
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OFFLINE REINFORCEMENT LEARNING OF
HIGH-QUALITY BEHAVIORS UNDER ROBUST STYLE
ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We study offline reinforcement learning of style-conditioned policies using ex-
plicit style supervision via subtrajectory labeling functions. In this setting, align-
ing style with high task performance is particularly challenging due to distribution
shift and inherent conflicts between style and reward. Existing methods, despite
introducing numerous definitions of style, often fail to reconcile these objectives
effectively. To address these challenges, we propose a unified definition of be-
havior style and instantiate it into a practical framework. Building on this, we in-
troduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline
goal-conditioned RL techniques, such as hindsight relabeling and value learning,
and combine it with a new Gated Advantage Weighted Regression mechanism to
efficiently optimize task performance while preserving style alignment. Experi-
ments demonstrate that SCIQL achieves superior performance on both objectives
compared to prior offline methods.

1 INTRODUCTION

A task can often be performed through diverse means and approaches. As such, while the majority
of the sequential decision making literature has focused on learning agents that seek to optimize task
performance, there has been a growing interest in the development of diverse agents that display a
variety of behavioral styles. While many previous works tackled diverse policy learning by relying
on online interactions (Nilsson & Cully, 2021; Wu et al., 2023), the widespread availability of pre-
recorded diverse behavior data (Hofmann, 2019; Mahmood et al., 2019b; Zhang et al., 2019; Fu
et al., 2021; Lee et al., 2024a; Jia et al., 2024; Park et al., 2025) catalyzed much progress in the
learning of policies from such data without further environment interactions, allowing the training
of high-performing agents in a more sample-efficient, less time-consuming and safer way (Levine
et al., 2020). Such methods can be divided into two categories: Imitation Learning (IL) methods
(Pomerleau, 1991; Florence et al., 2021b; Chi et al., 2024b) mimic expert trajectories, while offline
Reinforcement Learning (RL) methods (Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu,
2021; Chen et al., 2021; Nair et al., 2021; Garg et al., 2023) target high-performing behaviors based
on observed rewards. Although some recent work has focused on diverse policy learning in both
offline IL (Zhan et al., 2020; Yang et al., 2024) and offline RL (Mao et al., 2024), several challenges
and questions remain in the study and deployment of stylized policies.

Challenge 1: Style definition. Literature dealing with style alignment ranges from discrete tra-
jectory labels (Zhan et al., 2020; Yang et al., 2024) to unsupervised clusters (Mao et al., 2024) and
continuous latent encodings (Petitbois et al., 2025), with distinct trade-offs: unsupervised definitions
are often uncontrollable and hard to interpret, while supervised ones rely on manual labels and incur
significant labeling costs. Additionally, since play styles span multiple timescales, attributing each
local step to a style is non-trivial and can take part in credit assignment problems. Furthermore,
depending on the definition of style, assessing the alignment of an agent’s behavior with respect to a
target style may be difficult, which complicates alignment measurement and hinders policy control-
lability. As such, a key challenge is to derive a general definition that addresses interpretability,
labeling cost, alignment measurement, and credit assignment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Challenge 2: Addressing distribution shift. While offline IL and offline RL are known to suf-
fer from distribution shift due to environment stochasticity and compounding errors (Levine et al.,
2020), the addition of style conditioning can exacerbate the issue by creating mismatches at in-
ference time between visited states and target styles. For instance, a running policy may trip and
fall into an out-of-distribution state-style configuration without the ability to recalibrate. While some
previous work addressed this issue (Petitbois et al., 2025), most of them lack mechanisms to perform
robust style alignment. Consequently, an open question is how to achieve robust style alignment
without relying on further environment interactions.

Challenge 3: Solving task and style misalignment. Style alignment and task performance are
often incompatible. For instance, a crawling policy may not achieve the same speed as a running
one. Optimizing conflicting objectives of style alignment and task performance has been explored
in offline RL, either by directly seeking compromises between them (Lin et al., 2024a;b; Yuan et al.,
2025), or by shifting optimal policies from one objective to the other (Mao et al., 2024), but always
at the cost of style alignment. Consequently, ensuring robust style alignment while optimizing
task performance remains an open problem.

In this paper, we address these challenges through the following contributions: (1) We propose
a novel general view of the stylized policy learning problem as a generalization of the goal-
conditioned RL (GCRL) problem (Park et al., 2025) and show that the style alignment corresponds
to the optimization of a form of style occupancy measure (Dayan, 1993; Touati & Ollivier, 2021;
Blier et al., 2021; Eysenbach et al., 2023). (2) We instantiate our definition within the supervised
data-programming framework (Ratner et al., 2017) by using labeling functions as in Zhan et al.
(2020); Yang et al. (2024) but on trajectory windows rather than full trajectories, capturing the
multi-timescale nature of styles. This design choice mitigates high credit assignment challenges by
design. The use of labeling functions also allows users to quickly program various meaningful style
annotations for both training data and evaluation data, making the alignment measurement easier
at inference. (3) We introduce Style-Conditioned-Implicit-Q-Learning (SCIQL), a style-conditioned
offline RL algorithm inspired by IQL (Kostrikov et al., 2021) which leverages advantage signals to
guide the policy towards the activation of target styles, making efficient use of style-relabeling (Pe-
titbois et al., 2025) and trajectory stitching (Char et al., 2022) to allow for robust style alignment.
(4) Making use of the casting of stylized policy learning problem as a RL problem, we introduce the
notion of Gated Advantage Weighted Regression (GAWR) in the stylized policy learning context
by using advantage functions as gates to allow style-conditioned task performance optimization.
(5) We provide diverse clean implementations of stylized RL tasks on which we demonstrate through
a set of experiments that our method effectively outperforms previous work on both style alignment
and style-conditioned task performance optimization, along with various ablation studies. We
provide links to clean implementations of our algorithms in JAX (Bradbury et al., 2018) along with
the datasets in the following project page: https://sciql-iclr-2026.github.io/.

2 RELATED WORK

IL and offline RL. Imitation Learning seeks to learn policies by mimicking expert demonstrations,
usually stored as trajectory datasets, and can be grouped into different categories, including Behav-
ior Cloning, classical Inverse RL (IRL), and Apprenticeship / Adversarial IRL. Behavior Cloning
(BC) (Pomerleau, 1991) performs supervised regression of actions given states but suffers from com-
pounding errors and distribution shifts (Ross et al., 2011). Classical IRL (Ng & Russell, 2000; Fu
et al., 2018; Arora & Doshi, 2020) infers a reward under which the demonstration policy is optimal
to optimize it via online RL. It is robust to distribution shifts but requires environment interactions.
Apprenticeship / Adversarial IRL (e.g., GAIL (Ho & Ermon, 2016)) learns policies directly via im-
plicit rewards, combining IRL’s robustness with BC’s direct learning, but typically requires online
interactions. On the other hand, offline RL does not assume optimal demonstrations. It uses reward
signals to train policies offline and tackles distribution shifts via sequence modeling (Chen et al.,
2021), biased BC (Nair et al., 2021; Fujimoto & Gu, 2021), policy conservativeness (Kumar et al.,
2020), expectile regression (Kostrikov et al., 2021), or Q-value exponential weighting (Garg et al.,
2023). In this work, we leverage offline RL techniques to jointly optimize behavior styles and task
performance from reward signals, without assuming demonstration optimality.

2

https://sciql-iclr-2026.github.io/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Diverse policy learning. Capturing diverse behavior from a pre-recorded dataset has been ad-
dressed in the literature under various scopes. Several methods aim to capture a demonstration
dataset’s multimodality at the action level through imitation learning techniques (Florence et al.,
2021a; Shafiullah et al., 2022; Pearce et al., 2023; Chi et al., 2024a; Lee et al., 2024b) while other
methods aim to learn higher-timescale behavior diversity by learning to capture various behavior
styles in both an unsupervised and supervised approach. In the IRL setting, InfoGAIL (Li et al.,
2017), Intention-GAN (Hausman et al., 2017) and DiverseGAIL (Wang et al., 2017) aim it dentify
various behavior styles from demonstration data and train policies to reconstruct them using IRL
techniques. Tirinzoni et al. (2025) aim to learn a forward-backward representation of a state succes-
sor measure (Dayan, 1993; Touati & Ollivier, 2021) to learn through IRL a policy optimizing a high
variety of rewards with a bias towards a demonstration dataset. In a BC setting, WZBC (Petitbois
et al., 2025) learns a latent space of trajectories to employ trajectory-similarity-weighted-regression
to improve robustness to compounding errors in trajectory reconstruction. Further, SORL (Mao
et al., 2024) learns a set of diverse representative policies through the EM algorithm and enhances
them to perform stylized offline RL. In the supervised setting, CTVAE (Zhan et al., 2020) augments
trajectory variational auto-encoders with trajectory style labels to perform imitation learning under
style calibration, while BCPMI (Yang et al., 2024) performs a behavior cloning regression weighted
by mutual information estimates between state-action pairs and style labels. Our method falls into
the offline supervised learning category as in CTVAE and BCPMI as we employ supervised style
labels to derive style reward signals for our policy to optimize. However, we consider styles de-
fined on subtrajectories unlike CTVAE and BCPMI which consider full trajectory styles, which can
create high credit assignment issues for very long trajectories. Additionally, unlike CTVAE, our
method is model-free and unlike BCPMI, we use reinforcement learning signals to enhance the ro-
bustness of our method to distribution shift and allow for both task performance and style alignment
optimization.

Goal-Conditioned RL. Goal-Conditioned RL (GCRL) (Kaelbling, 1993; Liu et al., 2022; Park
et al., 2025) encompasses methods that learn policies to achieve diverse goals efficiently and reli-
ably. As our style alignment objective consists in visiting state-action pairs of high-probability to
contribute to a given style, it shares with GCRL the same challenges of sparse rewards, long-term de-
cision making and trajectory stitching. To address these challenges, Ghosh et al. (2019); Yang et al.
(2022) combine imitation learning with Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017), while Chebotar et al. (2021); Kostrikov et al. (2021); Park et al. (2024); Canesse et al. (2024);
Kobanda et al. (2025) additionally learn goal-conditioned value functions to extract policies using
offline RL techniques. Unlike GCRL, which focuses on achieving specific goals, our framework
addresses performing RL tasks under stylistic constraints. This can be viewed as a generalization
from goal-reaching to executing diverse RL tasks while maintaining stylistic alignment. Specifi-
cally, we distinguish between Style-Conditioned RL (SCRL), the problem of reaching state–action
pairs with high style alignment, and Style-Conditioned Task Performance Optimization (SCTPO),
which involves performing a task under style alignment constraints.

3 PRELIMINARIES

Markov decision process. In this work, we consider a γ-discounted Markov Decision Process
(MDP) defined byM = (S,A, µ, p, γ) where S is the state space, A the action space, µ ∈ ∆(S)
the initial state distribution, p : S×A → ∆(S) the transition kernel and γ ∈ [0, 1) a discount factor.
In this setting, an agent is modeled by a policy π : S → ∆(A) which interacts sequentially with the
environment. At first the environment is initialized according to µ in a state s0. At each timestep t,
the agent observes a state st ∈ S and generates an action at ∈ A to transition via p towards a new
state st+1 ∈ S leading to a trajectory τ = (s0, a0, s1, a1, ...). In practice, this interactive process
can repeat itself until an eventual terminal state sT is reached (termination) at timestep T , or until a
maximal timestep is reached (truncation), to generate a trajectory τ = {(st, at, rt)}T−1

t=0 ∪{sT } ∈ T .
We assume that we have access to a finite datasetD of such trajectories collected by an unknown set
of policies, typically corresponding to humans or synthetic policies.

Style and diversity in imitation learning. To train a policy towards a target behavior, traditional
IL methods leverage D by mimicking its behaviors under the assumption of the combined expertise
and homogeneity of its trajectories. In contrast, we assume that D’s behaviors can possibly display
a high amount of heterogeneity. Previous literature (Zhan et al., 2020; Mao et al., 2024; Yang et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2024) describes this heterogeneity through various definitions of behavior styles. Denoting T̃ as
the set of (overlapping) subtrajectories, we can generalize those definitions by defining a style as
the labeling of a subtrajectory τt:t+h ∈ T̃ given a comparison criterion towards a task to perform.
Hence, a style translates into a specific way to carry out a given task given a criterion. A task in
the MDP framework is generally defined through a reward function r : S × A → [rmin, rmax]
to maximize along the trajectory. Given a task, an agent can display a range of behaviors that
varies greatly. A criterion λ : T̃ → L(λ) is a tool to describe such variations. It can range from
”the vector of an unsupervised learned trajectory encoder” to ”the speed class of my agent” and
projects any sub-trajectory into a label in L(λ). For instance, we can have z ∈ L(λ) = Rd or
”fast” ∈ L(λ) = {”slow”,”fast”}. A behavior style can consequently be defined in the most
general sense as the set of subtrajectories that verify a certain label, given a criterion and a task.

Style labeling and data programming. The various definitions of behavior styles in the literature
can be divided into unsupervised settings (Li et al., 2017; Hausman et al., 2017; Wang et al., 2017;
Mao et al., 2024; Petitbois et al., 2025) and supervised settings (Zhan et al., 2020; Yang et al., 2024).
In particular, following Zhan et al. (2020); Yang et al. (2024), we focus on the data programming
(Ratner et al., 2017) paradigm, using labeling functions as the criterion. However, unlike Zhan
et al. (2020); Yang et al. (2024), which define their labeling functions on full trajectories given any
criterion λ, we define ours as hard-coded functions on subtrajectories λ : T̃ → J0, |λ| − 1K, with |λ|
the number of categories of λ. Using such labeling functions has several benefits. As noted in Zhan
et al. (2020), labeling functions are simple to specify yet highly flexible. They reduce labeling cost
by eliminating manual annotation, which is often time-consuming and expensive, and, crucially,
they enhance interpretability, a key limitation of unsupervised approaches, thereby enabling clearer
notions of interpretability and more direct alignment measurement. While previous works as
Zhan et al. (2020); Yang et al. (2024) have focused on trajectory-level labels λ(τ), we argue that
relying on per-timestep labeling functions, defined in our framework as labels of windows, is a
more pragmatic choice. Indeed, as various styles can have various timescales, styles can in fact
vary across a trajectory, which can lead to avoidable credit assignment issues. As such, given a
labeling function λ, we annotate the dataset D by marking each state-action pair (st, at) of each of
its trajectories τ as ”contributing” to the style of its corresponding window of radius w(λ): λ(D) =
{(st, at, zt), t ∈ {0, . . . , |τ |}, τ ∈ D} with ∀(τ, t) and zt = λ(τt−w(λ)+1:t+w(λ)). We illustrate
several of such styles in Appendix A.

Standard performance metrics. Our goal is to learn a policy π : S × L(λ) → ∆(A) which
performs a specific task defined by a given reward r, while displaying behaviors calibrated toward
given styles. Traditionally, the RL problem corresponds to the maximization of the task perfor-
mance metric, defined as the expected discounted cumulated sum of rewards:

J(π) = Eπ

[∞∑
t=0

γtr(st, at)

]
(1)

Furthermore, within our framework, given a criterion λ, playing within a style labeled as z ∈ L(λ)
naturally translates into the maximization of the activation of this style label within the generated tra-
jectory, which corresponds the maximization of the style alignment metric, defined as the expected
accuracy of the styles:

S1(π, λ, z) = Eπ

[∞∑
t=0

γt1{λ(τt−w(λ)+1:t+w(λ)) = z}

]
(2)

S1(π, λ, z) cannot be directly optimized within a reinforcement learning framework as
1{λ(τt−w(λ)+1:t+w(λ))} depends on future states. However, through its annotations, the criterion λ
defines a distribution pλπ(z|s, a) which corresponds to the probability of the surrounding style being
of label z when performing (s, a) under π. Hence, using pπλ(z|s, a), we propose to optimize instead
the following probabilistic style alignment metric:

Sp(π, λ, z) = Eπ

[∞∑
t=0

γtpλπ(z|st, at)

]
(3)

This objective corresponds to a Style Conditioned RL (SCRL) problem under the reward pλπ(z|s, a).
In practice, estimating pλπ(z|s, a) is challenging and its dependency on π makes the optimization of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Sp(π, λ, z) difficult. As such, we optimize instead pλπD
(z|s, a) with πD the sampling policy which

we will note p(z|s, a).
Style alignment as an occupancy measure. Given a policy π, its discounted state-action occupancy
measure ρπ : S×A → R is defined as ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tP(st = s|π). It can be interpreted
as the discounted distribution of state-action pairs that the agent will encounter while interacting with
M with π. For any reward function r : S ×A → R, occupancy measures can allow us to write:

J(π) =
∑
s,a

ρπ(s, a)r(s, a) (4)

This objective translates into visiting the state-action pairs that yield the most rewards. From
this, we can derive the state-action-style occupancy measure for any policy π as: ρπ(s, a, z) =
p(z|s, a)π(a|s)

∑∞
t=0 γ

tP(st = s|π) and consecutively we can define the style occupancy measure
as: ρπ(z) =

∑
s,a ρπ(s, a, z). The style occupancy measure corresponds to the discounted distribu-

tion of the styles that the agent will encounter while interacting withM and following π. We can
directly see that:

Sp(π, λ, z) =
∑
s,a

ρπ(s, a)p(z|s, a) =
∑
s,a

ρπ(s, a, z) = ρπ(z) (5)

Hence, optimizing the style alignment metric directly relates to optimizing style occupancy measure,
i.e. to visit the state-action pairs which are the most likely to contribute to the given target style. In
the following, we will present a new method to effectively optimize the style alignment metric
while allowing good style-conditioned task performance optimization.

4 OPTIMIZING TASK PERFORMANCE UNDER STYLE ALIGNMENT

In this section, we first present in subsection 4.1 the challenges that arise when optimizing the style
alignment metric (Equation 3). Then, we describe the methods we use to optimize the task perfor-
mance (Equation 1) and the style alignment (Equation 3) in the subsections 4.2 and 4.3 respectively.
Finally, we introduce our style conditioned task performance optimization method in subsection 4.4.

4.1 MOTIVATION

Figure 1: Long term decision making and stitch challenges for style alignment optimization.
Consider two tasks: halfcheetah, where an agent controls a halfcheetah body (Towers et al., 2024)
to run along the horizontal axis, and circle2d, where the goal is to draw circles in a 2D plane.
Each admits style criteria (e.g., running speed, circle position). Achieving styles such as high-speed
running or top-right circles requires navigating through zero-signal transitions, demanding long-
term decision marking, while trajectories in D may not cover the full MDP, calling for trajectory
stitching.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As illustrated in Figure 1, solving SCRL problems need for algorithms capable of long-term decision
making and stitching, as illustrated in Figure 1, a property lacking in many previous works (Yang
et al., 2024; Mao et al., 2024). In the following, we detail the design of our algorithm, motivated by
these requirements.

4.2 LEARNING TO OPTIMIZE THE TASK PERFORMANCE

The first cornerstone of our objective is to extract fromD a policy πr,∗ : S → ∆(A) that maximizes
task performance J(π). For this, we employ the well-known IQL algorithm (Kostrikov et al., 2021),
which mitigates value overestimation by estimating the optimal value function through expectile
regression:

LV r (ϕr) = E(st,at)∼pD(s,a)

[
ℓκ2
(
Qrθ̄r (st, at)− V

r
ϕr (st)

)]
(6)

LQr (θr) = E(st,at,st+1)∼pD(s,a,s′)

[(
r(st, at) + γV rϕr (st+1)−Qrθr (st, at)

)2]
(7)

where ℓκ2 (u) = |κ−1{u < 0}|u2, κ ∈ [0.5, 1) is the expectile loss, an asymmetric squared loss that
biases V rϕr toward the upper tail of the Qrθr distribution, and pD defines the uniform distribution of
D. The trained V rϕr and Qrθr are then used to learn a policy network πrψr via Advantage-Weighted
Regression (AWR) (Peng et al., 2019):

Jπr (ψr) = E(st,at)∼pD(s,a)

[
exp(βr ·Arθ̄r,ϕr (st, at)) log π

r
ψr (at|st)

]
(8)

with β ∈ (0,∞] an inverse temperature and advantage: Ar
θ̄r,ϕr (st, at) = Qr

θ̄r
(st, at) − V rϕr (st),

which measures how much better or worse action at in state st is compared to the baseline value.
This procedure corresponds to cloning dataset state–action pairs with a bias toward actions with
higher advantages.

4.3 LEARNING TO OPTIMIZE STYLE ALIGNMENT

To optimize for style alignment, we introduce SCIQL, a simple adaptation of IQL which employs
the same principles of relabeling as the GCRL literature (Park et al., 2025) to optimize for any given
criterion λ the style-conditioned alignment objective: πλ,∗ : S → ∆(A) ∈ argmaxπ S(π, z),∀z ∈
L(λ). As in IQL, SCIQL first fits the optimal style-conditioned value functions through neural
networks V λϕλ

and Qλθλ using expectile regression:

LV λ(ϕλ) = E
(st,at)∼pλ(D)(s,a), zt∼pλ(D)

m (z|st,at)

[
ℓ2κ
(
Qλθ̄λ(st, at, zt)− V

λ
ϕλ(st, zt)

)]
(9)

LQλ(θλ) = E
(st,at,st+1)∼pλ(D)(s,a,s′), zt∼pλ(D)

m (z|st,at)

[
(χλωλ(st, at, zt) + γV λϕλ(st+1, zt)

−Qλθλ(st, at, zt))
2
] (10)

with χθχ(s, a, z) an estimator of p(z|s, a). Comparing between several strategies, we empirically
found (see Appendix E.1) that taking χλωλ(st, at, zt) = 1(zt = zc) with zc the associated label
within λ(D) to be one of the best performing methods, which we kept for its simplicity. We sample
styles from a mixture pλ(D)

m (z|s, a) of a set of sampling distributions: pλ(D)
c (z|s, a) which corre-

sponds to the Dirac distribution of the style label associated to (s, a) within its trajectory in λ(D),
p
λ(D)
f (z|s, a) which corresponds to the uniform distribution on the styles associated to the future

state-actions pairs within λ(D) starting from (s, a) and p
λ(D)
r (z) which corresponds to the uni-

form distribution of the style labels over the entire dataset λ(D). This sampling of styles outside
the joint distribution pλ(D)(s, a, z) enables to address distribution-shift. After that, we extract a
style-conditioned policy πλψλ through AWR by optimizing:

Jπλ(ψλ) = E(st,at)∼pD(s,a), zt∼pDm(z|st,at)

[
exp(βλ ·Aλθ̄λ,ϕλ(st, at, zt)) log π

λ
ψλ(at|st, zt)

]
(11)

This objective drives πλψλ to copy the dataset’s actions with a bias toward actions likely to lead in
the future to the visitation of state-actions pairs of high likelihood of contribution to the style in
conditioning. This formulation effectively works with styles outside of the joint distribution and
leads as we see in the experiment section 5.2 to a more robust style alignment.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.4 LEARNING TO PERFORM STYLE-CONDITIONED TASK PERFORMANCE OPTIMIZATION

Most of the time, task performance for the reward r and style alignment for the criterion λ are par-
tially incompatible objectives. SORL (Mao et al., 2024) addresses this by optimizing diverse poli-
cies using stylized advantage-weighted regression, which seeks to maximize the task performance
of anchor policies while constraining updates to prevent collapse toward a single expert policy. Nev-
ertheless, these changes can still induce shifts in the learned policies, hurting style alignment and
thus controllability. Consequently, we instead aim to design a method which optimizes the task per-
formance while still preserving style alignment as much as possible. Meanwhile, the advantage is
defined as A(s, a) = Q(s, a)− V (s) and quantifies how much better or worse action a is in state s
under policy π. Given it has zero expectation under π , if A(s, a) > 0, taking a in state s improves
the expected discounted return compared to sampling from π, making (s, a) beneficial, while if
A(s, a) < 0, it lowers it, making (s, a) detrimental. As such, to perform style-conditioned task per-
formance optimization, we propose to use advantages not only as a learning signal to maximize, but
also as a mask to filter detrimental transitions when trying to maximize the task performance objec-
tive under style alignment constraints. For this, we introduce Gated Advantage Weighted Regression
(GAWR), which computes a gated advantage function:

ξr|λ(Aλ, Ar)(s, a, z) = Aλ(s, a, z) + σ(Aλ(s, a, z)) ·Ar(s, a) (12)

to train policy πr|λ for task performance while preserving style alignment:

Jπr|λ(ψr|λ) = E(st,at)∼pD(s,a), zt∼pDm(z|st,at)

[
exp(βr|λ · ξr|λ(Aλθ̄λ,ϕλ , A

r
θ̄r,ϕr)(st, at, zt))

· log πr|λ
ψr|λ(at | st, zt)

] (13)

Unlike in SORL, gated advantages can transmit learning signals within non aligned state-action
pairs thanks to the advantage summation, filtering detrimental samples instead of non-aligned ones.

We display the pseudocode of the full training pipeline of SCIQL in Algorithm 1. Since the
value functions can be learned independently, it is possible to perform these steps in parallel before
the policy extraction stage to reduce training time. Furthermore, in practice, similarly to prior IQL
and related algorithms (Kostrikov et al., 2021; Park et al., 2024), both value learning and policy
extraction are performed simultaneously within a single global training loop.

Algorithm 1 Style-Conditioned Implicit Q-Learning with Gated Advantage Weighted Regression.

Input: offline dataset D, labeling function λ
Initialize ϕλ, θr, θ̄r, θλ, θ̄λ, ψr|λ
while not converged do # Train the task value functions

ϕr ← ϕr − νV r∇LV r (ϕr) according to Equation 6
θr ← θr − νQr∇LQr (θr) according to Equation 7
θ̄r ← (1− υPolyak)θ̄r + υPolyakθ

r

end while
while not converged do # Train the style value functions

ϕλ ← ϕλ − νV λ∇LV λ(ϕλ) according to Equation 9
θλ ← θλ − νQλ∇LQλ(θλ) according to Equation 10
θ̄λ ← (1− υPolyak)θ̄λ + υPolyakθ

λ

end while
while not converged do # Train the policy πλψλ through GAWR

ψr|λ ← ψr|λ + νπr|λ∇Jπr|λ(ψr|λ) according to Equation 13
end while

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

After introducing environments in section 5.1.1, we tackle the following experimental questions:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1. How does SCIQL compare to previous work on style alignment?
2. Does GAWR help SCIQL perform style conditioned task performance optimization?
3. How does SCIQL compare to previous work on style conditioned task performance opti-

mization?

5.1.1 ENVIRONMENTS, TASKS, LABELS AND DATASETS

Circle2d (see Figure 1) is a modified version of the environment from Li et al. (2017) and consists
of a 2D plane where an agent can roam within a confined square to draw a target circle. For this
environment, we define the labels: position, movement direction, turn direction, radius, speed,
and curvature noise. We generate two datasets using a hard-coded agent that draws circles with
various centers and radii, orientations (clockwise and counter-clockwise), speeds, and action noise
levels. The first dataset, circle2d-inplace-v0, is obtained by drawing the circle directly from the
start position, while the circle2d-navigate-v0 dataset is obtained by navigating to a target position
before drawing the circle. HalfCheetah (Todorov et al., 2012) (see Figure 1) is a task where the
objective is to control a planar 6-DoF robot to move as far as possible in the forward direction. For
this environment, we define the labels: speed, angle, torso height, backfoot height, and front-
foot height. We train a diverse set of HalfCheetah policies using SAC (Haarnoja et al., 2018) to
generate three datasets: halfcheetah-fixed-v0, where the policy is fixed throughout the trajectory;
halfcheetah-stitch-v0, where trajectories are split into short segments; and halfcheetah-vary-v0,
where the policy changes during the trajectory. HumEnv (Tirinzoni et al., 2025) is a higher dimen-
sional task consisting in controlling a SMPL skeleton (Loper et al., 2023) with 358-dimensional
observations through a 69-dimensional action space to move as fast as possible in a flat plane.
In humenv-simple-v0, the humanoid is initialized in a standing position. We generate a stylized
dataset using the Metamotivo-M1 model provided in Tirinzoni et al. (2025), leading to various ways
of moving at different heights and speeds and focus on a head height criterion of 2 labels, low
and high. In humenv-complex-v0, the humanoid is initialized in a lying down position, and the
dataset is generated as in humenv-simple-v0, but with style variations within the trajectory. Also,
in humenv-complex-v0, we define a speed criterion of 3 labels: immobile, slow and fast, and a
finer head height criterion of 3 labels: low, medium and high. Further details about each environ-
ment, task, labeling function and dataset are provided in Appendix A.

5.1.2 BASELINES AND MODEL DETAILS

We compare SCIQL against external state-of-the-art algorithms and a hierarchy of ablations de-
signed to isolate the contributions of SCIQL’s components. For the ablations, we begin with stan-
dard BC Pomerleau (1991) as a non-conditioned reference. We then introduce Conditioned BC
(CBC), which incorporates style conditioning using the current trajectory style. Finally, to analyze
the benefits of style relabeling, we introduce SCBC, an IL variant of SCIQL which performs hind-
sight style relabeling by sampling style labels from the future trajectory, but without value functions.
For external comparisons, we evaluate against BCPMI (Yang et al., 2024), which extends CBC via
mutual-information weighting, and an adapted version of SORL (Mao et al., 2024) (see Appendix
C), which serves as the primary benchmark for optimizing task performance under style constraints.
Further details on architectures and hyperparameters are provided in Appendix C and Appendix B.

5.2 RESULTS ON STYLE ALIGNMENT

Our first set of experiments evaluates the capability of SCIQL to achieve style alignment compared
to baselines. For each style label z ∈ L(λ) of each criterion λ, we perform 10 rollouts across 5 seeds,
conditioned on z (except BC, which does not support label conditioning). Each generated trajectory
τ = {(st, at), t ∈ {0, . . . , |τ | − 1}} is then annotated as λ(τ) = {(st, at, zt), t ∈ {0, . . . , |τ | − 1}}
with zt = λ(τt−w(λ)+1:t+w(λ)),∀t ∈ {0, . . . , |τ | − 1}. For each annotated trajectory, we compute
its empirical normalized undiscounted style alignment:

Ŝ1(λ(τ), z) =
1

|τ |

|τ |−1∑
t=0

1{zt = z}, (14)

where the normalization by the trajectory length |τ | ensures that Ŝ1(λ(τ), z) ∈ [0, 1], which hence
represents the fraction of timesteps labeled as contributing to the target label. We then average align-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ments over 10 episodes to compute the empirical normalized undiscounted style alignment of our
policy, Ŝ1(π, λ, z), which can be seen as the analogue of a GCRL success rate in the SCRL context.
Because of the multiplicity of criteria and labels (see Appendix D), we report average alignments
across all criteria and labels in Table 1, with full results provided in Appendix D. Standard deviations
are computed as the average across 5 seeds for the different tested (λ, z). We observe that SCIQL
achieves the best style alignment performance by a large margin compared to previous baselines for
every dataset, highlighting its effectiveness in long-term decision making and stitching, unlike prior
methods. In particular, the performance gap between BC and CBC underscores the necessity of style
conditioning. Moreover, the similar performance of SORL in imitation mode (β = 0), BCPMI, and
CBC can be explained by the similarity of their objectives (see Appendix C), all corresponding to
a weighted CBC without style relabeling. The performance gap between SCBC and the previous
baselines further highlights the importance of integrating trajectory stitching and style relabeling
within stylized policies, while the dominance of SCIQL demonstrates the additional benefits of
value learning, which augments relabeling by integrating randomly sampled styles during training
and enables more effective policy extraction overall. Additionally, SCIQL does not suffer from a
drop in alignment in halfcheetah-vary-v0 compared to the previous baselines. CBC exhibits higher
variance, while BCPMI, SORL, and SCBC show a decrease in average alignment. This highlights
SCIQL’s robustness to noisier trajectories, as variations in style during trajectory generation can
produce noisy learning signals. In particular, style variations can make SCBC consider the wrong
actions as beneficial when sampling future styles for relabeling at train time. A deeper analysis for
can be found in Appendix D.

Table 1: Style alignment results

Dataset BC CBC BCPMI SORL (β = 0) SCBC SCIQL
circle2d-inplace-v0 29.1 ± 6.3 58.6 ± 2.3 58.9 ± 2.6 58.9 ± 2.7 68.6 ± 2.0 74.6 ± 9.3
circle2d-navigate-v0 29.1 ± 5.3 58.9 ± 2.7 59.9 ± 2.3 60.0 ± 3.3 67.2 ± 1.8 75.5 ± 4.7
halfcheetah-fixed-v0 30.0 ± 5.9 51.2 ± 9.0 58.1 ± 8.4 53.1 ± 10.6 58.0 ± 5.3 78.0 ± 1.8
halfcheetah-stitch-v0 30.0 ± 6.8 52.1 ± 7.6 58.9 ± 11.3 48.4 ± 12.5 57.4 ± 4.7 78.0 ± 1.1
halfcheetah-vary-v0 30.0 ± 4.5 52.0 ± 12.0 52.6 ± 17.2 46.7 ± 9.5 31.7 ± 4.2 78.9 ± 0.7
humenv-simple-v0 50.0 ± 44.4 89.1 ± 22.0 79.2 ± 26.7 79.4 ± 26.9 99.6 ± 0.0 99.6 ± 0.0
humenv-complex-v0 33.3 ± 4.0 47.1 ± 12.8 44.6 ± 18.4 47.7 ± 6.9 33.2 ± 3.5 83.5 ± 6.2

5.3 RESULTS ON STYLE-CONDITIONED TASK PERFORMANCE OPTIMIZATION

To evaluate the capability of SCIQL to perform style-conditioned task performance optimization,
we plot the average style alignments and normalized returns of SCIQL without GAWR (λ), with a
style-based GAWR (λ > r), and with a reward-based GAWR (r > λ) for reference. We compare
against SORL with various temperatures β, which control the importance of task performance in
the SORL objective (see Appendix C). First, we observe in Table 2 that while increasing the impor-
tance of task performance raises the returns for both SORL and SCIQL, SCIQL (λ > r) achieves
better style alignment than all SORL variants while significantly improving its task performance
over SCIQL (λ). In particular, while increasing task performance importance in SORL results in a
significant decrease in style alignment, GAWR enables SCIQL (λ > r) to better maintain alignment
for the majority of the dataset. Finally, GAWR can also be used for task-conditioned style align-
ment optimization, allowing SCIQL (r > λ) to achieve task performance on par with or better than
SORL across tasks. To quantify the trade-offs between task and style, we compute complementary
metrics in addition to standard evaluations. First, we compute the Hypervolumes (HV) of both ap-
proaches and observe that SCIQL achieves a substantial improvement of +41.2% to +163.9% (see
Figure 2), indicating that it achieves a better overall task-performance to style-alignment tradeoff
than SORL. In particular, SCIQL(λ > r) lies closer to the ideal point (100, 100), corresponding to
a reduction in Euclidean distance to the ideal point of 18-28%. This shows that SCIQL reaches a
stronger compromise between objectives, effectively shifting the Pareto frontier closer to theoretical
optimality. Furthermore, because we consider task performance and style reward asymmetrically
and aim to improve task performance while maintaining strong style alignment, we observe that
SCIQL(λ > r) preserves the style alignment of SCIQL(λ) in nearly all environments and datasets
(excluding halfcheetah-stitch), while substantially improving task performance. A deeper analysis
for can be found in Appendix D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Style-conditioned task performance optimization results.

Dataset Metric SORL (β = 0) SORL (β = 1) SORL (β = 3) SCIQL (λ) SCIQL (λ > r) SCIQL (r > λ)

circle2d-inplace-v0 Style 58.9 ± 2.7 54.5 ± 4.6 53.9 ± 4.2 74.6 ± 9.3 71.6 ± 4.8 47.9 ± 9.3
Task 16.6 ± 6.2 70.4 ± 3.8 73.6 ± 3.3 6.6 ± 2.8 68.6 ± 6.9 89.1 ± 3.3

circle2d-navigate-v0 Style 60.0 ± 3.3 58.0 ± 5.2 57.6 ± 4.0 75.5 ± 4.7 76.5 ± 2.9 56.7 ± 6.1
Task 18.5 ± 7.3 69.7 ± 4.6 72.7 ± 3.9 7.9 ± 4.6 66.2 ± 6.5 87.7 ± 3.8

halfcheetah-fix-v0 Style 53.1 ± 10.6 44.4 ± 6.1 41.3 ± 4.1 78.0 ± 1.8 78.1 ± 1.5 49.7 ± 5.4
Task 32.1 ± 8.4 72.7 ± 5.6 80.6 ± 3.1 47.6 ± 2.3 56.5 ± 2.5 76.6 ± 5.5

halfcheetah-stitch-v0 Style 48.4 ± 12.5 41.1 ± 4.8 42.1 ± 4.9 78.0 ± 1.1 60.8 ± 6.0 33.8 ± 6.2
Task 31.9 ± 10.3 81.3 ± 3.1 78.3 ± 5.6 47.0 ± 2.3 70.0 ± 6.0 80.4 ± 9.0

halfcheetah-vary-v0 Style 46.7 ± 9.5 37.0 ± 3.0 31.1 ± 2.0 78.9 ± 0.7 77.8 ± 1.0 41.8 ± 5.0
Task 35.9 ± 9.0 79.0 ± 3.2 82.6 ± 3.1 50.6 ± 1.3 58.0 ± 1.7 84.6 ± 3.2

humenv-simple-v0 Style 79.4 ± 26.9 99.1 ± 0.9 99.4 ± 0.4 99.6 ± 0.0 99.6 ± 0.1 99.5 ± 0.2
Task 14.6 ± 14.5 16.0 ± 7.5 20.0 ± 12.5 19.1 ± 7.1 31.7 ± 4.8 36.5 ± 0.4

humenv-complex-v0 Style 47.7 ± 6.9 25.4 ± 11.0 23.5 ± 15.0 83.5 ± 6.2 90.8 ± 9.1 33.3 ± 4.3
Task 5.1 ± 2.7 29.7 ± 5.2 27.1 ± 8.8 11.0 ± 2.2 15.9 ± 2.5 41.0 ± 3.2

mean relative change Style (%) +0.0 -6.9 -13.9 +0.0 -3.1 -37.2
Task (%) +0.0 +214.5 +233.1 +0.0 +269.9 +402.1

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 5914 (+45%)
SORL HV: 4082

circle2d-inplace-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 6283 (+48%)
SORL HV: 4252

circle2d-navigate-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 5412 (+41%)
SORL HV: 3833

halfcheetah-fix-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 5416 (+50%)
SORL HV: 3621

halfcheetah-stitch-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 5680 (+68%)
SORL HV: 3383

halfcheetah-vary-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 3635 (+83%)
SORL HV: 1988

humenv-simple-v0

0 20 40 60 80 100
Style Alignment

0

20

40

60

80

100

Ta
sk

 P
er

fo
rm

an
ce

SCIQL HV: 2280 (+163%)
SORL HV: 868

humenv-complex-v0
Legend

SORL (Baselines)
SORL (= 0)
SORL (= 1)
SORL (= 3)
SORL Hypervolume

SCIQL (Ours)
SCIQL ()
SCIQL (> r)
SCIQL (r >)
SCIQL Hypervolume

Figure 2: Pareto fronts and hypervolumes of SORL and SCIQL.

6 CONCLUSION

We propose a novel general definition of behavior styles within the sequential decision making
framework and instantiate it by the use of labeling functions to learn interpretable styles with a
low labeling cost and easy alignment measurement while effectively avoiding unnecessary credit
assignment issues by relying on subtrajectories labeling. We then present the SCIQL algorithm
which leverages Gated AWR to solve long-term decision making and trajectory stitching challenges
while providing superior performance in both style alignment and style-conditioned task perfor-
mance compared to previous work.

We think that our framework opens the door to several interesting research directions. First, an
interesting next step would be to find ways to scale it to a multiplicity of criteria. Furthermore,
finding mechanisms to enhance the representation span of labeling functions could also be interest-
ing. Finally, integrating zero-shot capabilities to generate on the fly style-conditioned reinforcement
learning policies would be worthwhile to explore.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we detail our environments, tasks labels and datasets
in Appendix A, the choice of architecture and hyperparameter in Appendix B and the baselines
we use in Appendix C. Moreover, we provide links to clean implementations of our algorithms
in JAX (Bradbury et al., 2018) along with the datasets in the following project page: https:
//sciql-iclr-2026.github.io/.

8 LLM USE

The writing of this paper has been aided by an LLM for the following purposes: (1) Performing
searches to help verify the completeness of our related work. (2) Checking the grammar and wording
of the paper. (3) Providing assistance with code debugging and utilities under our close supervision.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 2017.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress, 2020. URL https://arxiv.org/abs/1806.06877.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint, 2021. URL https://arxiv.org/abs/2101.07123.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Alexi Canesse, Mathieu Petitbois, Ludovic Denoyer, Sylvain Lamprier, and Rémy Portelas. Navi-
gation with qphil: Quantizing planner for hierarchical implicit q-learning, 2024. URL https:
//arxiv.org/abs/2411.07760.

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajec-
tory stitching, 2022. URL https://arxiv.org/abs/2204.12026.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine. Actionable models: Unsu-
pervised offline reinforcement learning of robotic skills, 2021. URL https://arxiv.org/
abs/2104.07749.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021. URL https://arxiv.org/abs/2106.01345.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024a.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024b.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process expectations
for large time, i. Communications on Pure and Applied Mathematics, 28(1):1–47, 1975. doi:
https://doi.org/10.1002/cpa.3160280102. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpa.3160280102.

11

https://sciql-iclr-2026.github.io/
https://sciql-iclr-2026.github.io/
https://arxiv.org/abs/1806.06877
https://arxiv.org/abs/2101.07123
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://arxiv.org/abs/2411.07760
https://arxiv.org/abs/2411.07760
https://arxiv.org/abs/2204.12026
https://arxiv.org/abs/2104.07749
https://arxiv.org/abs/2104.07749
https://arxiv.org/abs/2106.01345
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160280102
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160280102

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learn-
ing as goal-conditioned reinforcement learning, 2023. URL https://arxiv.org/abs/
2206.07568.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning, 2021a.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning, 2021b.
URL https://arxiv.org/abs/2109.00137.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning, 2018. URL https://arxiv.org/abs/1710.11248.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning,
2021. URL https://arxiv.org/abs/2106.06860.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy, 2023. URL https://arxiv.org/abs/2301.02328.

Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals without reinforcement learning. ArXiv, abs/1912.06088,
2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph Lim. Multi-modal
imitation learning from unstructured demonstrations using generative adversarial nets, 2017. URL
https://arxiv.org/abs/1705.10479.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016. URL https:
//arxiv.org/abs/1606.03476.

Katja Hofmann. Minecraft as ai playground and laboratory. In Proceedings of the Annual Sympo-
sium on Computer-Human Interaction in Play, CHI PLAY ’19, pp. 1, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450366885. doi: 10.1145/3311350.3357716.
URL https://doi.org/10.1145/3311350.3357716.

Xiaogang Jia, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov, and
Gerhard Neumann. Towards diverse behaviors: A benchmark for imitation learning with human
demonstrations, 2024. URL https://arxiv.org/abs/2402.14606.

Leslie Pack Kaelbling. Learning to achieve goals. In Ruzena Bajcsy (ed.), Proceedings of the
13th International Joint Conference on Artificial Intelligence. Chambéry, France, August 28 -
September 3, 1993, pp. 1094–1099. Morgan Kaufmann, 1993.

Anthony Kobanda, Waris Radji, Mathieu Petitbois, Odalric-Ambrym Maillard, and Rémy Portelas.
Offline goal-conditioned reinforcement learning with projective quasimetric planning, 2025. URL
https://arxiv.org/abs/2506.18847.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning, 2021. URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020. URL https://arxiv.org/abs/2006.04779.

Dongsu Lee, Chanin Eom, and Minhae Kwon. Ad4rl: Autonomous driving benchmarks for of-
fline reinforcement learning with value-based dataset. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 8239–8245. IEEE, May 2024a. doi: 10.1109/icra57147.
2024.10610308. URL http://dx.doi.org/10.1109/ICRA57147.2024.10610308.

12

https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2109.00137
https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/2301.02328
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1705.10479
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476
https://doi.org/10.1145/3311350.3357716
https://arxiv.org/abs/2402.14606
https://arxiv.org/abs/2506.18847
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2006.04779
http://dx.doi.org/10.1109/ICRA57147.2024.10610308

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions, 2024b. URL https://arxiv.org/
abs/2403.03181.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations, 2017. URL https://arxiv.org/abs/1703.08840.

Qian Lin, Zongkai Liu, Danying Mo, and Chao Yu. An offline adaptation framework for con-
strained multi-objective reinforcement learning, 2024a. URL https://arxiv.org/abs/
2409.09958.

Qian Lin, Chao Yu, Zongkai Liu, and Zifan Wu. Policy-regularized offline multi-objective rein-
forcement learning, 2024b. URL https://arxiv.org/abs/2401.02244.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning : Prob-
lems and solutions. IJCAI, 2022.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A Skinned Multi-Person Linear Model. Association for Computing Machinery, New York,
NY, USA, 1 edition, 2023. ISBN 9798400708978. URL https://doi.org/10.1145/
3596711.3596800.

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes. In International Conference on Computer
Vision, pp. 5442–5451, October 2019a.

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes. In International Conference on Computer
Vision, pp. 5442–5451, October 2019b.

Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
Zhipeng Hu, Yi Wu, Yujing Hu, and Chongjie Zhang. Stylized offline reinforcement learning:
Extracting diverse high-quality behaviors from heterogeneous datasets. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=rnHNDihrIT.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online re-
inforcement learning with offline datasets, 2021. URL https://arxiv.org/abs/2006.
09359.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

Olle Nilsson and Antoine Cully. Policy gradient assisted map-elites. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’21, pp. 866–875, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383509. doi: 10.1145/3449639.
3459304. URL https://doi.org/10.1145/3449639.3459304.

Soichiro Nishimori. Jax-corl: Clean sigle-file implementations of offline rl algorithms in jax. 2024.
URL https://github.com/nissymori/JAX-CORL.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions, 2024. URL https://arxiv.org/abs/2307.
11949.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025.

13

https://arxiv.org/abs/2403.03181
https://arxiv.org/abs/2403.03181
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1703.08840
https://arxiv.org/abs/2409.09958
https://arxiv.org/abs/2409.09958
https://arxiv.org/abs/2401.02244
https://doi.org/10.1145/3596711.3596800
https://doi.org/10.1145/3596711.3596800
https://openreview.net/forum?id=rnHNDihrIT
https://openreview.net/forum?id=rnHNDihrIT
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://doi.org/10.1145/3449639.3459304
https://github.com/nissymori/JAX-CORL
https://arxiv.org/abs/2307.11949
https://arxiv.org/abs/2307.11949

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imi-
tating human behaviour with diffusion models, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Mathieu Petitbois, Rémy Portelas, Sylvain Lamprier, and Ludovic Denoyer. Offline learning of
controllable diverse behaviors, 2025. URL https://arxiv.org/abs/2504.18160.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991. doi: 10.1162/neco.1991.3.1.88.

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data program-
ming: Creating large training sets, quickly, 2017. URL https://arxiv.org/abs/1605.
07723.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning, 2011. URL https://arxiv.org/abs/
1011.0686.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017. URL https://arxiv.org/abs/1502.05477.

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone, 2022.

Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen
Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-
ioral foundation models, 2025. URL https://arxiv.org/abs/2504.11054.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards, 2021. URL
https://arxiv.org/abs/2103.07945.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess. Robust
imitation of diverse behaviors, 2017. URL https://arxiv.org/abs/1707.02747.

Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, QIANG FU, and Yang
Wei. Quality-similar diversity via population based reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=bLmSMXbqXr.

Hanlin Yang, Jian Yao, Weiming Liu, Qing Wang, Hanmin Qin, Hansheng Kong, Kirk Tang, Jiechao
Xiong, Chao Yu, Kai Li, Junliang Xing, Hongwu Chen, Juchao Zhuo, Qiang Fu, Yang Wei,
and Haobo Fu. Diverse policies recovering via pointwise mutual information weighted imitation
learning, 2024. URL https://arxiv.org/abs/2410.15910.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl, 2022.
URL https://arxiv.org/abs/2202.04478.

Yifu Yuan, Zhenrui Zheng, Zibin Dong, and Jianye Hao. Moduli: Unlocking preference gener-
alization via diffusion models for offline multi-objective reinforcement learning, 2025. URL
https://arxiv.org/abs/2408.15501.

14

https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/2504.18160
https://arxiv.org/abs/1605.07723
https://arxiv.org/abs/1605.07723
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/2504.11054
https://arxiv.org/abs/2103.07945
https://arxiv.org/abs/1707.02747
https://openreview.net/forum?id=bLmSMXbqXr
https://openreview.net/forum?id=bLmSMXbqXr
https://arxiv.org/abs/2410.15910
https://arxiv.org/abs/2202.04478
https://arxiv.org/abs/2408.15501

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan, and Matthew Hausknecht. Learning cal-
ibratable policies using programmatic style-consistency, 2020. URL https://arxiv.org/
abs/1910.01179.

Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl S. Muller, Jake A. Whritner, Luxin
Zhang, Mary M. Hayhoe, and Dana H. Ballard. Atari-head: Atari human eye-tracking and demon-
stration dataset, 2019. URL https://arxiv.org/abs/1903.06754.

15

https://arxiv.org/abs/1910.01179
https://arxiv.org/abs/1910.01179
https://arxiv.org/abs/1903.06754

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ENVIRONMENTS, TASKS, LABELS AND DATASETS

In this section, we detail our environments, tasks, labels and datasets.

A.1 CIRCLE2D

(a) Environment (b) Task (c) Position labels

Figure 3: Circle2d environment visualizations.

Environment The Circle2d environment consists in a 2d plane where an agent can roam
around within a confined square. Its state space S corresponds to the history of the 4 previ-
ous (xagent, yagent, θagent) ∈ [[xmin, xmax] × [ymin, ymax] × [θmin, θmax]] = [−50.0, 50.0] ×
[−50.0, 50.0] × [−π, π], padded if needed by repeating to oldest triplet (namely for the beginning
of the trajectory). Its action space A is [−1, 1]2 where the first dimension maps onto a angular
shift ∆θ ∈ [∆θmin,∆θmax] = [−π, π] in radians and the second dimension maps onto a speed
in [vmin, vmax] = [0.5, 3.0]. At first, the environment is initialized by sampling a random position
from [[0.7 · xmin, 0.7 · xmax]× [0.7 · ymin, 0.7 · ymax]] and a random orientation from [−π, π]. At
each timestep t, given a state st and an action at, the agent rotates by the corresponding ∆θt before
moving by the displacement vector ∆vt. The episode is truncated after 1000 timesteps have been
reached. We display a minimal visual example of our environment in Figure 3a.

Task In Circle2D, we define the task as drawing a target circle given its center xytarget and its
radius radiustarget and encode it by a reward: r(st, at) = −|||xyagent−xytarget||22−radiustarget|.
In this work, we consider the same fixed circle target along experiments and we display its associated
reward colormap in Figure 3b.

Datasets We generate for this environment two datasets by using a hard-coded agent which draws
circles of various centers and radius, with different orientations (clockwise and counter-clockwise)
and different speed and noise levels on the actions. The first dataset circle2d-inplace-v0 is obtained
by directly performing the circle at start position, while the circle2d-navigate-v0 dataset is obtained
by moving around a target position before drawing the circle. We plot in Figure 4 the datasets
trajectories.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) 5% (b) 20% (c) 50% (d) 100%

Figure 4: Circle2d datasets trajectory visualizations at different percentages. The top row cor-
responds to the circle2d-inplace-v0 while the bottom row corresponds to the circle2d-navigate-v0

Criteria and labels We present below the various labeling function we designed for Circle2d.

• position: The position labeling function λposition partitions the 2D plane into a fixed grid and
assigns to each timestep the index of the cell containing the current position. Concretely, the x-axis
range [−30, 30] (real units) is split uniformly into 4 bins and the y-axis is split at 0 into 2 bins,
yielding 4× 2 = 8 areas. At timestep t, with window size w, we read every (xt′ , yt′) in the window
τt−w+1:t+w and set the label as the majority area. The label set is L(λ) = J0, 7K. In practice, we
take w = 1 to mitigate unnecessary credit assignment issues. We plot in Figure 5 the corresponding
visuals and histograms.

• movement direction: The movement–direction labeling function λmove discretizes the instan-
taneous displacement direction. For each timestep t′, we compute ∆pt′ = pt′+1 − pt′ and
θt′ = atan2(∆yt′ ,∆xt′), and uniformly quantize [−π, π) into K = 8 bins. With window size
w, the label at t is the majority direction bin over {θt′}t′∈τt−w+1:t+w . If ∥∆pt′∥ < 0.1 (real units)
for a frame, it contributes an undetermined class u (non-promptable). Thus L(λ) = J0, 8K, with
promptable bins 0..7 and 8 = u. In practice we use w = 1 to mitigate unnecessary credit assign-
ment issues. See Figure 6 for visuals and histograms.

• turn direction: The turn–direction labeling function λturn inherently operates on a centered tem-
poral window to estimate local angular velocity. Let (θt)t be the unwrapped heading; on an odd
window Wt (default size 11), we form ∆θt′ = θt′+1 − θt′ and compute ω̄t = 1

|Wt|
∑
t′∈Wt

∆θt′ .
If |ω̄t| < 0.1 rad/step we label “straight,” else “left” if ω̄t > 0 (counter-clockwise) and “right”
if ω̄t < 0 (clockwise). We set L(λ) = {0, 1, 2} with 0 = right, 1 = left, 2 = straight (non-
promptable). We plot in Figure 7 its visuals and histograms.

• radius category: The radius labeling function λradius also works directly on centered windows.
First, on a short window W str

t (default size 11) we test straightness via the mean absolute heading
increment; if it is below 0.1 rad/step, the label is “straight.” Otherwise, on a larger window of
positions W rad

t (default size 51) we fit a circle by least squares and take its radius rt. We uniformly
partition [2, 11] (real units) into K = 3 bins and assign the corresponding bin; the straight case is
encoded as bin K. Thus L(λ) = J0,KK, where 0..K − 1 denote increasing-radius curved motion
and K denotes straight (non-promptable). See Figure 8.

• speed category: The speed labeling function λspeed bins the scalar speed. For each timestep t′ we
compute the speed vt′ and uniformly partition [0.5, 3.0] (real units) into K = 3 bins. With window
size w, the label at t is the majority speed bin over {vt′}t′∈τt−w+1:t+w . Hence L(λ) = J0,K − 1K.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In practice we take w = 1 to mitigate unnecessary credit assignment issues. We plot in Figure 9 the
corresponding visuals and histograms.

• curvature noise: The curvature-noise labeling function λnoise computes a variability statistic on
a centered window. With unwrapped heading (θt)t, we define ∆θt′ = θt′+1 − θt′ and ∆2θt′ =
∆θt′+1 − ∆θt′ . On an odd window Wt (default size 51), we take σt = std

(
{∆2θt′}t′∈Wt

)
and

uniformly bin σt into K = 3 categories over [0.0, 0.8]. Hence L(λ) = J0,K − 1K. We plot in
Figure 10 its visuals and histograms.

Notes. For all labels that use windows, the implementation ensures an odd, centered window around
t; where relevant, “straight”/“undetermined” classes are excluded from promptable labels but kept
in L(λ) for completeness. Bin edges are uniform by default and configurable through the class
constructors.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 5: Circle2d position label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 6: Circle2d movement direction label visualizations at different percentages.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 7: Circle2d turn direction label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 8: Circle2d radius label visualizations at different percentages.

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 9: Circle2d speed label visualizations at different percentages.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) inplace - 5% (b) inplace - 100% (c) navigate - 5% (d) navigate - 100%

Figure 10: Circle2d curvature noise visualizations at different percentages.

A.2 HALFCHEETAH

Environment HalfCheetah (Todorov et al., 2012; Towers et al., 2024) is an environment consist-
ing in controlling a 6-DoF 2-dimensional robot composed of 9 body parts and 8 joints connecting
them. The environment as a time limit of 1000 timesteps. Details about this environment can be
read in Towers et al. (2024).

Task As implemented in Towers et al. (2024), at each timestep t, the agent applies continuous
control actions at ∈ Rd that drive the joints of the cheetah. The environment evaluates performance
using a reward which encourages rapid forward progress while penalizing excessive control effort.
Formally, the forward velocity of the torso is

vt =
xt+1 − xt

∆t
,

where xt is the torso position along the horizontal axis and ∆t is the simulator timestep. The reward
combines a positive term proportional to forward velocity with a quadratic control penalty:

rt = wf vt − wc

d∑
i=1

a2t,i,

where wf is the forward-reward weight and wc is the control-cost weight. Thus, the agent must
learn to run efficiently: moving forward quickly while keeping joint torques as small as possible.

Datasets To generate the datasets, we train a diverse set of HalfCheetah policies through SAC
(Haarnoja et al., 2018). We construct several archetype policies defined by Gaussian-shaped re-
ward functions that bias behavior toward specific styles. The Height archetype rewards the torso
maintaining a target vertical position ztorso at specified values, thereby inducing qualitatively distinct
gaits: crawling (z ≈ 0.5 with σ = 0.04), normal running (z ≈ 0.6 with σ = 0.04), or upright run-
ning (z ≈ 0.7 with σ = 0.04). The Speed archetype rewards locomotion close to a desired forward
velocity, producing policies that move at slow pace (v ≈ 1.5), medium pace (v ≈ 5.0), or fast pace
(v ≈ 10.0). Finally, the Angle archetype shapes behavior around the torso pitch angle, leading to
policies that prefer upright (θ ≈ −0.2 with σ = 0.05), flat (θ ≈ 0.0 with σ = 0.05), or crouched
(θ ≈ 0.2 with σ = 0.05) postures while still advancing forward. These archetypes yield a diverse
collection of locomotion styles that serve as structured variations of the base HalfCheetah task.
Then, we generate three datasets: halfcheetah-fixed-v0, where the archetype policy is fixed during
the trajectory; halfcheetah-stitch-v0, where the trajectories are cut into shorter segments from the
halfcheetah-fixed-v0 dataset; and halfcheetah-vary-v0, where the policy archetype changes within
the same trajectory. Each dataset contain 106 = 1000(episodes) ∗ 1000(timesteps) steps, with the
stitch datasets containing more episodes as it cuts the fix dataset episodes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Criteria and labels We present below the various labeling functions we designed for HalfCheetah.
Each labeling function λ maps raw environment signals to a discrete label sequence, optionally
smoothed by a majority vote over a window τt−w+1:t+w. In practice, we take w = 1 to mitigate
unnecessary credit assignment issues.

• speed: The speed labeling function λspeed discretizes the forward velocity magnitude |vt|. We
define a range [vmin, vmax] = [0.1, 10.0] (real units) and split it uniformly into K = 3 bins, yielding
the labels L(λspeed) = J0, 2K. At timestep t, we assign the bin index corresponding to |vt|, and take
the majority bin across the window. See Figure 11.

• angle: The angle labeling function λangle discretizes the torso pitch θt. We define [θmin, θmax] =
[−0.3, 0.3] (radians) and split uniformly into K = 3 bins, yielding the label set L(λangle) = J0, 2K.
At timestep t, we assign the bin index of θt, and take the majority label over the window. See
Figure 12.

• torso height: The torso–height labeling function λtorso discretizes the vertical torso position ht.
We define [hmin, hmax] = [0.4, 0.8] (real units) and split intoK = 3 bins, giving L(λtorso) = J0, 2K.
Labels are assigned per timestep and smoothed by majority vote. See Figure 13.

• back-foot height: The back-foot labeling function λbf discretizes the vertical position of the back
foot hbft . We define [hmin, hmax] = [0.0, 0.3] and split into K = 4 bins, giving L(λbf) = J0, 3K.
Labels are taken per timestep and majority-voted. See Figure 14.

• front-foot height: The front-foot labeling function λff discretizes the vertical position of the front
foot hfft in the same manner as the back-foot: [0.0, 0.3] split into K = 4 bins, yielding L(λff) =
J0, 3K. See Figure 15.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 11: HalfCheetah speed label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 12: HalfCheetah angle label histograms.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 13: HalfCheetah torso height label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 14: HalfCheetah backfoot height label histograms.

(a) halfcheetah-fix-v0 (b) halfcheetah-stitch-v0 (c) halfcheetah-vary-v0

Figure 15: HalfCheetah frontfoot height label histograms.

A.3 HUMENV

Environment The HumEnv environment (Tirinzoni et al., 2025) is built on the SMPL skeleton
(Loper et al., 2023), which consists of 24 rigid bodies, among which 23 are actuated. This SMPL
skeleton is widely used in character animation and is well suited for expressing natural human-like
stylized behaviors. HumEnv’s observations consist in the concatenation of the body poses (70 D),
body rotations (144 D) and angular velocities (144D) resulting in a 358-dimensional vector. It moves
the body using a proportional derivative controller resulting in a 69-dimensional action space. This
task has consequently a higher dimensionality of (358, 69) compared to HalfCheetah’s (17, 6) di-
mensionality. We consider two types of HumEnv environments, HumEnv-Simple, which initializes
the humanoid in a standing position, and HumEnv-Complex, which initializes the humanoid in a
lying down position.

Task At each timestep t, the agent applies continuous control actions at ∈ Rd. The environments
evaluate performance using a reward that encourages high-speed movement in the horizontal plane,
modulated by a control efficiency term. Formally, let vt,xy denote the velocity vector of the center
of mass projected onto the horizontal plane (ignoring vertical movement). The reward is defined as
the norm of this velocity, scaled by a multiplicative control factor:

rt = α(at) · ∥vt,xy∥2,

where α(at) ∈ [0.8, 1.0] is a smoothness coefficient derived from a quadratic tolerance function on
the control inputs at provided in Tirinzoni et al. (2025).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Datasets We generated for each environment a stylized dataset using the Metamotivo-M1 model
provided in Tirinzoni et al. (2025), using various ways of moving at different heights and speeds.
Since, the Metamotivo-M1 model was trained with a regularization towards the AMASS motion-
capture dataset (Mahmood et al., 2019a), it provides more natural and human-like stylized behaviors.

Criteria and labels We present below the various labeling functions we designed for the HumEnv
environments. Each labeling function λ maps raw environment signals to a discrete label sequence,
optionally smoothed by a majority vote over a window τt−w+1:t+w. In practice, we take w = 1 to
mitigate unnecessary credit assignment issues.

• simple - head height: For HumEnv-Simple, we focused our study on a single head height crite-
rion of two labels, namely low and high. The simple - head height labeling function discretizes the
vertical head position ht using a single threshold at 1.2. This results in K = 2 bins (ht < 1.2 and
ht ≥ 1.2), yielding the label set L(λsimple head) = J0, 1K. See Figure 16a.

• complex - speed: For the HumEnv-Complex, we added a new speed criterion. The speed labeling
function λspeed discretizes the center-of-mass velocity magnitude |vt|. Based on the agent’s move-
ment capabilities, we define three distinct regimes: immobile (|vt| < 0.2), slow (0.2 ≤ |vt| ≤ 3.0),
and fast (|vt| > 3.0). This yields K = 3 bins with labels L(λspeed) = J0, 2K. See Figure 16b.

• complex - head height: For the HumEnv-Complex, we also complexified the complex -
head height criteria by adding a new label for a total of 3 labels. The head-height labeling function
λcomplex head discretizes the vertical position of the agent’s head ht. We define thresholds at 0.4 and
1.2 to capture different postures: lying down, crouching and standing. The space is split into K = 3
bins: ht < 0.4, 0.4 ≤ ht ≤ 1.2, and ht > 1.2, yielding L(λcomplex head) = J0, 2K. See Figure 16c.

0 1
label

0.0

0.1

0.2

0.3

0.4

0.5

pr
op

or
tio

n

(a) simple - head height

0 1 2
label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
op

or
tio

n

(b) complex - speed

0 1 2
label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
op

or
tio

n

(c) complex - head height

Figure 16: HumEnv label histograms.

B ARCHITECTURES AND HYPERPARAMETERS

Optimization: For all baselines, when necessary, labels are encoded as latent variables of dimension
16 via an embedding matrix. We optimize all networks using the Adam optimizer with a learning
rate of 3 · 10−3, employing cosine learning-rate decay for the policies, a batch size of 256, and 105

gradient steps for the χ estimators and 106 for the other networks. Value functions V additionally use
layer normalization. Unless otherwise specified, we use the IQL hyperparameters β = 3, κ = 0.7,
and γ = 0.99, and perform Polyak averaging on the Q-networks with coefficient 0.005.

Architectures: For Circle2d and HalfCheetah, the policies π, value networks V,Q, and estimators
χ are MLPs with hidden size [256, 256] and ReLU activations. For HumEnv, the policies are MLPs
with hidden size [1024, 1024, 1024] and ReLU activations.

Relabeling: In SCIQL, we use pλ(D)
r as pλ(D)

m for all criteria of all environments.

Implementations: Our implementations are written in JAX (Bradbury et al., 2018), and take inspi-
ration from Nishimori (2024), allowing little training durations. In Circle2D and HalfCheetah, we
get for BC (≈ 2min), CBC (≈ 3min), BCPMI (≈ 4min), SORL (≈ 15min), SCBC (≈ 3min) and
SCIQL (≈ 35min) on a NVIDIA V100 GPU for training runs. In HumEnv, we get for BC (≈ 5min),
CBC (≈ 5min), BCPMI (≈ 6min), SORL (≈ 23min), SCBC (≈ 5min) and SCIQL (≈ 45min) on
a NVIDIA A100 GPU for training runs. Our code and datasets can be found in our project website:
https://sciql-iclr-2026.github.io/.

23

https://sciql-iclr-2026.github.io/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C BASELINES

In this subsection, we describe in more details our baselines.

Behavior Cloning (BC). BC (Pomerleau, 1991) is the simplest of our baselines and learns by
maximizing the likelihood of actions given states through supervised learning on D:

JBC(π) = E(s,a)∼pD(s,a)[log π(a|s)]. (15)

We use this baseline as a reference for style alignment performance without conditioning.

Conditioned Behavior Cloning (CBC). CBC is the simplest style-conditioned method of our
baselines and consists in concatenating to BC’s states their associated label within λ(D):

JCBC(π) = E(s,a)∼pD(s,a),z∼pDcur(z|s,a)[log π(a|s, z)] (16)

This baseline serves as a reference to test the various benefits of subsequent methods to better per-
form style alignment optimization.

Behavior Cloning with Pointwise Mutual Information weighting (BCPMI). BCPMI (Yang
et al., 2024) seeks to address credit assignment issues between state–action pairs and style labels
by relying on their mutual information estimates. For this, BCPMI uses Mutual Information Neural
Estimation (MINE). In the information-theoretic setting, let S, A, and Z be random variables cor-
responding to states, actions, and styles, respectively. The mutual information between state–action
pairs (S,A) and styles Z can be written as the Kullback–Leibler (KL) divergence between the joint
distribution PS,A,Z and the product of their marginals PS,A ⊗ PZ :

I(S,A;Z) = DKL(PS,A,Z ∥PS,A ⊗ PZ). (17)

As directly estimating this mutual information is difficult, MINE relies on the Donsker–Varadhan
lower bound:

I(S,A;Z) ≥ sup
T∈F

E(s,a,z)∼PS,A,Z
[T (s, a, z)]− log

(
E(s,a,z)∼PS,A⊗PZ

[eT (s,a,z)]
)
, (18)

where F denotes a class of functions T : S × A × Z → R. According to Donsker & Varadhan
(1975), optimizing this bound yields

T ∗(s, a, z) = log
p(s, a, z)

p(s, a)p(z)
= log

p(z|s, a)
p(z)

. (19)

BCPMI trains a neural network to approximate T ∗(s, a, z) and uses it to weight CBC’s learning
objective, increasing the impact of transitions with high style relevance while reducing that of less
relevant ones:

JMINE(T) = E
(s,a)∼pλ(D)(s,a), z∼pλ(D)

c (z|s,a)[T (s, a, z)]− log
(
E
(s,a)∼pD(s,a), z∼pλ(D)

r (z)
[eT (s,a,z)]

)
,

(20)
JBC−PMI(π) = E

(s,a)∼pλ(D)(s,a), z∼pλ(D)
c (z|s,a)[exp(T

∗(s, a, z)) log π(a|s, z)]. (21)

This baseline is notable as it constitutes a first step toward addressing the credit assignment chal-
lenges in style-conditioned policy learning. However, as it strictly focuses on imitation learning
rather than task performance, it does not support style mixing and is therefore not designed to ad-
dress distribution shifts at inference time, unlike our method.

Stylized Offline Reinforcement Learning (SORL): SORL (Mao et al., 2024) is an important
baseline to consider since it both addresses the optimization of policy diversity and task perfor-
mance. Initially designed within a unsupervised learning setting, SORL is a two step algorithm
which aims to learn a diverse set of high-performing policies from D. First, SORL uses the
Expectation-Maximisation (EM) algorithm to first learn a finite set of diverse policies {µ(i)} to cap-
ture the heterogeneity of D. The E step aims to fit an estimate p̂(z = i|τ) the posteriors p(z = i|τ),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

associating each trajectory to a given style among N styles. The M step aims to train the stylized
policies {µ(i)} according to their associated style through p̂(z = i|τ):

E step: ∀i ∈ {0, ..., N − 1}, p̂(z = i|τ) ≈ 1

Z

∑
(s,a)∈τ

µ(i)(a|s) (22)

M step: ∀i ∈ {0, ..., N − 1}, JSORL - M step(µ
(i)) =

1

|D|
∑
τ∈D

m∑
i=1

p̂(z = i|τ)
∑

(s,a)∈τ

logµ(i)(a|s)

(23)

Then, to perform task performance optimization while preserving a certain amount of diversity,
SORL proposes to train from {µ(i)} a set of policies {π(i)} by solving the following constrained
problem:

∀i ∈ {0, ..., N − 1}, π(i) = argmax
π(i)

J(π(i)) (24)

s.t. Es∼ρ
µ(i) (s)DKL

(
π(i)(·|s) ∥µ(i)(·|s)

)
≤ ϵ,

∫
a

π(i)(a|s) da = 1, ∀s. (25)

By using its associated Lagrangian optimization problem, Mao et al. (2024) show that this problem
can be casted into a Stylized Advantage Weighted Regression (SAWR) objective:

∀i ∈ {0, ..., N −1}, JSORL - SAWR(π
(i)) = Eτ∼Dp̂(z = i|τ)

∑
(s,a)∈τ

log π(i)(a|s) exp
(
1

α
Ar(s, a)

)
.

(26)
In our supervised setting, the first step translates into the learning of a style conditioned policy
µλ,∗ : S → ∆(A) ∈ argmaxπ S(µ, z),∀z ∈ L(λ) by optimizing the style alignment objective
while the second step translates into optimizing µλ,∗’s performance by learning under the solution
πr,λ,∗ of the following constrained problem:

∀z ∈ L(λ), πr,λ,∗(·|·, z) = argmax
π(·|·,z)

J(π(·|·, z)) (27)

s.t. Es∼ρµ(·|·,z)(s)DKL(π(·|s, z)||µ(·|s, z)) ≤ ε,
∫
a

π(·|s, z) = 1,∀s (28)

Let z ∈ L(λ) be a style label. Following a similar path as Peng et al. (2019) and Mao et al.
(2024), we can state that maximizing J(π(·|·, z)) is similar as maximizing the expected improve-
ment η(π(·|·, z)) = J(π(·|·, z))−J(µ(·|·, z)), which can be express as Schulman et al. (2017) show
as:

η(π(·|·, z)) = Es∼ρπ(·|·,z)(s)Ea∼π(·|s,z)[A
µ(·|·,z)(s, a)] (29)

Like Peng et al. (2019) showed, we can substitute ρπ(·|·,z) to ρµ(·|·,z) to simplify this optimization
problem as the resulting error has been shown to be bounded by DKL(π(·|·, z)||µ(·|·, z)) Schulman
et al. (2017). Furthermore, Peng et al. (2019) and Mao et al. (2024) approximate Aµ(·|·,z)(s, a) by
the advantage Aµ(s, a) where µ represents the policy distribution of the dataset. In our setting, we
will use the advantage Ar(s, a) estimated through IQL to be coherent with SCIQL. Consequently,
SORL’s stylized advantage weighted regression becomes in our context:

πr,λ,∗(·|·, z) = argmax
π(·|·,z)

Es∼ρµ(·|·,z)(s)Ea∼π(·|s,z)[A
r(s, a)] (30)

s.t. Es∼ρµ(·|·,z)(s)DKL(π(·|s, z)||µ(·|s, z)) ≤ ε,
∫
a

π(·|s, z) = 1,∀s (31)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

As Peng et al. (2019) and Mao et al. (2024), we compute the corresponding Lagrangian of this
optimization problem:

L(π(·|·, z), αµ,απ) =Es∼ρµ(·|·,z)

[
Ea∼π(·|s,z)Ar(s, a) (32)

+ αµ
(
ε−DKL(π(·|s, z) ∥µ(·|s, z))

)]
(33)

+

∫
s

απs

(
1−

∫
a

π(a|s, z) da
)
ds (34)

=

∫
s

ρµ(·|·,z)(s)ds
[∫

a

π(a|s, z)daAr(s, a) (35)

+ αµ
(
ε−

∫
a

π(a|s, z) log π(a|s, z)
µ(a|s, z)

da
]

(36)

+

∫
s

απs

(
1−

∫
a

π(a|s, z) da
)
ds = (37)

with αµ ≥ 0 and απ = {απs ∈ R, s ∈ S} the Lagrange multipliers. We differentiate
L(π(·|·, z), αµ,απ) as:

∂L

∂π(a|s, z)
= ρµ(·|s,z)(s)

[
Ar(s, a)− αµ log π(a|s, z) + αµ logµ(a|s, z)− αµ

]
−απs (38)

Setting this derivative to zero yields the following closed-form solution:

π∗(a|s, z) = 1

Z(s, z)
µ(a|s, z) exp

(
1

αµ
Ar(s, a)

)
, (39)

where Z(s, z) is the normalization term defined as:

Z(s, z) = exp

(
1

ρµ(·|·,z)(s)

απs
αµ

+ 1

)
. (40)

Finally, as Peng et al. (2019) and Mao et al. (2024), we estimate π∗(·|·, z) with a neural network
policy πψ(·|·, z) by solving:

argmin
ψ

Es∼pλ(D)(s|z)

[
DKL

(
π∗(·|s, z) ∥πψ(·|s, z)

)]
(41)

= argmin
ψ

Es∼pλ(D)(s|z)

[∫
a

(
π∗(a|s, z) log π∗(a|s, z)− π∗(a|s, z) log πψ(a|s, z)

)
da

]
(42)

= argmin
ψ
− Es∼pλ(D)(s|z)

[∫
a

π∗(a|s, z) log πψ(a|s, z) da

]
(43)

= argmin
ψ
− Es∼pλ(D)(s|z)

[∫
a

1

Z(s, z)
µ(a|s, z) exp

(
1
αµA

r(s, a)
)
log πψ(a|s, z) da

]
(44)

= argmin
ψ
− E(s,a)∼pλ(D)(s,a|z)

[
1

Z(s, z)
exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(45)

= argmin
ψ
− E(s,a)∼pλ(D)(s,a)

[
p(z|s, a) 1

Z(s, z)
exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(46)

By neglecting the absorbing constant as Peng et al. (2019); Mao et al. (2024), we can finally express
the SORL objective in our supervised version:

argmin
ψ
−E(s,a)∼pλ(D)(s,a)

[
p(z|s, a) exp

(
1
αµA

r(s, a)
)
log πψ(a|s, z)

]
(47)

As we want to optimize this objective for all z ∈ L(λ), we write below the general objective:

argmin
ψ
−E(s,a)∼pλ(D)(s,a)

 1

|λ|

|λ|−1∑
z=0

p(z|s, a) exp
(

1
αµA

r(s, a)
)
log πψ(a|s, z)

 (48)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

As in SCIQL, we can employ several strategies to estimate p(z|s, a) through an estimator χ(s, a, z)
which we all detail in appendix E.1. Additionally, the advantage functions can be learned offline
through IQL as in SCIQL. Hence, we can obtain our adapted SORL objectives by taking β = 1/αµ:

LSORL(Vr) = E(s,a)∼pD(s,a)[ℓ
2
κ(Q̄r(s, a)− Vr(s))] (49)

LSORL(Qr) = E(s,a,s′)∼pD(s,a,s′)[r(s, a) + γVr(s
′)−Qr(s, a))2] (50)

JSORL(π) = E(s,a)∼pD(s,a)
1

|λ|

|λ|−1∑
z=0

χ(s, a, z)eβA
r(s,a) log π(a|s, z) (51)

Style-Conditioned Behavior Cloning (SCBC): SCBC corresponds to a simpler behavior cloning
version of SCIQL whose objective can be written as:

JSCBC(π) = E(s,a)∼pD(s,a),z∼pDf (z|s,a)[log π(a|s, z)] (52)

This baseline is interesting as it shows both how style mixing with hindsight relabeling can be
beneficial to style alignment while highlighting the impact of value learning when compared to
SCIQL. For instance, value learning allows for relabeling outside of pλ(D)

f on top of optimizing the
policy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D ADDITIONAL TABLES

Table 3: Experiment complexity

Environment Criterion nlabels ndatasets nseeds Total trainings neval episodes Total evals episodes
circle2d position 8 2 5 80 10 800

movement direction 8 2 5 80 10 800
turn direction 2 2 5 20 10 200
radius 15 2 5 150 10 1500
speed 15 2 5 150 10 1500
curvature noise 3 2 5 45 10 450

halfcheetah speed 3 3 5 45 10 450
angle 3 3 5 45 10 450
torso height 3 3 5 45 10 450
backfoot height 4 3 5 60 10 600
frontfoot height 4 3 5 60 10 600

humenv-simple head height 2 1 5 10 10 100
humenv-complex speed 3 1 5 15 10 150

head height 3 1 5 15 10 150
all 14 criteria 76 820 8200

In this section, we display the full results for both style alignment and style-conditioned task
performance optimization. These tables are computed for each environment and criterion λ by
averaging performance across 5 seeds and all labels in L(λ). Table 3 reports the evaluation
complexity statistics of our experiments, which, for each algorithm variant, requires 820 training
runs and 8200 evaluation episodes. Normalized per seed, this corresponds to 820/5 = 164 runs
per algorithm, which justifies our use of averages in Table 1, Table 2, Table 4, and Table 5. In the
following, we write additional remarks about the full results tables.

Style alignment: In Table 4, SCIQL achieves better style alignment on most criteria, while
being slightly lower on the turn direction, radius, and speed criteria of Circle2d. This can be
explained by the fact that these criteria do not require relabeling, and we show in Appendix E.2
that optimal performance can be recovered by changing the sampling distribution from p

λ(D)
r

that we globally use to p
λ(D)
c for those particular criteria. Additionally, methods that do not

perform style relabeling perform worse in inplace than in navigate for styles corresponding to
specific subsets of the state space, such as position, highlighting the importance of style relabeling
for alignment. For halfcheetah, SCIQL largely dominates all baselines demonstrating SCIQL’s
robustness to noisier trajectories. Namely, in the halfcheetah-vary-v0, SCIQL dominates even more
the baselines. In particular, we recall from Appendix C that SCBC sees a important decrease in its
style alignment. This can be explained by the nature of the relabeling used in SCBC. For a given
observed state-action pair in the dataset (s, a), SCBC samples a futur style zf from the future of
the trajectory and considers (s, a, zf) as expert behavior. Indeed, for SCBC, every action is expert
to reach the styles in the future of its trajectory. However, when style variations occur within the
trajectory, for instance when alternating low and high speeds (zslow, ..., zfast, ..., zslow, ...) an action
conditributing to high speed (s, a, zt) with zf = zfast could be relabeled as (s, a, zslow), provoking
the learning of an action for high speeds while being conditioned on zslow. SCIQL solves this
problem by additing an advantage weighted regression mechanism to always strives to reach as fast
as possible style alignment. consequently lowering thus the weights of wrong labels.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 4: Style alignment results (full).

Dataset BC CBC BCPMI SORL (β = 0) SCBC SCIQL
circle2d-inplace-v0 - position 12.5 ± 6.9 15.0 ± 10.3 16.3 ± 13.5 14.9 ± 11.6 65.9 ± 11.5 98.0 ± 0.3
circle2d-inplace-v0 - movement direction 12.5 ± 0.2 4.4 ± 1.6 4.1 ± 1.4 5.3 ± 4.2 12.5 ± 0.3 20.5 ± 4.4
circle2d-inplace-v0 - turn direction 50.0 ± 25.1 100.0 ± 0.0 100.0 ± 0.1 100.0 ± 0.1 100.0 ± 0.0 82.6 ± 26.3
circle2d-inplace-v0 - radius 33.3 ± 1.2 99.1 ± 2.0 99.7 ± 0.6 99.8 ± 0.4 100.0 ± 0.0 96.1 ± 5.3
circle2d-inplace-v0 - speed 33.3 ± 4.2 99.9 ± 0.1 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 91.6 ± 13.3
circle2d-inplace-v0 - curvature noise 33.3 ± 0.0 33.3 ± 0.0 33.3 ± 0.1 33.3 ± 0.0 33.3 ± 0.0 59.1 ± 6.1
circle2d-inplace-v0 - all 29.1 ± 6.3 58.6 ± 2.3 58.9 ± 2.6 58.9 ± 2.7 68.6 ± 2.0 74.6 ± 9.3
circle2d-navigate-v0 - position 12.5 ± 7.4 16.7 ± 9.5 24.0 ± 11.8 22.3 ± 14.8 58.5 ± 9.5 98.4 ± 0.2
circle2d-navigate-v0 - movement direction 12.5 ± 0.2 5.7 ± 4.9 3.2 ± 0.2 4.9 ± 3.7 12.5 ± 0.2 27.0 ± 5.7
circle2d-navigate-v0 - turn direction 50.0 ± 13.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.1 99.6 ± 0.1 96.0 ± 5.7
circle2d-navigate-v0 - radius 33.3 ± 10.6 98.1 ± 1.7 98.8 ± 1.4 99.7 ± 0.4 99.2 ± 0.9 95.8 ± 5.6
circle2d-navigate-v0 - speed 33.3 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.7 99.9 ± 0.0 96.0 ± 4.5
circle2d-navigate-v0 - curvature noise 33.3 ± 0.0 33.3 ± 0.1 33.3 ± 0.3 33.3 ± 0.0 33.4 ± 0.1 40.0 ± 6.7
circle2d-navigate-v0 - all 29.1 ± 5.3 58.9 ± 2.7 59.9 ± 2.3 60.0 ± 3.3 67.2 ± 1.8 75.5 ± 4.7
halfcheetah-fixed-v0 - speed 33.3 ± 11.2 73.9 ± 11.8 77.6 ± 9.0 73.0 ± 20.3 95.9 ± 1.2 96.0 ± 1.6
halfcheetah-fixed-v0 - angle 33.3 ± 4.5 57.7 ± 15.5 68.0 ± 11.3 60.0 ± 15.5 55.2 ± 7.4 99.1 ± 1.1
halfcheetah-fixed-v0 - torso height 33.3 ± 6.0 70.9 ± 11.1 82.2 ± 10.0 73.2 ± 8.9 79.3 ± 8.3 96.8 ± 3.5
halfcheetah-fixed-v0 - backfoot height 25.0 ± 2.5 26.9 ± 2.6 29.6 ± 3.9 28.4 ± 2.8 32.4 ± 6.8 47.5 ± 2.0
halfcheetah-fixed-v0 - frontfoot height 25.0 ± 5.5 26.5 ± 3.9 33.3 ± 7.8 30.7 ± 5.7 27.0 ± 3.0 50.5 ± 0.8
halfcheetah-fixed-v0 - all 30.0 ± 5.9 51.2 ± 9.0 58.1 ± 8.4 53.1 ±10.6 58.0 ± 5.3 78.0 ± 1.8
halfcheetah-stitch-v0 - speed 33.3 ± 8.7 79.9 ± 8.0 70.1 ± 17.7 57.1 ± 23.2 92.0 ± 3.3 96.3 ± 0.5
halfcheetah-stitch-v0 - angle 33.3 ± 8.0 50.4 ± 14.2 72.1 ± 18.9 55.0 ± 20.4 60.8 ± 5.8 99.5 ± 0.2
halfcheetah-stitch-v0 - torso height 33.3 ± 9.9 72.6 ± 7.2 87.1 ± 7.7 71.5 ± 10.7 80.1 ± 6.8 96.9 ± 1.4
halfcheetah-stitch-v0 - backfoot height 25.0 ± 3.8 28.6 ± 2.7 30.0 ± 6.3 28.0 ± 3.4 27.3 ± 3.9 47.0 ± 2.4
halfcheetah-stitch-v0 - frontfoot height 25.0 ± 3.6 29.1 ± 5.9 35.3 ± 6.0 30.2 ± 5.0 27.0 ± 3.5 50.3 ± 0.8
halfcheetah-stitch-v0 - all 30.0 ± 6.8 52.1 ± 7.6 58.9 ±11.3 48.4 ±12.5 57.4 ± 4.7 78.0 ± 1.1
halfcheetah-vary-v0 - speed 33.3 ± 6.9 63.3 ± 15.5 56.4 ± 23.2 54.3 ± 14.3 37.8 ± 5.8 96.7 ± 0.1
halfcheetah-vary-v0 - angle 33.3 ± 4.6 59.2 ± 24.2 46.4 ± 22.1 39.7 ± 10.8 34.8 ± 3.9 99.2 ± 0.6
halfcheetah-vary-v0 - torso height 33.3 ± 7.6 79.3 ± 10.9 92.6 ± 7.5 77.0 ± 11.8 36.2 ± 6.1 98.8 ± 0.3
halfcheetah-vary-v0 - backfoot height 25.0 ± 1.7 29.6 ± 4.5 32.9 ± 27.3 31.8 ± 5.3 25.1 ± 2.2 49.5 ± 1.4
halfcheetah-vary-v0 - frontfoot height 25.0 ± 1.8 28.7 ± 5.1 34.9 ± 5.7 30.6 ± 5.3 24.8 ± 2.8 50.4 ± 1.0
halfcheetah-vary-v0 - all 30.0 ± 4.5 52.0 ±12.0 52.6 ±17.2 46.7 ± 9.5 31.7 ± 4.2 78.9 ± 0.7
humenv-simple-v0 - head height 50.0 ± 44.4 89.1 ± 22.0 79.2 ± 26.7 79.4 ± 26.9 99.6 ± 0.0 99.6 ± 0.0
humenv-simple-v0 - all 50.0 ± 44.4 89.1 ± 22.0 79.2 ± 26.7 79.4 ± 26.9 99.6 ± 0.0 99.6 ± 0.0
humenv-complex-v0 - speed 33.3 ± 5.2 32.6 ± 7.1 32.1 ± 13.6 34.3 ± 4.7 34.1 ± 5.8 83.7 ± 5.9
humenv-complex-v0 - head height 33.3 ± 2.7 61.6 ± 18.5 57.1 ± 23.3 61.1 ± 9.2 32.4 ± 1.3 83.3 ± 6.6
humenv-complex-v0 - all 33.3 ± 4.0 47.1 ± 12.8 44.6 ± 18.4 47.7 ± 6.9 33.2 ± 3.5 83.5 ± 6.2

Style-conditioned task performance optimization results: We see in Table 5 that choosing
SORL’s temperature βSORL is challenging, as finding a good balance between style alignment and
task performance is highly sensitive to its value. For instance, in halfcheetah-vary-v0 - speed, as in
many other settings, increasing βSORL from 0 to 1 leads to an immediate drop in style alignment. In
halfcheetah-vary-v0 - torso height, the decreases occur more gradually, with drops appearing both
when moving from βSORL = 0 to βSORL = 1 and from βSORL = 1 to βSORL = 3. In contrast,
SCIQL shows no such degradation. These examples highlight that tuning SORL’s temperature for
style-conditioned task performance optimization can be troublesome, as it requires precise adjust-
ment and the optimal value may vary across styles. SCIQL’s temperature parameter βSCIQL differs
fundamentally: it does not encode the trade-off between style alignment and task performance. In-
stead, it is inherited directly from IQL’s temperature parameter βIQL, while the trade-off itself is
handled by the Gated Advantage Weighted Regression. Experimentally, we find that setting βSCIQL

equal to the values of βIQL commonly used in the literature, typically chosen as 1.0, 3.0, and 10.0
(Kostrikov et al., 2021; Park et al., 2024; 2025), is an effective heuristic. Hence, SCIQL main-
tains strong alignment by design while significantly improving task performance, without requiring
precise fine-tuning.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 5: Style-conditioned task performance optimization results (full).

Dataset Metric SORL (β = 0) SORL (β = 1) SORL (β = 3) SCIQL (λ) SCIQL (λ > r) SCIQL (r > λ)
circle2d-inplace-v0 - all Style 58.9 ± 2.7 54.5 ± 4.6 53.9 ± 4.2 74.6 ± 9.3 71.6 ± 4.8 47.9 ± 9.3
circle2d-inplace-v0 - all Task 16.6 ± 6.2 70.4 ± 3.8 73.6 ± 3.3 6.6 ± 2.8 68.6 ± 6.9 89.1 ± 3.3
circle2d-inplace-v0 - position Style 14.9 ± 11.6 15.5 ± 5.5 12.1 ± 3.2 98.0 ± 0.3 96.1 ± 1.9 31.5 ± 6.8
circle2d-inplace-v0 - position Task 12.8 ± 7.4 79.2 ± 8.8 80.4 ± 7.7 2.6 ± 0.6 17.3 ± 4.1 69.3 ± 7.8
circle2d-inplace-v0 - movement direction Style 5.3 ± 4.2 5.5 ± 3.4 4.7 ± 1.7 20.5 ± 4.4 14.5 ± 2.3 12.5 ± 0.8
circle2d-inplace-v0 - movement direction Task 0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 1.3 ± 0.2 80.8 ± 11.3 93.4 ± 3.3
circle2d-inplace-v0 - turn direction Style 100.0 ± 0.1 98.2 ± 1.3 97.9 ± 2.2 82.6 ± 26.3 85.5 ± 11.3 64.0 ± 16.9
circle2d-inplace-v0 - turn direction Task 14.3 ± 3.2 88.4 ± 1.7 90.1 ± 3.1 6.9 ± 5.8 90.8 ± 3.7 95.0 ± 1.9
circle2d-inplace-v0 - radius category Style 99.8 ± 0.4 77.1 ± 12.2 72.6 ± 5.3 96.1 ± 5.3 99.9 ± 0.1 57.1 ± 16.3
circle2d-inplace-v0 - radius category Task 28.3 ± 10.0 78.0 ± 4.6 87.4 ± 2.3 6.5 ± 3.2 53.9 ± 10.4 90.2 ± 2.2
circle2d-inplace-v0 - speed category Style 99.9 ± 0.0 97.4 ± 4.8 96.2 ± 5.0 91.6 ± 13.3 94.5 ± 7.6 88.4 ± 14.7
circle2d-inplace-v0 - speed category Task 21.0 ± 8.2 86.3 ± 3.6 91.8 ± 2.4 19.5 ± 6.2 91.5 ± 2.1 93.2 ± 2.0
circle2d-inplace-v0 - curvature noise Style 33.3 ± 0.0 33.5 ± 0.3 39.8 ± 8.0 59.1 ± 6.1 38.9 ± 5.5 33.6 ± 0.3
circle2d-inplace-v0 - curvature noise Task 22.8 ± 8.0 89.6 ± 4.2 91.3 ± 4.2 2.6 ± 0.8 77.5 ± 9.7 93.3 ± 2.4
circle2d-navigate-v0 - all Style 60.0 ± 3.3 58.0 ± 5.2 57.6 ± 4.0 75.5 ± 4.7 76.5 ± 2.9 56.7 ± 6.1
circle2d-navigate-v0 - all Task 18.5 ± 7.3 69.7 ± 4.6 72.7 ± 3.9 7.9 ± 4.6 66.2 ± 6.5 87.7 ± 3.8
circle2d-navigate-v0 - position Style 22.3 ± 14.8 15.7 ± 4.5 13.9 ± 3.1 98.4 ± 0.2 96.0 ± 2.2 35.9 ± 10.4
circle2d-navigate-v0 - position Task 19.8 ± 10.2 63.3 ± 13.8 69.4 ± 13.1 2.8 ± 0.6 20.1 ± 2.8 64.1 ± 9.3
circle2d-navigate-v0 - movement direction Style 4.9 ± 3.7 5.8 ± 5.4 5.6 ± 4.1 27.0 ± 5.7 18.4 ± 4.0 12.6 ± 0.8
circle2d-navigate-v0 - movement direction Task 0.4 ± 0.0 0.7 ± 0.6 0.4 ± 0.1 1.1 ± 0.1 63.3 ± 13.4 94.5 ± 1.3
circle2d-navigate-v0 - turn direction Style 100.0 ± 0.1 99.6 ± 0.4 99.8 ± 0.1 96.0 ± 5.7 100.0 ± 0.0 81.9 ± 6.3
circle2d-navigate-v0 - turn direction Task 18.4 ± 11.4 92.5 ± 3.2 93.4 ± 2.6 2.7 ± 1.3 94.4 ± 2.4 95.4 ± 1.4
circle2d-navigate-v0 - radius category Style 99.7 ± 0.4 91.2 ± 7.0 91.3 ± 11.5 95.8 ± 5.6 99.7 ± 0.1 77.1 ± 16.8
circle2d-navigate-v0 - radius category Task 30.9 ± 9.4 83.0 ± 2.8 88.0 ± 1.8 16.3 ± 7.4 64.3 ± 8.4 87.1 ± 3.8
circle2d-navigate-v0 - speed category Style 99.6 ± 0.7 97.1 ± 6.3 99.6 ± 0.8 96.0 ± 4.5 99.2 ± 1.1 99.0 ± 1.8
circle2d-navigate-v0 - speed category Task 21.6 ± 5.0 89.8 ± 3.6 90.6 ± 3.4 15.3 ± 8.7 92.7 ± 4.5 95.3 ± 2.2
circle2d-navigate-v0 - curvature noise Style 33.3 ± 0.0 38.9 ± 7.9 35.4 ± 4.6 40.0 ± 6.7 45.8 ± 9.8 33.6 ± 0.7
circle2d-navigate-v0 - curvature noise Task 19.7 ± 7.7 88.8 ± 3.6 94.5 ± 2.1 9.0 ± 9.7 62.4 ± 7.5 89.9 ± 4.7
halfcheetah-fix-v0 - all Style 53.1 ± 10.6 44.4 ± 6.1 41.3 ± 4.1 78.0 ± 1.8 78.1 ± 1.5 49.7 ± 5.4
halfcheetah-fix-v0 - all Task 32.1 ± 8.4 72.8 ± 5.6 80.6 ± 3.1 47.6 ± 2.3 56.5 ± 2.5 76.6 ± 5.5
halfcheetah-fix-v0 - speed Style 73.0 ± 20.3 31.9 ± 9.4 34.6 ± 2.2 96.0 ± 1.6 95.6 ± 3.1 37.4 ± 6.5
halfcheetah-fix-v0 - speed Task 42.5 ± 13.2 72.5 ± 10.7 84.1 ± 2.4 48.1 ± 1.7 51.6 ± 1.9 87.5 ± 5.9
halfcheetah-fix-v0 - angle Style 60.0 ± 15.5 41.4 ± 10.7 30.9 ± 2.7 99.1 ± 1.1 99.5 ± 0.1 69.9 ± 8.9
halfcheetah-fix-v0 - angle Task 26.2 ± 5.3 68.4 ± 9.9 83.2 ± 4.2 38.0 ± 2.0 48.9 ± 1.9 68.0 ± 6.3
halfcheetah-fix-v0 - torso height Style 73.2 ± 8.9 89.7 ± 4.7 84.0 ± 7.9 96.8 ± 3.5 98.0 ± 1.9 63.8 ± 5.1
halfcheetah-fix-v0 - torso height Task 33.8 ± 8.9 73.1 ± 1.4 73.9 ± 1.7 50.3 ± 1.2 51.5 ± 1.0 68.8 ± 6.2
halfcheetah-fix-v0 - backfoot height Style 28.4 ± 2.8 34.7 ± 3.4 31.0 ± 4.6 47.5 ± 2.0 49.2 ± 1.2 37.6 ± 2.8
halfcheetah-fix-v0 - backfoot height Task 34.7 ± 6.6 85.4 ± 1.5 86.4 ± 1.9 63.1 ± 5.0 76.2 ± 1.6 82.3 ± 4.4
halfcheetah-fix-v0 - frontfoot height Style 30.7 ± 5.7 24.1 ± 2.4 26.0 ± 3.0 50.5 ± 0.8 48.2 ± 1.2 39.9 ± 3.8
halfcheetah-fix-v0 - frontfoot height Task 23.5 ± 7.9 64.4 ± 4.6 75.4 ± 5.3 38.3 ± 1.7 54.5 ± 5.9 76.3 ± 4.9
halfcheetah-stitch-v0 - all Style 48.4 ± 12.5 41.1 ± 4.8 42.1 ± 4.9 78.0 ± 1.1 60.8 ± 6.0 33.8 ± 6.2
halfcheetah-stitch-v0 - all Task 31.9 ± 10.3 81.3 ± 3.1 78.3 ± 5.6 47.0 ± 2.3 70.0 ± 6.0 80.4 ± 9.0
halfcheetah-stitch-v0 - speed Style 57.1 ± 23.2 34.0 ± 2.3 38.1 ± 4.7 96.3 ± 0.5 47.6 ± 11.2 32.6 ± 5.2
halfcheetah-stitch-v0 - speed Task 32.7 ± 14.3 83.3 ± 3.0 81.3 ± 5.0 47.2 ± 0.7 78.7 ± 8.5 84.0 ± 8.5
halfcheetah-stitch-v0 - angle Style 55.0 ± 20.4 31.5 ± 3.3 34.7 ± 6.5 99.5 ± 0.2 92.5 ± 6.1 38.0 ± 6.0
halfcheetah-stitch-v0 - angle Task 25.5 ± 8.8 83.4 ± 4.2 79.7 ± 9.7 41.1 ± 4.2 54.8 ± 6.6 79.7 ± 7.1
halfcheetah-stitch-v0 - torso height Style 71.5 ± 10.7 83.0 ± 10.6 77.7 ± 5.9 96.9 ± 1.4 85.1 ± 7.4 44.5 ± 8.3
halfcheetah-stitch-v0 - torso height Task 33.7 ± 10.9 74.1 ± 1.3 69.8 ± 4.1 48.3 ± 2.2 59.5 ± 5.5 82.1 ± 7.5
halfcheetah-stitch-v0 - backfoot height Style 28.0 ± 3.4 30.6 ± 5.0 32.0 ± 3.7 47.0 ± 2.4 39.1 ± 3.8 29.0 ± 6.3
halfcheetah-stitch-v0 - backfoot height Task 41.2 ± 9.2 87.0 ± 1.8 84.6 ± 4.5 60.7 ± 3.7 80.8 ± 6.4 76.2 ± 9.8
halfcheetah-stitch-v0 - frontfoot height Style 30.2 ± 5.0 26.5 ± 2.9 28.0 ± 3.6 50.3 ± 0.8 39.5 ± 1.3 24.8 ± 5.0
halfcheetah-stitch-v0 - frontfoot height Task 26.5 ± 8.3 78.5 ± 5.3 76.1 ± 4.9 37.8 ± 0.8 76.3 ± 3.2 79.8 ± 12.0
halfcheetah-vary-v0 - all Style 46.7 ± 9.5 37.0 ± 3.0 31.1 ± 2.0 78.9 ± 0.7 77.8 ± 1.0 41.8 ± 5.0
halfcheetah-vary-v0 - all Task 35.9 ± 9.0 79.0 ± 3.2 82.6 ± 3.1 50.6 ± 1.3 58.0 ± 1.7 84.6 ± 3.2
halfcheetah-vary-v0 - speed Style 54.3 ± 14.3 33.3 ± 0.3 33.4 ± 0.2 96.7 ± 0.1 96.9 ± 0.4 40.7 ± 6.1
halfcheetah-vary-v0 - speed Task 42.7 ± 9.3 88.2 ± 2.4 88.7 ± 2.2 48.1 ± 1.3 50.7 ± 0.9 84.1 ± 5.2
halfcheetah-vary-v0 - angle Style 39.7 ± 10.8 32.9 ± 4.2 31.8 ± 2.0 99.2 ± 0.6 98.7 ± 1.8 44.3 ± 5.2
halfcheetah-vary-v0 - angle Task 19.0 ± 7.4 83.1 ± 3.6 84.7 ± 2.3 48.0 ± 2.1 55.3 ± 1.1 84.8 ± 3.0
halfcheetah-vary-v0 - torso height Style 77.0 ± 11.8 60.7 ± 4.1 36.9 ± 3.2 98.8 ± 0.3 98.8 ± 0.3 59.3 ± 7.1
halfcheetah-vary-v0 - torso height Task 37.3 ± 11.7 68.2 ± 2.9 74.0 ± 3.0 50.5 ± 0.5 50.9 ± 1.3 87.2 ± 1.9
halfcheetah-vary-v0 - backfoot height Style 31.8 ± 5.3 32.8 ± 3.8 27.4 ± 3.5 49.5 ± 1.4 45.7 ± 1.2 28.2 ± 2.9
halfcheetah-vary-v0 - backfoot height Task 48.1 ± 7.5 80.3 ± 2.9 82.6 ± 4.7 69.0 ± 1.7 75.0 ± 1.8 87.9 ± 1.6
halfcheetah-vary-v0 - frontfoot height Style 30.6 ± 5.3 25.4 ± 2.8 25.9 ± 1.3 50.4 ± 1.0 48.7 ± 1.2 36.5 ± 3.6
halfcheetah-vary-v0 - frontfoot height Task 32.4 ± 8.9 75.4 ± 4.0 83.0 ± 3.1 37.5 ± 1.1 58.0 ± 3.2 79.0 ± 4.3
humenv-simple-v0 - head height Style 79.4 ± 26.9 99.1 ± 0.9 99.4 ± 0.4 99.6 ± 0.0 99.6 ± 0.1 99.5 ± 0.2
humenv-simple-v0 - head height Task 14.6 ± 14.5 16.0 ± 7.5 20.0 ± 12.5 19.1 ± 7.1 31.7 ± 4.8 36.5 ± 0.4
humenv-simple-v0 - all Style 79.4 ± 26.9 99.1 ± 0.9 99.4 ± 0.4 99.6 ± 0.0 99.6 ± 0.1 99.5 ± 0.2
humenv-simple-v0 - all Task 14.6 ± 14.5 16.0 ± 7.5 20.0 ± 12.5 19.1 ± 7.1 31.7 ± 4.8 36.5 ± 0.4
humenv-complex-v0 - speed Style 34.3 ± 4.7 28.8 ± 8.4 22.6 ± 11.1 83.7 ± 5.9 91.6 ± 8.9 33.3 ± 3.7
humenv-complex-v0 - speed Task 5.7 ± 1.6 39.7 ± 5.2 33.6 ± 8.2 12.0 ± 1.6 16.2 ± 2.3 40.0 ± 2.6
humenv-complex-v0 - head height Style 61.1 ± 9.2 22.0 ± 13.6 24.3 ± 18.9 83.3 ± 6.6 90.1 ± 9.3 33.3 ± 4.9
humenv-complex-v0 - head height Task 4.5 ± 3.8 19.6 ± 5.3 20.5 ± 9.3 10.0 ± 2.8 15.7 ± 2.6 41.9 ± 3.8
humenv-complex-v0 - all Style 47.7 ± 6.9 25.4 ± 11.0 23.5 ± 15.0 83.5 ± 6.2 90.8 ± 9.1 33.3 ± 4.3
humenv-complex-v0 - all Task 5.1 ± 2.7 29.7 ± 5.2 27.1 ± 8.8 11.0 ± 2.2 15.9 ± 2.5 41.0 ± 3.2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E ABLATIONS

E.1 HOW DO WE NEED TO ESTIMATE p(z|s, a)?

Estimating p(z|s, a) relates to estimating the correspondence between a state-action pair and a style
which and is a key component of our problematic. We tested for this purpose four distinct strategies
to form an estimator χ(s, a, z) of p(z|s, a). A first strategy noted ind consists in taking as the
estimator the indicator of {z = zc} with zc the associated label of (s, a) within λ(D):

∀(s, a, zc) ∈ λ(D), χind(s, a, z) = χind(zc, z) = 1(z = zc) (53)

As λ can attribute several labels to (s, a) within D, we can state that:

∀(s, a) ∈ D,E
zc∼pλ(D)

c (z|s,a)[χind(zc, z)] = E
zc∼pλ(D)

c (z|s,a)[1(z = zc)] ≈ p(z|s, a) (54)

as the expectation of an indicator variable is the probability of its associated event. Hence, using
χind can be justified when relying on a sufficient number of samples during training.

Another approach noted MINE is to use the MINE estimator described in Appendix ?? to estimate:

T ∗(s, a, z) = log
p(s, a, z)

p(s, a)p(z)
= log

p(z|s, a)
p(z)

(55)

by optimizing:

JMINE(T) = E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

c (z|s,a)[T (s, a, z)]− log
(
E(s,a)∼pλ(D)(s,a),z∼pDr (z)

[
eT (s,a,z)

])
(56)

and taking:

χMINE(s, a, z) = pDr (z)e
T (s,a,z) (57)

≈ pDr (z)e
log

p(z|s,a)
p(z) (58)

≈ pDr (z)
p(z|s, a)
p(z)

(59)

≈ p(z|s, a) (60)

Also, as we seek to approximate p(z|s, a) ∈ [0, 1] with discrete labels, we propose to train directly a
neural network χ(s, a, z) within the MINE objective, taking pλ(D)

r (z) as an approximation of p(z):

JMINE(χ) = E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

c (z|s,a)[log
χ(s, a, z)

p
λ(D)
r (z)

]−log
(
E
(s,a)∼pλ(D)(s,a),z∼pλ(D)

r (z)

[
e
log

χ(s,a,z)

p
λ(D)
r (z)

])
(61)

with χ’s output activations taken as a sigmoid and a softmax to define the sigmoid and softmax
strategies respectively. We evaluate the impact of each strategy on style alignment and report the
results in Table 6 and Figure 17. For SORL, both MINE and softmax achieve the best perfor-
mance, while for SCIQL the best results are obtained with ind and softmax. Accordingly, in our
experiments we adopt softmax for SORL and ind for SCIQL.

Table 6: Style alignments for different p(z|s, a) estimation strategies.

Dataset SORL
(ind)

SORL
(MINE)

SORL
(sigmoid)

SORL
(softmax)

SCIQL
(ind)

SCIQL
(MINE)

SCIQL
(sigmoid)

SCIQL
(softmax)

mujoco halfcheetah-fix 30.3 ± 3.4 52.6 ± 12.4 44.0 ± 11.7 53.1 ± 10.6 78.0 ± 1.8 67.4 ± 8.1 69.0 ± 7.1 77.9 ± 1.1
mujoco halfcheetah-stitch 30.0 ± 4.5 52.7 ± 10.8 43.0 ± 10.7 48.4 ± 12.5 78.0 ± 1.1 67.4 ± 8.0 69.5 ± 6.0 77.8 ± 1.5
mujoco halfcheetah-vary 29.7 ± 4.3 47.0 ± 10.1 42.7 ± 11.5 46.7 ± 9.5 78.9 ± 0.7 73.6 ± 5.7 67.1 ± 6.4 78.8 ± 0.9
random circles-inplace-v0 29.4 ± 3.5 59.1 ± 2.7 46.6 ± 11.9 58.9 ± 2.7 74.7 ± 9.3 74.3 ± 2.0 53.6 ± 19.8 73.7 ± 7.7
random circles-navigate-v0 29.1 ± 6.1 59.9 ± 3.2 46.9 ± 8.7 60.0 ± 3.3 75.5 ± 4.7 75.5 ± 4.6 62.1 ± 12.9 75.4 ± 4.3
all datasets 29.8 ± 4.0 53.8 ± 8.6 44.9 ± 11.3 53.2 ± 8.5 77.2 ± 3.2 70.9 ± 6.0 64.9 ± 10.1 76.9 ± 2.8

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
halfcheetah-fix

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
halfcheetah-stitch

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
halfcheetah-vary

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
circles-inplace-v0

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
circles-navigate-v0

SO
RL (

ind
)

SO
RL (

MINE)

SO
RL (

sig
moid

)

SO
RL (

sof
tm

ax
)

SC
IQL (

ind
)

SC
IQL (

MINE)

SC
IQL (

sig
moid

)

SC
IQL (

sof
tm

ax
)

0

20

40

60

80

100
Average Across Datasets

ind MINE sigmoid softmax

Figure 17: Style alignments histograms for different p(z|s, a) estimation strategies.

E.2 WHAT IS THE IMPACT OF THE CHOICE OF p
λ(D)
m ?

To address the lower performance of SCIQL on the turn direction, radius, and speed criteria of
Circle2d, we evaluated SCIQL by sampling styles from p

λ(D)
c rather than pλ(D)

r . As shown in the
histogram in Figure 18, using pλ(D)

c improves style alignment to its maximum score, highlighting
both SCIQL’s flexibility in varying its style sampling distributions and the potential importance of
this choice when optimizing style alignment.

circle2d-inplace-v0 turn direction

circle2d-inplace-v0 radius

circle2d-inplace-v0 speed

circle2d-navigate-v0 turn direction

circle2d-navigate-v0 radius

circle2d-navigate-v0 speed
0

20

40

60

80

100 p_rand
p_cur

Figure 18: SCIQL performance under pλ(D)
r vs pλ(D)

c ?

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E.3 HOW ROBUST IS SCIQL TO IMPERFECT STYLE ANNOTATIONS?

While relying on labeling functions allows for explainable and precise style annotations, style anno-
tations could in practice be imperfect due to the noisiness of domain experts. For instance, alternative
labeling approaches such as human generated labels or VLMs could provide noisy labels due to bi-
ases, stochasticity and unclear cuts between style transitions. All those imperfections can have an
important impact on style alignment. Hence, to measure the robustness of SCIQL in comparison to
the baselines, we simulate labeling imperfections by modifying the labeling procedure such that for
a given criterion λ, each state-action-style triplet (st, at, zt) of λ(D) is polluted with a probability
ζ by changing its label zt to another label z̃t sampled uniformly among other available labels of
L(λ). We plot in Figure 19 the evolution of the style alignment of the different baselines for the
halfcheetah-fix-v0 - speed in Subfigure 19a, halfcheetah-fix-v0 - angle tasks in Subfigure 19b and
the average of those evolutions as halfcheetah-fix-v0 - speed + angle in Subfigure 19c.

First, for noise levels going from 0.0 to 0.6, we see that SCIQL maintains a very good style align-
ment. More precisely, SCIQL is on average (i.e. in speed label + angle label) better aligned with
a noise level of 0.6 than all of the other baselines with no noise. The other baselines lose all their
alignment even for small noise levels such as 0.2, obtaining style alignments equal to BC’s, which
means that the baselines consider any noisy label as uninformative noise and ignore them, losing all
conditioning capabilities. This shows that SCIQL is significantly more robust to label noise than
any test baseline, highlighting the benefits of integrating RL signals to style alignment training.

Second, above a certain noise threshold ζ̄, we see that SCIQL’s alignment plummets towards 0,
which is infact a good feature. A possible intuition is that this threshold corresponds to the noise
level above which the true labeling of each state-action pair is no longer majoritary in the noisy
dataset. Beyond this threshold, for SCIQL, the best outcome for alignment is to reach wrong
labels. Indeed, for each state-action pair (s, a), the probability of labeling to the right label z is
pright = 1 − ζ, while the probability of choosing a wrong label is pwrong = ζ. Since wrong labels
are sampled uniformly, each individual wrong label z̃i ∈ Zwrong = L(λ)\{z} has a probability
pi =

ζ
|λ|−1 to be selected, |λ| being the total numbers of labels in L(λ). Consequently, for the right

label to maintain the majority position, the threshold needs to verify:

∀z̃i ∈ Zwrong, ptrue > pi ⇔ ptrue > max
z̃i∈Zwrong

pi ⇔ 1− ζ > ζ

|λ| − 1
⇔ |λ| − 1

|λ|
> ζ (62)

Also, as described in Appendix A, both speed and angle criteria have the same number of |λ| = 3

labels each and as such, for both labels ζ̄ = |λ|−1
|λ| = 2

3 , which corresponds to the observed
threshold and consequently supports our intuition.

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level ()

0

20

40

60

80

100

St
yl

e
Al

ig
nm

en
t

(a) speed label

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level ()

0

20

40

60

80

100

St
yl

e
Al

ig
nm

en
t

(b) angle label

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level ()

0

20

40

60

80

100

St
yl

e
Al

ig
nm

en
t

(c) speed label + angle label

Figure 19: Evolution of style alignment under noisy labels. For noise labels ζ ∈
{0.0, 0.1, ..., 1.0}, we compare the evolution of style alignment of BC (), CBC (•), BC-PMI
(•), SCBC (•), SORL (•) and SCIQL (•). We see that SCIQL maintains an overall bet-
ter alignment before the noise threshold (vertical) where the true label is majoritary, and then
misaligns itself beyond the noise treshold, which corresponds to following intentionally the wrong
styles accordingly to the noisy labeling.

33

	Introduction
	Related work
	Preliminaries
	Optimizing Task Performance Under Style Alignment
	Motivation
	Learning to optimize the task performance
	Learning to optimize style alignment
	Learning to perform style-conditioned task performance optimization

	Experiments
	Experimental setup
	Environments, tasks, labels and datasets
	Baselines and model details

	Results on style alignment
	Results on style-conditioned task performance optimization

	Conclusion
	Reproducibility Statement
	LLM Use
	Environments, tasks, labels and datasets
	Circle2d
	HalfCheetah
	HumEnv

	Architectures and Hyperparameters
	Baselines
	Additional tables
	Ablations
	How do we need to estimate p(z|s,a)?
	What is the impact of the choice of pm(D)?
	How robust is SCIQL to imperfect style annotations?

