
Under review as a conference paper at ICLR 2021

MORE SIDE INFORMATION, BETTER PRUNING:
SHARED-LABEL CLASSIFICATION AS A CASE STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning of neural networks, also known as compression or sparsification, is the task
of converting a given network, which may be too expensive to use (in prediction)
on low resource platforms, with another ’lean’ network which performs almost as
well as the original one, while using considerably fewer resources. By turning the
compression ratio knob, the practitioner can trade off the information gain versus
the necessary computational resources, where information gain is a measure of
reduction of uncertainty in the prediction.
In certain cases, however, the practitioner may readily possess some information on
the prediction from other sources. The main question we study here is, whether it
is possible to take advantage of the additional side information, in order to further
reduce the computational resources, in tandem with the pruning process?
Motivated by a real-world application, we distill the following elegantly stated
problem. We are given a multi-class prediction problem, combined with a (possibly
pre-trained) network architecture for solving it on a given instance distribution, and
also a method for pruning the network to allow trading off prediction speed with
accuracy. We assume the network and the pruning methods are state-of-the-art, and
it is not our goal here to improve them. However, instead of being asked to predict
a single drawn instance x, we are being asked to predict the label of an n-tuple of
instances (x1, . . . xn), with the additional side information of all tuple instances
share the same label. The shared label distribution is identical to the distribution
on which the network was trained.
One trivial way to do this is by obtaining individual raw predictions for each of the
n instances (separately), using our given network, pruned for a desired accuracy,
then taking the average to obtain a single more accurate prediction. This is simple
to implement but intuitively sub-optimal, because the n independent instantiations
of the network do not share any information, and would probably waste resources
on overlapping computation.
We propose various methods for performing this task, and compare them using
extensive experiments on public benchmark data sets for image classification. Our
comparison is based on measures of relative information (RI) and n-accuracy,
which we define. Interestingly, we empirically find that i) sharing information
between the n independently computed hidden representations of x1, .., xn, using
an LSTM based gadget, performs best, among all methods we experiment with, ii)
for all methods studied, we exhibit a sweet spot phenomenon, which sheds light on
the compression-information trade-off and may assist a practitioner to choose the
desired compression ratio.

1 INTRODUCTION

Pruning Neural networks, the task of compressing a network by removing parameters, has been an
important subject both for practical deployment and theoretical research. Some pruning algorithms
have focused on manipulating pre-trained models, (Mozer & Smolensky, 1989; LeCun et al., 1990;
Reed, 1993; Han et al., 2015) while recent work have identified that there exist sparse subnetwork
(also called winning tickets) in randomly-initialized neural networks that, when trained in isolation,
can match and often even surpass the test accuracy of the original network (Frankle & Carbin, 2019;

1

Under review as a conference paper at ICLR 2021

Frankle et al., 2020). There is a vast literature on network pruning, and we refer the reader to Blalock
et al. (2020); Sze et al. (2017); Reed (1993) for an excellent survey. In this work, we adopt the
pruning methods of Tanaka et al. (2020); Lee et al. (2019); Wang et al. (2020); Han et al. (2015)
which have been influential in our experiments.

More crucially, most literature on pruning has been focused on designing a machine that converts
a fixed deep learning solution to a prediction problem, to a more efficient version thereof. The
pruning machine has a compression knob which trades off the level of pruning with accuracy of
the prediction. The more resources we are willing to expend in prediction (measured here using
floating-point operations (FLOPs)), the more information we can obtain, where information here is
measured as prediction accuracy, or as reduction of uncertainty (defined below).

We now ask what happens when we want to prune a network, but also possess information on the
prediction coming from another source. Intuitively, given some form of additional side information,
we should be able to prune our network with a higher compression ratio to reach the same level of
accuracy for the prediction task, compared with a scenario with no additional side information. But
how can we take the side information into account when pruning?

1.1 MOTIVATION

This question was motivated by an actual real-life scenario. We describe the scenario in detail,
although the actual problem we thoroughly study in what follows is much simpler.

Imagine a database retrieval system with a static space of objects X . Given a query object q, the goal
is to return an object x from X that maximizes a ground-truth retrieval value function fq(x). We
have access to a function f̃q(x) expressed as a deep network, which approximates fq , and was trained
using samples thereof. The function f̃q is very expensive to compute. (Note that we keep q fixed
here, as part of the definition of fq(·), although in an actual setting both q and x would be input to a
bivariate retrieval function f̃ .) Computing f̃q(x) for all x ∈ X is infeasible. One way to circumvent

this is by computing a less accurate, but efficient function ˜̃
fq(·), defined by the network resulting

in a pruning of the network defining f̃q. Then compute ˜̃
fq(·) on all x ∈ X to obtain a shortlist

of candidates X ′, and then compute f̃q(x) on x ∈ X ′ only. This idea can also be bootstrapped,

using rougher, more aggresively pruned estimates
˜̃̃
fq, f̃

(4)
q , f̃

(5)
q ... and increasingly shorter shortlist.

However, an important point is ignored in this approach: The space X is structured, and we expect
there to be prior connections between its elements. This is the side information. Such connections
can be encoded, for example, as a similarity graph over X where it is expected that fq(x1) is close
to fq(x2) whenever there is an edge between x1, x2. There is much work on deep networks over
graphs (Zhou et al., 2018; Kipf & Welling, 2017; Wu et al., 2020). But how can the extra information,
encoded as a graph, be used in conjunction with the pruning process?

Let us simplify the information retrieval scenario. First, assume that we are in a classification and
not in a regression scenario, so that fq(x) can take a finite set of discrete values, and f̃q(x) returns a
vector of logits, one coordinate per class. Second, assume the side information on X is a partitioning
of X into cliques, or clusters X1...Xk where on each clique the value of fq(·) is fixed, and written as
fq(Xi), i = 1..k. Now the problem becomes that of estimating the fq(Xi)’s using n random samples
xi1...xin ∈ Xi, i = 1..k. 1

Fixing the cluster Xi, one obvious thing to do in order to estimate fq(Xi) is to take an average of
the logit vectors f̃q(xi1)...f̃q(xin), where f̃q is some fixed (possibly pruned) network, and use the
argmax coordinate as prediction. Assuming each pruned network f̃q outputs a prediction vector
with a certain level of uncertainty, the averaged vector should have lower uncertainty, and this can be
quantified using simple probabilistic arguments. This will henceforth be called the baseline method.
Intuitively the baseline method, though easy to do using out-of-the-box pruning libraries, cannot
possibly be optimal given the side information of same label across Xi. Indeed, the baseline method
feeds all the examples xi1...xin independently through separate instantiations of f̃q, and nothing

1Continuing the retrieval story , the practitioner would now find the Xi that maximizes fq , and then further
focus the search in that cluster.

2

Under review as a conference paper at ICLR 2021

prevents the different instantiations to learn overlapping pieces of information. Hence it makes
sense to somehow interconnect these networks as a meta-network, and possibly do the pruning on
the meta-network. In this work, we experiment with several methods for performing this task, and
compare our results with the baseline.

1.2 THE SHARED-LABEL PREDICTION PROBLEM

We depart from the original motivating information retrieval scenario, and henceforth consider a
simpler, toy problem which we call the shared-label prediction problem. We are given an underlying
space of instances X and an unknown ground truth labelling function f : X 7→ Y for some discrete
set Y of labels. The goal is to train a classifier that, given a random n-tuple of instances x1...xn ∈ Xn

sharing the same unknown label y (so that f(x1) = · · · = f(xm) = y), outputs a prediction of y.
This is the shared prediction problem.

Our work is empirical, and the goal is to develop general methods for the shared prediction problem,
given a base network, designed for the standard (non-shared) prediction problem, and a base pruning
method, we ask: How do we reuse and rewire these readily available tools to effectively solve the
shared-label prediction problem on tuples of n-instances?

2 OUR CONTRIBUTION

Below in Section 2.1 we present four methods. Each method uses a baseline CNN model, together with
a pruning method with a compression ratio knob ρ, and creates a meta-network that is parameterized
by the information size n and by ρ, designed to solve the shared classification problem. To measure
our success, we will both use a measure of accuracy as well as a measure of relative information
which we define below. We will compute these measures extensively over a grid of possible pairs
(n, ρ), for each method. Visualization of the results highlights an interesting invariant that is worth
studying.

Intuitively, the measure of relative information tells us how efficiently each method uses its computa-
tional resource, without wasting time on computing the same pieces of information over and over
on the n-tuple of instances. Therefore, it allows us to obtain a quantitative comparison between the
methods. To define the measure, we first recall some information theory.

Given a random variable Y over a discrete space, the Shannon entropy, or uncertainty of Y is
H[Y] = −

∑
Pr[Y = y] log Pr[Y = y], where the sum ranges over possible values of Y . In our

case, we will use H(Y) to measure the uncertainty in the label of a randomly drawn instance, which
is also the uncertainty in the label of a randomly drawn n-tuple in the shared label setting.

Given a random variable Ỹ (an estimate of Y), the information gain measures the difference between
the entropy of Y and the expectation with respect to Ỹ of H(Y |Ỹ). More precisely, IG(Y ; Ỹ) =

H(Y) − EỸ

[
−
∑

y Pr[Y = y|Ỹ] log Pr[Y = y|Ỹ]
]
. Note that information gain is symmetrical,

that is IG(Ỹ ;Y) = IG(Y ; Ỹ). Therefore it is also called mutual information and denoted I(Ỹ ;Y).
In our setting, Ỹ will be an estimator of Y obtained using the output of the network on an n-tuple of
instances in the shared label setting, and I(Ỹ ;Y) will measure the expected amount of information
we learn about Y using the network output on that tuple. For a given network, we will be computing
IG(Ỹ ;Y) empirically in what follows, by taking Ỹ to be the prediction obtained by selecting the
argmax coordinate (logit) of the output of a network.

Given a method for the shared-label scenario, we define the relative information (RI) to be

RI(Ỹ,Y,n, ρ) =
IG(Ỹ ;Y)

n/ρ
.

In words, this is a measure of information that the network learns, per computational cost. The
denominator n/ρ is a reasonable measure of computational cost for the methods we study, because
for these methods, the amount of computational effort we expend for shared label instance x1...xn

3

Under review as a conference paper at ICLR 2021

is proportional to n, and inverse proportional to the compression ratio ρ. We believe it is also a
reasonable measure of computational cost for other natural methods.

For all methods we study, fixing the information size n, our experiments suggest that there exists
a sweet spot phenomenon, or a "compression threshold" in the sense that RI, as a function of ρ,
has a global maximum ρ∗. If the compression ratio ρ is smaller than ρ∗, than we are at the under-
compressed regime, where we can still save computational resources without relatively deteriorating
the results, or the information, to a large extent. On the other side, if the compression ratio ρ is bigger
than ρ∗, than we are at the over-compressed regime, where we can gain a lot more information, by
using a relatively mere amount of computational resources. We believe that a better understanding of
this phenomenon can shed light on the interaction between different compression ratios, information
sizes, and the information gains achieved by the methods (which is equivalent to test performances,
as our experiments show). We show that the above is a robust phenomenon that occurs in a variety of
settings.

2.1 OUR METHODS

1. Baseline method (Section 4.1) - Use a fixed model, with a fixed pruning method. For
prediction, run the pruned model on the n instances x1...xn, and use the average of the
corresponding logit vectors for the shared prediction.

2. Balanced method (Section 4.2) - The same as the baseline method, except that the training
set is organized such that each batch of images consists of k random n-tuples, such that
instances of each n-tuple share the same unknown label y. The model is trained using the
balanced loss, which is a convex combination of a loss defined for n-tuples, and the standard
loss on the individual instances.

3. Graph method (Section 4.3) - Inspired by work on Graph neural networks (GNNs), we
propose an architecture consisting of n duplicates of a base CNN, with information passage
between neurons of the different copies of the CNN. The training set is organized in the
same way as in the balanced method.

4. Unified CNN-LSTM method (Section 4.4) - We propose a model that combines a truncated
version of a base CNN, giving a latent representation of the inputs, and then connecting
the n representations to each other, sequentially, using LSTM (Long Short-Term Memory)
gadgets. Intuitively, this architecture uses information learned from instances x1...xi−1,
encoded inside the LSTM, to assist in predicting xi for i = 2, . . . n. The training set is
organized in the same way as in the balanced method.

In Section 5.1 we validate the above sweet spot phenomenon under a variety of benchmark datasets,
architectures, compression ratios and information lengths. We report the results of the baseline
method for its simplicity (the same results hold for all other shared-label prediction methods as well).

In Section 5.2 we compare the differences between the baseline methods and the balanced method
both qualitatively and quantitatively.

In Section 5.3 we compare all the proposed methods for shared-label prediction across different
benchmark data sets for image classification and different evaluation metrics. The proposed unified
CNN-LSTM method achieves significantly better performance compared to the other methods.

3 RELATED WORK

There is a variety of approaches to compressing neural networks, such as neural network pruning
(Mozer & Smolensky, 1989; LeCun et al., 1990; Sze et al., 2017; Reed, 1993; Han et al., 2015;
Blalock et al., 2020; Frankle & Carbin, 2019; Frankle et al., 2020), training of dynamic sparse
networks (Bellec et al., 2018; Mocanu et al., 2018) dimensionality reduction of network parameters
(Jaderberg et al., 2014; Novikov et al., 2015), and many more. Nonetheless, these results do not
mention how the new compressed, efficient network, benefit from additional side information.

Moreover, there is much work on the "double-descent" phenomenon (Belkin et al., 2019; Advani
& Saxe, 2017; Geiger et al., 2019). In a work by Nakkiran et al. (2020), it is shown that a variety
of modern deep learning tasks exhibit a "double-descent", and that it occurs not just as a function

4

Under review as a conference paper at ICLR 2021

of model size. Therefore, it is an interesting question to ask whether this also occurs in the case of
relative information, and our experimental results validate that this is not the case.

The concept of graph neural network (GNN) was first proposed by Scarselli et al. (2009), who
extended existing neural networks for processing the data represented in graph domains graph papers.
The first motivation of GNNs roots in convolutional neural networks (CNNs) (Lecun et al., 1998).
Recent works on GNNs (Zhou et al., 2018; Kipf & Welling, 2017; Wu et al., 2020) inspired us to
extend this idea as one of our methods for the task of shared-label prediction.

Lastly, RNNs are interesting for our purposes because they equip neural networks with memory, and
the introduction of gating units such as LSTM and GRU (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014) has greatly helped in making the learning of these networks manageable. The LSTM
based architecture has yielded the most promising results throughout our experiments.

4 OUR METHODS

In order to describe our four methods in details, we will need to present some standard terminology
from the network pruning literature.

Layer-collapse - Pruning neural networks is usually done in two steps: The first step scores the
parameters of a network according to some metric and the second step eliminates parameters based
on their scores. This process can be applied both globally (on the network as a whole) and locally
(separately on each layer). Recent work (Wang et al., 2020; Lee et al., 2020; You et al., 2020) has
identified a key failure mode, layer-collapse, for the global version. Layer-collapse occurs when an
algorithm prunes all parameters in a layer, rendering the network disconnected (and untrainable).

Compression ratio (ρ) - Logarithm to the base 10 of the number of parameters in the original network
divided by the number of parameters remaining after pruning. In our experiments we use (not
necessarily integer) powers of 10 for the compression ratios. For example, compression = 2.5 means
that the number of parameters in the original network divided by the number of parameters remaining
after pruning equals to 102.5

Max compression (ρmax) - The maximal possible compression ratio for a network that doesn’t lead
to layer-collapse.

We further define an accuracy-based evaluation metric for a shared-label prediction method, n-
accuracy, which highly correlates with information gain, as our experiments show. We denote ` to
be the number of classes in the data set and without loss of generality let the labels be {1, ..., `}.
Moreover, ỹi is a vector of size ` that contains raw, unnormalized scores for each class, predicted by
a given model.

n-accuracy - the percentage of correctly classified n-tuples. Formally, n-accuracy of a shared-label
prediction method is defined to be

1

T

T∑
i=1

Xi

where Xi is an indicator for the event that the i’th n-tuple was classified correctly. In our experiments
we take T = ` · 100. Namely, we test on 100 random n-tuples from each class and report the average
accuracy.

4.1 BASELINE METHOD

In the baseline method, each model is simply trained in a standard fashion for image classification,
with a randomly shuffled training set with batch size B and the Cross Entropy Loss defined as:

Cross entropy Loss(ỹ, class) = −log(
exp(ỹ[class])∑

j exp(ỹ[j])
) = −ỹ[class] + log(

∑
j

exp(ỹ[j]))

Finally, the losses are averaged over observations for each batch:

Standard Loss(batch) =
1

B
·

B∑
i=1

Cross entropy Loss(ỹi, classi)

5

Under review as a conference paper at ICLR 2021

where ỹi contains raw, unnormalized scores for each class, predicted by the model for the ith data
point in the batch and classi is its corresponding label. For this method, evaluation is done by simply
taking an average of the predicted logit vectors ỹ1...ỹn, and then taking the argmax as the shared
label prediction. In this way, we can take advantage of the probability scores in each logit vector.

4.2 BALANCED METHOD

Recall that our task is to classify n different data points that share the same class with their corre-
sponding label. Thus, the motivation will be to optimize directly for that purpose. The training set is
organized such that each batch of images of size B consists k n-tuples, such that each n-tuple share
the same unknown label y (B = k · n). For a batch of size B, the average batch prediction is defined
to be:

Average Batch Prediction(batch) =
1

B
·

B∑
i=1

ỹi

Furthermore, let batchi be the subset of the current batch that only contains data points corresponding
to label i (batchi is of size k). Denote ȳi ≡ Average Batch Prediction(batchi). Then, the Average
Same Label Loss is defined to be:

Average Same Label Loss(batch) =
1

`
·
∑̀
j=i

Cross entropy Loss(ȳi, i)

Intuitively, the loss function encourages the model to do well on each n-tuple rather than doing well
on each specific data point. As a result, using this loss as it is in our experiments, does not lead to a
model that generalizes well. Therefore, we offer a natural trade-off between the Standard Loss and
the Average Same Label Loss, as the first is often used for standard multi-class classification, and the
latter may help to perform better at the shared-label prediction task. With that in mind, the idea is to
balance between these two losses using a hyper-parameter λ. The balanced loss is defined to be:

Balanced Loss(batch) = (1− λ) · Average Same Label Loss(batch) + λ · Standard Loss(batch)

Intuitively, the loss function encourages the model to do well on both the n-tuple as a whole, and
on each specific image (controlled by the hyper-parameter λ). When λ = 1, this is equivalent to the
baseline method. Throughout our experiments, we use λ = 1

2 . For this method, evaluation is done in
the same way as in the baseline method.

4.3 GRAPH METHOD

In the graph method, we propose a duplicated convolutional neural network architecture with
information passage between the different copies of the CNN. This is inspired by recent work on
Graphical Neural Networks (GNNs) (Zhou et al., 2018; Kipf & Welling, 2017; Wu et al., 2020). We
investigate two kinds of architecture, see Appendix B for further information.

4.4 UNIFIED CNN-LSTM METHOD

4.4.1 ARCHITECTURE

We propose a unified CNN-LSTM architecture, which effectively learns both the embedding of the
data points into low-dimensional vectors and the dependency between the embedding of different data
points in the same sequence. An illustration of this architecture is shown in Appendix A.1. The CNN
part extracts semantic representations from images, whereas the shared-label dependency between
data points in the same sequence in this low-dimensional space is modeled with the long short-term
memory (LSTM) recurrent neurons, which maintain the information of label context in their internal
memory states (for more information on LSTM, see Appendix A.2). The LSTM part computes
the probability of a shared-label prediction sequentially as an ordered prediction path, where the a
posteriori probability of the single true label can be computed again at each time step, based on the
image embedding at the current time step and the output of the recurrent neuron from the previous
time step. The proposed CNN-LSTM model is a unified framework combining the advantages of
both learning an effective image embedding using a deep CNN, while also taking into account the
label sharing.

6

Under review as a conference paper at ICLR 2021

4.4.2 TRAINING

Training with the unified CNN-LSTM method is done by using the cross entropy loss on the soft-max
normalization of the average of the outputs of the linear layer following the LSTM (see Figure 10),
and employing back-propagation through time algorithm. Although it is possible to train the model
in an end-to-end way, our experiments show that it is much more preferable to train the CNN part
separately, using the balanced method (Section 4.2), and truncate the final classification layer to
achieve the desired embedding. Although it is possible to fine-tune the convolutional neural network
afterward, we keep it unchanged in our implementation for simplicity (we noticed that it doesn’t
make any considerable differences). Both parts of the model are also pruned separately.

When using this method, an important decision is to determine the order of the sequence (as the
LSTM part is not symmetric). For further information on the different order techniques that we have
experimented with and their motivation, please refer to Appendix A.3.

5 EXPERIMENTS

In this section we report the results of our experiments based on the ideas presented in Sections 1.2
and 2. Full experimental details are in Appendix C.

5.1 COMPARISON USING THE BASELINE METHOD

In this section, we use the baseline method and a Conv model on the CIFAR-10 data set (see Appendix
C for more information). We study how variation in the floating-point operations (FLOPs) due to
altering values of n ∈ {1, 2, 3, 4, 5, 7, 10, 15, 40, 60} and ρ effect on different evaluation measures.
The results are presented in Figures 1 - 7. Similar results for different combinations of models and
data sets are presented in Appendix E.1.

Figure 1: n-accuracy and FLOPs
comparison. It is observed that dif-
ferent compression ratios are opti-
mal (in terms of FLOPs) for differ-
ent desired n-accuracy.

Figure 2: Log error and FLOPs
comparison, where the error is
simply 1 − n-accuracy/100 and
the binary logarithm is used.

Figure 3: Relative information
and n comparison. For each value
of n we observe a specific order
between the compression ratios.

Figure 4: Information gain and
FLOPs comparison. It is observed
that different compression ratios
are optimal (in terms of FLOPs)
for different desired information
gain.

Figure 5: n-accuracy and information gain
comparison for the first 3 compression ratios.
We observe that there exists a very high corre-
lation between the two measures in our exper-
imental setup.

Figure 6: n-accuracy and information gain
comparison for the last 3 compression ratios.
We observe that there exists a very high corre-
lation between the two measures in our exper-
imental setup.

Figure 7: Relative information and compres-
sions comparison for different values of n.
We observe a sweet spot in terms of the com-
pression ratio, for each different value of n.

5.2 BASELINE AND BALANCED METHODS COMPARISON

In this section, we compare the performances of the baseline method and the balanced method,
and report the n-accuracy on various data sets, models, and values of n and ρ. In all cases, it is

7

Under review as a conference paper at ICLR 2021

observed that the balanced method (with λ = 1
2) outperforms the baseline method in the shared-label

prediction task for sufficiently large values of n. Nevertheless, it is interesting to observe that the
baseline method still almost always outperforms the balanced method in the normal classification
task (equivalent to shared-label prediction with n = 1). The results are summarized in Table 1 in
Appendix F. For further discussion on the comparison between the two methods, please see Appendix
D.

5.3 SHARED-LABEL PREDICTION METHODS COMPARISON

In this section, we compare the performances of all the shared-label prediction baseline methods
discussed above, and report the n-accuracy on various data sets, models, and values of n and ρ. In all
cases, it is observed that the unified CNN-LSTM with balanced trained CNN highly outperforms
all the other methods for every value of n ∈ (2, 5, 7, 15, 40) , even though it has less remaining
parameters, and uses fewer FLOPs. The results for the Conv model and Tiny-Imagenet data set in
measures of n-accuracy and relative information are presented in Figure 8 and Figure 9 respectively.
A similar figure for the MNIST data set is presented in Appendix E.2. Further results for the higher
n-accuracy methods, with different combinations of models and data sets are presented in Table 2 in
Appendix F.

Figure 8: n-accuracy on Tiny ImageNet with various shared-
label prediction methods.

Figure 9: Relative information on Tiny ImageNet with various
shared-label prediction methods.

6 CONCLUSION AND DISCUSSION

We introduce a real-world motivated problem and investigate how to take advantage of additional
side information in order to reduce computational efforts. We study a simple scenario which we
coined as the shared-label prediction problem, and suggest various methods, based on different
architectures in deep learning, to perform it. We conduct extensive experiments to improve our
understanding of i) the and advantages or disadvantage of each method, and the differences between
them, ii) the vast connection between measures of accuracy, information, compression ratio, and
FLOPs in our settings, and how they interact with each other, and (iii) introduce relative information
as a generalized measure of information that the network learns, per computational cost, which, to
the best of our knowledge, has not been previously proposed. We further suggest that it enjoys a
sweet spot phenomenon, that leads to a regime, where in certain scenarios increasing or decreasing
the compression ratio knob ρ can deteriorate the relative information. Therefore, we also believe our
characterization of the sweet spot provides a useful way of thinking for practitioners.

Throughout our research, we have used common pruning algorithms as a black box. Is it an interesting
future research question to ask whether it is possible to design a pruning algorithm (or somehow
incorporate an existing one as part of the prediction method) that is better suited for the task of
shared-label prediction, namely, one that takes advantage of the side information scenario, in order to
gain higher performances.

REFERENCES

Madhu Advani and Andrew Saxe. High-dimensional dynamics of generalization error in neural
networks. 10 2017.

8

Under review as a conference paper at ICLR 2021

M. Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116:15849 – 15854, 2019.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJ_wN01C-.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv, 2020.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.
org/anthology/D14-1179.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Jonathan Frankle, G Karolina Dziugaite, DM Roy, and M Carbin. Stabilizing the lottery ticket
hypothesis. arXiv, 2020.

M. Geiger, S. Spigler, Stéphane d’Ascoli, Levent Sagun, M. Baity-Jesi, G. Biroli, and M. Wyart.
The jamming transition as a paradigm to understand the loss landscape of deep neural networks.
Physical review. E, 100 1-1:012115, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. pp. 1135–1143, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 7, 12 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80,
12 1997. doi: 10.1162/neco.1997.9.8.1735.

Max Jaderberg, A. Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks with
low rank expansions. ArXiv, abs/1405.3866, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 598–605. Morgan-Kaufmann, 1990.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H. S. Torr. A signal propagation
perspective for pruning neural networks at initialization. In International Conference on Learning
Representations, 2020.

9

https://openreview.net/forum?id=BJ_wN01C-
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

Under review as a conference paper at ICLR 2021

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1), 6 2018. ISSN 2041-1723. doi:
10.1038/s41467-018-04316-3.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In D. S. Touretzky (ed.), Advances in Neural Information
Processing Systems 1, pp. 107–115. Morgan-Kaufmann, 1989.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=B1g5sA4twr.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems 28, pp. 442–450. Curran Associates, Inc., 2015.
URL http://papers.nips.cc/paper/5787-tensorizing-neural-networks.
pdf.

David Page. How to train your resnet. 2018. URL https://myrtle.ai/
how-to-train-your-resnet-4-architecture/.

Razvan Pascanu, Tomas Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. 30th International Conference on Machine Learning, ICML 2013, 11 2012.

R. Reed. Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4(5):740–747, 1993.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of deep neural networks: A tutorial
and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv, 2020.

Tiny-ImageNet. Available at http://tiny-imagenet.herokuapp.com.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, C. Zhang, and Philip S. Yu. A comprehen-
sive survey on graph neural networks. IEEE transactions on neural networks and learning systems,
2020.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training of
deep networks. In International Conference on Learning Representations, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1–87.12. BMVA Press, September 2016.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv, 12 2018.

A UNIFIED CNN-LSTM

A.1 ARCHITECTURE ILUSTRATION

The architecture of the proposed unified CNN-LSTM model for shared-label prediction is presented
in Figure 10. The convolutional neural network is employed as the image representation, and the
recurrent layer captures the information of the previously predicted labels. The outputs of the LSTM
are fed through a linear classifier to compute the output label probability.

10

https://openreview.net/forum?id=B1g5sA4twr
http://papers.nips.cc/paper/5787-tensorizing-neural-networks.pdf
http://papers.nips.cc/paper/5787-tensorizing-neural-networks.pdf
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
http://tiny-imagenet.herokuapp.com

Under review as a conference paper at ICLR 2021

Figure 10: The unified CNN-LSTM architecture

A.2 LONG SHORT TERM MEMORY NETWORKS (LSTM)

As mentioned earlier, since the objective is to characterize the high-order label dependency in the
same sequence (data points embedding in the same sequence share the same label), we employ long
short term memory (LSTM) neurons (Hochreiter & Schmidhuber, 1997) as our recurrent neurons.
This approach has been demonstrated to be a powerful model of long-term dependency. RNN is a
class of neural network that maintains internal hidden states to model the dynamic temporal behavior
of sequences with arbitrary lengths through directed cyclic connections between its units. It can be
considered as a hidden Markov model extension that employs a nonlinear transition function and is
capable of modeling long term temporal dependencies. LSTM extends RNN by adding three gates
to an RNN neuron: a forget gate f to control whether to forget the current state; an input gate i to
indicate if it should read the input; an output gate o to control whether to output the state. These
gates enable LSTM to learn long-term dependency in a sequence, and make it is easier to optimize,
because these gates help the input signal to effectively propagate through the recurrent hidden states
r(t) without affecting the output. LSTM also effectively deals with the gradient vanishing/exploding
issues that commonly appear during RNN training (Pascanu et al., 2012).

A.3 SEQUENCE ORDER OF THE LSTM

In the experiments of this paper, we tested both random ordering and confidence based ordering
- the sequence order during training (and inference) is determined according to the confidence of
the corresponding data points by the CNN model. Data points that have higher confidence in the
prediction by the CNN model (trained separately with the balanced method) appear earlier than the
less confident ones. This corresponds to the intuition that easier data points should be predicted first
to help predict more difficult data points (one data points is classified with higher confidence than the
other data point if the largest entry in its logit vector is higher than the largest entry in the other data
point logit vector). In particular, the first data point in the sequence will not have a prediction from
earlier time to rely on, and we would like this prediction to be as easy as possible. Otherwise, we may
face a problem - if the first predicted label is wrong, it is possible that the whole sequence will not be
correctly predicted. In our experiments, confidence based ordering usually gained better performances
than random ordering, especially for lower values of n. We further attempted to randomly permute
the label orders in each mini-batch, repeat multiple times, and then taking the average prediction, but
this does not have notable effects on the performance and it makes the training harder to converge.

B THE GRAPH METHOD

In the graph method, we investigate the following two architectures:

1. Each of the n data points in the n-tuple goes through a copy of the CNN, and their n
corresponding embeddings are fed through another classifier. The whole architecture is
trained end-to-end using the cross entropy loss.

11

Under review as a conference paper at ICLR 2021

2. Each of the n data points in the n-tuple goes through a copy of the CNN, but now, information
passes between different copies of each neuron. This is similar to the architecture used in
GNN’s (Graphical Neural Networks).

C EXPERIMENTAL DETAILS

C.1 MODELS

We use the following architectures as the model/CNN for each method throughout our experiments.

FC. Standard fully-connected network designed as follows for input x:

x← Flatten[x] (Flattens a tensor of dimensions C ×H ×W to a vector of size C ·H ·W)
x← ReLU(Linear(C ·H ·W, 100))
x← ReLU(Linear(100, 100)[x]) (repeat 4 times)
x← ReLU(Linear(100, `)[x])

Conv. Standard CNN. We consider a simple 5-layer CNN which is based on the “backbone”
architecture from Page (2018), designed as follows for input x:

x← Conv2d(in channels, out channels = 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))[x]
(in channels = 1 for MNIST, in channels = 3 for CIFAR10, CIFAR100, Tiny ImageNet)
x← ReLU[x]
x←Conv2d(in channels = 32, out channels = 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))[x]
x← Flatten(ReLU[x])
x← Linear(in features ,`)[x])

ResNet18. (He et al., 2015)

WideResNet20. (Zagoruyko & Komodakis, 2016)

C.2 OTHER EXPERIMENTAL SETUP

Optimization. We used the Adam optimizer (Kingma & Ba, 2014), learning rate was set at constant
to 10−4 and all other parameters were set to their default PyTorch values.

Data sets. We conducted our experiments on several public benchmark data sets for image classifica-
tion:

• MNIST (LeCun & Cortes, 2010)

• CIFAR-10 (Krizhevsky, 2009)

• CIFAR-100 (Krizhevsky, 2009)

• Tiny-ImageNet (Tiny-ImageNet)

Pruning algorithms. All pruning algorithms considered here use the following two steps: (i)
scoring parameters, and (ii) masking parameters globally across the network with the lowest scores.
description of how we compute scores used in each of the pruning algorithms:

• Random: We sampled independently from a standard Gaussian.

• Magnitude: We computed the absolute value of the parameters. (Han et al., 2015)

• SNIP: As done in (Lee et al., 2019)

• GraSP: As done in (Wang et al., 2020)

• SynFlow: As done in (Tanaka et al., 2020)

We report the results using the SynFlow pruning algorithm as it achieved the best results for all
methods tested. We run the pruning algorithm for 100 iterations before the training phase (our
comparisons hold for other pruners as well).

12

Under review as a conference paper at ICLR 2021

D EXTENDED DISCUSSION ON THE BALANCED METHOD

It is further observed from our research that it is possible to improve the results of the balanced
method. Higher n-accuracy measures were achieved using the following procedure:

• Train a model with the baseline method until no further improvement is gained.
• Freeze all the layers in the model, except the last few layers.
• Retrain the mode with the balanced method until no further improvement is gained.

The method achieves even higher n-accuracy than the baseline method in the shared-label prediction
task for sufficiently large values of n , which in turn is better than the baseline method, as reported in
Table 1 in Appendix F.

The intuition behind this method is similar to standard transfer learning: Training the model initially
with the baseline method yields a model with better representation of both the lower-level features
and the higher-level features of the data. Then, tuning it at the end by retraining the final layers only
with balanced training yields a model with more adequate high-level features for the shared-label
prediction task in one hand, and a better understanding of how to use these features to make a better
decision, based on various data points containing the same label.

Consider the following example when classifying MNIST digits: A standard model in the highly-
parametrized regime would learn to detect basic features such as small curved lines in the shallow
part of the neural network, and at a deeper stage of the network it may learn to detect more complex
features such as circles. When we are at the low-parametrized regime, we have to make a compromise,
deteriorating the quality of the high-level features. Using this method may benefit the model by
helping it to learn better "low quality" high-level features that may not be "good enough" for normal
classification, yet are sufficient for the shared-label prediction task.

E ADDITIONAL PLOTS

E.1 PLOTS FROM SECTION 5.1

Figures 11-20 describe the results of the comparison done as part of the experiments in Section 5.1.
The results presented in Figures 11-15 were generated using a Wide-ResNet20 model on the Tiny-
ImageNet data set (n ∈ {1, 2, 3, 4, 5, 7, 10, 15, 40}), and the results presented in Figures 16-20 were
generated using a ResNet18 model on the CIFAR-100 data set (n ∈ {1, 2, 3, 4, 5, 7, 10, 15, 40, 60}).

Figure 11: n-accuracy and FLOPs comparison. It is observed
that different compression ratios are optimal (in terms of FLOPs)
for different desired n-accuracy.

Figure 12: Log error and FLOPs comparison, where the error is
simply 1− n-accuracy/100 and the binary logarithm is used.

E.2 PLOTS FROM SECTION 5.3

Figures 21-22 describe the results of the comparison done as part of the experiments in Section
5.3. The results presented in figure were generated using a Conv model on the MNIST data set
(n ∈ {1, 2, 3, 4, 5, 7, 10, 15, 40, 60}).

13

Under review as a conference paper at ICLR 2021

Figure 13: Relative information and n comparison. For each
value of n we observe a specific order between the compression
ratios.

Figure 14: Information gain and FLOPs comparison. It is ob-
served that different compression ratios are optimal (in terms of
FLOPs) for different desired information gain.

Figure 15: n-accuracy and information gain comparison. We
observe that there exists a very high correlation between the two
measures in our experimental setup.

Figure 16: n-accuracy and FLOPs comparison. It is observed
that different compression ratios are optimal (in terms of FLOPs)
for different desired n-accuracy.

Figure 17: Log error and FLOPs comparison, where the error is
simply 1− n-accuracy/100 and the binary logarithm is used.

F TABLES

14

Under review as a conference paper at ICLR 2021

Figure 18: Relative information and n comparison. For each
value of n we observe a specific order between the compression
ratios.

Figure 19: Information gain and FLOPs comparison. It is ob-
served that different compression ratios are optimal (in terms of
FLOPs) for different desired information gain.

Figure 20: n-accuracy and information gain comparison. We
observe that there exists a very high correlation between the two
measures in our experimental setup.

Figure 21: n-accuracy on MNIST with various shared-label pre-
diction methods.

Figure 22: Relative information on MNIST with various shared-
label prediction methods.

15

Under review as a conference paper at ICLR 2021

Method Data set Total parameters Compression Remaining parameters Model n = 1 n = 25 n = 40 n = 60 n = 80
Baseline

Balanced
MNIST 119,400 2.5 378 FC

35.20

30.29

71.72

78.28

74.69

86.53

78.26

89.44

79.17

93.33
Baseline

Balanced
MNIST 260,384 3.25 147 Conv

55.41

50.69

92.68

94.44

95.92

98.78

97.52

100

96.67

100
Baseline

Balanced
MNIST 260,384 3.5 83 Conv

39.20

35.15

75.51

78.79

80.00

85.31

81.99

90.06

86.67

94.17
Baseline

Balanced
CIFAR-10 337,760 2.0 3,378 Conv

50.54

35.16

91.75

92.25

90.40

96.80

91.25

99.38

91.67

100
Baseline

Balanced
CIFAR-10 11,172,032 4.5 354 ResNet-18

28.92

21.10

45.25

50.75

44.00

60.40

41.88

67.50

40.00

75.83
Baseline

Balanced
CIFAR-100 3,286,880 2.5 10,395 Conv

18.28

18.35

77.00

80.00

78.50

83.00

78.00

85.00

83.00

88.00
Baseline

Balanced
CIFAR-100 1,092,960 2.0 10,930 WideResNet-20

21.10

15.55

59.75

63.75

61.50

71.20

61.00

81.00

62.00

88.00

Table 1: n-accuracy on different data sets with various architectures and compressions.
In all cases, the balanced method highly outperforms the balanced method (for

sufficiently large values of n).

Method Data set Total parameters Compression Remaining parameters Model n=2 n=5 n=7 n=15 n=40
Balanced

Unified CNN-LSTM
with baseline
trained CNN

Unified CNN-LSTM
with balanced
trained CNN

MNIST

260,384

260,384 +
171,710 =
432,094

260,384 +
171,710 =
432,094

3.5

3.75, 3.75

3.75, 3.75

83

47 + 31 =
78

47 + 31 =
78

Conv

Conv +
LSTM

Conv +
LSTM

59.43

80.25

90.97

69.44

92.24

96.34

72.70

94.10

97.40

74.61

95.15

98.33

85.31

97.14

99.18

Balanced

Unified CNN-LSTM
with baseline
trained CNN

Unified CNN-LSTM
with balanced
trained CNN

CIFAR-10

11,172,032

11,172,032 +
176,730 =
11,348,762

11,172,032 +
176,730 =
11,348,762

4.0

4.5, 2.5

4.5, 2.5

1118

354 + 559 =
913

354 + 559 =
913

ResNet-18

ResNet-18 +
LSTM

ResNet-18 +
LSTM

58.10

60.10

62.06

73.05

79.40

81.15

77.96

83.59

85.42

84.39

89.09

94.24

89.60

93.60

98.40

Balanced

Unified CNN-LSTM
with baseline
trained CNN

Unified CNN-LSTM
with balanced
trained CNN

CIFAR-100

1,092,960

1,092,960 +
312,900 =
1,405,860

1,092,960 +
312,900 =
1,405,860

2.0

2.5, 2.0

2.5, 2.0

10,930

3457 + 3129 =
6586

3457 + 3129 =
6586

WideResNet-20

WideResNet-20 +
LSTM

WideResNet-20 +
LSTM

33.34

39.86

42.5

48.05

60.95

64.70

51.43

70.64

73.07

58.83

80.16

84.16

71.20

88.50

92.00

Balanced

Unified CNN-LSTM
with baseline
trained CNN

Unified CNN-LSTM
with balanced
trained CNN

Tiny ImageNet

26,224,480

26,224,480 +
401,800 =
26,626,280

26,224,480 +
401,800 =
26,626,280

2.0

3.0, 1.0

3.0, 1.0

262,245

26,225 + 40,180 =
66,405

26,225 + 40,180 =
66,405

Conv

Conv +
LSTM

Conv +
LSTM

16.52

22.44

25.0

28.45

41.05

45.70

36.07

50.14

54.00

49.17

69.83

73.33

59.50

83.50

86.50

Table 2: n-accuracy on different data sets with various architectures and compressions.
In all cases, the unified CNN-LSTM with balanced trained CNN highly outperforms
the other methods for every value of n, even though it has less remaining parameters

and uses less FLOPs.

16

	Introduction
	Motivation
	The Shared-Label Prediction Problem

	Our Contribution
	Our Methods

	Related Work
	Our Methods
	Baseline method
	Balanced method
	Graph method
	Unified CNN-LSTM method
	Architecture
	Training

	Experiments
	comparison using the baseline method
	baseline and balanced methods comparison
	shared-label prediction methods comparison

	Conclusion and Discussion
	Unified CNN-LSTM
	Architecture Ilustration
	Long Short Term Memory Networks (LSTM)
	Sequence order of the LSTM

	The Graph Method
	Experimental Details
	Models
	Other Experimental Setup

	Extended Discussion on the balanced method
	Additional Plots
	Plots from Section 5.1
	Plots from Section 5.3

	Tables

