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Abstract

Subgraph GNNs have emerged as promising ar-
chitectures that overcome the expressiveness lim-
itations of Graph Neural Networks (GNNs) by
processing bags of subgraphs. Despite their com-
pelling empirical performance, these methods are
afflicted by a high computational complexity: they
process bags whose size grows linearly in the
number of nodes, hindering their applicability to
larger graphs. In this work, we propose an ef-
fective and easy-to-implement approach to dra-
matically alleviate the computational cost of Sub-
graph GNNs and unleash broader applications
thereof. Our method, dubbed HyMN, leverages
walk-based centrality measures to sample a small
number of relevant subgraphs and drastically re-
duce the bag size. By drawing a connection to
perturbation analysis, we highlight the strength
of the proposed centrality-based subgraph sam-
pling, and further prove that these walk-based
centralities can be additionally used as Structural
Encodings for improved discriminative power. A
comprehensive set of experimental results demon-
strates that HyMN provides an effective synthesis
of expressiveness, efficiency, and downstream per-
formance, unlocking the application of Subgraph
GNNs to dramatically larger graphs. Not only
does our method outperform more sophisticated
subgraph sampling approaches, it is also competi-
tive, and sometimes better, than other state-of-the-
art approaches for a fraction of their runtime.
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1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2009; Gori
et al., 2005; Micheli, 2009) have achieved great success in
learning tasks with graph-structured data. Typically, GNNs
are based on the message passing paradigm (Gilmer et al.,
2017), in which node features are aggregated over their
local neighborhood recursively, resulting in architectures
known as Message Passing Neural Networks (MPNNs).
MPNNs have been shown to suffer from limited expressive
power: they are bounded by 1-WL (Xu et al., 2018; Geerts
& Reutter, 2023; Weisfeiler & Leman, 1968; Morris et al.,
2019; 2023) cannot count certain substructures (Chen et al.,
2020; Bouritsas et al., 2022; Tahmasebi et al., 2020) or solve
graph bi-connectivity tasks (Zhang et al., 2023b).

Recently, Subgraph GNNs (Bevilacqua et al., 2021; Frasca
et al., 2022; Zhang & Li, 2021; Cotta et al., 2021) have
been proposed to overcome some of the expressivity limi-
tations of MPNNs. This approach preserves equivariance
while relying less on feature engineering. First, a Subgraph
GNN transforms a graph into a “bag of subgraphs” based
on a specific selection policy. These subgraphs are then
processed by an equivariant architecture and aggregated to
make graph- or node-level predictions. One common ap-
proach to generate subgraphs, known as node-marking, is
to mark a single node in the graph (Papp & Wattenhofer,
2022). In this case, each subgraph is then “tied” to a specific
node in the original graph, and a shared MPNN generates a
representation for each subgraph.

In general, Subgraph GNNs show good empirical perfor-
mance but come with a high computational cost. For a
graph of N nodes and a maximum degree dmax, then Sub-
graph GNNs with node-marking based policies have a com-
putational complexity O(N2 · dmax). To reduce compu-
tational complexity, it was suggested sampling subgraphs
randomly (Bevilacqua et al., 2021; Zhao et al., 2022) or,
more recently, learning sampling policies (Qian et al., 2022;
Bevilacqua et al., 2024; Kong et al., 2024). However,
while random approaches have been shown to be subop-
timal (Bevilacqua et al., 2024; Bar-Shalom et al., 2024b),
learnable policies are difficult to train in practice and be-
come impractical when sampling a larger number of sub-
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graphs, due to the use of discrete sampling and RL-based
objectives.

Summarizing, while Subgraph GNNs have demonstrated
promising results on small molecular graphs, their computa-
tional requirements make them impractical for graphs larger
than a few tens of nodes. This severe limitation needs to be
addressed in an effective way to broaden the application of
these models.

Our approach. In this work, we present an approach that
drastically reduces the complexity of Subgraph GNNs while
maintaining their competitive performance. We achieve
this by identifying easy-to-compute structural features that
unlock a simple yet effective subgraph selection strategy,
while providing complementary information enhancing the
model’s expressiveness.

We first identify a family of node centrality mea-
sures (Estrada & Rodriguez-Velazquez, 2005; Benzi &
Klymko, 2013; 2014) as easy-to-compute scores that: (i)
recapitulate well the extent to which a subgraph alters the
graph representation; (ii) correlate with relevant substruc-
ture counts. In light of this, we propose to leverage these
measures to efficiently and effectively reduce the size of
bags of subgraphs without requiring additional learnable
components. Specifically, we prioritize selecting marked
subgraphs associated with the top-ranking nodes accord-
ing to these centrality measures and, in particular, to the
Subgraph Centrality by Estrada & Rodriguez-Velazquez
(2005). Then, we propose to additionally interpret central-
ity scores as Structural Encodings (SEs) (Bouritsas et al.,
2022; Dwivedi et al., 2021; Fesser & Weber, 2024), and to
utilize them to augment the node features of the selected
subgraphs. This combination of approaches is justified from
an expressiveness perspective, as we show neither of the two
subsume the other. We demonstrate node marking of (se-
lected) subgraphs separates graphs that are not separable by
Centrality-based SE (CSE) feature augmentations and, vice-
versa, that CSEs allow to separate pairs indistinguishable to
our subsampled Subgraph GNNs.

The resulting method, dubbed HyMN (Hybrid Marking
Network), is an approach whereby Subgraph GNNs and
Structural Encodings work in tandem to effectively over-
come the expressiveness limitations of MPNNs and unlock
the application of Subgraph GNNs to larger graphs previ-
ously out of reach. Our approach is provably expressive,
does not require feature engineering or learnable sampling
components, and, importantly, maintains a low computa-
tional cost. The practical value of our approach is confirmed
by the strong results achieved over a series of experimental
analyses conducted over synthetic and real-world bench-
marks. We show HyMN outperforms other subgraph selec-
tion strategies, and performs on par or better than full-bag
Subgraph GNNs by only sampling one or two subgraphs.

Additionally, HyMN is competitive to (and sometimes better
than) Graph Transformers and other state-of-the-art GNNs,
while, as we show through extensive wall-clock timing anal-
yses, features a dramatically reduced computational run-
time.

Our contributions are summarized as follows:

1. We show that walk-based node centrality measures
and, in particular, the Subgraph Centrality of Estrada
& Rodriguez-Velazquez (2005), represent a simple and
effective indicator of subgraph importance for subsam-
pling bags in Subgraph GNNs.

2. We demonstrate that centrality-based structural fea-
tures can be employed as Structural Encodings to en-
hance the discriminative power of Subgraph GNNs
with subsampled bags of subgraphs.

3. We provide strong experimental evidence showcasing
the effectiveness of our sampling strategy and the ef-
ficacy of additionally incorporating centrality-based
SEs.

4. We show how our approach enables subgraph-methods
to scale to substantially larger graphs than previously
possible, even tens or hundreds of times larger.

Overall, our results validate our method as a simple, expres-
sive and efficient approach that competes with state-of-the-
art GNNs for a fraction of their empirirical run-times.

2. Related Work
Expressive power of MPNNs. The expressive power of
MPNNs has become a central research topic since they were
shown to be bounded by the 1-WL isomorphism test (Morris
et al., 2019; Xu et al., 2018; Morris et al., 2023). This has led
to approaches which aim to obtain different representations
for non-isomorphic but 1-WL equivalent graphs. These
include using random features (Sato et al., 2021; Abboud
et al., 2021), higher-order message passing schemes (Bodnar
et al., 2021b;a; Morris et al., 2019; 2020b) and equivariant
models (Maron et al., 2018; Vignac et al., 2020). One of
the most common approaches is to inject positional and
structural encodings into the input layer (Bouritsas et al.,
2022; Fesser & Weber, 2024; Dwivedi et al., 2021; Kreuzer
et al., 2021) using Laplacian PEs (Dwivedi & Bresson, 2021;
Kreuzer et al., 2021; Wang et al., 2022; Lim et al., 2023;
2024), distance information (Ying et al., 2021; Li et al.,
2020), or random-walk encodings (RWSE) (Dwivedi et al.,
2021).

Subgraph GNNs. A recent line of work has proposed
representing a graph as a collection of subgraphs obtained
by a specific selection policy (Zhang & Li, 2021; Cotta et al.,
2021; Papp & Wattenhofer, 2022; Bevilacqua et al., 2021;
Zhao et al., 2022; Papp et al., 2021; Frasca et al., 2022; Qian
et al., 2022; Huang et al., 2023; Zhang et al., 2023a). These
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approaches, jointly referred to as Subgraph GNNs, allow to
overcome the expressivity limitations of MPNNs without
introducing predefined encodings. A powerful, common
selection policy termed node marking involves generating
a subgraph per node by marking that node in the original
graph, with no connectivity alterations. Although it can
increase expressive power beyond 1-WL (Frasca et al., 2022;
You et al., 2021), this approach has a high complexity as
it needs to consider and process N different subgraphs, N
being the number of nodes in the original graph.

Scaling Subgraph GNNs. Several recent papers have fo-
cused on scaling these methods to larger graphs. Beyond
random sampling (Bevilacqua et al., 2021; Zhao et al., 2022),
Qian et al. (2022) first proposed gradient-based techniques
to learn how to subsample the bag of subgraphs. Bevilacqua
et al. (2024) introduced Policy-Learn (PL), which iteratively
predicts a distribution over nodes in the graph and sam-
ples subgraphs from the full-bag accordingly. A similar
approach, called MAG-GNN has also proposed to sam-
ple subgraphs using Reinforcement Learning (RL) (Kong
et al., 2024). Both of these approaches involve discrete
sampling which can complicate the training process, often
requiring 1, 000−4, 000 training epochs. Another recent ap-
proach leverages the connection between Subgraph GNNs
and graph products (Bar-Shalom et al., 2024a) to run mes-
sage passing on the product of the original graph and a
coarsened version thereof (Bar-Shalom et al., 2024b). The
control over the computational complexity generally comes
from the existence of cluster-like structures in the graph
which, however, may not be aligned with the preset number
of subgraphs. Additionally, the locality bias afforded by
the coarsening may not generally be effective across tasks.
In such cases, coarsening approaches that are not learnable
and based, e.g., on spectral clustering could lead to sub-
optimal results. For an extended background on Subgraph
GNNs, the node marking policy and efforts around scaling
this family of architectures, we refer readers to Appendix B.

Node Centrality. One common way to characterize nodes
in a graph is by using the concept of node centrality. A
node centrality measure defines a real-valued function on
the nodes, c : V → R, which can be used to rank nodes
within a network by their “importance”. Different con-
cepts of importance have led to a myriad of measures in
the Network Science community. They range from the
simple Degree Centrality (central nodes have the highest
degrees) to path-based methods (Freeman, 1977) like the
Betweenness Centrality (central nodes fall on the shortest
paths between many node-pairs). An important family of
centrality measures quantifies the importance of nodes based
on walk counts. As noted in (Benzi & Klymko, 2014), most
of these measures take the form of a power series, where
numbers of walks for any lengths are aggregated with an
appropriate discounting scheme. Prominent examples in-

clude the Katz Index (Katz, 1953) (KI) and the Subgraph
Centrality (Estrada & Rodriguez-Velazquez, 2005) (SC):

cKI
i =

∞∑
k=0

αk
∑
j

(Ak)ij cSC
i =

∞∑
k=0

βk

k!
(Ak)ii (1)

and variants of the above, for appropriate choices of 0 <
α < 1

λ1
, β > 01 (Benzi & Klymko, 2013; 2014). By scoring

nodes based on the cumulative number of walks that start
from them, these centrality measures extend the Degree
Centrality beyond purely local interactions, in a way that
depends on the discounting scheme (αk and βk

k! for KI and
SC, respectively).

3. Subsampling Subgraph Neural Networks
3.1. Problem Setting

We focus on Subgraph GNNs with a node-marking selection
policy (Papp & Wattenhofer, 2022; You et al., 2021). Given
an N -node graph G = (A,X), a node-marking Subgraph
GNN processes a bag of subgraphs obtained from G, viz.
BG = {{S1, S2, . . . , SN}}. Here, Si = (A,Xi) and Xi =
X ⊕ xvi , where ⊕ denotes channel-wise concatenation and
xvi is a one-hot indicator vector for node vi.

Goal. In order to reduce the computational complexity
of a Subgraph GNN, we aim to reduce the size of the bag
by efficiently and effectively sampling k < N subgraphs.
The sampling procedure must be efficient in that it should
avoid computationally complex operations or the use of
learnable components requiring more involved training pro-
tocols (Qian et al., 2022; Bevilacqua et al., 2024; Kong
et al., 2024). Ideally, it should consist of a simple and
lightweight preprocessing step prior to running a chosen
Subgraph GNN. The sampling procedure must addition-
ally be effective, which means it should closely approach
the performance of a full-bag Subgraph GNN with as few
subgraphs as possible. Put differently, it should prioritize
marking those nodes that most quickly lead to performance
improvements. As an example, to ground the discussion:
randomly selecting subgraphs (Bevilacqua et al., 2021; Papp
et al., 2021) is an efficient but not effective strategy; learn-
ing which subgraph to mark via RL (Kong et al., 2024) is a
more effective approach, but it may not be efficient enough.

We start by presenting considerations on effectiveness which
will naturally lead us to focus on walk-based centrality mea-
sures for our purposes. Upon them, we show we can build
an effective strategy that is also efficiently executed as a
simple preprocessing step.

1λ1 refers to the first eigenvalue of A, β is typically set to 1.
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3.2. Effective Node Marking

What makes a node a good marking candidate? We propose
approaching this question by considering node marking as a
graph perturbation. Marking a node changes the initial node
features: this alteration in the input will ultimately be re-
flected in the output graph representation, and understanding
how node marking impacts the output graph representation
is instrumental in designing effective sampling strategies.
Beyond binary graph separation, we claim that an effective
marking should be able to (i) alter graph representations suf-
ficiently; (ii) induce perturbations that correlate with graph
targets. Ideally, when marking nodes jointly optimizes (i)
and (ii), a Subgraph GNN with a small bag can then improve
on a standard MPNN by sufficiently separating more graphs
and in a way that assists the training objective.

Node Marking, perturbations, and centrality measures.
To understand how marking a node alters graphs represen-
tations, we analyze the simplest case: marking a single
node. In particular, we ask how much the representation of
a generic graph G can be changed by a single-node marking.
As the MPNN, we consider an L-layer GIN (Xu et al., 2018;
Chuang & Jegelka, 2022):

h(l)
v =ϕ(l)

(
h(l−1)
v +ϵ

∑
u∈N(v)

h(l−1)
u

)
, yG=ϕ(L+1)

(∑
v∈G

h(L)
v

)
(2)

where ϕ(l)’s are update functions and ϕ(L+1) is a predic-
tion layer (all are parameterized as MLPs). By applying
results from GNN stability studies in (Chuang & Jegelka,
2022) we put forward the following observation (see details
in Appendix E):
Observation 1. The distance between the MPNN represen-
tations of a graph G and a graph Sv generated by marking
node v in G, can be upper-bounded as:

|yG − ySv
| ≤

L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)v,j︸ ︷︷ ︸
(A)

(3)

where Kl
ϕ is the Lipschitz constant of MLP ϕ(l), l =

1 . . . L + 1, A is the adjacency matrix of graph G and
λl ∈ R+ is an ϵ-dependent layer-wise weighting scheme.

Effectively, the cumulative number (A) of walks starting
from node v contributes to upper-bound the perturbation
that marking v induces on the original graph representation.
Hence, marking nodes involved in a lower number of walks
will have a more limited influence on altering a message
passing-based graph representation.

We note that the above observation uncovers an intriguing
alignment with walk-based centrality measures: the “most
important” nodes associate with the largest (discounted)
cumulative numbers of walks (compare Equations 1 with

term (A) in Equation (3)). This leads us to direct our focus
to walk-based centrality measures as promising candidates
for selecting which node to mark. Considering we would
like to sufficiently alter the graph representation beyond
the one from a standard MPNN, Observation 1 indicates
that, among all possible nodes, those associated with small
cumulative numbers of walks will be poor marking candi-
dates. We propose to summarise this form of information
via walk-based centrality measures. Our strategy will be
to rank nodes based on their centrality values, and mark
the top-scoring ones. Next, we empirically verify the valid-
ity of this approach, and defer readers to Appendix E for
extensions and more considerations on the above analysis.

High-centrality marking induces the largest perturba-
tions. As a first experiment, we examine the extent to which
node centralities recapitulate the amount of perturbation
induced by marking their corresponding nodes. We con-
sider the same setting discussed above: marking one node
to transition from G to Sv , where Sv is obtained from G by
marking node v. For a centrality measure c, we consider
three cases: v attains the minimum of c (i), the maximum
of c (ii), is randomly picked (iii). In each of these cases,
we measured the distance ∥f(Sv)− f(G)∥ on 100 graphs
from two different real-world datasets from the popular TU
suite: MUTAG and NCI1 (Morris et al., 2020a). Here, f
is an untrained 3-layer GIN (Xu et al., 2018). Figure 1
and Figure 7a show results for the walk-based Subgraph
Centrality (Estrada & Rodriguez-Velazquez, 2005), where
horizontal lines indicate the average representation distance,
and (i), (ii), (iii) are color-coded, resp., in green, blue, red.

From the plots, it is clearly visible how marking nodes
with the lowest centrality leads to the smallest change in
graph representation. This result gives direct empirical val-
idation to the upper-bound analysis and the consequential
observation discussed above. In accordance with our claim,
subgraphs associated with low centrality nodes can be in-
terpreted as poor marking candidates. Second, we note
that marking nodes with the highest centrality induces the
highest average perturbations, above random marking. This
result is particularly relevant as it complements the above
theoretical analysis: the walk-based upper-bound (Equa-
tion (3)) only suggests, but does not necessarily entail, that
high-centrality marking associates with the largest pertur-
bations. Figure 1 and Figure 7a show that this occurs in
practice on these datasets, further motivating our proposed
sampling strategy. Results for other centrality measures are
found in Appendix F; they indicate that high-centrality mark-
ing leads, in all cases, to larger perturbations than random
marking, with the highest values attained by walk-based
centrality measures (see Section 2).

High-centrality marking aligns with substructure count-
ing. We have shown how marking nodes with higher cen-
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trality can lead to larger graph perturbations. However, this
may not be sufficient. As an example, consider, two (non-
isomorphic but) 1-WL-equivalent graphs. Node marking
can alter their message-passing-based representations, but
not necessarily in a way to induce separation: ideally, if
the two graphs are associated with different targets we aim
to induce dissimilar perturbations so to assist the training
goal. In effect, we want our sampling strategy to alter the
graph representations in a way that is consistent with the
target space. Motivated by the observation that the pres-
ence and number of structural “motifs” are often related to
graph-level tasks (Kanatsoulis & Ribeiro, 2024), we empir-
ically study how marking-induced perturbations correlate
with counting small substructures, as a general, yet relevant,
predictor for graph-level targets.

We randomly generate 100 Erdös-Renyi (ER) graphs, each
with N = 20 nodes and wiring probability p = 0.3. Simi-
larly as above, we experiment with various centrality mea-
sures, by marking a single node v which attains either the
maximum or minimum centrality value, or is randomly
picked. Again, we record the perturbation ∥f(Sv)− f(G)∥
given by the same architecture described above. On the same
graphs, we count the number of various substructures, and
evaluate the correlation between this value and the recorded
perturbations. Results are reported in Table 1, expressed in
terms of the Pearson correlation coefficient. Higher coeffi-
cients indicate substructure counts are better recapitulated
by the perturbations induced by a certain marking strategy.

The top section of the table compares the correlations ob-
tained by marking randomly or based on the Subgraph
Centrality. The perturbations induced by high-centrality
marking correlate significantly more with the considered
substructures than those induced by low-centrality-based or
random marking. The bottom section of the table presents
results for other centralities not based on walks. We note
how they all deliver better correlations w.r.t. random mark-
ing, but not as high as those attained by the SC.

Discussion. Overall our experiments indicate the following.
First, high-centrality sampling shows to be a better approach
than random sampling, especially when walk-based central-
ity measures are employed: on average, it selects marking
candidates inducing the largest amount of perturbations over
the original graph representations, and in a way that corre-
lates with counts of relevant graph substructures. Second,
the walk-based SC stands out as a particularly promising
candidate: it is efficient to precalculate this measure and
sample subgraphs based on that, while, on average, it per-
formed as the best one in the experiments discussed above.
In the following, we will focus on this measure in particular.
Our strategy will consist of marking only the top-ranking
k nodes according to SC, for a small, fixed k. As we will
show, this simple approach already delivers strong empir-

Figure 1: Plot showing the amount the graph representation using
GIN is altered in the MUTAG dataset by adding an additional
node-marked subgraph with (i) the highest centrality, (ii) the lowest
centrality and (iii) a random marking.

Table 1: Pearson correlation between substructure counts and
perturbation caused by different node-marking policies.

Method Tri (↑) 4-Cyc (↑) Tailed Tri (↑) Star (↑)

Max Subgraph Centrality 0.947 0.956 0.958 0.972
Min Subgraph Centrality 0.644 0.643 0.634 0.698
Random 0.712 0.708 0.723 0.723

Max Degree Centrality 0.937 0.947 0.948 0.962
Max Closeness Centrality 0.935 0.937 0.946 0.957
Max Betweenness Centrality 0.803 0.816 0.821 0.845

ical performance. More sophisticated sampling schemes
could be designed based on extensions of the above analy-
ses. These could consider more complex Subgraph GNN
architectures (Frasca et al., 2022; Zhang et al., 2023a) or
study the effect of multiple node markings, for which a
deeper inquiry could take into account pair-wise scores be-
yond node-wise centrality measures2. We defer these efforts
to future work.

4. Combining Subgraph GNNs with SEs
4.1. Our Approach

Subgraph Centrality as a SE. In Section 3, we introduced
the use of walk-based centrality measures, particularly Sub-
graph Centrality, as an efficient and effective method for
subgraph sampling. These centrality measures can be ex-
pressed as power series expansions of the adjacency ma-
trix (Benzi & Klymko, 2014) (see Equation (1)). We notice
that addenda terms in the series already provide precious
discriminative structural information, which could be desir-
able to employ for feature augmentations (Rampášek et al.,
2022; Bouritsas et al., 2022; Dwivedi et al., 2021). Precisely,
in the case of our chosen Subgraph Centrality, for the de-
fault β = 1, the k-th term (Ak)vv

k! is (the discounted number
of) k-length closed-walks originating from v. As notable

2For example, when selecting multiple nodes to mark, one
could also account for the distance between them.
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Figure 2: An overview of the pipeline for HyMN. We calculate the CSE for each node, sample T node-marked subgraphs with the highest
Subgraph Centrality and concatenate the CSE with the initial node features.

examples, these values are proportional to the degree of v
and the number of incident triangles for k = 2, 3. These
considerations suggest retaining the intermediate values that
contribute to the SC of each node, and employ them à la
Structural Encodings beyond sampling purposes.

We naturally define the Centrality-based Structural Encod-
ings (CSE) of order K for node v as3:

CCSE
v =

[
1,

(A)1vv
1!

,
(A)2vv
2!

,
(A)3vv
3!

, . . . ,
(A)Kvv
K!

]
. (4)

As K →∞, the sum of these terms clearly coincides with
the SC of the node for the default β = 1. We refer readers
to Appendix F.5, for considerations on how CSEs compare
with RWSEs.

Hybrid Marking Networks. Our overall method consists
in jointly (1) augmenting node features with K-order CSEs;
(2) subsampling the T node-marked subgraphs for the nodes
attaining the highest centrality values; (3) processing the
obtained bag of subgraphs with a Subgraph GNN of choice.

In view of (1) and (2), we dub our approach HyMN, as in
Hybrid Marking Network. These steps are depicted in Fig-
ure 2 and described in Algorithm 1 (Appendix C). We note
the following. First, for a large enough K, centrality val-
ues can be approximated by directly summing over the
computed K-order CSEs. Second, node marking does not
require any alteration of the original graph topology, making
it unnecessary to store the subgraph connectivity. We thus
opt not to materialize the bag of subgraphs: we only record
marking information in the feature tensor and implement a
custom message-function that processes it in an equivariant
way. From an engineering standpoint, this allows for further
memory-complexity enhancement w.r.t. generic Subgraph
GNN approaches.

4.2. Expressivity of Subgraph GNNs with CSEs

HyMN effectively marries two distinct Graph Learning ap-
proaches: the use of node-marked subgraphs and of SEs. At

3We defined CSEs directly as the addenda in the power-series
in Equation (1), but we note that the first two terms are not dis-
criminative and could be dropped.

this point, it is natural to ask whether this combination of
techniques is justified from an expressiveness perspective.
Put differently, we ask whether enhancing message passing
with CSEs already subsumes our high-centrality marking
strategy or, vice-versa, whether our marking approach could
recover CSEs.

We answer these questions with graph separation argu-
ments (Xu et al., 2018; Morris et al., 2019) and highlight
how, in fact, the two approaches are not generally compara-
ble. We demonstrate that subsampling Subgraph GNNs with
high-centrality marking does not subsume CSE-enhanced
MPNNs, while, at the same time, the discriminative power
of the former approach is not fully captured by the latter.
Since neither technique alone fully subsumes the other, our
analysis emphasizes the advantages of combining them in
HyMN for improved expressiveness. Proofs and additional
details are reported in Appendix D.

MPNNs with centrality encoding do not subsume sub-
sampled Subgraph GNNs. Below, we show that node-
marked subgraphs can separate graphs indistinguishable by
CSE-enhanced MPNNs, i.e., MPNNs running on graphs
whose features are augmented with our centrality-based
encodings.

Theorem 4.1. There exists a pair of graphs G and G′ such
that for any CSE-enhanced MPNN model MCSE we have
MCSE(G) = MCSE(G

′), but there exists a DS-Subgraph
GNN model (without CSEs) Msub. which uses a top-1 Sub-
graph Centrality policy such that Msub.(G) ̸= Msub.(G

′).

This result is proved, in particular, by considering two 1-
WL equivalent graphs which have identical values for CSEs.
This makes them indistinguishable by a CSE-enhanced
MPNN, contrary to (sampled) DS-Subgraph GNNs (Bevilac-
qua et al., 2021), the simplest Subgraph GNN variants which
process subgraphs independently. This underscores the ad-
vantage of incorporating a node-marking Subgraph GNN
alongside structural encoding techniques.

Subsampled Subgraph GNNs do not subsume MPNNs
with centrality encoding. Processing only a fixed num-
ber of subgraphs selected by our high-centrality strategy
may limit discriminative power. In particular, the following
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Figure 3: Comparing sampling approaches for counting triangles
(performance metric is Mean Absolute Error, the lower the better).
The average graph size is 59.33, corresponding to the average
bag-size of a full-bag Subgraph GNN.

shows that this approach does not subsume CSE-enhanced
MPNNs:

Theorem 4.2. There exists a pair of graphs G and G′ such
that for any Subgraph GNN model Msub. which uses a top-1
Subgraph Centrality policy we have Msub.(G) = Msub.(G

′),
but there exists an MPNN + centrality encoding model MCSE

such that MCSE(G) ̸= MCSE(G
′).

This result exposes a limitation of subsampled Subgraph
GNNs in distinguishing between two non-isomorphic
graphs with differing closed walks, features which are, in-
stead, captured by CSEs. Notably, as discussed in Propo-
sition D.5 (Appendix D), a full-bag approach is capable
of capturing CSEs. This observation suggests that while
CSEs do not universally enhance the expressiveness of any
Subgraph GNN, they can be beneficial when subsampling a
limited number of subgraphs.

Taken together, Theorems 4.1 and 4.2 indicate that leverag-
ing SC both as a SE and as a means for subgraph sampling
is advantageous in terms of discriminative power, justifying
the integration of the two techniques in HyMN.

5. Experiments
Our experiments4 aim to validate arguments in the previous
sections and to empirically answer the following questions:

• (Q1) Can SC be used to effectively subsample sub-
graphs for Subgraph GNNs?

• (Q2) Can HyMN efficiently scale to graphs out of reach
for Subgraph GNNs? How does it perform thereon?

• (Q3) How does HyMN perform on real-world datasets
w.r.t. strong GNN baselines?

• (Q4) What is the impact of incorporating CSEs?

Synthetic experiment for counting substructures. The

4Code to reproduce experimental results is available at https:
//github.com/jks17/HyMN/.

Table 2: Results on OGB datasets (Test ROC-AUC). The first
and second best results for each task are color-coded. Symbol ‘-’
indicates the method is not (found to have been) benchmarked on
the specific dataset.

Method MOLHIV MOLBACE MOLTOX21

GCN 76.06 ±0.97 79.15 ±1.44 75.29 ±0.69
GIN 75.58 ±1.40 72.97 ±4.00 74.91 ±0.51

FULL 76.54 ±1.37 78.41 ±1.94 76.25 ±1.12

OSAN (T = 10) - 76.30 ±3.00 -

Su
bs

am
pl

ed
Su

bg
ra

ph
G

N
N

s MAG-GNN (T = 2) 77.12 ±1.13 - -
RANDOM (T = 2) 77.55 ±1.24 75.36 ±4.28 76.65 ±0.89
CS-GNN (T = 2) 77.72 ±0.76 80.58 ±1.04 -
POLICY-LEARN (T = 2) 79.13 ±0.60 78.40 ±2.85 77.47 ±0.82
HyMN (GIN, T=2) no CSE 79.77 ±0.70 78.22 ±4.02 77.68 ±0.71
HyMN (GIN, T=2) 81.01 ±1.17 81.16 ±1.21 77.30 ±0.35

RANDOM (T=5) 77.30 ±2.56 78.14 ±2.36 76.62 ±0.89
CS-GNN (T = 5) 79.09 ±0.90 79.64 ±1.43 -
POLICY-LEARN (T=5) 78.49 ±1.01 78.39 ±2.28 77.36 ±0.60
HyMN (GIN, T=5) no CSE 79.62 ±1.14 78.57 ±1.31 77.82 ±0.59
HyMN (GIN, T=5) 80.17 ±1.40 80.64 ±0.48 76.99 ±0.45

ability of a model to count local substructures is an acknowl-
edged way of evaluating its expressive power (Bouritsas
et al., 2022; Arvind et al., 2020; Tahmasebi et al., 2020).
In order to answer (Q1) and test the efficacy of subgraph
sampling with node centrality, we explored the ability of
a Subgraph GNN to (learn to) count different small sub-
structures as we increase the number of subgraphs in our
bag. We closely followed the experimental procedure of
(Chen et al., 2020), but modified the data generation process
to render the task more challenging and informative5. We
compared the performance of sampling subgraphs based
on different approaches: random sampling and sampling
based on the highest values of different centrality measures.
No CSEs are employed in this setting. We remark that
this experiment is intrinsically different than what explored
in Section 3.2. There, we studied the correlation between
subgraph counts and marking-induced perturbations on un-
trained models; here, we train models to regress these val-
ues (potentially making use of the additionally provided
marking information). Figure 3 reports results for triangle
counting, expressed in terms of Test Mean Absolute Error
(MAE). These results demonstrate the significant improve-
ment afforded by high-centrality sampling over random
sampling with fewer subgraphs (Q1). Additionally, it shows
that SC-based sampling generally outperformed other cen-
trality measures, demonstrating the benefits of focusing on
walk-based centralities, in alignment with our analysis in
Section 3. The full set of results for additional substructures
is reported in Appendix F.

OGB. We tested HyMN on several datasets for graph prop-
erty prediction from the OGB benchmark (Hu et al., 2020b).
We focus, in particular, on molecular graphs, tasked to pre-
dict global properties such as their toxicity or their ability

5In particular, we considered larger graphs with a similar num-
ber of nodes to correct an undesired correlation between the graph
size and the task targets observed in the original data (see Ap-
pendix G.2).
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Method Precomp. (s) Train (s/epoch) Test (s) Pept.-Func (↑) Pept.-Struct (↓)

GIN 0.00 ±0.00 2.65 ±0.01 0.238 ±0.004 0.6555 ±0.0088 0.2497 ±0.0012

GIN + CSE 20.12 ±0.39 2.78 ±0.01 0.253 ±0.004 0.6619 ±0.0077 0.2479 ±0.0011

HyMN (GIN, T=1) 23.71 ±0.34 4.93 ±0.03 0.420 ±0.002 0.6857 ±0.0055 0.2464 ±0.0013

HyMN (GIN, T=2) 23.75 ±0.32 6.60 ±0.03 0.561 ±0.001 0.6863 ±0.0050 0.2457 ±0.0012

GCN 0.00 ±0.00 2.07 ±0.04 0.234 ±0.006 0.6739 ±0.0024 0.2505 ±0.0023

GCN + CSE 20.19 ±0.36 2.16 ±0.04 0.254 ±0.005 0.6812 ±0.0037 0.2499 ±0.0010

HyMN (GCN, T=1) 23.88 ±0.30 2.94 ±0.01 0.292 ±0.002 0.6912 ±0.0170 0.2481 ±0.0013

HyMN (GCN, T=2) 23.97 ±0.30 3.83 ±0.01 0.368 ±0.002 0.6948 ±0.0052 0.2477 ±0.0010

GPS 20.87 ±0.43 8.39 ±0.05 0.611 ±0.005 0.6535 ±0.0041 0.2500 ±0.0005

Graph-ViT 29.12 ±0.61 6.78 ±0.01 0.709 ±0.009 0.6942 ±0.0075 0.2449 ±0.0016

G-MLP-Mixer 29.52 ±0.69 6.87 ±0.03 0.684 ±0.003 0.6921 ±0.0054 0.2475 ±0.0015

Table 3: Results on Peptides datasets with timing comparisons on Peptides-Func
using a NVIDIA GeForce RTX 3080 10GB. Test AP is quoted for Peptides-Func
and Test MAE for Peptides-Struct.

Method Train (s/epoch) Test (s) MalNet-T. (↑)

GIN 7.16 ±0.04 0.70 ±0.03 91.10 ±0.98

HyMN (T=1) no CSE 8.79 ±0.01 0.94 ±0.01 92.84 ±0.52

HyMN (T=1) 9.31 ±0.02 1.02 ±0.01 92.54 ±0.75

HyMN (T=2) no CSE 11.71 ±0.17 1.38 ±0.01 92.18 ±0.64

HyMN (T=2) 11.97 ±0.06 1.40 ±0.02 92.44 ±0.35

GPS (Perf.) 59.34 ±0.52 6.43 ±0.02 92.14 ±0.24

GPS (BigBird) 112.63 ±1.26 17.65 ±0.05 91.02 ±0.48

GPS (Transf.)* 162.10 ±1.37 14.97 ±0.04 90.85 ±0.68

Table 4: Results and timing comparisons using a
GeForce RTX 2080 8 GB for the MalNet-Tiny dataset.
The model marked with * did not fit in memory with
batch size 16, and was trained with batch size 4. Both
HyMN and GPS employ a GIN backbone.

to inhibit HIV replication. To further examine (Q1), Ta-
ble 2 shows the performance of our approach in relation to
MPNNs, a full-bag Subgraph GNN and other subgraph sam-
pling policies with the same number of subgraphs. Notably,
even without using the centrality-based encoding (HyMN
w/out CSE), our method matches the performance of a learn-
able sampling policy (POLICY-LEARN (Bevilacqua et al.,
2024)) and consistently outperforms MPNNs and random
sampling policies. Additionally, we observe that augment-
ing node features with CSEs can significantly increase per-
formance on MOLHIV and MOLBACE, outperforming a
full-bag Subgraph GNN (Q4). These results suggest that
centrality sampling is effective and that additionally incor-
porating centrality information can lead to performance
improvements on real-world datasets, aligning with our find-
ings in Section 3. We last highlight the exceptional result
HyMN obtains, with T = 2, on the MOLHIV benchmark
(81.01± 1.17). This model outperforms strong GNN base-
lines, as reported in Appendix F.2, Table 8 (Q3). Run-time
comparisons for this dataset are additionally enclosed in
Appendix H.

Peptides. In order to evaluate the ability of HyMN to scale
to larger graphs (Q2), we experimented on the Peptides
datasets from the LRGB benchmark (Dwivedi et al., 2022),
where the task is to predict global structural and functional
properties of peptides, represented as graphs. The average
number of nodes in these graphs is 150.94, so it is difficult
for a full-bag Subgraph GNN to process. Additionally, using
the centrality encoding to sample just one or two additional
node-marked subgraphs can improve performance on both
datasets. We also outperform GPS (Rampášek et al., 2022)
(a Graph Transformer) and match the performance of Graph-
MLP-Mixer (He et al., 2023) (Q3). Our timing experiments
on Peptides-Func demonstrate that we are significantly more
efficient than both of these approaches, only increasing
the training time per epoch over a GCN by 42% and the
inference time by 25% using ‘HyMN (GCN, T=1)’ (Q2).

MalNet-Tiny. This is a code dataset consisting of function

call graphs with up to 5,000 nodes (Freitas et al., 2021).
Models are asked to predict their malware class, or identify
them as benign otherwise. As well as being from a signifi-
cantly different domain, these graphs are considerably larger
than the graph benchmarks considered above, allowing us
to showcase HyMN’s ability to scale to even larger graphs
(Q2). We compare to the GPS architecture (Rampášek et al.,
2022), instantiated with various (sparse) variations of its
Graph Transformer component and a GIN message-passing
backbone, the same we employ for HyMN. The results are
shown in Table 4. Whilst, full-bag Subgraph Graph Neural
Networks cannot scale to this dataset, our method, HyMN,
is able to outperform sparse Transformer-based approaches
at a fraction of the runtime: our approach is, almost six
times faster than the best GPS variant both in training and
inference.

Reddit. To further showcase the ability of HyMN to scale to
large graphs and to evaluate the effectiveness of the method
with a different data modality, we experimented with the
REDDIT-BINARY (RDT-B) dataset (Morris et al., 2020a).
The task involves the classification of social networks that
have a high average number of nodes (429), so full-bag ap-
proaches cannot be applied. We compare our approach with
a learnable sampling policy (POLICY-LEARN (Bevilacqua
et al., 2024)) and to two expressive higher order GNNs (SIN
and CIN) (Bodnar et al., 2021a;b). HyMN exhibits on-par
performance with the best-performing method (5) which
is a learnable policy, highlighting the effectiveness of our
sampling approach.

Summary. In reference to the questions enlisted above,
we conclude the following. (A1) The results from sub-
structure counting and on the OGB benchmarks suggest a
positive answer to Q1: SC-based sampling significantly out-
performed random sampling on both, and matched the per-
formance of the learnable POLICY-LEARN. (A2) HyMN
was effortlessly applied to the larger Peptides and MalNet
datasets, with strong empirical performance and extremely
lightweight inference and training run-times. This demon-
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Table 5: Results on RDT-B (Accuracy).

Method RDT-B

GIN 92.4 ±2.5

SIN 92.2 ±1.0
CIN 92.4 ±2.1

FULL OOM
RANDOM (T=20) 92.6 ±1.5
RANDOM (T=2) 92.4 ±1.0
POLICY-LEARN (T=2) 93.0 ±0.9
HyMN (T=2) 93.2 ±2.2

strates that effective subgraph sampling unlocks the appli-
cability of Subgraph GNNs to larger graphs, even orders of
magnitude larger than those full-bag methods could possibly
be applied to. (A3) Beyond these two datasets, HyMN also
attained remarkable performance on OGB benchmarks, and
performed competitively on ZINC (see Appendix F.2). This
suggests a positive answer to Q3. (A4) We observe that
CSEs can enhance the performance of standard MPNNs
(see Table 3) and subsampled Subgraph GNNs (see, e.g.,
MOLHIV and MOLBACE in Table 2). We note, however,
they were not always beneficial (see MOLTOX21 Table 2
and MalNet Table 4).

6. Conclusions
We introduced a novel Subgraph GNN method, termed
HyMN, which strikes a compelling balance between ef-
ficiency and expressiveness by combining a subgraph sam-
pling strategy and structural encodings both derived from
walk-based centrality measures. HyMN attains strong em-
pirical performance with an extremely thin computational
overhead, making it applicable to a wide spectrum of down-
stream tasks featuring large graphs, even tens or hundreds
of times larger than those full-bag Subgraph GNNs can pos-
sibly process. In our paper, we showed, in particular, that
the Subgraph Centrality by Estrada & Rodriguez-Velazquez
(2005) is a good measure of subgraph importance: for a
very limited number of subgraphs it enables competitive
performance and outperforms random and learnable selec-
tion strategies. We also proved that the additional inclu-
sion of centrality-based SEs is beneficial both theoretically
and in practice, allowing to enhance discriminative power
and downstream generalization performance on several real-
world benchmarks.

Limitations and future work. Our sampling procedure
does not take into account already sampled subgraphs unlike
methods such as the ones in (Zhao et al., 2022; Bevilacqua
et al., 2024). Future work could focus on more general per-
turbation analyses to give an indication on multi-node mark-
ing for higher-order selection policies (Qian et al., 2022)
or to quantify (i) the optimality of the designed sampling
strategy, (ii) the impact of adding subgraphs to a partially

populated bag. More sophisticated selection strategies could
combine different walk-based centrality measures or con-
sider pairwise structural features.
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On Weisfeiler-Leman invariance: Subgraph counts and
related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020.

Bar-Shalom, G., Bevilacqua, B., and Maron, H. Sub-
graphormer: Unifying subgraph gnns and graph trans-
formers via graph products. In Forty-first International
Conference on Machine Learning, 2024a.

Bar-Shalom, G., Eitan, Y., Frasca, F., and Maron, H. A
flexible, equivariant framework for subgraph gnns via
graph products and graph coarsening. In Globerson, A.,
Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak,
J., and Zhang, C. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 101168–101222.
Curran Associates, Inc., 2024b.

Benzi, M. and Klymko, C. Total communicability as a

centrality measure. Journal of Complex Networks, 1(2):
124–149, 2013.

Benzi, M. and Klymko, C. A matrix analysis of different
centrality measures. arXiv preprint arXiv:1312.6722,
2014.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In Interna-
tional Conference on Learning Representations, 2021.

Bevilacqua, B., Eliasof, M., Meirom, E., Ribeiro, B., and
Maron, H. Efficient subgraph gnns by learning effective
selection policies. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Biewald, L. et al. Experiment tracking with weights and
biases, 2020.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montu-
far, G. F., and Bronstein, M. Weisfeiler and lehman go
cellular: Cw networks. Advances in neural information
processing systems, 34:2625–2640, 2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lio, P., and Bronstein, M. Weisfeiler and lehman go
topological: Message passing simplicial networks. In
International Conference on Machine Learning, pp. 1026–
1037. PMLR, 2021b.

Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein,
M. Improving graph neural network expressivity via
subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Brouwer, A. E. and Spence, E. Cospectral graphs on 12
vertices. the electronic journal of combinatorics, pp. N20–
N20, 2009.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? Advances in neural
information processing systems, 33:10383–10395, 2020.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance: Bridg-
ing graph metrics and stability of graph neural networks.
Advances in Neural Information Processing Systems, 35:
2944–2957, 2022.

Cotta, L., Morris, C., and Ribeiro, B. Reconstruction for
powerful graph representations. Advances in Neural In-
formation Processing Systems, 34:1713–1726, 2021.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

10

http://ai4health.io
http://ai4health.io


Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality

Dupty, M. H. and Lee, W. S. Graph representation learning
with individualization and refinement. arXiv preprint
arXiv:2203.09141, 2022.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. AAAI Workshop on Deep
Learning on Graphs: Methods and Applications, 2021.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In International Confer-
ence on Learning Representations, 2021.
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A. Outline of the Appendix Corpus
The appendix corpus is structured as follows:

• Appendix B: we include an extended background section on Subgraph GNNs, their computational complexity and
bag sampling approaches to scale these architectures. This section is intended to be complementary to Section 2, as it
provides additional context to readers not necessarily familiar with Subgraph GNNs and complexity limitations;

• Appendix C: we report a full algorithmic description of our HyMN approach;

• Appendix D: we report proofs pertaining to Section 4;

• Appendix E: we provide derivations and additional details on the perturbation analysis of Section 3;

• Appendix F: we report and discuss further, additional experiments – we additionally run HyMN on the ZINC dataset,
we explore more backbone MPNN architectures, we compare Subgraph Centrality with other centrality measures and
with RWSEs, and we further examine the impact of including CSEs in our model, alongside marking;

• Appendix G: we comprehensively describe our experimental settings and details, architectural choices and hyper-
parameters;

• Appendix H: we enclose additional timing comparisons.

B. More on Subgraph GNNs and their Complexity
B.1. The Architectural Family of Subgraph GNNs

The term “Subgraph GNN” refers to a broad family of recent Graph Neural Networks sharing a common architectural
pattern: that of modeling graphs as sets (bags) of subgraphs. Subgraphs are processed by a backbone GNN, possibly flanked
by additional information sharing modules (Bevilacqua et al., 2021). Bags of subgraphs are formed by selection policies,
which typically extract subgraphs by applying topological perturbations such as node- (Cotta et al., 2021; Papp et al., 2021)
or edge-deletions (Bevilacqua et al., 2021), or by marking nodes (You et al., 2021; Papp & Wattenhofer, 2022).

In formulae, a Subgraph GNN f can be described as (Frasca et al., 2022):

f : G 7→
(
µ ◦ ρ ◦ S ◦ π

)
(G), (5)

where π is the selection policy; S applies the backbone GNN – with, potentially, information sharing components; ρ, µ are
pooling and prediction modules.

Various choices for the above terms give rise to different Subgraph GNN variants (Frasca et al., 2022). For non-trivial
selection policies and sufficiently expressive backbones, these exceed 1-WL discriminative power (Bevilacqua et al., 2021),
thus surpassing standard message-passing networks.

The most popular selection policies are node-based: selected subgraphs are in a bijection with nodes in the original input
graph. Prominent policies in this class include node-deletion, ego-networks and node-marking. From an expressiveness
perspective, node-marking subsumes the first two policies (Papp & Wattenhofer, 2022; Zhang et al., 2023a), other than
uncovering a connection between node-based Subgraph GNNs and node-individualization algorithms for graph isomorphism
testing (Dupty & Lee, 2022). Node-marking constructs bags of subgraphs as:

πNM : G = (A,X) 7→ {(A,X ⊕ e1), . . . , (A,X ⊕ en)}, (6)

where ei ∈ {0, 1}n×1 is i-th element of the canonical basis 6 and ⊕ denotes concatenation across the channel dimension.

Node-based Subgraph GNNs encompass several architectures, including ID-GNNs (You et al., 2021), (n−1)-Reconstruction
GNNs (Cotta et al., 2021), Nested GNNs (Zhang & Li, 2021), GNN-AK (Zhao et al., 2022), SUN (Frasca et al., 2022)
and the maximally expressive GNN-SSWL (Zhang et al., 2023a). For 1-WL-expressive backbones, Subgraph GNNs with
node-based policies are bounded in their expressive power by 3-WL (Frasca et al., 2022). Detailed, structured charting of
their design space, along with fine-grained expressiveness results, are found in (Frasca et al., 2022; Zhang et al., 2023a).

6Elements in vector ei are 0 except for the one in position i, which equals 1.
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Figure 4: Depiction of a Subgraph GNN endowed with a subgraph sampling strategy.

B.2. Computational Complexity Aspects

Consider a Subgraph GNN f in the form of Equation (5), where S stacks neural message-passing layers. For an input graph
G with n nodes and a degree bounded by dmax, f exhibits an asymptotic forward-pass complexity:

T (n, dmax,m) = O(m ·
msg-pass complexity︷ ︸︸ ︷

n · dmax ), (7)

with m being the number of subgraphs generated by policy π executed on graph G.

Node-based policies are such that the number of subgraphs equals the number of nodes in the original input graph, i.e.,
m = n. Hence, the complexity of node-based Subgraph GNNs scales as:

T (n, dmax) = O(n2 · dmax). (8)

Higher-order policies (Qian et al., 2022) may allow larger expressive power, but for heftier complexities. As an example,
node-pair marking would induce a complexity of O(n3 · dmax).

The quadratic dependency on the number of nodes in Equation (8) hinders the application of Subgraph GNNs to even
mildly-sized graphs. At the time of writing, experimenting on the Peptides datasets (Dwivedi et al., 2022) is already very
challenging on common hardware, despite these graphs having on average ≈ 151 nodes and a similar number of edges.

B.3. Subsampling Bags of Subgraphs

To mitigate the aforementioned issue, one possibility is to reduce the number of subgraphs to process, i.e., to lower the
impact of m in Equation (7). A convenient approach is to sample a small set k of subgraphs from the bag generated by a
predefined policy π (Bevilacqua et al., 2021; Zhao et al., 2022; Bevilacqua et al., 2024; Kong et al., 2024; Sun et al., 2021)
(see Figure 4). Essentially, this requires updating Equation (5) as:

f : G 7→
(
µ ◦ ρ ◦ S ◦

sampling︷︸︸︷
σ ◦π

)
(G). (9)

Above, σ applies a subgraph sampling strategy to reduce the bag cardinality from m to k:

σ : B = {G1, . . . , Gm} 7→ B̃ s.t. B̃ ⊆ B, |B̃| = k. (10)

The new cardinality k should scale sub-linearly in n, or be chosen as an appropriate small constant. The optimal design of
strategy σ is a non-trivial task at the core of several recent works (Qian et al., 2022; Kong et al., 2024; Bevilacqua et al.,
2024; Bar-Shalom et al., 2024b). In the present manuscript, we discuss a simple, effective construction based on walk-based
centrality measures. Our design is justified by the theoretical considerations and empirical observations in Section 3.2,
which are validated by the complementary experimental results reported in Section 5.
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C. Hybrid Marking Networks in Algorithmic Form

Algorithm 1 Hybrid Marking Network

Require: Graph G = (A,X), Subgraph GNN f , Max walk-length K, Number of marks T
1: CCSE

v,k ← 0 ∀v ∈ G, k ∈ [K] ▷ SE init.
2: Mv,t ← 0 ∀v ∈ G, t ∈ [T ] ▷ Mark init.
3: B ← I
4: for k ∈ [K] do
5: for v ∈ G do
6: CCSE

v,k ← Bvv/k! ▷ Compute SEs
7: end for
8: B ← B ·A
9: end for

10: C̃SC ←
∑

k C
CSE
:,k ▷ Estimate SC

11: M← select-top(C̃SC , T ) ▷ Select nodes
12: for t ∈ [T ] do
13: MM[t],t ← 1 ▷ Mark nodes
14: end for
15: yG ← f(A,X ⊕ CCSE,M) ▷ Forward-pass
16: return yG

Algorithm 1 describes our HyMN approach, i.e., how graph representations are obtained starting from an input graph
G = (A,X), a backbone Subgraph GNN f , and hyper-parameters K,T 7, specifying, respectively, the maximum walk-length
and the number of marks/subgraphs to select.

D. Claims and Proofs
Proposition D.1. Let G = (A,X) be a connected graph (with n nodes) with initial node features Xi = pCSE

i . There exists
an L = k+ 1 layered Message Passing Neural Network (MPNN) that processes the graph G and can compute the following
structural encodings capturing closed-walk probabilities for walks of size up to k for any node i, defined as:

ci =

[
1,

(A)1ii∑n
j=1(A)1ij

,
(A)2ii∑n
j=1(A)2ij

, . . . ,
(A)kii∑n
j=1(A)kij

]
,

up to arbitrary precision.

Proof. We define a Message Passing Neural Network (MPNN) as a composition of layers of the form:

X̃(l) = AX(l−1)W(l)1 +X(l−1)W(l)0 , (11)

X(l) = f (l)(X̃(l)) (12)

where W(l)1 and W(l)0 are learned weight matrices, and f (l) is an MLP for the l-th layer. We refer to the layers in
Equations (11) and (12) as the MPNN layer and MLP layer, respectively, where the MLP layer is assumed to be a single
hidden layer with interleaved ReLU activations.

7Note that, as reported in Algorithm 1, we perform a select-top operation (line 11). In some cases, which we found to rarely occur in
practice, depending on the value of T , this operation has to arbitrarily break ties between nodes with the same exact centrality values. This
tie breaking procedure can additionally be either side-stepped by marking all nodes with the same centrality value or be made equivariant
by accounting for the ordering between colours from an auxiliary DS-WL-like refinement (Bevilacqua et al., 2021).
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We recall that the initial node feature matrix, X(0) ∈ Rn×(k+1), is given as follows:

X(0) =


− pT

1 −
− pT

2 −
...

− pT
n −


where,

pi =

[
1,

(A)1ii
1!

,
(A)2ii
2!

,
(A)3ii
3!

, . . . ,
(A)kii
k!

]
∈ Rk+1.

Step 1: Recovering the unnormalized CSE. To uncover the unnormalized CSE, we set W(1)1 = 0 and W(1)0 ∈
R(k+1)×((k+1)+k) as follows:

W(1)0 =


1 0 0 · · · 0 0 · · · 0
0 1! 0 · · · 0 0 · · · 0
0 0 2! · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

0 0 0 · · · k! 0 · · · 0


Thus, the MPNN layer gives:

X̃(1) ≜ MPNN(1)(A,X) =


− punormalizedT

1 −
− punormalizedT

2 −
...

− punormalizedT
n −


where,

punormalizedT
i =

[
1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii, 0, . . . , 0

]
∈ R(k+1)+k.

For the MLP f0, we use an identity weight matrix and a bias vector, which is all zeros except for the last k values, which are
ones:

b(0) = [0, 0, . . . , 0, 1, 1, . . . , 1] ∈ R(k+1)+k.

Thus, we obtain X(1), such that:

X
(1)
i =

[
1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii, 1, . . . , 1

]
∈ R(k+1)+k.

Step 2: Compute the matrix of closed-walk probabilities. We compute the matrix of closed-walk probabilities in
sequential steps. For each j-th step, we use the following weight matrices:

W(j+1)0 =

Ik+1 0 0
0 Ij−1 0
0 0 0k−(j−1)



W(j+1)1 =

0k+1 0 0
0 0j−1 0
0 0 Ik−(j−1)


Where In is an n× n identity matrix, and 0n is an n× n zero matrix (if n = 0 the corresponding block is omitted). This
means:

XW(j+1)0

keeps only the first k + j columns of X , and,
AXW(j+1)1

multiplies by A only the last k − (j − 1) columns of X .
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By doing this iteratively for j = 1 to j = k, and setting the interleaved MLPs to identity weight matrices, we obtain the
node matrix X̃(k+1), such that:

X̃
(k+1)
i =

1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii,

n∑
j=1

(A)1ij ,

n∑
j=1

(A)2ij , . . . ,

n∑
j=1

(A)kij

 ∈ R(k+1)+k.

Let F : R2k+1 → Rk+1 be the following continuous function:

F (x)i =

{
1, if i = 0,
xi

xk+i
, if i ̸= 0.

Since the graph is connected, the denominator is always non-zero, making the function continuous. Additionally, since we
are considering a finite graph with n nodes, the input to the function F lies within a compact set.

Using the universal approximation theorem (Hornik, 1991; Cybenko, 1989), F can be approximated to an arbitrary precision
using an MLP. Thus, we use the MLP of layer k + 1 to realize F , obtaining the following node matrix,

X
(k+1)
i =

[
1,

(A)1ii∑n
j=1(A)1ij

,
(A)2ii∑n
j=1(A)2ij

, . . . ,
(A)kii∑n
j=1(A)kij

]
∈ Rk+1.

This completes the proof.

Theorem D.2 (Theorem 4.1 in Section 4). There exists a pair of graphs G and G′ such that for any CSE-enhanced MPNN
model MCSE we have MCSE(G) = MCSE(G

′), but there exists a DS-Subgraph GNN model (without CSEs) Msub. which uses
a top-k Subgraph Centrality policy such that Msub.(G) ̸= Msub.(G

′).

Proof. Using the notation of (Read & Wilson, 1998), let G,G′ be the quartic vertex transitive graphs Qt15 and Qt19
respectively (Here vetrex transitive means that for each pair of nodes there exists a graph automorphism that maps one
node to the other, and quartic refers to 4-regular). As these graphs are 4-regular and of the same size, they are 1-WL
indistinguishable. In addition, as they are vertex transitive, for each pair of indices i, j we have:

Ak
i,i = Ak

j,j =
trace(Ak)

12
. (13)

A′k
i,i = A′k

j,j =
trace(A′k)

12
. (14)

Here the last equalities hold because both graphs have 12 vertices. Thus, to show that G and G′ are indistinguishable by
MPNN + centrality encoding it is enough to show that trace(Ak) = trace(A′k). As G and G′ were shown in (Brouwer &
Spence, 2009) to be co-spectral (i.e. their laplacian has the same eigenvalues) and 4-regular, matrices A and A′ have the
same eigenvalues. Thus we have:

trace(A)k =

1∑
i=1

2λk
i = trace(A′)k. (15)

Here λi is the i-th eigenvalue of both A and A′. Thus the central encoding of all nodes in either graph is equal, and they are
indistinguishable by any any MPNN + CE model. On the other hand, we observe that the degree histogram in the 1-hop
neighborhood of any node differs between the two graphs, Qt15 and Qt19. Since an MPNN over a graph with a marked
node can compute the degree distribution of the node’s 1-hop neighborhood, Msubgraph can distinguish between the two
graphs. This concludes the proof.

Theorem D.3 (Theorem 4.2 in Section 4). There exists a pair of graphs G and G′ such that for any Subgraph GNN model
Msub. which uses a top-k Subgraph Centrality policy we have Msub.(G) = Msub.(G

′), but there exists an MPNN + centrality
encoding model MCSE such that MCSE(G) ̸= MCSE(G

′).

18



Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality

Proof. We begin by examining the scenario where k = 1, meaning that our policy randomly selects subgraphs corresponding
to the node with the highest centrality measure. Consider the graph G, which is formed by attaching a global node to every
vertex of a cyclic graph of length 6 . Next, define G′ as the graph obtained by attaching a global node to each vertex of two
disconnected cyclic graphs, each of length 3 (The global node is also attached to itself through a self loop). These graphs are
displayed in Figure 6. It can be easily seen that G and G′ are WL indistinguishable (e.g. by induction). We first prove that
both in G and G′ the global node has the highest centrality measure. This implies that for both graphs, the resulting bag of
subgraphs is of size one and is thus equivalent to standard message passing on the graphs (here we can ignore marking as the
global nodes have a unique degree and so they can be uniquely identified by standard message passing). This implies that the
two graphs are indistinguishable by any Subgraph GNN model Msubgraph which uses a top-1 node centrality policy. We then
show that the multiset of values of the centrality encoding of each graph is different, showing that it can be distinguished by
an MPNN + centrality encoding model. To show that in both graphs the global node has the higher centrality, we first prove
the following lemma:

Lemma D.4. Let A denote the adjacency graph of one of the above graphs, v denote the global node and u1, u2 denote a
pair of nodes of the graph such that u1 ̸= v. For each k ∈ N we have:

Ak
v,u2
≥ Ak

u1,u2

Ak
v,u2

> 0

Ak
v,v > Ak

u1,u1
.

(16)

Proof of lemma. We use induction on k. As v is connected to all nodes including itself , for k = 1, Av,u1
= 1. Since,

disregarding the global nodes, G,G′ are simple graphs , we have Au1,u1
= 0, Au2,u1

≤ 1, thus the base case holds.
Assuming the induction hypothesis holds for some k, we first notice that

Ak+1
u2,v = Ak

u2,: ·A:,v ≥ Ak
u2,: ·A:,u1

= Ak+1
u2,u1

. (17)

Here, Ak
u,:, A

k
:,u represents the column/row vectors induced by node u respectively and · denotes inner product. The

inequality above follows from our induction hypothesis and the fact that all entries of the matrix Ak are non-negative. Next,
we notice that

Ak+1
u2,v = Au2,: ·Ak

:,v ≥ Au2,v ·Ak
v,v > 0. (18)

In addition, we notice that Ak
v,u1
·Au1,v > 0 = Ak

u1,u1
·Au1,u1

, where the last equallity holds because Au1,u1
= 0. Thus,

we get:
Ak+1

v,v = Ak
v,u1
·Au1,v +

∑
u ̸=u1

Ak
v,u ·Au,v > Ak

u1,u1
·Au1,u1 +

∑
u̸=u1

Ak
u1,u ·Au,u1 = Ak+1

u1,u1
. (19)

This completes the induction step.

As explained before, the last lemma shows that top-1 centrality node marking policy always produces a bag with a single
graph where the global node is marked. As the global node can be uniquely distinguished by its degree, this shows that
a Subgraph GNN with this policy is equivalent to standard message passing and is thus unable to distinguish G and G′.
Finally, computing the centrality encoding of order 3 we see the multiset of features of the two graphs are different and so
message passing + CE is able to seperate G and G′.

We now address the general case of a top-k centrality node-marking policy. Let Gk, G
′
k denote the graphs consisting of k

disjoint copies of G and G′, respectively. In each disjoint copy, the global node is replicated independently and maintains a
higher centrality than all other nodes within that copy. Thus, in both graphs, the k nodes with the highest centrality are the k
copies of the global node.

The bag of graphs generated from Gk and G′
k using the top-k centrality node-marking policy are then composed of k

copies of Gk and G′
k respectively, where a single copy of the global node is marked. Notice that in each one of these

bags, all graphs are isomorphic to each other, thus it is enough to show that Gk with a single marked global node copy
is 1-WL indistinguishable from G′

k with a single marked global node copy. To see this holds, notice that as we have
seen above, the connected component of Gk containing the marked node is 1-WL indistinguishable from the copy of the
connected component of G′

k containing the marked node, and the k − 1 unmarked connected components of Gk are 1-WL
indistinguishable from the unmarked connected components of G′

k. Thus any subgraph GNN which uses a top-k centrality
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Figure 5: Two quartic vertex transitive graphs which cannot be distinguished with MPNN + CSE but can be distinguished with a Subgraph
GNN with a top-1 Subgraph Centrality policy.

Figure 6: Two graphs which cannot be distinguished by a Subgraph GNN with a top-1 Subgraph Centrality policy without CSE but can be
distinguished by an MPNN + CSE. One graph is a hexagon with a global node connected to all other nodes, and another graph which
depicts two triangles connected to a global node.

node marking policy is unable to distinguish Gk and G′
k. Finally, the centrality encoding values of each node ucopy in Gk is

equal to the centrality encoding value of the node u in G which corresponds to ucopy. As we have seen before the set of
centrality encoding values of G and G′ are different, the set of centrality encoding values of Gk and G′

k are also different,
and so message passing + CE is able to separate Gk and G′

k.

Proposition D.5. Let G = (A,X) be a finite graph, and let BG be the bag generated from original graph G. Let
DSS-GNN be the subgraph-based GNN that processes the bag BG. There exists a set of weights for DSS-GNN, such
that DSS-GNN(BG) = MPNN(G) for any MPNN processing G with centrality-based structural encodings as initial node
features.

Proof. Let {Xi, Ai}ni=1 represent the node feature matrix Xi and adjacency matrix Ai, respectively, for the i-th subgraph
in the collection of subgraphs. We adopt the binary node-marking technique from (Bevilacqua et al., 2021), where Xi
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includes a one-hot encoded vector for the root node identification, with a 1 in the i-th position,8

Xi =



0
...
0
1
0
...
0


with 1 at the i-th position, (20)

we note that in this case, the adjacencies of all subgraphs, denoted as {Ai}ni=1, are identical to the adjacency of the original
graph, A.

We recall that the DSS-GNN architecture applies an MPNN over each subgraph independently, followed by an MLP.
Subsequently, an MPNN followed by an MLP operates on a shared component, enabling information sharing across
subgraphs.

To be more explicit, the architecture is defined as follows:

X̃ l;i = MPNNl;1(Ai, X l−1;i), (21)

Y l−1;i = f l;1(X̃ l−1;i), (22)

X̃ l−1 = MPNNl;2

 n∑
j=1

Aj ,

n∑
j=1

X l−1;j

 , (23)

Y l−1 = f l;2(X̃ l−1), (24)

X l+1;i = Y l−1;i + Y l−1, (25)

where the MPNN is defined as:

MPNN(X) = AXW1 +XW0. (26)

The proof proceeds in three steps. First, we compute the centrality encoding at the root nodes, recall Equation (4), specifically
at Xi

i . Second, we use the shared information component to propagate this root node information across all subgraphs.
Finally, we simulate an MPNN over each subgraph. Since the subgraphs are identical and equipped with the centrality
encoding, the proof is complete.

Step 1. We begin by applying the K MPNN layers to each subgraph independently, and setting to 0 the weight matrices of
the shared component, effectively enforcing no sharing between the subgraphs.

More specifically, at the k-th layer, the following weight matrices are used:

W0 =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


k×(k+1)

, W1 =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1


k×(k+1)

where:

• W0 is a k × (k + 1) matrix consisting of a k × k identity matrix Ik followed by an extra column of zeros:

W0 =
(
Ik 0k×1

)
8Although this proof does not consider additional node features, it can be easily adapted to incorporate them.
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Specifically, when W0 is multiplied by a matrix B ∈ Rn×k, i.e., BW0, it appends a column of zeros to the right of B,
leaving the structure of B unchanged but with an additional column of zeros.

• W1 is a k × (k + 1) matrix consisting of a k × k zero matrix 0k×k followed by a column of all zeros except for a 1 in
the last row:

W1 =
(
0k×k ek

)
Specifically, when W1 is multiplied by a matrix B ∈ Rn×k, i.e., BW1, the resulting matrix is composed of the zero
matrix and the last column of B. In other words, this operation extracts the last column of B and appends it to a matrix
of zeros of size k × k.

In this setup, for each i, the term AXiW1 at the k-th layer propagates the node marking to neighboring nodes and places it
in the last column. Meanwhile, the term XW0 copies the propagated marking from the previous k layers.

Thus, by summing the two terms, after K layers, the node features Xi
j are given by:

Xi
j =

{[
1, A1

ii, A
2
ii, . . . , A

K
ii

]
, for j = i,

[0,vj ] , for j ̸= i,
(27)

where vj holds at its k-th slot the number of marks propagated to node j in subgraph i at the step k.

Since each entry in the vectors Xi
j for any i ∈ [n] and j ∈ [n] represents the propagation of a mark over k ∈ [K] steps —

specifically, the number of walks from the root node of subgraph i to node j (within subgraph i) — the number of possible
values for these vectors is constrained. Moreover, because the original graph is finite, the total number of possible values for
these vectors must also be finite.

By Theorem 3.1 in (Yun et al., 2019)9, there exists an MLP at the K-th layer that can implement the following mappings:

fk([1, a1, a2, . . . , aK ]) =
[
1,

a1
1!
,
a2
2!
, . . . ,

aK
K!

]
, (28)

fk([z, b1, b2, . . . , bK ]) = 0K+1, (29)

for any z ̸= 1 and ai, bi ∈ R. At this step, the root nodes i hold the centrality value, recall Equation (4), while all other
nodes hold the feature vector 0K+1.

Step 2. Next, we utilize the shared information component by setting the weights of its MPNN as follows, W1 = 0 and
W0 = I , which effectively broadcasts the root node information to the corresponding nodes in all other subgraphs. To
prevent the root nodes from receiving double the value, we initialize the MPNN that operates on each subgraph individually
with zero weights.

Step 3. At this point, we have n copies of the original graph, each equipped with its corresponding centrality values.
Therefore, the MPNN over each subgraph can effectively simulate the MPNN over the original graph, now with centrality
values assigned to the nodes. Assuming a mean readout is used at the conclusion of both the DSS-GNN(BG and the
MPNN(G), their outputs will be identical.

This concludes the proof.

We note that this result is also valid for Subgraph GNN architectures that subsume DSS-GNN, e.g., GNN-SSWL+ (Zhang
et al., 2023a).

E. On Marking-Induced Perturbations and the Number of Walks
In this section, we report more details and comments on our Observation 1 introduced in Section 3.2.

9This theorem assumes the output is bounded between −1 and 1. However, we can relax this assumption as long as the outputs are
bounded (and they are since the original graph is finite). To handle this, we can use the theorem to calculate the normalize values (dividing
each value by the upper bound), and then use an additional MLP to scale the results back to the original values.
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We start by commenting on Equation (3). We recall that we are interested in upper-bounding the amount of output
perturbation induced by marking node v. Effectively, this corresponds to the distance |yG − ySv |, namely, the absolute
difference between the predictions a backbone MPNN computes for the original graph (G) and the subgraph obtained by
marking node v (Sv).

For an L-layer MPNN in the form of Equation (2), we obtain Equation (3) by an almost immediate application of the results
in (Chuang & Jegelka, 2022). Indeed, let us rewrite:

|yG − ySv
| = |ϕ(L+1)

( ∑
u∈G

hG,(L)
u

)
− ϕ(L+1)

( ∑
u∈Sv

hSv,(L)
u

)
| (30)

where hG,(L)
v , h

Sv,(L)
v indicate, respectively, the representations of node u in graph G and its perturbed counterpart Sv . Now,

by Chuang & Jegelka (2022, Theorem 8) we have:

|yG − ySv
| ≤

L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (G,Sv)︸ ︷︷ ︸
(A)

(31)

where (A) is the L+ 1-depth Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022) with layer-weighting w calculated
between the original graph and its marked counterpart.

In the same work, the authors provide an upper-bound on the TMD between a graph and a perturbed version obtained by a
change in the initial features of a node (Chuang & Jegelka, 2022, Proposition 11). We restate this result.

Proposition E.1. (Chuang & Jegelka, 2022, Proposition 11) Let H be a graph and H ′ be the perturbed version of H
obtained by changing the features of node v from xv to x′

v . Then:

TMDL
w(H,H ′) ≤

L∑
l=1

λl ·Widthl(T
L
v ) · ∥xv − x′

v∥ (32)

where λl ∈ R+ is a layer-wise weighting scheme dependent of w and Widthl(T
L
v ) is the width at the l-th level of the L-deep

computational tree rooted in v.

We can readily apply Proposition E.1 and leverage the fact that marking only induces a unit-norm feature perturbation to get:

|yG − ySv | ≤
L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (G,Sv) (33)

≤
L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·Widthl(T
L+1
v ) (34)

Finally, we note that Widthl(T
L+1
v ) corresponds to the number of walks of length l − 1 starting from v. This can be easily

seen by noting that the leaves of the computational tree can be put in a bijection with all and only those walks of length
l − 1 starting from v10. This value is notoriously computed from row-summing powers of the adjacency matrix A, so that:
Widthl(T

L+1
v ) =

∑
j(A

l−1)v,j . We ultimately have:

|yG − ySv
| ≤

L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·Widthl(T
L+1
v ) (35)

=

L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)v,j (36)

10This can be constructed, e.g., by associating leaf nodes to the walks (uniquely) obtained by “climbing up” the computational tree up
to the root.
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The above bound is easily extended to consider a closely related analysis: the impact of adding a single node-marked
subgraph S to a bag formed by the original graph only. This analysis would enlighten us on the impact a single subgraph
addition in the case of “augmented policies”, which we use throughout our experiments in Section 5, see Appendix G.1.

In other words, we would like to bound |yB={G}
G − y

B={S,G}
G |, where these outputs are given by Equation (45), with a base

MPNN backbone as per Equation (2). We have:

|yB={G}
G − y

B={S,G}
G | = |ϕ(L+1)

(∑
v∈G

(h
(L)
G,v + h

(L)
S,v)

)
− ϕ(L+1)

(∑
v∈G

h
(L)
G,v)

)
| (37)

≤ KL+1
ϕ · ∥

∑
v∈G

(h
(L)
G,v + h

(L)
S,v)−

∑
v∈G

h
(L)
G,v∥ (38)

where KL+1
ϕ is the Lipschitz constant of the prediction layer ϕ(L+1). We can rewrite the above as follows by appropriately

rearranging terms and by the triangular inequality:

|yB={G}
G − y

B={S,G}
G | ≤KL+1

ϕ · ∥
∑
v∈G

(h
(L)
G,v + h

(L)
S,v)−

∑
v∈G

h
(L)
G,v∥ (39)

≤ K
(L+1)
ϕ ·

(
∥
∑
v∈G

h
(L)
G,v∥+ ∥

∑
v∈G

h
(L)
S,v −

∑
v∈G

h
(L)
G,v∥︸ ︷︷ ︸

(A)

)
(40)

where, we note, (A) is the distance between the embeddings of the marked and unmarked graphs, before a final predictor is
applied. This term can be bounded similar to our initial analysis for Observation 1:

(1) = ∥
∑
v∈G

h
(L)
S,v −

∑
v∈G

h
(L)
G,v∥ (41)

≤
L∏

l=1

K
(l)
ϕ · TMDL+1

w (S,G)︸ ︷︷ ︸
(B)

(42)

where (B) can be upper-bounded, again, by Proposition E.111.

Putting things together:

|yB={G}
G − y

B={S,G}
G | ≤ K

(L+1)
ϕ ·

(
∥
∑
v∈G

h
(L)
G,v∥+

L∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)S,j

)
(43)

Differently from the above analysis, we observe a contribution given by ∥
∑

v∈G h
(L)
G,v∥. This could be upper-bounded, e.g.,

by the sum of the “tree-norms” Chuang & Jegelka (2022) of the computational trees over the original graph. We note that
(the presence of) this term is, however, independent on the selection of the specific node to mark.

In future developments of this work we envision to more deeply enquire into the relation between Equation (43) and
Equation (1), and into the principled choice of a specific centrality measure among different possibilities.

E.1. Perturbation Analysis on an Additional Dataset

As outlined in Section 3.2, we explore the amount of perturbation from different marking schemes on the output of an
untrained GIN model. We have shown in Figure 1, the effect of these marking schemes on the MUTAG dataset. Here, in
Figure 7a and in Figure 7b, we additionally show the results for the NCI1 dataset and for Erdös-Renyi (ER) graphs. The ER
graphs are consistent with our correlation analysis experiment Section 3.2, where we randomly generate 100 ER graphs,
each with N = 20 nodes and wiring probability p = 0.3.

11We have allowed a little abuse of notation here by using S to refer to the “subgraph” obtained by marking node S in G.
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(a) NCI1 dataset alterations. (b) Erdös-Renyi graph alterations.

Figure 7: Plots showing the alteration of graph representations using GIN by adding an additional node-marked subgraph with (i) the
highest centrality, (ii) the lowest centrality, and (iii) a random marking for both the NCI1 dataset (left) and Erdös-Renyi graphs (right).

F. Additional Experiments
F.1. Additional Experiments with Other Backbones

We have already experimented with GCN as the backbone on the Peptides datasets. Additionally, we run GCN as a
backbone on OGB molecular datasets (see Table 6). Interestingly, we find that a GCN backbone achieves the best results on
MOLBACE. Moreover, we perform experiments on yet another backbone: GatedGCN (Bresson & Laurent, 2017). This
complements backbones used in the Graph Transformer literature such as GPS. The results on peptides and MolHIV are
shown in Table 7. These results further show that the walk-based centrality structural encoding can improve performance
over the backbone MPNN, and we can improve performance even further by using it for sampling subgraphs.

Table 6: Results on OGB benchmarks using GCN as the backbone architecture.

Model MolHIV MolBace MolTox

GCN 76.06 ±0.97 79.15 ±1.44 75.29 ±0.69
HyMN (GCN, T=2) 76.82 ±1.20 83.21 ±0.51 76.07 ±0.50

Table 7: Results on the Peptides and MolHIV benchmarks using GatedGCN as the backbone architecture.

Model MolHIV Peptides-Func Peptides-Struct

GatedGCN 78.27 ±0.65 0.6558 ±0.0068 0.2497 ±0.0007
GatedGCN + CSE 80.33 ±0.56 0.6611 ±0.0058 0.2482 ±0.0010
HyMN (GatedGCN, T=2) w/out CSE 79.02 ±0.91 0.6723 ±0.0079 0.2473 ±0.0013
HyMN (GatedGCN, T=2) 81.07 ±0.21 0.6788 ±0.0052 0.2471 ±0.0007

F.2. Results on ZINC and Additional Model Comparisons on MolHIV

We experimented with the ZINC-12K molecular dataset (Sterling & Irwin, 2015; Gómez-Bombarelli et al., 2018), where we
maintain a 500k parameter budget, in line with previous works.

We compared the test MAE using HyMN to other sampling approaches (Qian et al., 2022; Bevilacqua et al., 2024), a full-bag
Subgraph GNN, a Graph Transformer (GPS) (Rampášek et al., 2022), two expressive GNN baselines (GSN, CIN) (Bouritsas
et al., 2022; Bodnar et al., 2021a) and the two alternative architectures Graph-ViT and Graph MLP-Mixers by (He et al.,
2023). Results are presented in Table 8. We additionally report results on MOLHIV in Table 9, often used as a reference
test-bed for most full-bag methods (Bevilacqua et al., 2021; Frasca et al., 2022; Zhang & Li, 2021; Cotta et al., 2021; Zhao
et al., 2022). We observe that our hybrid method can outperform full-bag Subgraph GNNs as well as previously proposed
subsampling based approaches. Additionally, we perform competitively with CIN, which takes into account higher-order
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Table 8: Test results on ZINC. The first and second best results are color-coded.

Method ZINC (↓)

GCN 0.321 ±0.009
GIN 0.163 ±0.004

GSN 0.101 ±0.010
CIN 0.079 ±0.006
GPS 0.070 ±0.004
GINE-MLP-Mixer 0.073 ±0.001
GINE-ViT 0.085 ±0.004

FULL 0.087 ±0.003

OSAN 0.177 ±0.016
POLICY-LEARN (T = 2) 0.120 ±0.003
RANDOM (T = 2) 0.136 ±0.005

GIN+CSE 0.092 ±0.002
HyMN (GIN, T=1) 0.080 ±0.003
HyMN (GIN, T=2) 0.083 ±0.002

Table 9: Test results on MOLHIV. The first and second best results are color-coded.

Method MOLHIV (↑)

GCN 76.06 ±0.97
GIN 75.58 ±1.40

Reconstr. GNN 76.32 ±1.40
DSS-GNN 76.78 ±1.66
GSN 80.39 ±0.90
CIN 80.94 ±0.57
GPS 78.80 ±1.01
GINE-MLP-Mixer 79.97 ±1.02
GINE-ViT 77.92 ±1.42
Nested-GNN 78.34 ±1.86
GNN-AK+ 79.61 ±1.19
SUN 80.03 ±0.55

FULL 76.54 ±1.37

POLICY-LEARN (T = 2) 79.13 ±0.60
RANDOM (T = 2) 77.55 ±1.24

GIN+CSE 77.44 ±1.87
HyMN (GIN, T=1) 80.36 ±1.23
HyMN (GIN, T=2) 81.01 ±1.17

interactions and explicitly models ring-like structures. Non-message-passing based architectures can perform slightly better
in absolute terms, but for higher run-time (see comparison with GPS in Appendix H). We highlight that additionally using
subgraphs can outperform purely using the centrality-based encodings (Q4). In particular, the two approaches in tandem
deliver exceptional performance on MolHIV, for T = 2.

F.3. Minimum Centrality Marking for Counting Substructures

As highlighted in Section 3.2, low-centrality nodes perturb representations only to a limited extent, causing the method to
work in a regime close to a vanilla 1-WL GNN. We also empirically observe that the perturbations induced by marking
high-centrality nodes correlate much more with potentially predictive features, such as subgraph counts. In order to further
evidence this point, we have run experiments for counting triangle and 4-cycle substructures, studying the impact of sampling
marked subgraphs associated with the minimum values of the Subgraph Centrality (SC). We report the results in Table 10
and Table 11, along with those of random sampling and max-centrality sampling (MAE, the lower the better). We observe
that min-centrality sampling is indeed outperformed by the two other strategies on all settings, further suggesting the
limitations of marking nodes with low subgraph centrality.

F.4. Comparison to Other Centrality Measures

We compared the impact of using different node centrality measures as a node marking scheme on how much they altered
the graph representation. For each of these centrality measures, we measured the distance ∥f(Sv)− f(G)∥ on 100 graphs
from two different real-world datasets from the popular TU suite: MUTAG and NCI1 (Morris et al., 2020a). Here, f is an
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Table 10: Performance comparison for different policies on triangle subgraphs.

Policy 10 Subgraphs 20 Subgraphs 30 Subgraphs

Min SC 0.78 0.52 0.43
Random 0.62 0.48 0.40
Max SC 0.20 0.10 0.03

Table 11: Performance comparison for different policies on 4-cycle subgraphs.

Policy 10 Subgraphs 20 Subgraphs 30 Subgraphs

Min SC 0.74 0.63 0.41
Random 0.59 0.45 0.36
Max SC 0.38 0.12 0.08

untrained 3-layer GIN (Xu et al., 2018). We can see from Table 12 that marking the node with using the maximum values
of the three walk-based centrality measures (Subgraph, Communicability, Katz) leads to the highest average perturbation
and marking the node with the minimum of these centrality measures leads to the lowest. This implies that this family of
centrality measures is most aligned with the perturbation distance.

Table 12: Amount of perturbation from the original graph representation on MUTAG and NCI1 using 3-layer untrained GIN with 32
hidden dimension by incorporating a node-marked subgraph with different marking policies.

Marking Policy MUTAG Perturbation NCI1 Perturbation

Random 0.0648 0.0126

Minimum Degree Centrality 0.0202 0.0075
Maximum Degree Centrality 0.0968 0.0075

Minimum Closeness Centrality 0.0241 0.0073
Maximum Closeness Centrality 0.1038 0.0184

Minimum Betweenness Centrality 0.0202 0.0076
Maximum Betweenness Centrality 0.0957 0.0183

Minimum Katz Centrality 0.0177 0.0063
Maximum Katz Centrality 0.1051 0.0200

Minimum Communicability Centrality 0.0177 0.0063
Maximum Communicability Centrality 0.1056 0.0200

Minimum Subgraph Centrality 0.0177 0.0063
Maximum Subgraph Centrality 0.1055 0.0201

To further assess the benefits of our specific centrality encoding for sampling subgraphs, we compared against using other
centrality measures to sample subgraphs in the counting substructure task. We used Closeness centrality, Betweeness
centrality, Pagerank centrality and Degree centrality as baselines using the Networkx library (Hagberg et al., 2008). From
Figure 8, we can see that using any of the different centrality methods performs better than random sampling across all
substructures and number of samples. We also find that the Subgraph Centrality which we use, outperforms all other
approaches in counting 3 and 4-cycles for any number of samples and in counting 3 and 4-paths when number of samples
≥ 5. For 4-cycles and other substructures, we find that Subgraph centrality is best, followed by Degree and Pagerank
centrality and then Closeness and Betweenness centralities perform the worst of these centrality measures. This ranking of
performance is aligned with how correlated these substructures are with the Subgaph Centrality on these synthetic graphs
(as shown in Table 13).

To further compare different centrality measures, we ran additional experiments on the Peptides and MolHIV datasets. We
experimented in particular, with the Betweenness Centrality (BC), the Katz Index (KI) and the Subgraph Centrality (SC). We
see from Table 14 that the performances achieved by different centrality measures are not dramatically different from each
other, with those by the KI and SC being closer. In fact, centrality measures often exhibit a degree of correlation with each
other, especially if from the same family, as it is the case of the walk-based KI and SC (see (Estrada & Rodriguez-Velazquez,
2005) and Table 13). It is also worth noting that Subgraph Centrality can be more efficient to calculate than these other
centrality measures using the Networkx library (see Table 15).
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(a) Counting 3-Cycles. (b) Counting 4-Cycles.

(c) Counting 3-Paths. (d) Counting 4-paths.

Figure 8: Comparing different centrality measures for counting different substructures on synthetic random graphs.

Table 13: Correlation between the different centralities and Subgraph Centrality on the random regular graphs in the substructure counting
experiments.

Centrality Correlation with Subgraph Centrality

Pagerank Centrality 0.923 ±0.025
Degree Centrality 0.970 ±0.012
Betweenness Centrality 0.801 ±0.074
Closeness Centrality 0.786 ±0.067

Overall, we believe that specific centrality measures could work better than others depending on the task at hand, but, at
the same time, our current ensemble of observations indicate that walk-based centrality measures – and, in particular, the
Subgraph Centrality – offer the most competitive results for the lightest precomputation run-time. Given the additional
support provided by the bound discussed in Section 3, we think they constitute particularly strong candidates across
use-cases.

F.5. Comparison between Centrality-Based Structural Encodings and RWSE

Here we aim to outline some of the similarities and differences between our Centrality structural Encoding (CSE) defined in
Equation (4) and the Random-Walk Structural Encoding (RWSE) introduced in (Dwivedi et al., 2021). The RWSE uses the
diagonal of the k-step random-walk matrix defined in Equation (44) defined as:

pRWSE
i = [(AD−1)ii, (AD−1)2ii, . . . , (AD−1)kii] ∈ Rk, (44)

These terms show similarity to our CSE as it also stores powers of the diagonal of the adjacency matrix, but it has a different
normalization term that depends on the degree. In Proposition D.1, we show that using an MPNN with CSE can compute
the the probability, for all possible walks departing from a node, that a walk will lead back to the start. RWSE structural
encodings are subtly different in that they compute the landing probability of a random walk from a node to itself. In this
case, rather than weighting all possible walks equally, the walks are weighted by the degrees of the nodes along the walk; a
walk where there are fewer alternative routes (other nodes) for the RW is more likely to occur.

Here we aim to empirically examine this difference to see (i) which one is a more effective Structural Encoding and (ii)
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Table 14: Comparison of different centrality measures on real-world molecular datasets.

Centrality for Sampling MolHIV Peptides-Func Peptides-Struct

Betweenness Centrality 78.86 ±0.98 0.6749 ±0.0066 0.2478 ±0.0006
Katz Index 79.58 ±0.98 0.6756 ±0.0056 0.2469 ±0.0008
Subgraph Centrality 79.77 ±0.70 0.6758 ±0.0050 0.2466 ±0.0010

Table 15: Timing of different centrality measures on an Erdös-Renyi graph with 1000 nodes and p=0.5 using the Networkx library.

Centrality Time (s)

Betweenness Centrality 83.12
Katz Index 1.31
Subgraph Centrality 0.54

which one is more effective for subgraph sampling. To show the effect of both CSE and RWSE as SEs, we compared both
on the Peptides datasets (Dwivedi et al., 2022) with two different base MPNNs (GCN and GIN). From Table 16, it can be
seen that our centrality encoding performs similarly to the RWSE encoding; matching almost exactly except with a GCN on
Peptides-Func.

To answer (ii) and highlight the benefit of sampling based on CSE over using RWSE, we compared using the sum of these
different encodings to sample the subgraphs in the counting substructures experiment. From Figure 9, we see that our
sampling method is better for counting all substructures and for all the number of samples in comparison to RWSE sampling.

In conclusion, Appendix G.2 shows that our CSE is better for sampling subgraphs and Table 16 shows that CSE is competitive
when purely used as a Structural Encoding. Therefore, it is well motivated to use the CSE for our hybrid method where
we need an SE and to use it as a sampling method. Future work could consider further understanding the expressivity
differences between these SEs and the role of the normalization factor.

F.6. Further Examining the Effect of CSEs

In Table 2, we explore the effect of HyMN with and without CSEs. In order to complement these results, we additionally
evaluated the effect of CSEs on HyMN and GIN with the Peptides and ZINC datasets. The results are reported in Table 17.
These results further show that adding even one subgraph with our approach can be beneficial and that additionally using the
centrality measure as a structural encoding can also improve performance.

G. Experimental Details
In this section we provide details on the experimental validation described and discussed in Section 5.

Table 16: Results on the Peptides datasets comparing CSE with RWSE.

Method Peptides-Func (↑) Peptides-Struct (↓)

GIN 0.6555 ±0.0088 0.2497 ±0.0012
GIN + RWSE 0.6621 ±0.0067 0.2478 ±0.0017
GIN + CSE 0.6619 ±0.0077 0.2479 ±0.0011

GCN 0.6739 ±0.0024 0.2505 ±0.0023
GCN + RWSE 0.6860 ±0.0050 0.2498 ±0.0015
GCN + CSE 0.6812 ±0.0037 0.2499 ±0.0010
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(a) Counting Triangles. (b) Counting 4-Cycles.

(c) Counting 3-Paths. (d) Counting 4-paths.

Figure 9: Comparing our centrality sampling with RWSE sampling for counting different substructures on synthetic random graphs.

G.1. Architectural Form

We always employ a reference Subgraph GNN architecture f whose output, for an input graph G = (A,X,E)12 associated
with node-marked bag B, is given by:

yBG = f(B(G)) = ϕ(L+1)
(∑
v∈G

(h
(L)
G,v +

∑
S∈B

h
(L)
S,v)

)
(45)

h
(l)
S,v = µ(l)

(
A,H

(l−1)
S , ηe(E),M:,S

)
v

(46)

h
(0)
S,v = [ηx(X)v,:, C

CSE
v,: ] (47)

where ϕ(L+1) is a final prediction module and h
(L)
G,v, h

(L)
S,v refer to the representations of generic node v on the original

graph G and subgraph S. As it is evident from Equation (45), we employ an “augmented policy” which always includes
a copy of the original graph in the bag of subgraphs (Bevilacqua et al., 2021). As we only consider node marking
policies, this copy only differs from (sub)graphs in B by the fact that no nodes are marked. Representations h(L)

G,v, h
(L)
S,v are

obtained à la DS-GNN (Bevilacqua et al., 2021), that is, by running independent message-passing µ on each (sub)graph
independently (see Equation (46)). Note that µ explicitly processes available edge features (E) and marking information
(M , see Algorithm 1). As it will be specified later on, we always consider either GIN (Xu et al., 2018) or GCN (Kipf &

12E is a tensor storing edge features.
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Table 17: Results on ZINC and Peptides datasets showing the effect of CSEs on both GIN and HyMN.

Method ZINC (MAE ↓) Peptides-Func (AP ↑) Peptides-Struct (MAE ↓)

GIN Xu et al. (2018) 0.163 ±0.004 0.6558 ±0.0068 0.2497 ±0.0012

GIN+CSE 0.092 ±0.002 0.6619 ±0.0077 0.2479 ±0.0011
HyMN (GIN, T=1) w/out CSE 0.125 ±0.004 0.6758 ±0.0050 0.2466 ±0.0010
HyMN (GIN, T=1) 0.080 ±0.003 0.6857 ±0.0055 0.2464 ±0.0013

Welling, 2017) as MPNN backbones. Equation (47) specifies initial node features for node v in subgraph S. Finally, ηx, ηe
are dataset-dependent node- and edge-feature encoders, and that CCSE is computed according to Algorithm 1.

Note that, across all molecular benchmarks, the GIN layer we use resembles the GINE architecture (Hu et al., 2020c), but
concatenates the marking information as follows:

h
(l)
S,v = ϕ(l)

(
(1 + ϵ(l))[h

(l−1)
S,v ,Mv,S ] +

∑
u∈N(v)

[
σ
(
h
(l−1)
S,u + ηe(E)vu

)
,Mu,S

])
(48)

where Mv,S is the mark for node v in subgraph S, ηe(E)vu refers to the encoded edge features for node-pair v, u, and σ is a
ReLU non-linearity. As for our GCN (Kipf & Welling, 2017) backbones, the marking information is simply provided in the
input of the network, and edge features are discarded.

G.2. Synthetic Experimental Details

G.2.1. DATASET GENERATION

For the synthetic counting substructures experiment, we generated a dataset of random unattributed graphs in a similar
manner to (Chen et al., 2020). In their experiments, they generate 5000 random regular graphs denoted as RG(m, d), where
m is the number of nodes in each graph and d is the node degree. Random regular graphs with m nodes and degree d are
sampled and then m edges are randomly deleted. In their work, Chen et al. (Chen et al., 2020), uniformly sampled (m, d)
from (10, 6), (15, 6), (20, 5), (30, 5). However, we want to test the effectiveness of our sampling approach for larger sizes
of graphs. Additionally, we found that the number of substructures present in the graph was related to the graphs size (see
Figure 10). Therefore, we wanted to create a more challenging benchmark with larger graph sizes. Therefore, we set (m, d)
to be (60, 5) for all graphs.

G.2.2. SYNTHETIC MODEL PARAMETERS

For our synthetic experiments, we set the base GIN to have a batch size of 128, 6 layers of message-passing, embedding
dimension 32, and Adam optimizer with initial learning rate of 0.001 as prescribed by (Bevilacqua et al., 2024). We trained
for 250 epoch and took the test Mean Absolute Error (MAE) at the best validation epoch.

G.3. Real-World Experimental Details

In this section, we provide further details about our experiments. We implemented our method using Pytorch (Paszke et al.,
2019) and Pytorch Geometric (Fey & Lenssen, 2019). For the GIN model (Xu et al., 2018), we use Batch Normalization
and the MLP is composed of two linear layers with ReLU non-linearities. Additionally, we use residual connections in each
layer. The test performance at the epoch with the best validation performance is reported and is averaged over multiple
runs with different random seeds. All the benchmarking results, including the extra ablations, are based on 5 executed runs,
except for Peptides-func and Peptides-struct which are based on the output of four runs. In all our experiments we used
AdamW (Loshchilov & Hutter, 2019), together with linear warm-up increase of the learning rate followed by its cosine
decay. Experimental tracking and hyper-parameter optimisation were done via the Weights and Biases platform (wandb)
(Biewald et al., 2020). In Table 2, the number of subgraphs used (T ) was selected to match the choices made in other
baselines, such as PL, making the comparisons as informative as possible. In Table 3 and Table 8, we chose T to be the
smallest possible value, i.e., T = 1. This is justified by our focus on efficiency. Specific hyper-parameter information for
each dataset can be found in the corresponding subsection.
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Figure 10: Evaluating the dependency between the graph size and the number of 4-cycles in the dataset generated from Chen et al. (Chen
et al., 2020).

G.3.1. HARDWARE

All experiments were run on a single NVIDIA GeForce RTX 3080 with 10GB RAM.

G.3.2. DATASET SPECIFIC DETAILS

Below, we provide descriptions of the datasets on which we conduct experiments.

OGB datasets (MIT License) (Hu et al., 2020b). These are molecular property prediction datasets which use a common
node and edge featurization that represents chemophysical properties. MOLHIV, MOLBACE and MOLTOX21 all represent
molecule classification tasks. We considered the challenging scaffold splits proposed in (Hu et al., 2020a). We set the batch
size to 128 for MOLHIV and 32 for the other benchmarks to avoid out-of-memory errors. We set the hidden dimension to be
300 for all datasets as done in Hu et al. (2020a) and Bevilacqua et al. (2024). We tuned the number of layers in 2, 4, 6, 8, 10,
the number of layers post message-passing in 1, 2, 3, dropout after each layer in 0.0, 0.3, 0.5, whether to perform mean
or sum pooling over the subgraphs, and whether to apply Batch Normalization after message-passing on each dataset.
Additionally, for the method with structural encoding, we tune the number of steps k in the encoding in 16, 20 and the
dimension after the linear encoding in 16, 28 as done in (Rampášek et al., 2022). The tuning was done on a single run for
each set of hyper-parameters and the results were outlined for the best performing parameters on the validation set over 5
random seeds. These parameters are shown in Table 18.

The maximum number of epochs is set to 100 for all models and the test metric is computed at the best validation epoch.

Peptides-func and Peptides-struct (CC-BY-NC 4.0) (Dwivedi et al., 2022). These datasets are composed of atomic
peptides. Peptides-func is a multi-label graph classification task where there are 10 nonexclusive peptide functional classes.
Peptides-struct is a regression task involving 11 3D structural properties of the peptides. For both of these datasets, we
used the tuned hyper-parameters of the GINE model from Tönshoff et al. (Tönshoff et al., 2023) which has a parameter
budget under 500k and where they use 250 epochs. For both of these datasets we set the number of steps of our centrality
encoding to be 20, aligned with the number of steps used for the random-walk structural encoding. The additional parameter
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Table 18: Best performing hyperparameters in Table 2.

Hyperparameter MOLHIV MOLBACE MOLTOX21

#Layers 2 8 10
#Layers readout 1 3 3
Hidden dim 300 300 300
Dropout 0.0 0.5 0.3
Subgraph pooling mean mean sum

Positional Encoding Steps 16 20 20
PE dim 16 16 28

#Parameters 419,403 1,691,329 2,061,322

tuning which we performed was whether to do mean or sum pooling over the subgraphs. We show the best performing
hyperparameters from Table 3 in Table 19.

Table 19: Best performing hyperparameters in Table 3.

Hyperparameter Peptides-Func Peptides-Struct

#Layers 8 10
#Layers readout 3 3
Hidden dim 160 145
Dropout 0.1 0.2
Subgraph pooling sum sum

Positional Encoding Steps 20 20
PE dim 18 18

#Parameters 498,904 496,107

ZINC (MIT License) (Dwivedi et al., 2023). This dataset consists of 12k molecular graphs representing commercially
available chemical compounds. The task involves predicting the constrained solubility of the molecule. We considered the
predefined dataset splits and used the Mean Absolute Error (MAE) both as a loss and evaluaton metric. We chose to have 10
layers of massage-passing, 3 layers in the readout function, a batch size of 32, 1000 epochs and a dropout of 0 to replicate
what was done in (Rampášek et al., 2022). We altered the hidden dimension to be 148 in order to be closer to the 500k
parameter budget. No further parameter tuning was done and our best performing parameters are shown in Table 20. The
test metric is computed at the best validation epoch.

Table 20: Best performing hyperparameters in Table 8.

Hyperparameter ZINC

#Layers 10
#Layers readout 3
Hidden dim 148
Dropout 0.0
Subgraph pooling mean

Positional Encoding Steps 20
PE dim 18

#Parameters 497,353

MalNet-Tiny (CC-BY license) This dataset comprises of function call graphs derived from Android APKs. The dataset
used is a subset of MalNet and contains 5, 000 graphs of up to 5, 000 nodes, coming from benign software or 4 types of
malware. The task is to classify the type of software based on its structure.

REDDIT-BINARY (CC-BY license) The dataset consists of social networks posts are connected by an edge if the same
user comments on both. This dataset is large in size, containing 232,965 posts with an average degree of 429. The task is
to predict whether the graph belongs to a question/answer-based community or a discussion-based community. We used
the evaluation procedure proposed in Xu et al. (2018), consisting of a 10-fold cross-validation and a metric with the best
averaged validation accuracy across the folds.
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Table 21: Best performing hyperparameters in Table 4.

Hyperparameter MalNet-Tiny

#Layers 5
#Layers readout 3
Hidden dim 96
Dropout 0.0
Subgraph pooling sum

Positional Encoding Steps 20
PE dim 28

#Parameters

Table 22: Best performing hyperparameters in Table 5.

Hyperparameter RDT-B

#Layers 2
#Layers readout 1
Hidden dim 300
Dropout 0
Subgraph pooling mean

Positional Encoding Steps 16
PE dim 16

#Parameters 274204

H. Additional Time Comparisons
As well as Table 3 where we compared the runtime of different methods on Peptides datasets, we extend this analyses to both
ZINC and MOLHIV. To this end, we provide some results in Table 23 and Table 24. We find that our method significantly
improves over the baseline GIN on both of these tasks whilst having a substantially reduced runtime compared to the GPS
which uses a Transformer layer. Again, this highlights both the efficiency and practical utility of our method.
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Table 23: Results on the ZINC dataset with timing comparisons using a GeForce RTX 2080 8 GB.

Method Precompute (s) Train (s/epoch) Test (s) Test MAE (↓)

GIN 0.00 12.65 0.33 0.163
HyMN (GIN, T=1) 21.41 17.95 0.42 0.080

GPS (Rampášek et al. (2022)) 19.13 33.02 0.87 0.070

Table 24: Results on the MOLHIV dataset with timing comparisons using a GeForce RTX 2080 8 GB.

Method Precompute (s) Train (s/epoch) Test (s) ROC-AUC (↑)

GIN 0.00 7.50 0.33 75.58
HyMN (GIN, T=1) 67.43 9.09 0.37 80.36

GPS (Rampášek et al. (2022)) 40.92 124.08 4.14 78.80
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