessly leveraged as a6

black-box for dynamical systems modelling. By taking the Lorenz’63 system as7

a showcase, we show that a naive application of the Fehlberg’s method does not8

yield the expected results. Moreover, a simple workaround is proposed that as-9

sumes a tighter interaction between the solver and the training strategy.10

1 Introduction11

A recent line of work has explored the interpretation of residual neural networks [9] as a parameter12

estimation problem of nonlinear dynamical systems [8, 4, 12]. Reconsidering this architecture as an13

Euler discretization of a continuous system yields to the trend around Neural Ordinary Differential14

Equation [2]. This new perspective on deep learning holds the promise to leverage the decades15

of research on numerical methods. This can have many benefits such as parameter efficiency and16

accurate time-series modeling, among others.17

Numerical solvers for ODE act as a bridge between the continuous time dynamical system and its18

discrete counterpart that builds the deep neural network. As introduced by [2], modern ODE solvers19

can provide important guarantees about the approximation error while adapting their step size used20

for integration. Therefore the cost of evaluating a model scales with problem complexity, in theory at21

least. This paper address this question empirically using the Lorenz’63 system described in section 222

as a testbed for dynamical systems modelling. Our neural ODE framework relies on Fehlberg’s23

integration method which proposes a strategy of step-size adaptation as summarized in 2.2. A first24

round of experiments is reported in 3 to assess how this adaptive method impacts the inference of the25

model and the training process. We show empirically that the adaptive startegy is in fact ignored.26

In section 4, a simple solution, called Fehlberg’s training, is introduced that requires to open the27

black-box of the solver for a tighter interaction with the training process1.28

2 Neural ODE applied to the Lorenz’6329

To empirically analyse how an adaptive solver interacts with the training procedure of a neural ODE30

model, we consider the Lorenz’63 system [11]. This “butterfly” attractor was originally introduced31

1The codes for data and models will be available after the review process.
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to mimic the thermal convection in the atmosphere, but nowadays this chaotic system is broadly32

used as a benchmark for time series modeling. See for instance [13, 1, 7, 3, 6] just to name a few33

recent work. Consider a point x ∈ R3 with its three coordinates x1, x2, x3. The Lorenz’63 system34

consists of three coupled nonlinear ODEs:35

ẋ1 =
dx1

dt
= σ(x2 − x1), ẋ2 = x1(ρ− x3)− x1, ẋ3 = x1x2 − βx3. (1)

In this work we consider the standard setting (β = 8/3, σ = 10, ρ = 28), such that the solution36

exhibits a chaotic regime. The datasets generation uses the explicit Runge-Kutta (RK) method of37

order 5(4) with the Dormand-Prince step-size adaptation in order to get an accurate integration.38

2.1 Neural ODE model39

The goal is to learn a generative model of this attractor, given a training set D = (x̃i)
N
i=1 made of N40

examples. For time series modelling, recurrent architectures [13, 3] or physically inspired models [7]41

are often considered with success. However, the system understudy derives from an ODE and Neural42

ODE is also a well suited framework to consider. The main idea is to learn the dynamics underlying43

the generation of D. The neural network aims at learning ẋ = fθ(x), where fθ is an arbitrary44

architecture defined by its set of parameters θ. Inference with Neural ODE thus requires a numerical45

solver denoted by ODE Solve to compute the output. In our case, we consider the prediction task46

of the point xi at time i, given the previous training point x̃i−1, such that xi = ODE Solve(fθ, x̃i).47

The model is learnt by minimizing the Mean-Squared-Error: L(θ,D) =
∑N

i=1 ||x̃i − xi||2.48

An advantage of Neural ODE is the choice of the solver and especially the possibilty to adapt the49

step size depending on the problem complexity. In this paper, we focus on the Fehlberg’s 3(2)250

method [5], for its simplicity of exposition, since our goal is to analyse how the interaction between51

the solver and the training process.52

2.2 Fehlberg’s method under the hood53

In general, variable step size methods all rely on the same idea: for an inference step, try two54

different algorithms, giving two different hypotheses called A1 and A2. The two algorithms are55

chosen so that: i) the difference A2 −A1 provides an approximate of the local truncation error; and56

ii) both algorithms use at most the same evaluations of fθ to limit the computational cost. In our57

case, the method requires three evaluations 3 of fθ defined as follows for the step size denoted by h:58

f1 = fθ(xi), f2 = fθ(xi + hf1), f3 = fθ(xi +
h

4
[f1 + f2])

With these three evaluations, two approximations for the next point can be derived:59

A1 = xi +
h

2
[f1 + f2] (RK2 method), and A2 = xi +

h

6
[f1 + f2 + 4f3] (RK3). (2)

Considering the property of these two algorithms, we can estimate the following error rate:60

r =
|A1 −A2|

h
≈ Kh2 (3)

If this error rate exceeds a choosen tolerance ϵ, the hypothesis A2 is rejected and we need to restart61

the computation with a new step size: h′ = S×h
√
ϵ/r, with S a safety factor. The initial time step62

is h = 1, and we use the default value: S = 0.9 and ϵ = 0.1. This strategy allows the model to63

increase the number of integration steps4 when predicting the next point xi+1 to adapt the expected64

precision given r.65

3 First round of experiments66

For the first set of experiments, a simple ODE model is trained with L-BFGS [10] wrapped in the67

Fehlberg’s method. The neural network fθ is a simple feed-forward architecture with two hidden68

2The Runge-Kutta method of order 3 (RK3) along with second order version for the error control.
3In general, evaluations f1, f2f3 are respectively associated to the time ti, ti+h, ti+h/2. In our case, the

function fθ is time invariant and ti = i.
4In practice, 1/h′ is rounded up to determine the number of steps.
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Figure 1: The trajectories predicted after a regular training, using the Fehlberg’s solver as a black
box. Each figure depicts a different time slice of the generated trajector and of the original training
data: from 0 to 600, 600 to 1200 and 2000 to 2600.

layer of size 50 and ReLu activation. The trained model is then used to generate data, starting from69

the same initial condition and the figure 1 shows the results obtained for different time windows.70

This task differs from the training phase, and we can see that the model fails to accurately reproduce71

the trajectory of the original dynamical system. Especially the beginning of the trajectory greatly72

differs. The combination of the cumulated truncation errors with the chaoticity of the Lorenz’6373

leads to too challenging generation task while the model can capture some important features like74

the “butterfly” aspect. The same trend is observed on the development set.75
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Figure 2: Time evolution of (from left to right and top to bottom): the MSE, the evolution of x1, the
MSE w.r.t the true ODE of Lorenz’63, and the number of steps.

This disappointing performance can be explain by the figure 2 which represents the time evolution of76

different quantities of interest. The evolution of the MSE highlights its limitation to evaluate choatic77

system modelling: errors on the first points are small in terms of MSE, while inducing an important78

time distorsion later. This can be observed by comparing the trajectories of the first component x1.79

Since we have access to the physical system, we can measure another MSE by comparing each point80

xi generated by the model, with what would be generated by the Lorenz ODE of equation 1 from the81

previous predicted point or x∗
i = Lorenz(xi−1). This quantity is the third time serie represented in82

figure 2 and provides a different insight on the performance. More importantly, the last plot monitors83

the number of integration steps for each prediction. In most of the case, this number is stuck to 1,84

showing a very limited usage of the step size adaption.85

To further understand this fact, we investigate what happens during the training process by monitor-86

ing three different quantities measured after each epoch and represented in figure 3. The first column87

corresponds to the standard training method which considers the adaptive solver as a black-box as88

described in the seminal paper [2]. We can observe from the second row that the Fehlberg’s method89

accepts the vast majority of the RK3 prediction with one step, without resorting to an adaptive step90

size. Moreover, the step size is just slightly increased for a handful of training examples (see the91

third row). We can conclude that the adaptive step size is not harnessed by the Neural ODE model.92

In fact, the model is randomly initialized with values around zeros, and the error estimation in equa-93

tion 3 falls under ϵ in most of the case, and whatever the input of the model is. A first workaround94
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would be to explore a tailored initialization scheme, with the goal of increasing this initial estimate.95

Another workaround consists in lowering the tolerance factor ϵ to let the Felhberg’s method reject96

more hypotheses and therefore adapt the step size more frequently. However, this introduces a new97

hyperparameter to tune5.98

4 Felhberg training99
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Figure 3: Time evolution for two training conditions of: the MSE loss; the percentage of accepted
hypotheses A2; the new number of steps for the rejected hypotheses (before rounding).

In this paper, we propose another solution which modifies the training procedure. The idea derives100

from the Fehlberg’s method by simply changing how the local truncation error is estimated. Let101

us consider equation 2 defining the error rate. When predicting the value xi from x̃i−1, we can102

use directly the target value x̃i, which is available during training, instead of the raw estimate A1103

given by the Heun’s method (aka RK2). The basic hypothesis A2 is still obtained with one step104

of RK3. Given this modified error rate, the step-size adaptation remains unchanged. This new105

method greatly impacts the training process. On the second column of the figure 3, we observe a106

very different trend: the proportion of accepted hypotheses starts at 0 and progressively increases to107

reach approximatively 98%. For the rejected hypotheses, the new number of steps (before rounding)108

starts at the high value of 7 and affects all the training examples: after the random initialization of109

fθ, all the training examples are considered as difficult, while the high number of steps multiplies110

the amount of updates for θ. Then the number of steps smoothly decreases to converge to a value111

just under 2 and affects about 2% of the training points. We can conclude that the new training112

scheme allows the Neural ODE model to really leverage the adaptive step size strategy. Of course it113

requires to interact with the adaptive solver, but without adding new hyperparameters or trade-offs.114

See Appendix C for more figures and comparisons.115

5 Conclusion116

In this experimental paper, we investigated how the numerical solver interacts with the training117

process of a neural ODE model. We focused our work on a solver able to adapt its step size. With118

a simple experimental setup, the results showed that using a solver as black box drastically hinders119

the promise of the adaptive strategy for the step size. This is a real issue to model more complex120

dynamical systems. We proposed a simple yet efficient solution that requires a tighter interaction121

between the solver and the training process. With our results, it will be possible to tackle more122

challenging tasks and while we focused on generative models for time series forecasting, it could be123

useful to extend our approach to classification tasks.124

5Additional experiments in Appendix B show the limits of this remedy.
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A Experimental setup156

For the experiments reported in the paper, two datasets were generated, one for training and one for157

testing. Each of them consists in a trajectory of 5000 points.158

A.1 Optimization159

The training process is carried out in batch mode with the L-BFGS optimizer with the default setting:160

• The initial learning rate is set by default to 1. However, L-BFGS quickly reconsider this161

value through many function evaluation.162

• The number of iterations per optimization step is set to 20. It means that one epoch of the163

batch training is not comparable with other optimization algorithms like SGD or ADAM.164

• The number of function evaluations per optimization step is 25, and the tolerance factors165

are set to 10−5 for the gradient, and 10−9 for the tolerance on function value changes.166

• The history size is limited to 100 and the optimizer uses a line search (see [10]).167

For the Fehlberg’s method, we use our own implementation without using the adjoint method.168

A.2 Batch training169

With Neural ODE, fθ reprents the elementary block. The inference step consists bulding on the170

fly the whole network, depending on how the solver proceeds to predict the output. For instance,171

with the Euler method, the whole network is very similar to the ResNet architecture [9, 8, 12].172

With the Fehlberg’s method, the step size is adapted for each training example, meaning that the173

whole network (and its computational graph) is different. This is an obstacle for mini-batch or batch174

training. However, online training drastically increase the computational time. As a trade-off, we175

propose the following procedure for each (mini) batch:176

• Compute A1, A2, and r177

• For the “accepted” subpart, such as r < ϵ, return A2178

• For the remaining part, compute the new step size h′ for each training example and keep179

the minimum value, clipping the value at 1/10, which correponds to 10 steps of integration.180

Recompute A2 with this value.181

With this procedure, we can therefore benefit from batch training and the choice of the minimum182

value is a way to promote small step size.183

B Impact of ϵ184

The threshold ϵ introduced in section 3 can mitigate the number of accepted and rejected hypotheses185

during the Fehlberg’s integration. To increase the number of rejected hypotheses, we can try to186

lower ϵ. To see how this hyperparameter can impact the learning process, we train the same model187

with different values of ϵ. In the main part of the paper, the first column of figure 3 shows how the188

regular training evolves with ϵ = 0.1 (the default value). Let us consider lower values starting with189

ϵ = 0.05 in figure 4. In this case, it does not really promote the step size adaptation. If we lower ϵ190

to 0.01 as shown on the right side of figure 4, the number of accepted hypoteses per epoch decrease191

around 90%, while the number of steps is rounded up 4 for the rejected hypothese.192

It is worth noticing that the x-axis is twice wider. The training process is longer, in terms of number193

of epochs, and the computation time is also augmented since 90% of the training points requires194

4 integration steps. However, if we look at the generation abilities, the results are really better as195

shown in figure 5: the generation still fails to mimic the original Lorenz for the starting points, but196

after the generation is really similar to the original one.197
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Figure 4: Time evolution for regular training with ϵ = 0.05 on the left, and ϵ = 0.01 on the right, for:
the MSE loss; the percentage of accepted hypotheses A2; the new number of steps for the rejected
hypotheses (before rounding).
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Figure 5: The trajectories predicted after a regular training with ϵ = 0.01, using the Fehlberg’s
solver as a black box. Each figure depicts a different time slice of the generated trajector and of the
original training data: from 0 to 600, 600 to 1200 and 2000 to 2600.

C Additional figures for Fehlberg’s training198

To complement the comparison of the baseline training and the Fehlberg’s training (see respectively199

section 3 and 4), additional figures are provided here.200
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Figure 6: The trajectories predicted after the Fehlberg training.
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Figure 7: On the first row: the 20 first time steps of generation for the baseline and Fehlberg’s
training vs the real data points. Then on the second row, the same predicted points vs the points
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