
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OFFLINE REINFORCEMENT LEARNING OF
HIGH-QUALITY BEHAVIORS UNDER ROBUST STYLE
ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We study offline reinforcement learning of style-conditioned policies using ex-
plicit style supervision via subtrajectory labeling functions. In this setting, align-
ing style with high task performance is particularly challenging due to distribution
shift and inherent conflicts between style and reward. Existing methods, despite
introducing numerous definitions of style, often fail to reconcile these objectives
effectively. To address these challenges, we propose a unified definition of be-
havior style and instantiate it into a practical framework. Building on this, we in-
troduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline
goal-conditioned RL techniques, such as hindsight relabeling and value learning,
and combine it with a new Gated Advantage Weighted Regression mechanism to
efficiently optimize task performance while preserving style alignment. Experi-
ments demonstrate that SCIQL achieves superior performance on both objectives
compared to prior offline methods.

1 INTRODUCTION

A task can often be performed through diverse means and approaches. As such, while the majority
of the sequential decision making literature has focused on learning agents that seek to optimize task
performance, there has been a growing interest in the development of diverse agents that display a
variety of behavioral styles. While many previous works tackled diverse policy learning by relying
on online interactions (Nilsson & Cully, 2021; Wu et al., 2023), the widespread availability of pre-
recorded diverse behavior data (Hofmann, 2019; Mahmood et al., 2019; Zhang et al., 2019; Fu
et al., 2021; Lee et al., 2024a; Jia et al., 2024; Park et al., 2025) catalyzed much progress in the
learning of policies from such data without further environment interactions, allowing the training
of high-performing agents in a more sample-efficient, less time-consuming and safer way (Levine
et al., 2020). Such methods can be divided into two categories: Imitation Learning (IL) methods
(Pomerleau, 1991; Florence et al., 2021b; Chi et al., 2024b) mimic expert trajectories, while offline
Reinforcement Learning (RL) methods (Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu,
2021; Chen et al., 2021; Nair et al., 2021; Garg et al., 2023) target high-performing behaviors based
on observed rewards. Although some recent work has focused on diverse policy learning in both
offline IL (Zhan et al., 2020; Yang et al., 2024) and offline RL (Mao et al., 2024), several challenges
and questions remain in the study and deployment of stylized policies.

Challenge 1: Style definition. Literature dealing with style alignment ranges from discrete tra-
jectory labels (Zhan et al., 2020; Yang et al., 2024) to unsupervised clusters (Mao et al., 2024) and
continuous latent encodings (Petitbois et al., 2025), with distinct trade-offs: unsupervised definitions
are often uncontrollable and hard to interpret, while supervised ones rely on manual labels and incur
significant labeling costs. Additionally, since play styles span multiple timescales, attributing each
local step to a style is non-trivial and can take part in credit assignment problems. Furthermore,
depending on the definition of style, assessing the alignment of an agent’s behavior with respect to a
target style may be difficult, which complicates alignment measurement and hinders policy control-
lability. As such, a key challenge is to derive a general definition that addresses interpretability,
labeling cost, alignment measurement, and credit assignment.
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Challenge 2: Addressing distribution shift. While offline IL and offline RL are known to suf-
fer from distribution shift due to environment stochasticity and compounding errors (Levine et al.,
2020), the addition of style conditioning can exacerbate the issue by creating mismatches at in-
ference time between visited states and target styles. For instance, a running policy may trip and
fall into an out-of-distribution state-style configuration without the ability to recalibrate. While some
previous work addressed this issue (Petitbois et al., 2025), most of them lack mechanisms to perform
robust style alignment. Consequently, an open question is how to achieve robust style alignment
without relying on further environment interactions.

Challenge 3: Solving task and style misalignment. Style alignment and task performance are
often incompatible. For instance, a crawling policy may not achieve the same speed as a running
one. Optimizing conflicting objectives of style alignment and task performance has been explored
in offline RL, either by directly seeking compromises between them (Lin et al., 2024a;b; Yuan et al.,
2025), or by shifting optimal policies from one objective to the other (Mao et al., 2024), but always
at the cost of style alignment. Consequently, ensuring robust style alignment while optimizing
task performance remains an open problem.

In this paper, we address these challenges through the following contributions: (1) We propose
a novel general view of the stylized policy learning problem as a generalization of the goal-
conditioned RL (GCRL) problem (Park et al., 2025) and show that the style alignment corresponds
to the optimization of a form of style occupancy measure (Dayan, 1993; Touati & Ollivier, 2021;
Blier et al., 2021; Eysenbach et al., 2023). (2) We instantiate our definition within the supervised
data-programming framework (Ratner et al., 2017) by using labeling functions as in Zhan et al.
(2020); Yang et al. (2024) but on trajectory windows rather than full trajectories, capturing the
multi-timescale nature of styles. This design choice mitigates high credit assignment challenges by
design. The use of labeling functions also allows users to quickly program various meaningful style
annotations for both training data and evaluation data, making the alignment measurement easier
at inference. (3) We introduce Style-Conditioned-Implicit-Q-Learning (SCIQL), a style-conditioned
offline RL algorithm inspired by IQL (Kostrikov et al., 2021) which leverages advantage signals to
guide the policy towards the activation of target styles, making efficient use of style-relabeling (Pe-
titbois et al., 2025) and trajectory stitching (Char et al., 2022) to allow for robust style alignment.
(4) Making use of the casting of stylized policy learning problem as a RL problem, we introduce the
notion of Gated Advantage Weighted Regression (GAWR) in the stylized policy learning context
by using advantage functions as gates to allow style-conditioned task performance optimization.
(5) We provide diverse clean implementations of stylized RL tasks on which we demonstrate through
a set of experiments that our method effectively outperforms previous work on both style alignment
and style-conditioned task performance optimization, along with various ablation studies. We
provide links to clean implementations of our algorithms in JAX (Bradbury et al., 2018) along with
the datasets in the following project page: https://sciql-iclr-2026.github.io/.

2 RELATED WORK

IL and offline RL. Imitation Learning seeks to learn policies by mimicking expert demonstrations,
usually stored as trajectory datasets, and can be grouped into different categories, including Behav-
ior Cloning, classical Inverse RL (IRL), and Apprenticeship / Adversarial IRL. Behavior Cloning
(BC) (Pomerleau, 1991) performs supervised regression of actions given states but suffers from com-
pounding errors and distribution shifts (Ross et al., 2011). Classical IRL (Ng & Russell, 2000; Fu
et al., 2018; Arora & Doshi, 2020) infers a reward under which the demonstration policy is optimal
to optimize it via online RL. It is robust to distribution shifts but requires environment interactions.
Apprenticeship / Adversarial IRL (e.g., GAIL (Ho & Ermon, 2016)) learns policies directly via im-
plicit rewards, combining IRL’s robustness with BC’s direct learning, but typically requires online
interactions. On the other hand, offline RL does not assume optimal demonstrations. It uses reward
signals to train policies offline and tackles distribution shifts via sequence modeling (Chen et al.,
2021), biased BC (Nair et al., 2021; Fujimoto & Gu, 2021), policy conservativeness (Kumar et al.,
2020), expectile regression (Kostrikov et al., 2021), or Q-value exponential weighting (Garg et al.,
2023). In this work, we leverage offline RL techniques to jointly optimize behavior styles and task
performance from reward signals, without assuming demonstration optimality.
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Diverse policy learning. Capturing diverse behavior from a pre-recorded dataset has been ad-
dressed in the literature under various scopes. Several methods aim to capture a demonstration
dataset’s multimodality at the action level through imitation learning techniques (Florence et al.,
2021a; Shafiullah et al., 2022; Pearce et al., 2023; Chi et al., 2024a; Lee et al., 2024b) while other
methods aim to learn higher-timescale behavior diversity by learning to capture various behavior
styles in both an unsupervised and supervised approach. In the IRL setting, InfoGAIL (Li et al.,
2017), Intention-GAN (Hausman et al., 2017) and DiverseGAIL (Wang et al., 2017) aim it dentify
various behavior styles from demonstration data and train policies to reconstruct them using IRL
techniques. Tirinzoni et al. (2025) aim to learn a forward-backward representation of a state succes-
sor measure (Dayan, 1993; Touati & Ollivier, 2021) to learn through IRL a policy optimizing a high
variety of rewards with a bias towards a demonstration dataset. In a BC setting, WZBC (Petitbois
et al., 2025) learns a latent space of trajectories to employ trajectory-similarity-weighted-regression
to improve robustness to compounding errors in trajectory reconstruction. Further, SORL (Mao
et al., 2024) learns a set of diverse representative policies through the EM algorithm and enhances
them to perform stylized offline RL. In the supervised setting, CTVAE (Zhan et al., 2020) augments
trajectory variational auto-encoders with trajectory style labels to perform imitation learning under
style calibration, while BCPMI (Yang et al., 2024) performs a behavior cloning regression weighted
by mutual information estimates between state-action pairs and style labels. Our method falls into
the offline supervised learning category as in CTVAE and BCPMI as we employ supervised style
labels to derive style reward signals for our policy to optimize. However, we consider styles de-
fined on subtrajectories unlike CTVAE and BCPMI which consider full trajectory styles, which can
create high credit assignment issues for very long trajectories. Additionally, unlike CTVAE, our
method is model-free and unlike BCPMI, we use reinforcement learning signals to enhance the ro-
bustness of our method to distribution shift and allow for both task performance and style alignment
optimization.

Goal-Conditioned RL. Goal-Conditioned RL (GCRL) (Kaelbling, 1993; Liu et al., 2022; Park
et al., 2025) encompasses methods that learn policies to achieve diverse goals efficiently and reli-
ably. As our style alignment objective consists in visiting state-action pairs of high-probability to
contribute to a given style, it shares with GCRL the same challenges of sparse rewards, long-term de-
cision making and trajectory stitching. To address these challenges, Ghosh et al. (2019); Yang et al.
(2022) combine imitation learning with Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017), while Chebotar et al. (2021); Kostrikov et al. (2021); Park et al. (2024); Canesse et al. (2024);
Kobanda et al. (2025) additionally learn goal-conditioned value functions to extract policies using
offline RL techniques. Unlike GCRL, which focuses on achieving specific goals, our framework
addresses performing RL tasks under stylistic constraints. This can be viewed as a generalization
from goal-reaching to executing diverse RL tasks while maintaining stylistic alignment. Specifi-
cally, we distinguish between Style-Conditioned RL (SCRL), the problem of reaching state–action
pairs with high style alignment, and Style-Conditioned Task Performance Optimization (SCTPO),
which involves performing a task under style alignment constraints.

3 PRELIMINARIES

Markov decision process. In this work, we consider a γ-discounted Markov Decision Process
(MDP) defined byM = (S,A, µ, p, γ) where S is the state space, A the action space, µ ∈ ∆(S)
the initial state distribution, p : S×A → ∆(S) the transition kernel and γ ∈ [0, 1) a discount factor.
In this setting, an agent is modeled by a policy π : S → ∆(A) which interacts sequentially with the
environment. At first the environment is initialized according to µ in a state s0. At each timestep t,
the agent observes a state st ∈ S and generates an action at ∈ A to transition via p towards a new
state st+1 ∈ S leading to a trajectory τ = (s0, a0, s1, a1, ...). In practice, this interactive process
can repeat itself until an eventual terminal state sT is reached (termination) at timestep T , or until a
maximal timestep is reached (truncation), to generate a trajectory τ = {(st, at, rt)}T−1

t=0 ∪{sT } ∈ T .
We assume that we have access to a finite datasetD of such trajectories collected by an unknown set
of policies, typically corresponding to humans or synthetic policies.

Style and diversity in imitation learning. To train a policy towards a target behavior, traditional
IL methods leverage D by mimicking its behaviors under the assumption of the combined expertise
and homogeneity of its trajectories. In contrast, we assume that D’s behaviors can possibly display
a high amount of heterogeneity. Previous literature (Zhan et al., 2020; Mao et al., 2024; Yang et al.,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2024) describes this heterogeneity through various definitions of behavior styles. Denoting T̃ as
the set of (overlapping) subtrajectories, we can generalize those definitions by defining a style as
the labeling of a subtrajectory τt:t+h ∈ T̃ given a comparison criterion towards a task to perform.
Hence, a style translates into a specific way to carry out a given task given a criterion. A task in
the MDP framework is generally defined through a reward function r : S × A → [rmin, rmax]
to maximize along the trajectory. Given a task, an agent can display a range of behaviors that
varies greatly. A criterion λ : T̃ → L(λ) is a tool to describe such variations. It can range from
”the vector of an unsupervised learned trajectory encoder” to ”the speed class of my agent” and
projects any sub-trajectory into a label in L(λ). For instance, we can have z ∈ L(λ) = Rd or
”fast” ∈ L(λ) = {”slow”,”fast”}. A behavior style can consequently be defined in the most
general sense as the set of subtrajectories that verify a certain label, given a criterion and a task.

Style labeling and data programming. The various definitions of behavior styles in the literature
can be divided into unsupervised settings (Li et al., 2017; Hausman et al., 2017; Wang et al., 2017;
Mao et al., 2024; Petitbois et al., 2025) and supervised settings (Zhan et al., 2020; Yang et al., 2024).
In particular, following Zhan et al. (2020); Yang et al. (2024), we focus on the data programming
(Ratner et al., 2017) paradigm, using labeling functions as the criterion. However, unlike Zhan
et al. (2020); Yang et al. (2024), which define their labeling functions on full trajectories given any
criterion λ, we define ours as hard-coded functions on subtrajectories λ : T̃ → J0, |λ| − 1K, with |λ|
the number of categories of λ. Using such labeling functions has several benefits. As noted in Zhan
et al. (2020), labeling functions are simple to specify yet highly flexible. They reduce labeling cost
by eliminating manual annotation, which is often time-consuming and expensive, and, crucially,
they enhance interpretability, a key limitation of unsupervised approaches, thereby enabling clearer
notions of interpretability and more direct alignment measurement. While previous works as
Zhan et al. (2020); Yang et al. (2024) have focused on trajectory-level labels λ(τ), we argue that
relying on per-timestep labeling functions, defined in our framework as labels of windows, is a
more pragmatic choice. Indeed, as various styles can have various timescales, styles can in fact
vary across a trajectory, which can lead to avoidable credit assignment issues. As such, given a
labeling function λ, we annotate the dataset D by marking each state-action pair (st, at) of each of
its trajectories τ as ”contributing” to the style of its corresponding window of radius w(λ):

λ(D) = {(st, at, zt), t ∈ {0, . . . , |τ |}, τ ∈ D} with ∀(τ, t), zt = λ(τt−w(λ)+1:t+w(λ)).

Standard performance metrics. Our goal is to learn a policy π : S × L(λ) → ∆(A) which
performs a specific task defined by a given reward r, while displaying behaviors calibrated toward
given styles. Traditionally, the RL problem corresponds to the maximization of the task perfor-
mance metric, defined as the expected discounted cumulated sum of rewards:

J(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
(1)

Furthermore, within our framework, given a criterion λ, playing within a style labeled as z ∈ L(λ)
naturally translates into the maximization of the activation of this style label within the generated tra-
jectory, which corresponds the maximization of the style alignment metric, defined as the expected
accuracy of the styles:

S1(π, λ, z) = Eπ

[ ∞∑
t=0

γt1{λ(τt−w(λ)+1:t+w(λ)) = z}

]
(2)

S1(π, λ, z) cannot be directly optimized within a reinforcement learning framework as
1{λ(τt−w(λ)+1:t+w(λ))} depends on future states. However, through its annotations, the criterion λ
defines a distribution pλπ(z|s, a) which corresponds to the probability of the surrounding style being
of label z when performing (s, a) under π. Hence, using pπλ(z|s, a), we propose to optimize instead
the following probabilistic style alignment metric:

Sp(π, λ, z) = Eπ

[ ∞∑
t=0

γtpλπ(z|st, at)

]
(3)

This objective corresponds to a Style Conditioned RL (SCRL) problem under the reward pλπ(z|s, a).
In practice, estimating pλπ(z|s, a) is challenging and its dependency on π makes the optimization of
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Sp(π, λ, z) difficult. As such, we optimize instead pλπD
(z|s, a) with πD the sampling policy which

we will note p(z|s, a).
Style alignment as an occupancy measure. Given a policy π, its discounted state-action occupancy
measure ρπ : S×A → R is defined as ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tP(st = s|π). It can be interpreted
as the discounted distribution of state-action pairs that the agent will encounter while interacting with
M with π. For any reward function r : S ×A → R, occupancy measures can allow us to write:

J(π) =
∑
s,a

ρπ(s, a)r(s, a) (4)

This objective translates into visiting the state-action pairs that yield the most rewards. From
this, we can derive the state-action-style occupancy measure for any policy π as: ρπ(s, a, z) =
p(z|s, a)π(a|s)

∑∞
t=0 γ

tP(st = s|π) and consecutively we can define the style occupancy measure
as: ρπ(z) =

∑
s,a ρπ(s, a, z). The style occupancy measure corresponds to the discounted distribu-

tion of the styles that the agent will encounter while interacting withM and following π. We can
directly see that:

Sp(π, λ, z) =
∑
s,a

ρπ(s, a)p(z|s, a) =
∑
s,a

ρπ(s, a, z) = ρπ(z) (5)

Hence, optimizing the style alignment metric directly relates to optimizing style occupancy measure,
i.e. to visit the state-action pairs which are the most likely to contribute to the given target style. In
the following, we will present a new method to effectively optimize the style alignment metric
while allowing good style-conditioned task performance optimization.

4 OPTIMIZING TASK PERFORMANCE UNDER STYLE ALIGNMENT

In this section, we first present in subsection 4.1 the challenges that arise when optimizing the style
alignment metric (Equation 3). Then, we describe the methods we use to optimize the task perfor-
mance (Equation 1) and the style alignment (Equation 3) in the subsections 4.2 and 4.3 respectively.
Finally, we introduce our style conditioned task performance optimization method in subsection 4.4.

4.1 MOTIVATION

Figure 1: Long term decision making and stitch challenges for style alignment optimization.
Consider two tasks: halfcheetah, where an agent controls a halfcheetah body (Towers et al., 2024)
to run along the horizontal axis, and circle2d, where the goal is to draw circles in a 2D plane.
Each admits style criteria (e.g., running speed, circle position). Achieving styles such as high-speed
running or top-right circles requires navigating through zero-signal transitions, demanding long-
term decision marking, while trajectories in D may not cover the full MDP, calling for trajectory
stitching.

5
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As illustrated in Figure 1, solving SCRL problems need for algorithms capable of long-term decision
making and stitching, as illustrated in Figure 1, a property lacking in many previous works (Yang
et al., 2024; Mao et al., 2024). In the following, we detail the design of our algorithm, motivated by
these requirements.

4.2 LEARNING TO OPTIMIZE THE TASK PERFORMANCE

The first cornerstone of our objective is to extract fromD a policy πr,∗ : S → ∆(A) that maximizes
task performance J(π). For this, we employ the well-known IQL algorithm (Kostrikov et al., 2021),
which mitigates value overestimation by estimating the optimal value function through expectile
regression:

LV r (ϕr) = E(st,at)∼pD(s,a)

[
ℓκ2
(
Qrθ̄r (st, at)− V

r
ϕr (st)

)]
(6)

LQr (θr) = E(st,at,st+1)∼pD(s,a,s′)

[(
r(st, at) + γV rϕr (st+1)−Qrθr (st, at)

)2]
(7)

where ℓκ2 (u) = |κ−1{u < 0}|u2, κ ∈ [0.5, 1) is the expectile loss, an asymmetric squared loss that
biases V rϕr toward the upper tail of the Qrθr distribution, and pD defines the uniform distribution of
D. The trained V rϕr and Qrθr are then used to learn a policy network πrψr via Advantage-Weighted
Regression (AWR) (Peng et al., 2019):

Jπr (ψr) = E(st,at)∼pD(s,a)

[
exp(βr ·Arθ̄r,ϕr (st, at)) log π

r
ψr (at|st)

]
(8)

with β ∈ (0,∞] an inverse temperature and advantage: Ar
θ̄r,ϕr (st, at) = Qr

θ̄r
(st, at) − V rϕr (st),

which measures how much better or worse action at in state st is compared to the baseline value.
This procedure corresponds to cloning dataset state–action pairs with a bias toward actions with
higher advantages.

4.3 LEARNING TO OPTIMIZE STYLE ALIGNMENT

To optimize for style alignment, we introduce SCIQL, a simple adaptation of IQL which employs
the same principles of relabeling as the GCRL literature (Park et al., 2025) to optimize for any given
criterion λ the style-conditioned alignment objective: πλ,∗ : S → ∆(A) ∈ argmaxπ S(π, z),∀z ∈
L(λ). As in IQL, SCIQL first fits the optimal style-conditioned value functions through neural
networks V λϕλ

and Qλθλ using expectile regression:

LV λ(ϕλ) = E
(st,at)∼pλ(D)(s,a), zt∼pλ(D)

m (z|st,at)

[
ℓ2κ
(
Qλθ̄λ(st, at, zt)− V

λ
ϕλ(st, zt)

)]
(9)

LQλ(θλ) = E
(st,at,st+1)∼pλ(D)(s,a,s′), zt∼pλ(D)

m (z|st,at)

[
(χλωλ(st, at, zt) + γV λϕλ(st+1, zt)

−Qλθλ(st, at, zt))
2
] (10)

with χθχ(s, a, z) an estimator of p(z|s, a). Comparing between several strategies, we empirically
found (see Appendix E.1) that taking χλωλ(st, at, zt) = 1(zt = zc) with zc the associated label
within λ(D) to be one of the best performing methods, which we kept for its simplicity. We sample
styles from a mixture pλ(D)

m (z|s, a) of a set of sampling distributions: pλ(D)
c (z|s, a) which corre-

sponds to the Dirac distribution of the style label associated to (s, a) within its trajectory in λ(D),
p
λ(D)
f (z|s, a) which corresponds to the uniform distribution on the styles associated to the future

state-actions pairs within λ(D) starting from (s, a) and p
λ(D)
r (z) which corresponds to the uni-

form distribution of the style labels over the entire dataset λ(D). This sampling of styles outside
the joint distribution pλ(D)(s, a, z) enables to address distribution-shift. After that, we extract a
style-conditioned policy πλψλ through AWR by optimizing:

Jπλ(ψλ) = E(st,at)∼pD(s,a), zt∼pDm(z|st,at)

[
exp(βλ ·Aλθ̄λ,ϕλ(st, at, zt)) log π

λ
ψλ(at|st, zt)

]
(11)

This objective drives πλψλ to copy the dataset’s actions with a bias toward actions likely to lead in
the future to the visitation of state-actions pairs of high likelihood of contribution to the style in
conditioning. This formulation effectively works with styles outside of the joint distribution and
leads as we see in the experiment section 5.2 to a more robust style alignment.

6
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4.4 LEARNING TO PERFORM STYLE-CONDITIONED TASK PERFORMANCE OPTIMIZATION

Most of the time, task performance for the reward r and style alignment for the criterion λ are par-
tially incompatible objectives. SORL (Mao et al., 2024) addresses this by optimizing diverse poli-
cies using stylized advantage-weighted regression, which seeks to maximize the task performance
of anchor policies while constraining updates to prevent collapse toward a single expert policy. Nev-
ertheless, these changes can still induce shifts in the learned policies, hurting style alignment and
thus controllability. Consequently, we instead aim to design a method which optimizes the task per-
formance while still preserving style alignment as much as possible. Meanwhile, the advantage is
defined as A(s, a) = Q(s, a)− V (s) and quantifies how much better or worse action a is in state s
under policy π. Given it has zero expectation under π , if A(s, a) > 0, taking a in state s improves
the expected discounted return compared to sampling from π, making (s, a) beneficial, while if
A(s, a) < 0, it lowers it, making (s, a) detrimental. As such, to perform style-conditioned task per-
formance optimization, we propose to use advantages not only as a learning signal to maximize, but
also as a mask to filter detrimental transitions when trying to maximize the task performance objec-
tive under style alignment constraints. For this, we introduce Gated Advantage Weighted Regression
(GAWR), which computes a gated advantage function:

ξr|λ(Aλ, Ar)(s, a, z) = Aλ(s, a, z) + σ(Aλ(s, a, z)) ·Ar(s, a) (12)

to train policy πr|λ for task performance while preserving style alignment:

Jπr|λ(ψr|λ) = E(st,at)∼pD(s,a), zt∼pDm(z|st,at)

[
exp(βr|λ · ξr|λ(Aλθ̄λ,ϕλ , A

r
θ̄r,ϕr )(st, at, zt))

· log πr|λ
ψr|λ(at | st, zt)

] (13)

Unlike in SORL, gated advantages can transmit learning signals within non aligned state-action pairs
thanks to the advantage summation, filtering detrimental samples instead of non-aligned ones.

Algorithm 1 Style-Conditioned Implicit Q-Learning with Gated Advantage Weighted Regression.

Input: offline dataset D, labeling function λ
Initialize ϕλ, θr, θ̄r, θλ, θ̄λ, ψr|λ
while not converged do # Train the task value functions

ϕr ← ϕr − νV r∇LV r (ϕr) according to Equation 6
θr ← θr − νQr∇LQr (θr) according to Equation 7
θ̄r ← (1− υPolyak)θ̄r + υPolyakθ

r

end while
while not converged do # Train the style value functions

ϕλ ← ϕλ − νV λ∇LV λ(ϕλ) according to Equation 9
θλ ← θλ − νQλ∇LQλ(θλ) according to Equation 10
θ̄λ ← (1− υPolyak)θ̄λ + υPolyakθ

λ

end while
while not converged do # Train the policy πλψλ through GAWR

ψr|λ ← ψr|λ + νπr|λ∇Jπr|λ(ψr|λ) according to Equation 13
end while

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

After introducing environments in section 5.1.1, we tackle the following experimental questions:

1. How does SCIQL compare to previous work on style alignment?

2. Does GAWR help SCIQL perform style conditioned task performance optimization?

3. How does SCIQL compare to previous work on style conditioned task performance opti-
mization?

7
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5.1.1 ENVIRONMENTS, TASKS, LABELS AND DATASETS

Circle2d (see Figure 1) is a modified version of the environment from Li et al. (2017) and consists
of a 2D plane where an agent can roam within a confined square to draw a target circle. For this
environment, we define the labels: position, movement direction, turn direction, radius, speed,
and curvature noise. We generate two datasets using a hard-coded agent that draws circles with
various centers and radii, orientations (clockwise and counter-clockwise), speeds, and action noise
levels. The first dataset, circle2d-inplace-v0, is obtained by drawing the circle directly from the
start position, while the circle2d-navigate-v0 dataset is obtained by navigating to a target position
before drawing the circle. HalfCheetah (Todorov et al., 2012) (see Figure 1) is a task where the
objective is to control a planar 6-DoF robot to move as far as possible in the forward direction. For
this environment, we define the labels: speed, angle, torso height, backfoot height, and front-
foot height. We train a diverse set of HalfCheetah policies using SAC (Haarnoja et al., 2018) to
generate three datasets: halfcheetah-fixed-v0, where the policy is fixed throughout the trajectory;
halfcheetah-stitch-v0, where trajectories are split into short segments; and halfcheetah-vary-v0,
where the policy changes during the trajectory. Further details about each environment, task, label-
ing function, and dataset are provided in Appendix A.

5.1.2 BASELINES AND MODEL DETAILS

We compare the performance of SCIQL with five baselines. Our simplest baseline is the standard
BC algorithm Pomerleau (1991), used as a reference for non-conditioned policies. We then augment
BC by conditioning on the current style during training, yielding the CBC algorithm as our second
baseline. Our third baseline, BCPMI (Yang et al., 2024), extends CBC by weighting its loss with
mutual information estimates between state–action pairs and styles. As a fourth baseline, we adapt
SORL (Mao et al., 2024) to our supervised setting (details in Appendix C), as it emphasizes both
policy diversity and task performance. Finally, to assess the benefits of using RL in SCIQL, we
implement an imitation-learning variant called SCBC, which does not use advantage estimates and
instead samples styles from pf exclusively. Further details on each baseline, model architectures,
and hyperparameters are provided in Appendix C and Appendix B.

5.2 RESULTS ON STYLE ALIGNMENT

Our first set of experiments evaluates the capability of SCIQL to achieve style alignment compared
to baselines. For each style label z ∈ L(λ) of each criterion λ, we perform 10 rollouts across 5 seeds,
conditioned on z (except BC, which does not support label conditioning). Each generated trajectory
τ = {(st, at), t ∈ {0, . . . , |τ | − 1}} is then annotated as λ(τ) = {(st, at, zt), t ∈ {0, . . . , |τ | − 1}}
with zt = λ(τt−w(λ)+1:t+w(λ)),∀t ∈ {0, . . . , |τ | − 1}. For each annotated trajectory, we compute
its empirical normalized undiscounted style alignment:

Ŝ1(λ(τ), z) =
1

|τ |

|τ |−1∑
t=0

1{zt = z}, (14)

where the normalization by the trajectory length |τ | ensures that Ŝ1(λ(τ), z) ∈ [0, 1], which hence
represents the fraction of timesteps labeled as contributing to the target label. We then average align-
ments over 10 episodes to compute the empirical normalized undiscounted style alignment of our
policy, Ŝ1(π, λ, z), which can be seen as the analogue of a GCRL success rate in the SCRL context.
Because of the multiplicity of criteria and labels (see Appendix D), we report average alignments
across all criteria and labels in Table 1, with full results provided in Appendix D. Standard deviations
are computed as the average across 5 seeds for the different tested (λ, z). We observe that SCIQL
achieves the best style alignment performance by a large margin compared to previous baselines for
every dataset, highlighting its effectiveness in long-term decision making and stitching, unlike prior
methods. In particular, the performance gap between BC and CBC underscores the necessity of style
conditioning. Moreover, the similar performance of SORL in imitation mode (β = 0), BCPMI, and
CBC can be explained by the similarity of their objectives (see Appendix C), all corresponding to a
weighted CBC without style relabeling. The performance gap between SCBC and the previous base-
lines further highlights the importance of integrating trajectory stitching and style relabeling within
stylized policies, while the dominance of SCIQL demonstrates the additional benefits of value learn-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing, which augments relabeling by integrating randomly sampled styles during training and enables
more effective policy extraction overall.

Table 1: Style alignment results

Dataset BC CBC BCPMI SORL (β = 0) SCBC SCIQL
circle2d-inplace-v0 29.1 ± 6.3 58.6 ± 2.3 58.9 ± 2.6 58.9 ± 2.7 68.6 ± 2.0 74.6 ± 9.3
circle2d-navigate-v0 29.1 ± 5.3 58.9 ± 2.7 59.9 ± 2.3 60.0 ± 3.3 67.2 ± 1.8 75.5 ± 4.7
halfcheetah-fixed-v0 30.0 ± 5.9 51.2 ± 9.0 58.1 ± 8.4 53.1 ± 10.6 58.0 ± 5.3 78.0 ± 1.8
halfcheetah-stitch-v0 30.0 ± 6.8 52.1 ± 7.6 58.9 ± 11.3 48.4 ± 12.5 57.4 ± 4.7 78.0 ± 1.1
halfcheetah-vary-v0 30.0 ± 4.5 52.0 ± 12.0 52.6 ± 17.2 46.7 ± 9.5 31.7 ± 4.2 78.9 ± 0.7

5.3 RESULTS ON STYLE-CONDITIONED TASK PERFORMANCE OPTIMIZATION

To evaluate the capability of SCIQL to perform style-conditioned task performance optimization, we
plot the average style alignments and normalized returns of SCIQL without GAWR (λ), with a style-
based GAWR (λ > r), and with a reward-based GAWR (r > λ) for reference. We compare against
SORL with various temperatures β, which control the importance of task performance in the SORL
objective (see Appendix C). First, we observe in Table 2 that while increasing the importance of
task performance raises the returns for both SORL and SCIQL, SCIQL (λ > r) achieves better style
alignment than all SORL variants while significantly improving its task performance over SCIQL
(λ). In particular, Twhile increasing task performance importance in SORL always results in a
significant decrease in style alignment, GAWR enables SCIQL (λ > r) to better maintain alignment
for the majority of the dataset. Finally, GAWR can also be used for task-conditioned style alignment
optimization, allowing SCIQL (r > λ) to achieve task performance on par with or better than SORL
across tasks.

Table 2: Style-conditioned task performance optimization results.

Dataset Metric SORL (β = 0) SORL (β = 1) SORL (β = 3) SCIQL (λ) SCIQL (λ > r) SCIQL (r > λ)

circle2d-inplace-v0 Style 58.9 ± 2.7 54.5 ± 4.6 53.9 ± 4.2 74.6 ± 9.3 71.6 ± 4.8 47.9 ± 9.3
Task 16.6 ± 6.2 70.4 ± 3.8 73.6 ± 3.3 6.6 ± 2.8 68.6 ± 6.9 89.1 ± 3.3

circle2d-navigate-v0 Style 60.0 ± 3.3 58.0 ± 5.2 57.6 ± 4.0 75.5 ± 4.7 76.5 ± 2.9 56.7 ± 6.1
Task 18.5 ± 7.3 69.7 ± 4.6 72.7 ± 3.9 7.9 ± 4.6 66.2 ± 6.5 87.7 ± 3.8

halfcheetah-fix-v0 Style 53.1 ± 10.6 44.4 ± 6.1 41.3 ± 4.1 78.0 ± 1.8 78.1 ± 1.5 49.7 ± 5.4
Task 32.1 ± 8.4 72.7 ± 5.6 80.6 ± 3.1 47.6 ± 2.3 56.5 ± 2.5 76.6 ± 5.5

halfcheetah-stitch-v0 Style 48.4 ± 12.5 41.1 ± 4.8 42.1 ± 4.9 78.0 ± 1.1 60.8 ± 6.0 33.8 ± 6.2
Task 31.9 ± 10.3 81.3 ± 3.1 78.3 ± 5.6 47.0 ± 2.3 70.0 ± 6.0 80.4 ± 9.0

halfcheetah-vary-v0 Style 46.7 ± 9.5 37.0 ± 3.0 31.1 ± 2.0 78.9 ± 0.7 77.8 ± 1.0 41.8 ± 5.0
Task 35.9 ± 9.0 79.0 ± 3.2 82.6 ± 3.1 50.6 ± 1.3 58.0 ± 1.7 84.6 ± 3.2

mean relative change Style (%) +0.0 -12.6 -16.2 +0.0 -5.2 -40.1
Task (%) +0.0 +200.5 +212.6 +0.0 +351.9 +491.9

6 CONCLUSION

We propose a novel general definition of behavior styles within the sequential decision making
framework and instantiate it by the use of labeling functions to learn interpretable styles with a
low labeling cost and easy alignment measurement while effectively avoiding unnecessary credit
assignment issues by relying on subtrajectories labeling. We then present the SCIQL algorithm
which leverages Gated AWR to solve long-term decision making and trajectory stitching challenges
while providing superior performance in both style alignment and style-conditioned task perfor-
mance compared to previous work.

We think that our framework opens the door to several interesting research directions. First, an
interesting next step would be to find ways to scale it to a multiplicity of criteria. Furthermore,
finding mechanisms to enhance the representation span of labeling functions could also be interest-
ing. Finally, integrating zero-shot capabilities to generate on the fly style-conditioned reinforcement
learning policies would be worthwhile to explore.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we detail our environments, tasks labels and datasets
in Appendix A, the choice of architecture and hyperparameter in Appendix B and the baselines
we use in Appendix C. Moreover, we provide links to clean implementations of our algorithms
in JAX (Bradbury et al., 2018) along with the datasets in the following project page: https:
//sciql-iclr-2026.github.io/.

8 LLM USE

The writing of this paper has been aided by an LLM for the following purposes: (1) Performing
searches to help verify the completeness of our related work. (2) Checking the grammar and wording
of the paper. (3) Providing assistance with code debugging and utilities under our close supervision.
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A ENVIRONMENTS, TASKS, LABELS AND DATASETS

In this section, we detail our environments, tasks, labels and datasets.

A.1 CIRCLE2D

(a) Environment (b) Task (c) Position labels

Figure 2: Circle2d environment visualizations.

Environment The Circle2d environment consists in a 2d plane where an agent can roam
around within a confined square. Its state space S corresponds to the history of the 4 previ-
ous (xagent, yagent, θagent) ∈ [[xmin, xmax] × [ymin, ymax] × [θmin, θmax]] = [−50.0, 50.0] ×
[−50.0, 50.0] × [−π, π], padded if needed by repeating to oldest triplet (namely for the beginning
of the trajectory). Its action space A is [−1, 1]2 where the first dimension maps onto a angular
shift ∆θ ∈ [∆θmin,∆θmax] = [−π, π] in radians and the second dimension maps onto a speed
in [vmin, vmax] = [0.5, 3.0]. At first, the environment is initialized by sampling a random position
from [[0.7 · xmin, 0.7 · xmax]× [0.7 · ymin, 0.7 · ymax]] and a random orientation from [−π, π]. At
each timestep t, given a state st and an action at, the agent rotates by the corresponding ∆θt before
moving by the displacement vector ∆vt. The episode is truncated after 1000 timesteps have been
reached. We display a minimal visual example of our environment in Figure 2a.

Task In Circle2D, we define the task as drawing a target circle given its center xytarget and its
radius radiustarget and encode it by a reward: r(st, at) = −|||xyagent−xytarget||22−radiustarget|.
In this work, we consider the same fixed circle target along experiments and we display its associated
reward colormap in Figure 2b.

Datasets We generate for this environment two datasets by using a hard-coded agent which draws
circles of various centers and radius, with different orientations (clockwise and counter-clockwise)
and different speed and noise levels on the actions. The first dataset circle2d-inplace-v0 is obtained
by directly performing the circle at start position, while the circle2d-navigate-v0 dataset is obtained
by moving around a target position before drawing the circle. We plot in Figure 3 the datasets
trajectories.
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(a) 5% (b) 20% (c) 50% (d) 100%

Figure 3: Circle2d datasets trajectory visualizations at different percentages. The top row cor-
responds to the circle2d-inplace-v0 while the bottom row corresponds to the circle2d-navigate-v0

Criteria and labels We present below the various labeling function we designed for Circle2d.

• position: The position labeling function λposition partitions the 2D plane into a fixed grid and
assigns to each timestep the index of the cell containing the current position. Concretely, the x-axis
range [−30, 30] (real units) is split uniformly into 4 bins and the y-axis is split at 0 into 2 bins,
yielding 4× 2 = 8 areas. At timestep t, with window size w, we read every (xt′ , yt′) in the window
τt−w+1:t+w and set the label as the majority area. The label set is L(λ) = J0, 7K. In practice, we
take w = 1 to mitigate unnecessary credit assignment issues. We plot in Figure 4 the corresponding
visuals and histograms.

• movement direction: The movement–direction labeling function λmove discretizes the instan-
taneous displacement direction. For each timestep t′, we compute ∆pt′ = pt′+1 − pt′ and
θt′ = atan2(∆yt′ ,∆xt′), and uniformly quantize [−π, π) into K = 8 bins. With window size
w, the label at t is the majority direction bin over {θt′}t′∈τt−w+1:t+w . If ∥∆pt′∥ < 0.1 (real units)
for a frame, it contributes an undetermined class u (non-promptable). Thus L(λ) = J0, 8K, with
promptable bins 0..7 and 8 = u. In practice we use w = 1 to mitigate unnecessary credit assign-
ment issues. See Figure 5 for visuals and histograms.

• turn direction: The turn–direction labeling function λturn inherently operates on a centered tem-
poral window to estimate local angular velocity. Let (θt)t be the unwrapped heading; on an odd
window Wt (default size 11), we form ∆θt′ = θt′+1 − θt′ and compute ω̄t = 1

|Wt|
∑
t′∈Wt

∆θt′ .
If |ω̄t| < 0.1 rad/step we label “straight,” else “left” if ω̄t > 0 (counter-clockwise) and “right”
if ω̄t < 0 (clockwise). We set L(λ) = {0, 1, 2} with 0 = right, 1 = left, 2 = straight (non-
promptable). We plot in Figure 6 its visuals and histograms.

• radius category: The radius labeling function λradius also works directly on centered windows.
First, on a short window W str

t (default size 11) we test straightness via the mean absolute heading
increment; if it is below 0.1 rad/step, the label is “straight.” Otherwise, on a larger window of
positions W rad

t (default size 51) we fit a circle by least squares and take its radius rt. We uniformly
partition [2, 11] (real units) into K = 3 bins and assign the corresponding bin; the straight case is
encoded as bin K. Thus L(λ) = J0,KK, where 0..K − 1 denote increasing-radius curved motion
and K denotes straight (non-promptable). See Figure 7.

• speed category: The speed labeling function λspeed bins the scalar speed. For each timestep t′ we
compute the speed vt′ and uniformly partition [0.5, 3.0] (real units) into K = 3 bins. With window
size w, the label at t is the majority speed bin over {vt′}t′∈τt−w+1:t+w . Hence L(λ) = J0,K − 1K.
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In practice we take w = 1 to mitigate unnecessary credit assignment issues. We plot in Figure 8 the
corresponding visuals and histograms.

• curvature noise: The curvature-noise labeling function λnoise computes a variability statistic on
a centered window. With unwrapped heading (θt)t, we define ∆θt′ = θt′+1 − θt′ and ∆2θt′ =
∆θt′+1 − ∆θt′ . On an odd window Wt (default size 51), we take σt = std

(
{∆2θt′}t′∈Wt

)
and

uniformly bin σt into K = 3 categories over [0.0, 0.8]. Hence L(λ) = J0,K − 1K. We plot in
Figure 9 its visuals and histograms.

Notes. For all labels that use windows, the implementation ensures an odd, centered window around
t; where relevant, “straight”/“undetermined” classes are excluded from promptable labels but kept
in L(λ) for completeness. Bin edges are uniform by default and configurable through the class
constructors.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 4: Circle2d position label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 5: Circle2d movement direction label visualizations at different percentages.
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(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 6: Circle2d turn direction label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 7: Circle2d radius label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 8: Circle2d speed label visualizations at different percentages.
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(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 9: Circle2d curvature noise visualizations at different percentages.

A.2 HALFCHEETAH

Environment HalfCheetah (Todorov et al., 2012; Towers et al., 2024) is an environment consist-
ing in controlling a 6-DoF 2-dimensional robot composed of 9 body parts and 8 joints connecting
them. The environment as a time limit of 1000 timesteps. Details about this environment can be
read in Towers et al. (2024).

Task As implemented in Towers et al. (2024), at each timestep t, the agent applies continuous
control actions at ∈ Rd that drive the joints of the cheetah. The environment evaluates performance
using a reward which encourages rapid forward progress while penalizing excessive control effort.
Formally, the forward velocity of the torso is

vt =
xt+1 − xt

∆t
,

where xt is the torso position along the horizontal axis and ∆t is the simulator timestep. The reward
combines a positive term proportional to forward velocity with a quadratic control penalty:

rt = wf vt − wc

d∑
i=1

a2t,i,

where wf is the forward-reward weight and wc is the control-cost weight. Thus, the agent must
learn to run efficiently: moving forward quickly while keeping joint torques as small as possible.

Datasets To generate the datasets, we train a diverse set of HalfCheetah policies through SAC
(Haarnoja et al., 2018). We construct several archetype policies defined by Gaussian-shaped re-
ward functions that bias behavior toward specific styles. The Height archetype rewards the torso
maintaining a target vertical position ztorso at specified values, thereby inducing qualitatively distinct
gaits: crawling (z ≈ 0.5 with σ = 0.04), normal running (z ≈ 0.6 with σ = 0.04), or upright run-
ning (z ≈ 0.7 with σ = 0.04). The Speed archetype rewards locomotion close to a desired forward
velocity, producing policies that move at slow pace (v ≈ 1.5), medium pace (v ≈ 5.0), or fast pace
(v ≈ 10.0). Finally, the Angle archetype shapes behavior around the torso pitch angle, leading to
policies that prefer upright (θ ≈ −0.2 with σ = 0.05), flat (θ ≈ 0.0 with σ = 0.05), or crouched
(θ ≈ 0.2 with σ = 0.05) postures while still advancing forward. These archetypes yield a diverse
collection of locomotion styles that serve as structured variations of the base HalfCheetah task.
Then, we generate three datasets: halfcheetah-fixed-v0, where the archetype policy is fixed during
the trajectory; halfcheetah-stitch-v0, where the trajectories are cut into shorter segments from the
halfcheetah-fixed-v0 dataset; and halfcheetah-vary-v0, where the policy archetype changes within
the same trajectory. Each dataset contain 106 = 1000(episodes) ∗ 1000(timesteps) steps, with the
stitch datasets containing more episodes as it cuts the fix dataset episodes.
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Criteria and labels We present below the various labeling functions we designed for HalfCheetah.
Each labeling function λ maps raw environment signals to a discrete label sequence, optionally
smoothed by a majority vote over a window τt−w+1:t+w. In practice, we take w = 1 to mitigate
unnecessary credit assignment issues.

• speed: The speed labeling function λspeed discretizes the forward velocity magnitude |vt|. We
define a range [vmin, vmax] = [0.1, 10.0] (real units) and split it uniformly into K = 3 bins, yielding
the labels L(λspeed) = J0, 2K. At timestep t, we assign the bin index corresponding to |vt|, and take
the majority bin across the window. See Figure 10.

• angle: The angle labeling function λangle discretizes the torso pitch θt. We define [θmin, θmax] =
[−0.3, 0.3] (radians) and split uniformly into K = 3 bins, yielding the label set L(λangle) = J0, 2K.
At timestep t, we assign the bin index of θt, and take the majority label over the window. See
Figure 11.

• torso height: The torso–height labeling function λtorso discretizes the vertical torso position ht.
We define [hmin, hmax] = [0.4, 0.8] (real units) and split intoK = 3 bins, giving L(λtorso) = J0, 2K.
Labels are assigned per timestep and smoothed by majority vote. See Figure 12.

• back-foot height: The back-foot labeling function λbf discretizes the vertical position of the back
foot hbft . We define [hmin, hmax] = [0.0, 0.3] and split into K = 4 bins, giving L(λbf) = J0, 3K.
Labels are taken per timestep and majority-voted. See Figure 13.

• front-foot height: The front-foot labeling function λff discretizes the vertical position of the front
foot hfft in the same manner as the back-foot: [0.0, 0.3] split into K = 4 bins, yielding L(λff) =
J0, 3K. See Figure 14.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 10: HalfCheetah speed label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 11: HalfCheetah angle label histograms.
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(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 12: HalfCheetah torso height label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 13: HalfCheetah backfoot height label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 14: HalfCheetah frontfoot height label histograms.

B ARCHITECTURES AND HYPERPARAMETERS

To ensure fairness, we use similar hyperparameters across all baselines. The policies π, value net-
works V,Q, and estimators χ are MLPs with hidden size [256, 256] and ReLU activations. When
necessary, labels are encoded as latent variables of dimension 16 via an embedding matrix. We
optimize all networks using the Adam optimizer with a learning rate of 3 · 10−3, employing cosine
learning-rate decay for the policies, a batch size of 256, and 105 gradient steps for the χ estimators
and 106 for the other networks. Value functions V additionally use layer normalization. Unless
otherwise specified, we use the IQL hyperparameters β = 3, κ = 0.7, and γ = 0.99, and per-
form Polyak averaging on the Q-networks with coefficient 0.005. For HalfCheetah tasks, rewards
are normalized by the return as in Kostrikov et al. (2021). Finally, we use pλ(D)

c as pλ(D)
m for

the turn direction, radius, and speed labels of Circle2d, and pλ(D)
r for the other criteria of both

Circle2d and HalfCheetah. Our implementations are written in JAX (Bradbury et al., 2018), and
take inspiration from Nishimori (2024), allowing little training durations for BC (≈ 2min), CBC
(≈ 3min), BCPMI (≈ 4min), SORL (≈ 15min), SCBC (≈ 3min) and SCIQL (≈ 35min) on a
NVIDIA V100 GPU for training runs.
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C BASELINES

In this subsection, we describe in more details our baselines.

Behavior Cloning (BC). BC (Pomerleau, 1991) is the simplest of our baselines and learns by
maximizing the likelihood of actions given states through supervised learning on D:

JBC(π) = E(s,a)∼pD(s,a)[log π(a|s)]. (15)

We use this baseline as a reference for style alignment performance without conditioning.

Conditioned Behavior Cloning (CBC). CBC is the simplest style-conditioned method of our
baselines and consists in concatenating to BC’s states their associated label within λ(D):

JCBC(π) = E(s,a)∼pD(s,a),z∼pDcur(z|s,a)[log π(a|s, z)] (16)

This baseline serves as a reference to test the various benefits of subsequent methods to better per-
form style alignment optimization.

Behavior Cloning with Pointwise Mutual Information weighting (BCPMI). BCPMI (Yang
et al., 2024) seeks to address credit assignment issues between state–action pairs and style labels
by relying on their mutual information estimates. For this, BCPMI uses Mutual Information Neural
Estimation (MINE). In the information-theoretic setting, let S, A, and Z be random variables cor-
responding to states, actions, and styles, respectively. The mutual information between state–action
pairs (S,A) and styles Z can be written as the Kullback–Leibler (KL) divergence between the joint
distribution PS,A,Z and the product of their marginals PS,A ⊗ PZ :

I(S,A;Z) = DKL(PS,A,Z ∥PS,A ⊗ PZ). (17)

As directly estimating this mutual information is difficult, MINE relies on the Donsker–Varadhan
lower bound:

I(S,A;Z) ≥ sup
T∈F

E(s,a,z)∼PS,A,Z
[T (s, a, z)]− log

(
E(s,a,z)∼PS,A⊗PZ

[eT (s,a,z)]
)
, (18)

where F denotes a class of functions T : S × A × Z → R. According to Donsker & Varadhan
(1975), optimizing this bound yields

T ∗(s, a, z) = log
p(s, a, z)

p(s, a)p(z)
= log

p(z|s, a)
p(z)

. (19)

BCPMI trains a neural network to approximate T ∗(s, a, z) and uses it to weight CBC’s learning
objective, increasing the impact of transitions with high style relevance while reducing that of less
relevant ones:

JMINE(T ) = E
(s,a)∼pλ(D)(s,a), z∼pλ(D)

c (z|s,a)[T (s, a, z)]− log
(
E
(s,a)∼pD(s,a), z∼pλ(D)

r (z)
[eT (s,a,z)]

)
,

(20)
JBC−PMI(π) = E

(s,a)∼pλ(D)(s,a), z∼pλ(D)
c (z|s,a)[exp(T

∗(s, a, z)) log π(a|s, z)]. (21)

This baseline is notable as it constitutes a first step toward addressing the credit assignment chal-
lenges in style-conditioned policy learning. However, as it strictly focuses on imitation learning
rather than task performance, it does not support style mixing and is therefore not designed to ad-
dress distribution shifts at inference time, unlike our method.

Stylized Offline Reinforcement Learning (SORL): SORL (Mao et al., 2024) is an important
baseline to consider since it both addresses the optimization of policy diversity and task perfor-
mance. Initially designed within a unsupervised learning setting, SORL is a two step algorithm
which aims to learn a diverse set of high-performing policies from D. First, SORL uses the
Expectation-Maximisation (EM) algorithm to first learn a finite set of diverse policies {µ(i)} to cap-
ture the heterogeneity of D. The E step aims to fit an estimate p̂(z = i|τ) the posteriors p(z = i|τ),
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associating each trajectory to a given style among N styles. The M step aims to train the stylized
policies {µ(i)} according to their associated style through p̂(z = i|τ):

E step: ∀i ∈ {0, ..., N − 1}, p̂(z = i|τ) ≈ 1

Z

∑
(s,a)∈τ

µ(i)(a|s) (22)

M step: ∀i ∈ {0, ..., N − 1}, JSORL - M step(µ
(i)) =

1

|D|
∑
τ∈D

m∑
i=1

p̂(z = i|τ)
∑

(s,a)∈τ

logµ(i)(a|s)

(23)

Then, to perform task performance optimization while preserving a certain amount of diversity,
SORL proposes to train from {µ(i)} a set of policies {π(i)} by solving the following constrained
problem:

∀i ∈ {0, ..., N − 1}, π(i) = argmax
π(i)

J(π(i)) (24)

s.t. Es∼ρ
µ(i) (s)DKL

(
π(i)(·|s) ∥µ(i)(·|s)

)
≤ ϵ,

∫
a

π(i)(a|s) da = 1, ∀s. (25)

By using its associated Lagrangian optimization problem, Mao et al. (2024) show that this problem
can be casted into a Stylized Advantage Weighted Regression (SAWR) objective:

∀i ∈ {0, ..., N −1}, JSORL - SAWR(π
(i)) = Eτ∼Dp̂(z = i|τ)

∑
(s,a)∈τ

log π(i)(a|s) exp
(
1

α
Ar(s, a)

)
.

(26)
In our supervised setting, the first step translates into the learning of a style conditioned policy
µλ,∗ : S → ∆(A) ∈ argmaxπ S(µ, z),∀z ∈ L(λ) by optimizing the style alignment objective
while the second step translates into optimizing µλ,∗’s performance by learning under the solution
πr,λ,∗ of the following constrained problem:

∀z ∈ L(λ), πr,λ,∗(·|·, z) = argmax
π(·|·,z)

J(π(·|·, z)) (27)

s.t. Es∼ρµ(·|·,z)(s)DKL(π(·|s, z)||µ(·|s, z)) ≤ ε,
∫
a

π(·|s, z) = 1,∀s (28)

Let z ∈ L(λ) be a style label. Following a similar path as Peng et al. (2019) and Mao et al.
(2024), we can state that maximizing J(π(·|·, z)) is similar as maximizing the expected improve-
ment η(π(·|·, z)) = J(π(·|·, z))−J(µ(·|·, z)), which can be express as Schulman et al. (2017) show
as:

η(π(·|·, z)) = Es∼ρπ(·|·,z)(s)Ea∼π(·|s,z)[A
µ(·|·,z)(s, a)] (29)

Like Peng et al. (2019) showed, we can substitute ρπ(·|·,z) to ρµ(·|·,z) to simplify this optimization
problem as the resulting error has been shown to be bounded by DKL(π(·|·, z)||µ(·|·, z)) Schulman
et al. (2017). Furthermore, Peng et al. (2019) and Mao et al. (2024) approximate Aµ(·|·,z)(s, a) by
the advantage Aµ(s, a) where µ represents the policy distribution of the dataset. In our setting, we
will use the advantage Ar(s, a) estimated through IQL to be coherent with SCIQL. Consequently,
SORL’s stylized advantage weighted regression becomes in our context:

πr,λ,∗(·|·, z) = argmax
π(·|·,z)

Es∼ρµ(·|·,z)(s)Ea∼π(·|s,z)[A
r(s, a)] (30)

s.t. Es∼ρµ(·|·,z)(s)DKL(π(·|s, z)||µ(·|s, z)) ≤ ε,
∫
a

π(·|s, z) = 1,∀s (31)
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As Peng et al. (2019) and Mao et al. (2024), we compute the corresponding Lagrangian of this
optimization problem:

L(π(·|·, z), αµ,απ) =Es∼ρµ(·|·,z)

[
Ea∼π(·|s,z)Ar(s, a) (32)

+ αµ
(
ε−DKL(π(·|s, z) ∥µ(·|s, z))

)]
(33)

+

∫
s

απs

(
1−

∫
a

π(a|s, z) da
)
ds (34)

=

∫
s

ρµ(·|·,z)(s)ds
[ ∫

a

π(a|s, z)daAr(s, a) (35)

+ αµ
(
ε−

∫
a

π(a|s, z) log π(a|s, z)
µ(a|s, z)

da
]

(36)

+

∫
s

απs

(
1−

∫
a

π(a|s, z) da
)
ds = (37)

with αµ ≥ 0 and απ = {απs ∈ R, s ∈ S} the Lagrange multipliers. We differentiate
L(π(·|·, z), αµ,απ) as:

∂L

∂π(a|s, z)
= ρµ(·|s,z)(s)

[
Ar(s, a)− αµ log π(a|s, z) + αµ logµ(a|s, z)− αµ

]
−απs (38)

Setting this derivative to zero yields the following closed-form solution:

π∗(a|s, z) = 1

Z(s, z)
µ(a|s, z) exp

(
1

αµ
Ar(s, a)

)
, (39)

where Z(s, z) is the normalization term defined as:

Z(s, z) = exp

(
1

ρµ(·|·,z)(s)

απs
αµ

+ 1

)
. (40)

Finally, as Peng et al. (2019) and Mao et al. (2024), we estimate π∗(·|·, z) with a neural network
policy πψ(·|·, z) by solving:

argmin
ψ

Es∼pλ(D)(s|z)

[
DKL

(
π∗(·|s, z) ∥πψ(·|s, z)

)]
(41)

= argmin
ψ

Es∼pλ(D)(s|z)

[∫
a

(
π∗(a|s, z) log π∗(a|s, z)− π∗(a|s, z) log πψ(a|s, z)

)
da

]
(42)

= argmin
ψ
− Es∼pλ(D)(s|z)

[∫
a

π∗(a|s, z) log πψ(a|s, z) da

]
(43)

= argmin
ψ
− Es∼pλ(D)(s|z)

[∫
a

1

Z(s, z)
µ(a|s, z) exp

(
1
αµA

r(s, a)
)
log πψ(a|s, z) da

]
(44)

= argmin
ψ
− E(s,a)∼pλ(D)(s,a|z)

[
1

Z(s, z)
exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(45)

= argmin
ψ
− E(s,a)∼pλ(D)(s,a)

[
p(z|s, a) 1

Z(s, z)
exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(46)

By neglecting the absorbing constant as Peng et al. (2019); Mao et al. (2024), we can finally express
the SORL objective in our supervised version:

argmin
ψ
−E(s,a)∼pλ(D)(s,a)

[
p(z|s, a) exp

(
1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(47)

As we want to optimize this objective for all z ∈ L(λ), we write below the general objective:

argmin
ψ
−E(s,a)∼pλ(D)(s,a)

 1

|λ|

|λ|−1∑
z=0

p(z|s, a) exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

 (48)
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As in SCIQL, we can employ several strategies to estimate p(z|s, a) through an estimator χ(s, a, z)
which we all detail in appendix E.1. Additionally, the advantage functions can be learned offline
through IQL as in SCIQL. Hence, we can obtain our adapted SORL objectives by taking β = 1/αµ:

LSORL(Vr) = E(s,a)∼pD(s,a)[ℓ
2
κ(Q̄r(s, a)− Vr(s))] (49)

LSORL(Qr) = E(s,a,s′)∼pD(s,a,s′)[r(s, a) + γVr(s
′)−Qr(s, a))2] (50)

JSORL(π) = E(s,a)∼pD(s,a)
1

|λ|

|λ|−1∑
z=0

χ(s, a, z)eβA
r(s,a) log π(a|s, z) (51)

Style-Conditioned Behavior Cloning (SCBC): SCBC corresponds to a simpler behavior cloning
version of SCIQL whose objective can be written as:

JSCBC(π) = E(s,a)∼pD(s,a),z∼pDf (z|s,a)[log π(a|s, z)] (52)

This baseline is interesting as it shows both how style mixing with hindsight relabeling can be
beneficial to style alignment while highlighting the impact of value learning when compared to
SCIQL. For instance, value learning allows for relabeling outside of pλ(D)

f on top of optimizing the
policy.
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D ADDITIONAL TABLES

Table 3: Experiment complexity

Environment Criterion nlabels ndatasets nseeds Total trainings neval episodes Total evals episodes
circle2d position 8 2 5 80 10 800

movement direction 8 2 5 80 10 800
turn direction 2 2 5 20 10 200
radius 15 2 5 150 10 1500
speed 15 2 5 150 10 1500
curvature noise 3 2 5 45 10 450

halfcheetah speed 3 3 5 45 10 450
angle 3 3 5 45 10 450
torso height 3 3 5 45 10 450
backfoot height 4 3 5 60 10 600
frontfoot height 4 3 5 60 10 600

all 11 criteria 68 780 7800

In this section, we display the full results for both style alignment and style-conditioned task perfor-
mance optimization. These tables are computed for each environment and criterion λ by averaging
performance across 5 seeds and all labels in L(λ). Table 3 reports the evaluation complexity statis-
tics of our experiments, which, for each algorithm variant, requires 780 training runs and 7800
evaluation episodes. Normalized per seed, this corresponds to 780/5 = 156 runs per algorithm,
which justifies our use of averages in Table 1, Table 2, Table 4, and Table 5. In Table 4, SCIQL
achieves better style alignment on most criteria, while being slightly lower on the turn direction,
radius, and speed criteria of Circle2d. This can be explained by the fact that these criteria do not
require relabeling, and we show in Appendix E.2 that optimal performance can be recovered by
changing the sampling distribution from p

λ(D)
r that we globally use to pλ(D)

c for those particular
criteria.

Table 4: Style alignment results (full).

Dataset BC CBC BCPMI SORL (β = 0) SCBC SCIQL
circle2d-inplace-v0 - position 12.5 ± 6.9 15.0 ± 10.3 16.3 ± 13.5 14.9 ± 11.6 65.9 ± 11.5 98.0 ± 0.3
circle2d-inplace-v0 - movement direction 12.5 ± 0.2 4.4 ± 1.6 4.1 ± 1.4 5.3 ± 4.2 12.5 ± 0.3 20.5 ± 4.4
circle2d-inplace-v0 - turn direction 50.0 ± 25.1 100.0 ± 0.0 100.0 ± 0.1 100.0 ± 0.1 100.0 ± 0.0 82.6 ± 26.3
circle2d-inplace-v0 - radius 33.3 ± 1.2 99.1 ± 2.0 99.7 ± 0.6 99.8 ± 0.4 100.0 ± 0.0 96.1 ± 5.3
circle2d-inplace-v0 - speed 33.3 ± 4.2 99.9 ± 0.1 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 91.6 ± 13.3
circle2d-inplace-v0 - curvature noise 33.3 ± 0.0 33.3 ± 0.0 33.3 ± 0.1 33.3 ± 0.0 33.3 ± 0.0 59.1 ± 6.1
circle2d-inplace-v0 - all 29.1 ± 6.3 58.6 ± 2.3 58.9 ± 2.6 58.9 ± 2.7 68.6 ± 2.0 74.6 ± 9.3
circle2d-navigate-v0 - position 12.5 ± 7.4 16.7 ± 9.5 24.0 ± 11.8 22.3 ± 14.8 58.5 ± 9.5 98.4 ± 0.2
circle2d-navigate-v0 - movement direction 12.5 ± 0.2 5.7 ± 4.9 3.2 ± 0.2 4.9 ± 3.7 12.5 ± 0.2 27.0 ± 5.7
circle2d-navigate-v0 - turn direction 50.0 ± 13.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.1 99.6 ± 0.1 96.0 ± 5.7
circle2d-navigate-v0 - radius 33.3 ± 10.6 98.1 ± 1.7 98.8 ± 1.4 99.7 ± 0.4 99.2 ± 0.9 95.8 ± 5.6
circle2d-navigate-v0 - speed 33.3 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.7 99.9 ± 0.0 96.0 ± 4.5
circle2d-navigate-v0 - curvature noise 33.3 ± 0.0 33.3 ± 0.1 33.3 ± 0.3 33.3 ± 0.0 33.4 ± 0.1 40.0 ± 6.7
circle2d-navigate-v0 - all 29.1 ± 5.3 58.9 ± 2.7 59.9 ± 2.3 60.0 ± 3.3 67.2 ± 1.8 75.5 ± 4.7
halfcheetah-fixed-v0 - speed 33.3 ± 11.2 73.9 ± 11.8 77.6 ± 9.0 73.0 ± 20.3 95.9 ± 1.2 96.0 ± 1.6
halfcheetah-fixed-v0 - angle 33.3 ± 4.5 57.7 ± 15.5 68.0 ± 11.3 60.0 ± 15.5 55.2 ± 7.4 99.1 ± 1.1
halfcheetah-fixed-v0 - torso height 33.3 ± 6.0 70.9 ± 11.1 82.2 ± 10.0 73.2 ± 8.9 79.3 ± 8.3 96.8 ± 3.5
halfcheetah-fixed-v0 - backfoot height 25.0 ± 2.5 26.9 ± 2.6 29.6 ± 3.9 28.4 ± 2.8 32.4 ± 6.8 47.5 ± 2.0
halfcheetah-fixed-v0 - frontfoot height 25.0 ± 5.5 26.5 ± 3.9 33.3 ± 7.8 30.7 ± 5.7 27.0 ± 3.0 50.5 ± 0.8
halfcheetah-fixed-v0 - all 30.0 ± 5.9 51.2 ± 9.0 58.1 ± 8.4 53.1 ±10.6 58.0 ± 5.3 78.0 ± 1.8
halfcheetah-stitch-v0 - speed 33.3 ± 8.7 79.9 ± 8.0 70.1 ± 17.7 57.1 ± 23.2 92.0 ± 3.3 96.3 ± 0.5
halfcheetah-stitch-v0 - angle 33.3 ± 8.0 50.4 ± 14.2 72.1 ± 18.9 55.0 ± 20.4 60.8 ± 5.8 99.5 ± 0.2
halfcheetah-stitch-v0 - torso height 33.3 ± 9.9 72.6 ± 7.2 87.1 ± 7.7 71.5 ± 10.7 80.1 ± 6.8 96.9 ± 1.4
halfcheetah-stitch-v0 - backfoot height 25.0 ± 3.8 28.6 ± 2.7 30.0 ± 6.3 28.0 ± 3.4 27.3 ± 3.9 47.0 ± 2.4
halfcheetah-stitch-v0 - frontfoot height 25.0 ± 3.6 29.1 ± 5.9 35.3 ± 6.0 30.2 ± 5.0 27.0 ± 3.5 50.3 ± 0.8
halfcheetah-stitch-v0 - all 30.0 ± 6.8 52.1 ± 7.6 58.9 ±11.3 48.4 ±12.5 57.4 ± 4.7 78.0 ± 1.1
halfcheetah-vary-v0 - speed 33.3 ± 6.9 63.3 ± 15.5 56.4 ± 23.2 54.3 ± 14.3 37.8 ± 5.8 96.7 ± 0.1
halfcheetah-vary-v0 - angle 33.3 ± 4.6 59.2 ± 24.2 46.4 ± 22.1 39.7 ± 10.8 34.8 ± 3.9 99.2 ± 0.6
halfcheetah-vary-v0 - torso height 33.3 ± 7.6 79.3 ± 10.9 92.6 ± 7.5 77.0 ± 11.8 36.2 ± 6.1 98.8 ± 0.3
halfcheetah-vary-v0 - backfoot height 25.0 ± 1.7 29.6 ± 4.5 32.9 ± 27.3 31.8 ± 5.3 25.1 ± 2.2 49.5 ± 1.4
halfcheetah-vary-v0 - frontfoot height 25.0 ± 1.8 28.7 ± 5.1 34.9 ± 5.7 30.6 ± 5.3 24.8 ± 2.8 50.4 ± 1.0
halfcheetah-vary-v0 - all 30.0 ± 4.5 52.0 ±12.0 52.6 ±17.2 46.7 ± 9.5 31.7 ± 4.2 78.9 ± 0.7
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Table 5: Style-conditioned task performance optimization results (full).

Dataset Metric SORL (β = 0) SORL (β = 1) SORL (β = 3) SCIQL (λ) SCIQL (λ > r) SCIQL (r > λ)
circle2d-inplace-v0 - all Style 58.9 ± 2.7 54.5 ± 4.6 53.9 ± 4.2 74.6 ± 9.3 71.6 ± 4.8 47.9 ± 9.3
circle2d-inplace-v0 - all Task 16.6 ± 6.2 70.4 ± 3.8 73.6 ± 3.3 6.6 ± 2.8 68.6 ± 6.9 89.1 ± 3.3
circle2d-inplace-v0 - position Style 14.9 ± 11.6 15.5 ± 5.5 12.1 ± 3.2 98.0 ± 0.3 96.1 ± 1.9 31.5 ± 6.8
circle2d-inplace-v0 - position Task 12.8 ± 7.4 79.2 ± 8.8 80.4 ± 7.7 2.6 ± 0.6 17.3 ± 4.1 69.3 ± 7.8
circle2d-inplace-v0 - movement direction Style 5.3 ± 4.2 5.5 ± 3.4 4.7 ± 1.7 20.5 ± 4.4 14.5 ± 2.3 12.5 ± 0.8
circle2d-inplace-v0 - movement direction Task 0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 1.3 ± 0.2 80.8 ± 11.3 93.4 ± 3.3
circle2d-inplace-v0 - turn direction Style 100.0 ± 0.1 98.2 ± 1.3 97.9 ± 2.2 82.6 ± 26.3 85.5 ± 11.3 64.0 ± 16.9
circle2d-inplace-v0 - turn direction Task 14.3 ± 3.2 88.4 ± 1.7 90.1 ± 3.1 6.9 ± 5.8 90.8 ± 3.7 95.0 ± 1.9
circle2d-inplace-v0 - radius category Style 99.8 ± 0.4 77.1 ± 12.2 72.6 ± 5.3 96.1 ± 5.3 99.9 ± 0.1 57.1 ± 16.3
circle2d-inplace-v0 - radius category Task 28.3 ± 10.0 78.0 ± 4.6 87.4 ± 2.3 6.5 ± 3.2 53.9 ± 10.4 90.2 ± 2.2
circle2d-inplace-v0 - speed category Style 99.9 ± 0.0 97.4 ± 4.8 96.2 ± 5.0 91.6 ± 13.3 94.5 ± 7.6 88.4 ± 14.7
circle2d-inplace-v0 - speed category Task 21.0 ± 8.2 86.3 ± 3.6 91.8 ± 2.4 19.5 ± 6.2 91.5 ± 2.1 93.2 ± 2.0
circle2d-inplace-v0 - curvature noise Style 33.3 ± 0.0 33.5 ± 0.3 39.8 ± 8.0 59.1 ± 6.1 38.9 ± 5.5 33.6 ± 0.3
circle2d-inplace-v0 - curvature noise Task 22.8 ± 8.0 89.6 ± 4.2 91.3 ± 4.2 2.6 ± 0.8 77.5 ± 9.7 93.3 ± 2.4
circle2d-navigate-v0 - all Style 60.0 ± 3.3 58.0 ± 5.2 57.6 ± 4.0 75.5 ± 4.7 76.5 ± 2.9 56.7 ± 6.1
circle2d-navigate-v0 - all Task 18.5 ± 7.3 69.7 ± 4.6 72.7 ± 3.9 7.9 ± 4.6 66.2 ± 6.5 87.7 ± 3.8
circle2d-navigate-v0 - position Style 22.3 ± 14.8 15.7 ± 4.5 13.9 ± 3.1 98.4 ± 0.2 96.0 ± 2.2 35.9 ± 10.4
circle2d-navigate-v0 - position Task 19.8 ± 10.2 63.3 ± 13.8 69.4 ± 13.1 2.8 ± 0.6 20.1 ± 2.8 64.1 ± 9.3
circle2d-navigate-v0 - movement direction Style 4.9 ± 3.7 5.8 ± 5.4 5.6 ± 4.1 27.0 ± 5.7 18.4 ± 4.0 12.6 ± 0.8
circle2d-navigate-v0 - movement direction Task 0.4 ± 0.0 0.7 ± 0.6 0.4 ± 0.1 1.1 ± 0.1 63.3 ± 13.4 94.5 ± 1.3
circle2d-navigate-v0 - turn direction Style 100.0 ± 0.1 99.6 ± 0.4 99.8 ± 0.1 96.0 ± 5.7 100.0 ± 0.0 81.9 ± 6.3
circle2d-navigate-v0 - turn direction Task 18.4 ± 11.4 92.5 ± 3.2 93.4 ± 2.6 2.7 ± 1.3 94.4 ± 2.4 95.4 ± 1.4
circle2d-navigate-v0 - radius category Style 99.7 ± 0.4 91.2 ± 7.0 91.3 ± 11.5 95.8 ± 5.6 99.7 ± 0.1 77.1 ± 16.8
circle2d-navigate-v0 - radius category Task 30.9 ± 9.4 83.0 ± 2.8 88.0 ± 1.8 16.3 ± 7.4 64.3 ± 8.4 87.1 ± 3.8
circle2d-navigate-v0 - speed category Style 99.6 ± 0.7 97.1 ± 6.3 99.6 ± 0.8 96.0 ± 4.5 99.2 ± 1.1 99.0 ± 1.8
circle2d-navigate-v0 - speed category Task 21.6 ± 5.0 89.8 ± 3.6 90.6 ± 3.4 15.3 ± 8.7 92.7 ± 4.5 95.3 ± 2.2
circle2d-navigate-v0 - curvature noise Style 33.3 ± 0.0 38.9 ± 7.9 35.4 ± 4.6 40.0 ± 6.7 45.8 ± 9.8 33.6 ± 0.7
circle2d-navigate-v0 - curvature noise Task 19.7 ± 7.7 88.8 ± 3.6 94.5 ± 2.1 9.0 ± 9.7 62.4 ± 7.5 89.9 ± 4.7
halfcheetah-fix-v0 - all Style 53.1 ± 10.6 44.4 ± 6.1 41.3 ± 4.1 78.0 ± 1.8 78.1 ± 1.5 49.7 ± 5.4
halfcheetah-fix-v0 - all Task 32.1 ± 8.4 72.8 ± 5.6 80.6 ± 3.1 47.6 ± 2.3 56.5 ± 2.5 76.6 ± 5.5
halfcheetah-fix-v0 - speed Style 73.0 ± 20.3 31.9 ± 9.4 34.6 ± 2.2 96.0 ± 1.6 95.6 ± 3.1 37.4 ± 6.5
halfcheetah-fix-v0 - speed Task 42.5 ± 13.2 72.5 ± 10.7 84.1 ± 2.4 48.1 ± 1.7 51.6 ± 1.9 87.5 ± 5.9
halfcheetah-fix-v0 - angle Style 60.0 ± 15.5 41.4 ± 10.7 30.9 ± 2.7 99.1 ± 1.1 99.5 ± 0.1 69.9 ± 8.9
halfcheetah-fix-v0 - angle Task 26.2 ± 5.3 68.4 ± 9.9 83.2 ± 4.2 38.0 ± 2.0 48.9 ± 1.9 68.0 ± 6.3
halfcheetah-fix-v0 - torso height Style 73.2 ± 8.9 89.7 ± 4.7 84.0 ± 7.9 96.8 ± 3.5 98.0 ± 1.9 63.8 ± 5.1
halfcheetah-fix-v0 - torso height Task 33.8 ± 8.9 73.1 ± 1.4 73.9 ± 1.7 50.3 ± 1.2 51.5 ± 1.0 68.8 ± 6.2
halfcheetah-fix-v0 - backfoot height Style 28.4 ± 2.8 34.7 ± 3.4 31.0 ± 4.6 47.5 ± 2.0 49.2 ± 1.2 37.6 ± 2.8
halfcheetah-fix-v0 - backfoot height Task 34.7 ± 6.6 85.4 ± 1.5 86.4 ± 1.9 63.1 ± 5.0 76.2 ± 1.6 82.3 ± 4.4
halfcheetah-fix-v0 - frontfoot height Style 30.7 ± 5.7 24.1 ± 2.4 26.0 ± 3.0 50.5 ± 0.8 48.2 ± 1.2 39.9 ± 3.8
halfcheetah-fix-v0 - frontfoot height Task 23.5 ± 7.9 64.4 ± 4.6 75.4 ± 5.3 38.3 ± 1.7 54.5 ± 5.9 76.3 ± 4.9
halfcheetah-stitch-v0 - all Style 48.4 ± 12.5 41.1 ± 4.8 42.1 ± 4.9 78.0 ± 1.1 60.8 ± 6.0 33.8 ± 6.2
halfcheetah-stitch-v0 - all Task 31.9 ± 10.3 81.3 ± 3.1 78.3 ± 5.6 47.0 ± 2.3 70.0 ± 6.0 80.4 ± 9.0
halfcheetah-stitch-v0 - speed Style 57.1 ± 23.2 34.0 ± 2.3 38.1 ± 4.7 96.3 ± 0.5 47.6 ± 11.2 32.6 ± 5.2
halfcheetah-stitch-v0 - speed Task 32.7 ± 14.3 83.3 ± 3.0 81.3 ± 5.0 47.2 ± 0.7 78.7 ± 8.5 84.0 ± 8.5
halfcheetah-stitch-v0 - angle Style 55.0 ± 20.4 31.5 ± 3.3 34.7 ± 6.5 99.5 ± 0.2 92.5 ± 6.1 38.0 ± 6.0
halfcheetah-stitch-v0 - angle Task 25.5 ± 8.8 83.4 ± 4.2 79.7 ± 9.7 41.1 ± 4.2 54.8 ± 6.6 79.7 ± 7.1
halfcheetah-stitch-v0 - torso height Style 71.5 ± 10.7 83.0 ± 10.6 77.7 ± 5.9 96.9 ± 1.4 85.1 ± 7.4 44.5 ± 8.3
halfcheetah-stitch-v0 - torso height Task 33.7 ± 10.9 74.1 ± 1.3 69.8 ± 4.1 48.3 ± 2.2 59.5 ± 5.5 82.1 ± 7.5
halfcheetah-stitch-v0 - backfoot height Style 28.0 ± 3.4 30.6 ± 5.0 32.0 ± 3.7 47.0 ± 2.4 39.1 ± 3.8 29.0 ± 6.3
halfcheetah-stitch-v0 - backfoot height Task 41.2 ± 9.2 87.0 ± 1.8 84.6 ± 4.5 60.7 ± 3.7 80.8 ± 6.4 76.2 ± 9.8
halfcheetah-stitch-v0 - frontfoot height Style 30.2 ± 5.0 26.5 ± 2.9 28.0 ± 3.6 50.3 ± 0.8 39.5 ± 1.3 24.8 ± 5.0
halfcheetah-stitch-v0 - frontfoot height Task 26.5 ± 8.3 78.5 ± 5.3 76.1 ± 4.9 37.8 ± 0.8 76.3 ± 3.2 79.8 ± 12.0
halfcheetah-vary-v0 - all Style 46.7 ± 9.5 37.0 ± 3.0 31.1 ± 2.0 78.9 ± 0.7 77.8 ± 1.0 41.8 ± 5.0
halfcheetah-vary-v0 - all Task 35.9 ± 9.0 79.0 ± 3.2 82.6 ± 3.1 50.6 ± 1.3 58.0 ± 1.7 84.6 ± 3.2
halfcheetah-vary-v0 - speed Style 54.3 ± 14.3 33.3 ± 0.3 33.4 ± 0.2 96.7 ± 0.1 96.9 ± 0.4 40.7 ± 6.1
halfcheetah-vary-v0 - speed Task 42.7 ± 9.3 88.2 ± 2.4 88.7 ± 2.2 48.1 ± 1.3 50.7 ± 0.9 84.1 ± 5.2
halfcheetah-vary-v0 - angle Style 39.7 ± 10.8 32.9 ± 4.2 31.8 ± 2.0 99.2 ± 0.6 98.7 ± 1.8 44.3 ± 5.2
halfcheetah-vary-v0 - angle Task 19.0 ± 7.4 83.1 ± 3.6 84.7 ± 2.3 48.0 ± 2.1 55.3 ± 1.1 84.8 ± 3.0
halfcheetah-vary-v0 - torso height Style 77.0 ± 11.8 60.7 ± 4.1 36.9 ± 3.2 98.8 ± 0.3 98.8 ± 0.3 59.3 ± 7.1
halfcheetah-vary-v0 - torso height Task 37.3 ± 11.7 68.2 ± 2.9 74.0 ± 3.0 50.5 ± 0.5 50.9 ± 1.3 87.2 ± 1.9
halfcheetah-vary-v0 - backfoot height Style 31.8 ± 5.3 32.8 ± 3.8 27.4 ± 3.5 49.5 ± 1.4 45.7 ± 1.2 28.2 ± 2.9
halfcheetah-vary-v0 - backfoot height Task 48.1 ± 7.5 80.3 ± 2.9 82.6 ± 4.7 69.0 ± 1.7 75.0 ± 1.8 87.9 ± 1.6
halfcheetah-vary-v0 - frontfoot height Style 30.6 ± 5.3 25.4 ± 2.8 25.9 ± 1.3 50.4 ± 1.0 48.7 ± 1.2 36.5 ± 3.6
halfcheetah-vary-v0 - frontfoot height Task 32.4 ± 8.9 75.4 ± 4.0 83.0 ± 3.1 37.5 ± 1.1 58.0 ± 3.2 79.0 ± 4.3
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E ABLATIONS

E.1 HOW DO WE NEED TO ESTIMATE p(z|s, a)?

Estimating p(z|s, a) relates to estimating the correspondence between a state-action pair and a style
which and is a key component of our problematic. We tested for this purpose four distinct strategies
to form an estimator χ(s, a, z) of p(z|s, a). A first strategy noted ind consists in taking as the
estimator the indicator of {z = zc} with zc the associated label of (s, a) within λ(D):

∀(s, a, zc) ∈ λ(D), χind(s, a, z) = χind(zc, z) = 1(z = zc) (53)

As λ can attribute several labels to (s, a) within D, we can state that:

∀(s, a) ∈ D,E
zc∼pλ(D)

c (z|s,a)[χind(zc, z)] = E
zc∼pλ(D)

c (z|s,a)[1(z = zc)] ≈ p(z|s, a) (54)

as the expectation of an indicator variable is the probability of its associated event. Hence, using
χind can be justified when relying on a sufficient number of samples during training.

Another approach noted MINE is to use the MINE estimator described in Appendix ?? to estimate:

T ∗(s, a, z) = log
p(s, a, z)

p(s, a)p(z)
= log

p(z|s, a)
p(z)

(55)

by optimizing:

JMINE(T ) = E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

c (z|s,a)[T (s, a, z)]− log
(
E(s,a)∼pλ(D)(s,a),z∼pDr (z)

[
eT (s,a,z)

])
(56)

and taking:

χMINE(s, a, z) = pDr (z)e
T (s,a,z) (57)

≈ pDr (z)e
log

p(z|s,a)
p(z) (58)

≈ pDr (z)
p(z|s, a)
p(z)

(59)

≈ p(z|s, a) (60)

Also, as we seek to approximate p(z|s, a) ∈ [0, 1] with discrete labels, we propose to train directly a
neural network χ(s, a, z) within the MINE objective, taking pλ(D)

r (z) as an approximation of p(z):

JMINE(χ) = E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

c (z|s,a)[log
χ(s, a, z)

p
λ(D)
r (z)

]−log
(
E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

r (z)

[
e
log

χ(s,a,z)

p
λ(D)
r (z)

])
(61)

with χ’s output activations taken as a sigmoid and a softmax to define the sigmoid and softmax
strategies respectively. We evaluate the impact of each strategy on style alignment and report the
results in Table 6 and Figure 15. For SORL, both MINE and softmax achieve the best perfor-
mance, while for SCIQL the best results are obtained with ind and softmax. Accordingly, in our
experiments we adopt softmax for SORL and ind for SCIQL.

Table 6: Style alignments for different p(z|s, a) estimation strategies.

Dataset SORL
(ind)

SORL
(MINE)

SORL
(sigmoid)

SORL
(softmax)

SCIQL
(ind)

SCIQL
(MINE)

SCIQL
(sigmoid)

SCIQL
(softmax)

mujoco halfcheetah-fix 30.3 ± 3.4 52.6 ± 12.4 44.0 ± 11.7 53.1 ± 10.6 78.0 ± 1.8 67.4 ± 8.1 69.0 ± 7.1 77.9 ± 1.1
mujoco halfcheetah-stitch 30.0 ± 4.5 52.7 ± 10.8 43.0 ± 10.7 48.4 ± 12.5 78.0 ± 1.1 67.4 ± 8.0 69.5 ± 6.0 77.8 ± 1.5
mujoco halfcheetah-vary 29.7 ± 4.3 47.0 ± 10.1 42.7 ± 11.5 46.7 ± 9.5 78.9 ± 0.7 73.6 ± 5.7 67.1 ± 6.4 78.8 ± 0.9
random circles-inplace-v0 29.4 ± 3.5 59.1 ± 2.7 46.6 ± 11.9 58.9 ± 2.7 74.7 ± 9.3 74.3 ± 2.0 53.6 ± 19.8 73.7 ± 7.7
random circles-navigate-v0 29.1 ± 6.1 59.9 ± 3.2 46.9 ± 8.7 60.0 ± 3.3 75.5 ± 4.7 75.5 ± 4.6 62.1 ± 12.9 75.4 ± 4.3
all datasets 29.8 ± 4.0 53.8 ± 8.6 44.9 ± 11.3 53.2 ± 8.5 77.2 ± 3.2 70.9 ± 6.0 64.9 ± 10.1 76.9 ± 2.8
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Figure 15: Style alignments histograms for different p(z|s, a) estimation strategies.

E.2 WHAT IS THE IMPACT OF THE CHOICE OF p
λ(D)
m ?

To address the lower performance of SCIQL on the turn direction, radius, and speed criteria of
Circle2d, we evaluated SCIQL by sampling styles from p

λ(D)
c rather than pλ(D)

r . As shown in the
histogram in Figure 16, using pλ(D)

c improves style alignment to its maximum score, highlighting
both SCIQL’s flexibility in varying its style sampling distributions and the potential importance of
this choice when optimizing style alignment.
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Figure 16: SCIQL performance under pλ(D)
r vs pλ(D)

c ?
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