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Abstract

Characterizing users and items through grouped
vector representations is crucial for various tasks
in recommender systems. Recent approaches
attempt to apply Large Language Models (LLMs)
in recommendation through an instruction-based
format, where real items are represented with
grouped words formed from in-vocabulary tokens.
However, these tokens do not effectively repre-
sent items since their meanings are derived from
pre-training on natural language tasks, which
limits the model’s ability to learn meaningful
user–item relationships. In this paper, we explore
how to effectively characterize users and items
in LLM-based recommender systems from the
tokenizing strategy view. We demonstrate the
necessity of using out-of-vocabulary (OOV)
tokens for the characterization of items and users,
and propose a well-constructed way of these OOV
tokens. By clustering the learned representations
from historical user-item interactions, we make
the representations of user/item combinations
share the same OOV tokens if they have similar
properties. This construction allows us to capture
user/item relationships well (memorization) and
preserve the diversity of descriptions of users and
items (diversity). Furthermore, integrating these
OOV tokens into the LLM’s vocabulary allows for
better distinction between users and items and en-
hanced capture of user-item relationships during
fine-tuning on downstream tasks. Our proposed
framework outperforms existing state-of-the-art
methods across various downstream recom-
mendation tasks. Code is available at https:
//github.com/Tingji2419/META-ID.
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Figure 1: Left: Comparison of tokenizing strategies using
In-Vocabulary (IV) and Out-of-Vocabulary (OOV) tokens
to characterize items. The IV scenario leverages numeric
identifiers (Numeric ID) for items, while the OOV scenario
constructs OOV tokens from user-item interaction history
(META ID). Right: Similarity heatmaps illustrate the align-
ment of Numeric ID, META ID, and ground truth, demon-
strating the effectiveness of META ID in capturing relation-
ship patterns. Ground truth is calculated from Equation 4.

1. Introduction
Modern recommender systems (RS) play a crucial role in
various applications like video recommendation (Davidson
et al., 2010), e-commerce (Chen et al., 2019), and social
networking (Fan et al., 2019). The recent advent of
large language models (LLMs) offers a new direction
of exploration in this realm. Models such as T5 (Raffel
et al., 2020a) and LLaMA (Touvron et al., 2023), training
on massive natural language data, achieve impressive
language understanding capabilities in text generation and
conversation tasks (Zhao et al., 2023). Their success drives
explorations to use pre-trained LLMs as model backbones
for handling various recommendation tasks like sequential
recommendation, rating, and explanation task (Bi et al.,
2022; Wu et al., 2021). In such frameworks, all input
features including ids, attributes, and contextual signals, are
described as textual queries, and the LLM is expected to
generate task-specific labels as responses (Cui et al., 2022;
Geng et al., 2022; Zhai et al., 2024; Hong et al., 2025).
After being trained in this instruction-based format, the
model can be prompted to provide recommendations for
a user or generate explanations for those recommendations.

How to characterize users and items so that LLMs can
learn their personalized information during fine-tuning?
Given that tokens are the fundamental units of input
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for LLMs, where each represents the smallest semantic
element the model can process, it is natural to allocate
specific tokens to represent users and items, allowing the
model to learn their characteristics through token-level
associations. While early works (Cui et al., 2022) directly
represent a real item by text tokens (e.g., “blue”, “casual”,
“T-shirt”), LLMs might answer text that does not correspond
to a real existing item (Hua et al., 2023; Ji et al., 2023).
Recent advancements explore representing users/items with
Identifiers (IDs) (Geng et al., 2022; Wang et al., 2022; Gao
et al., 2023; Bao et al., 2023). As illustrated in Figure 1, a
real item (Item No.2024) can be indexed with a compound
word combined with several in-vocabulary tokens (“item”,
“20”, “24”), and we call such a token combination as an ID.
Each ID uniquely identifies a real item.

Characterizing users and items with in-vocabulary tokens
is straightforward but also introduces the mapping problem,
where it lacks diversity to align limited in-vocabulary to-
kens to billions of items in recommender systems, and token
combinations are prone to lead to language conflicts (Bao
et al., 2023; Hua et al., 2023). As shown in Figure 1, using
numeric tokens to represent items leads to similar represen-
tations of distinctive items. One solution is to create brand
new tokens (OOV tokens) specifically allocated for IDs to
allow distinction, as in the previous work on Collaborative
ID (CID) (Hua et al., 2023). However, we need to train these
new token embeddings from scratch, which often requires
a large amount of data, and our experiments also indicate
that it is hard for LLM to capture the collaborative corre-
lations of users/items during fine-tuning (see Section 4).
Therefore, we should utilize redefined OOV tokens capable
of capturing user/item correlations (memorization) while
also distinguishing different items (diversity), two dimen-
sions that are positively correlated for the performance of
recommendation tasks.

In this paper, we present META ID (META-path-guided
IDentifier), a framework for characterizing users/items
using out-of-vocabulary (OOV) tokens for LLM-based
recommendations. Initially, we generate meta-paths to
represent user-item interactions and then obtain user and
item representations from a skip-gram model trained on
these meta-paths. A meta-path is a sequence that represents
interactions between users and items in a graph structure.
By clustering these meta-path-based representations, we
create hierarchical groups that serve as OOV tokens for con-
structing user and item IDs. This approach extends beyond
previous research, which has predominantly focused on
item IDs (Geng et al., 2022; Rajput et al., 2023), by making
the representations of users/item IDs share the same OOV
tokens if they have similar properties. Finally, integrating
these OOV tokens into the LLM’s vocabulary allows for bet-
ter diversity and enhanced memorization during fine-tuning
on downstream recommendation tasks. Additionally, we

align the token embedding layer of LLMs with a linear trans-
formation layer to enrich the OOV token representations
as an augmentation. Our contributions are as follows:

• We introduce memorization and diversity scores to evalu-
ate ID representations in LLM-based recommender sys-
tems, focusing on capturing user/item correlations and
ensuring diversity.

• We develop META ID, which uses out-of-vocabulary to-
kens to characterize users/items, enhancing the memoriza-
tion and diversity of their representations for LLMs.

• The experiments show that META ID improves memo-
rization and diversity score, which leads to improvements
in various recommendation tasks.

2. Related Work
Characterizing Items by IDs. Modern recommendation
models usually use unique IDs to represent users and
items, which are subsequently converted to embedding
vectors as learnable parameters (Fan et al., 2023). Common
approaches include matrix factorization (Koren et al.,
2009a; Rendle et al., 2009), two-tower models (Wang et al.,
2021) and deep neural networks (Sun et al., 2019; Kang
and McAuley, 2018; Zhou et al., 2020; Zhang et al., 2023b;
Xie et al., 2022; Wang et al., 2023), which make predictions
by examining historical user-item interactions to identify
behavioral patterns and enable collaborative recommenda-
tions (Koren et al., 2022). To avoid large-scale vocabularies,
one recent study proposes using hierarchical sequential
transduction units to handle non-stationary vocabulary (Zhai
et al., 2024). While some recent approaches adopt the con-
cept of ID to represent the token combinations that character-
ize items in LLMs (Geng et al., 2022; Hua et al., 2023). We
follow previous studies and also call these token combina-
tions as ID. This paper aims to combine LLM with ID more
efficiently by proposing a new ID construction method.

Instruction Tuning for Recommendation. The integration
of Large Language Models (LLMs) into diverse tasks has
seen significant growth recently. Recent works fine-tuned
pretrained language models on large-scale NLP datasets
verbalized via human-readable prompts (Sanh et al., 2022;
Wei et al., 2022). These instruction tuning methods
design prompts containing detailed task descriptions and
adhere more to the natural language format. Driven by
their exceptional natural language processing capabilities,
researchers aim to transfer their linguistic ability to enhance
recommender systems (Li et al., 2021; Zhang et al., 2023c;
Hong et al., 2025). These LLMs process user interactions as
sequences of tokens and, through fine-tuning, predict users’
future interests based on past activities (Zhang et al., 2021;
Chen, 2023). Moreover, some studies reframe tasks like
retrieval, rating, and explanation generation as language
comprehension tasks (Cui et al., 2022; Geng et al., 2022;
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Li et al., 2023b), allowing LLMs to function as multi-task
recommenders, producing recommendations and explana-
tions with a unified architecture. In this paper, we apply
LLMs based on instruction tuning of multi-task scenarios.

ID Construction with Tokens. Recent studies explore
using in-vocabulary tokens to characterize items in LLMs,
where users and items are represented by token combina-
tions called IDs. Early efforts such as P5 (Geng et al., 2022)
convert user-item interactions into natural language formats
using numeric IDs constructed of in-vocabulary tokens
of the T5 model (Raffel et al., 2020a). Further, sequential
ID (SID) and collaborative ID (CID) are developed to
enhance item information sharing (Hua et al., 2023). Some
recent study explores the traditional ID embeddings with
LLMs (Rajput et al., 2023; Li et al., 2023a; Zhang et al.,
2023a). Despite these advancements in ID construction,
challenges remain in the lack of ID construction criteria and
the focus on item IDs. In contrast, our META ID approach
assigns memorization and diversity scores for evaluation
and constructs both user and item IDs, which improves the
characterization of users and items.

3. Preliminary
We describe recommendation tasks (e.g., sequential recom-
mendation) under the instruction tuning setting, in which
all data such as user-item interactions are converted to natu-
ral language sequences in a question&answer format (e.g.,
Input: Please recommend an item for user 2024 consider
he has purchased item 2023; Output: item 2024). More
examples are presented in Appendix C.

3.1. Instruction Tuning for Recommendation

Given a user set U, an item set I and a token set T from
a LLM’s vocabulary, we formulate a recommendation task
as a natural language instruction that pairs a sequence of n
input tokens x = (x1, ..., xn) with a sequence of m corre-
sponding label tokens y = (y1, ..., ym). The goal is to train
and LLM Mθ to generate y given x. For simplification,
each token in the input or output sequence is denoted as xi

or yj , xi, yj ∈ T, respectively. A user u ∈ U is represented
by a set of pre-assigned tokens xu = (xu1

, xu2
, . . .) . Simi-

larly, an item i ∈ I is represented by a sequence of tokens
xi = (xi1 , xi2 , . . .).

The LLM Mθ employs a token embedding layer E(·) with
parameters θE ∈ θ, functioning as a lookup table that
transforms each input token into a token embedding. It
subsequently predicts the probability distribution of label
tokens by forward propagation. The training objective is
to minimize the negative log-likelihood of the label tokens
conditioned on the input sequence and previously generated

tokens, formulated as:

θ∗ = argmin
θ

Lθ = −
|y|∑
l=1

logPθ

(
yl | y<l,E(x)

)
, (1)

where θ∗ represents the optimal set of parameters that we
aim to learn. This supervised learning approach helps the
model to internalize personalized information about users
and items through the token embeddings of their respective
IDs, xu and xi.

3.2. Represent Users/Items with In-Vocabulary Tokens

The token embedding layer E in LLMs transforms input
tokens into corresponding token embeddings. Since users
and items are also represented by IDs constructed of tokens,
the corresponding token embeddings of ID xu and xi are
the key to assess how LLMs capture and represent different
items. We define the ID representation ei for an item ID xi

as the average embeddings of its token combinations:

ei =
1

|xi|
∑

xit∈xi

E(xit), (2)

where E(xit) denotes the embedding vector of a token xit .
For example, an item identified by “item 2024” is repre-
sented by the average embedding vectors of three tokens
(“item”, “20”, “24”).

4. Metric for Representation Evaluation
As mentioned above, using numeric IDs to represent items
leads to similar representations of distinctive items. For an
intuitive explanation, we first visualize the cosine similarity
matrix between items using heatmaps in Figure 1, where
Random ID (RID) means assigning each item with a random
number. It shows that RID and SID result in a large number
of similar items due to semantic conflicts, and META ID
constructed of OOV tokens shows distinguished similarity
closer to the ground truth. We further plot the ID represen-
tations using T-SNE visualization in Figure 2b. It is clear
that RID and SID (using in-vocabulary tokens) shrink in a
small place relative to CID (using OOV tokens), reflecting
in-vocabulary tokens lacking expressive power for distinc-
tive users and items. To quantify this, here we introduce
two metrics to assess the memorization and diversity of ID
representations.

Diversity Score (DS) is a metric designed to quantify the
diversity of ID representations within LLMs. Items repre-
sented by ID representations should be easily distinguish-
able for the model. For a pair of items i and j, their dif-
ferentiation can be calculated using the Kullback-Leibler
(KL) divergence on ID representations ei ∈ E and ej ∈ E
from Equation 2, which reflects how distinct they are in the
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model’s embedding space:

DS(E) =
1

2N

N∑
ii,j∈I

[
DKL(ei||ej) +DKL(ej ||ei)

]
. (3)

Here, the E = [e⊤1 , . . . , e
⊤
|i|] means the embedding matrix

of all items i ∈ I. N represents the number of randomly
selected item pairs, where we apply a sampling strategy to
reduce the computational complexity, and we give a conver-
gence analysis in Figure 5.

Memorization Score (MS) quantifies the relationships cap-
tured by ID representations through measuring the similarity
between items and users. We use the adjusted cosine simi-
larity formula (Sarwar et al., 2001), to provides ground truth
relational values between users and items, which are given
by:

sim(i, j) =

∑
u∈U (Ru,i − R̄u) · (Ru,j − R̄u)√∑

u∈U (Ru,i − R̄u)2 ·
∑

u∈U (Ru,j − R̄u)2
,

(4)
where Ru,i and Ru,j denote user u’s ratings for items i and
j, and R̄u is user u’s average ratings. To assess the rela-
tionship captured by learned ID representations, we employ
Mean Square Error (MSE) to calculate the similarity bias
on their cosine similarity with their corresponding ground
truth relation values, which forms the basis of the MS:

MS(E) =
2

|I|(|I| − 1)

∑
i,j∈N,i<j

(
e⊤
i ej

|ei||ej |
− sim(i, j)

)2

. (5)

Our quantitative assessment, based on the metrics we intro-
duced, reveals intriguing insights into the quality of these ID
representations. Figure 2a illustrates that IDs constructed
from in-vocabulary tokens (RID and SID) perform poorly in
terms of both diversity and memorization. Although the use
of OOV tokens (CID) enhances diversity, its memorization

score is unsatisfactory. These findings highlight the need to
further develop more effective forms of OOV tokens for ID
construction, aiming to improve LLMs’ ability to capture
user/item correlations and distinguish items.

5. META ID
We now introduce the META ID framework to enhance
LLMs in recommendation tasks. META ID involves creat-
ing out-of-vocabulary (OOV) tokens for constructing user
and item IDs, which provide a rich, expressive space and
encapsulate comprehensive, collaborative information. As
illustrated in Figure 3, our process begins with sampling
meta-paths from user-item interaction history. We then ap-
ply a skip-gram model to learn user and item representations
from these meta-path sequences. This process ensures that
users’ and items’ features are projected into a shared space
to capture their interaction relationship better. This is fol-
lowed by K-Means clustering to group similar users or items,
after which unique OOV tokens are assigned to each cluster
to construct the META ID.

5.1. Meta-path-based Embedding

We frame user-item interactions within a graph embedding
learning paradigm (Dong et al., 2017), constructing an in-
teraction graph composed of user nodes U and item nodes
I , linked by interaction history with ratings R. The core of
this embedding learning strategy involves meta-paths (Dong
et al., 2017) — a sequence of connections that reflect com-
posite relationships within the graph. Our primary meta-
path, denoted as U-I-U, materializes when users consistently
rate an item with the same score r, forming a path:

p = {U1
r−→ I2

r−→ U3
r−→ I4...

r−→ Uk}|R|
r=1. (6)

We employ a skip-gram model to capture the interaction
dynamics represented by these meta-paths. This model
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Figure 3: Illustration of the proposed framework: (a) The first step involves sampling meta-paths to train a skip-gram model
to learn the representation of users and items. Following this, users and items are represented by META IDs constructed
of OOV token combinations through clustering their representations. (b) A large language model (LLM) integrated with
META ID is utilized for sequential recommendation. The LLM first encodes the input sequence into tokens and then lookup
their embeddings through the token embedding layer. Here, the OOV tokens undergo an extra transformation layer before
the token embedding layer of LLMs as a representation augmentation.

is trained on sequences generated from meta-path-based
random walks (Dong et al., 2017), producing represen-
tations WU = [w⊤

u1
, ...,w⊤

u|U|
] ∈ Rd×|U| and WI =

[w⊤
i1
, ...,w⊤

i|I|
] ∈ Rd×|I|, denoted the representations for

|U| users and |I| items in a d-dimension space respectively.

5.2. OOV Token Generation

To balance diversity and memorization in large-scale rec-
ommendation systems, we adopt a cluster-based approach.
Representations derived from user-item interactions are or-
ganized into a shared embedding space and segmented into
G clusters. Each cluster center, µg , is defined by the average
of representations within that cluster, effectively capturing
the collective characteristics of its members. These cen-
troids then categorize each user and item, providing a refined
foundation for constructing granular IDs. The generation
process is a two-step procedure:

1). Assign coarse-grained tokens based on centroids. We
first cluster the learned representations W into G clusters.
For each cluster g, let Ig = {i | gi = g} denote the index
set of representations assigned to it. The centroid µg is then
computed as:

µg =

 1

|Ig|
∑
i∈Ig

wi


G

g=1

. (7)

As a coarse-grained distinction between users and items, we
assign an OOV token “⟨CTi⟩” to each centroid.

2). Assign fine-grained tokens based on distance. Within
each cluster, assign a token based on the distance to the

centroid. In detail, we assign fine-grained tokens “⟨CIi⟩” in
ascending order according to their distance from the cluster
centroid, and use it as a fine-grained token.

The resulting identifiers, META ID, combine a coarse-
grained token and a fine-grained one that uniquely identifies
each user or item within that cluster. For example, an item
might be represented as “⟨Item⟩ ⟨CTi⟩ ⟨CIi⟩” labeled with
three tokens, “⟨Item⟩”, “⟨CTi⟩”, “⟨CIi⟩”, where “⟨Item⟩”
denotes it as an item, “⟨CTi⟩” is its coarse-grained token
and “⟨CIi⟩” is its fine-grained token.

This clustering and labeling process effectively compresses
the vocabulary needed for ID representation while preserv-
ing the rich information necessary for recommendation
tasks. In our implementation, we apply K-Means cluster-
ing (Arthur and Vassilvitskii, 2007), utilizing cosine sim-
ilarity to measure the affinity of representations to cluster
centers. This method simplifies the complexity of represen-
tations space management and proves to be robust in our
experimental validations of Section 6.4.

5.3. Integration of META ID with LLMs

The integration of OOV tokens of META ID, denoted as
xOOV, with LLMs involves expanding the vocabularies. This
is achieved by extending the token embedding layer’s param-
eters from θE ∈ R|T|×d to θE′ ∈ R(|T|+n)×d, where |T| is
the number of in-vocabulary tokens, n is the number of OOV
tokens, and d is the dimension of the token embeddings.

A good initialization helps token embedding learning, here
we give a representation augmentation approach different
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Table 1: Performance comparison of different methods on sequential recommendation task. META ID (T) and META ID
(L) refer to the use of T5 and LLaMA2-7b as the backbone. The best and second-best performance methods are denoted in
bold and underlined fonts respectively.

Methods
Sports Beauty Toys

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

Caser (Tang and Wang, 2018) 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
HGN (Ma et al., 2019) 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
GRU4Rec (Hidasi et al., 2016) 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084
BERT4Rec (Sun et al., 2019) 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099
FDSA (Hao et al., 2023) 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
SASRec (Kang and McAuley, 2018) 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374
S3-Rec (Zhou et al., 2020) 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376
CL4SRec (Xie et al., 2022) 0.0219 0.0138 0.0358 0.0182 0.0330 0.0201 0.0546 0.0270 0.0427 0.0244 0.0617 0.0305
TIGER (Rajput et al., 2023) 0.0264 0.0181 0.0400 0.0225 0.0454 0.0320 0.0648 0.0384 0.0521 0.0371 0.0712 0.0412

RID (Hua et al., 2023) 0.0208 0.0122 0.0288 0.0153 0.0213 0.0178 0.0479 0.0277 0.0044 0.0029 0.0062 0.0035
SID (Geng et al., 2022) 0.0223 0.0173 0.0294 0.0196 0.0404 0.0299 0.0573 0.0354 0.0050 0.0031 0.0088 0.0043
CID (Hua et al., 2023) 0.0269 0.0196 0.0378 0.0231 0.0336 0.0227 0.0507 0.0281 0.0172 0.0109 0.0279 0.0143

META ID (T) 0.0322 0.0223 0.0487 0.0277 0.0510 0.0351 0.0753 0.0429 0.0533 0.0372 0.0761 0.0441
META ID (L) 0.0392 0.0278 0.0561 0.0332 0.0458 0.0320 0.0678 0.0391 0.0387 0.0264 0.0535 0.0312

from previous works using random initialization (Geng et al.,
2022; Hua et al., 2023). As shown in Figure 3b, the OOV to-
kens undergo a linear layer F (·) initialized with the category
embeddings µg from Equation 7. Finally, the training objec-
tive for integrating META ID into LLMs is reformulated as:

θ′∗ = argmin
(θ′,F )

Lθ′

= −
|y|∑
l=1

logPθ′
(
yl | y<l,E

′(x),F (xOOV)
)
,

(8)

where θ′ now includes F , aligning with our modified
embedding layer θE′ to optimize the model’s performance
with the OOV tokens xOOV. This training goal ensures
the model can effectively distinguish between diverse
users and items, improving its ability to capture user-item
relationships. By enhancing memorization and diversity
of OOV tokens, the model achieves better performance
in recommendation tasks, leading to more accurate and
personalized recommendations in our experiments.

6. Experiment
We evaluate META ID on five downstream recommendation
tasks: sequential recommendation, direct recommendation,
rating prediction, explanation generation, and review related
tasks. We analyze the influence of critical components
in META ID and assess the ID representations through
visualization and our proposed metrics. Details of task
descriptions and pre-processing are in Appendix C.

6.1. Evaluation on Sequential Recommendation

Setups. We evaluate our META ID framework on three pub-
lic real-world datasets from the Amazon Product Reviews

dataset (Ni et al., 2019), focusing specifically on Sports,
Beauty, and Toys. The datasets are processed following the
methodology in P5 (Geng et al., 2022).

Baselines. We compare to a variety of established mod-
els (which are described briefly in Appendix C), spanning
from CNN-based to LLM-based frameworks. Caser (Tang
and Wang, 2018), HGN (Ma et al., 2019), GRU4Rec (Hi-
dasi et al., 2016), BERT4Rec (Sun et al., 2019), FDSA
(Hao et al., 2023), SASRec (Kang and McAuley, 2018),
S3-Rec (Zhou et al., 2020), CL4SRec (Xie et al., 2022) and
TIGER (Rajput et al., 2023). Specifically, we provide P5
with its variations, equipped with different ID construction
strategies like Sequential ID (SID), Random ID (RID), and
Collaborative ID (CID) (Hua et al., 2023).

Evaluations. We apply widely accepted metrics, top-k Hit
ratio (H@K) and Normalized discounted cumulative gain
(N@K) with K = 5, 10 to evaluate the recommendation
performance.

Implementation Details. For constructing META IDs, the
clustering groups are limited to |G|=100 (200 for Toys).
For LLM fine-tuning, we consider both encoder-decoder
architecture T5-small (Raffel et al., 2020b) and decoder-
only architecture LLaMA2-7b (Touvron et al., 2023). We
fully fine-tune the T5 model and employ the LoRA (Hu
et al., 2022) to fine-tune LLaMA2-7b. Vocabulary sizes of
these models are shown in Table 10. For LLM inferencing,
we use beam search to generate potential items evaluated
under the all-item setting.

Results. Table 1 presents our findings for sequential rec-
ommendation task 1. Our observations are as follows: 1)

1We show the standard error of the metrics in Table 12.
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Table 2: Performance comparison of different methods on direct recommendation task.

Methods
Sports Beauty Toys

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

RID (Hua et al., 2023) 0.0030 0.0023 0.0042 0.0027 0.0203 0.0155 0.0276 0.0178 0.0046 0.0030 0.0063 0.0035
SID (Geng et al., 2022) 0.0211 0.0169 0.0267 0.0187 0.0296 0.0226 0.0405 0.0261 0.0025 0.0014 0.0041 0.0019
CID (Hua et al., 2023) 0.0250 0.0189 0.0342 0.0219 0.0216 0.0147 0.0340 0.0187 0.0076 0.0049 0.0014 0.0070
META ID 0.0357 0.0256 0.0520 0.0308 0.0480 0.0336 0.0689 0.0403 0.0564 0.0391 0.0803 0.0468

Table 3: Performance comparison of different methods on rating prediction, explanation generation, and review tasks.

Task Type Metric Sports Beauty

RID SID CID META ID RID SID CID META ID

Rating RMSE 1.0382 1.0486 1.0383 1.0327 1.2829 1.3098 1.2819 1.2818

Explanation BLEU-1 16.2567 16.5825 16.6121 16.9005 18.2299 18.3981 19.3499 19.5106
BLEU-4 2.1782 2.1944 2.2332 2.3481 2.9027 2.8071 3.0626 3.0592

Review BLEU-1 7.6140 7.7948 7.6586 7.8819 6.2282 6.5055 6.5854 7.0500
BLEU-4 2.3228 1.2406 2.4109 2.6546 1.9891 1.2406 1.9718 2.7485

META ID demonstrates superior performance on all three
datasets, underscoring its robustness. 2) IDs constructed of
in-vocabulary tokens, RID and SID, underperform on Toys,
suggesting limitations in their recommendation efficacy for
LLMs. 3) CID shows marked improvements over RID and
SID on Toys dataset, highlighting the benefits of incorporat-
ing OOV tokens with collaborative information. 4). While
the LLaMA2-7b backbone is better in the Sports dataset,
its performance in the Beauty and Toys dataset is not as
good as T5, which could be linked to the distinct fine-tuning
methodologies applied to these models.

6.2. Evaluation on Various Recommendation Tasks

Setups. To validate META ID’s adaptability, we extend
our evaluation to include direct recommendation, rating
prediction, explanation generation, and review tasks, akin
to P5 (Geng et al., 2022). For direct recommendation, the
model is asked to recommend item for users directly without
providing user’s interaction history. For rating prediction,
the model predicts a numerical rating between 1 and 5 based
on user-item data. For explanation tasks, it generates textual
justifications for a user’s preference towards an item, while
in review tasks, it summarizes lengthy reviews into concise
titles.

Evaluations. For direct recommendation, we apply the
same metrics as in Section 6.1. For rating prediction, we
use MSE metric. For explanation and review tasks, we
employ BLEU-1/4 metrics.

Results. For direct recommendation (Table 2), META ID
exceeds other methods across datasets in all-item setting.
This suggests that META ID effectively model the direct re-
lationship between users and items. The results for the other

three tasks in Table 3, show that META ID significantly
improves the BLEU scores Sports and Beauty compared
to other methods. This result suggests that META ID can
improve performance in text relevance tasks, including the
interpretation of recommendations.

6.3. Evaluation of ID Representation

Visualization. The amount of numeric tokens available
in LLMs is relatively limited, which complicates the
establishment of unique one-to-one ID relationships, and
two unrelated items might share the tokens as ID. For an
intuitive explanation, we visualized the cosine similarity
matrix between items using heatmaps in Figure 1, where
we random sample 50 items from the Toys dataset and take
their adjusted cosine similarity from Equation 4 as ground
truth compared with RID, SID and META ID. RID and SID
result in a large number of similar items due to semantic
conflicts, while META ID shows distinguished similarity
closer to ground truth. This suggests that using META ID
allows LLMs to better capture relationships between users
and items.

Quantitative Analysis. We quantitatively assess the quality
of these ID representations by the proposed two metrics
(Section 4): memorization score (MS) and diversity score
(DS). Our results, shown in Figure 2a, indicate that con-
structing IDs of in-vocabulary tokens (RID and SID) per-
form poorly in the diversity dimension. For intuitive inter-
pretation, we further employ t-SNE visualization to map ID
representations and observe a tendency for these tokens to
cluster narrowly in Figure 2b. META ID shows robust mem-
orization and diversity across three datasets, reflecting its
ability to capture correlations between users and items from
historical data while ensuring items remain distinguishable.
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Table 4: Performance of different construciton methods for OOV tokens on sequential recommendation task.

Methods
Sports Beauty Toys

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

DBSCAN (Ester et al., 1996) 0.0078 0.0043 0.0145 0.0065 0.0257 0.0168 0.0428 0.0223 0.0180 0.0109 0.0304 0.0149
Spectral (Kluger et al., 2003) 0.0199 0.0124 0.0336 0.0167 0.0360 0.0236 0.0588 0.0310 0.0295 0.0184 0.0514 0.0254

RQ-VAE (Zeghidour et al., 2022) 0.0122 0.0077 0.0171 0.0093 0.0368 0.0254 0.0536 0.0309 0.0511 0.0335 0.0667 0.0395
K-Means (Arthur and Vassilvitskii, 2007) 0.0322 0.0223 0.0487 0.0277 0.0510 0.0351 0.0753 0.0429 0.0503 0.0352 0.0742 0.0429

Size of OOV Tokens

N
D
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G
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10

2,000 4,000 6,000 8,000 10,000

Beauty

Toys
Sports

0.040

0.035
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0.015
0.010

Figure 4: Performance comparison of different OOV token
size within META ID on three datasets.

Table 5: Performance comparison of different embedding
extraction strategies on sequential recommendation task.

Embedding Type
Beauty

H@5 N@5 H@10 N@10

MF-based 0.0220 0.0142 0.0344 0.0207
GCN-Based 0.0267 0.0198 0.0382 0.0212

Meta-Path-Based 0.0322 0.0223 0.0487 0.0277

Metrics Analysis. Furthermore, we conduct a correlation
analysis to explore the relationship between MS/DS and
sequential recommendation performance. We sum the MS
and DS of different ID strategies and plot their performance
on the sequential recommendation task. As shown in Figure
2c, the sum of the MS and DS positively correlate with
NDCG@10, suggesting that memorization and diversity of
IDs are two essential properties in recommendation tasks.

6.4. Ablation Studies

We analyze the properties of META ID following the eval-
uation in Section 6.1, including the impact of grouping
methods, the size of OOV tokens, and different indexing
ranges on the performance of META ID.

Token Grouping. We study the importance of different
grouping methods for OOV token generation in our frame-
work. In Table 4, we compare the performance of DBSCAN
(Ester et al., 1996) and Spectral Clustering (Kluger et al.,

2003) against K-Means clustering (Arthur and Vassilvit-
skii, 2007). We also consider generating OOV tokens with
RQ-VAE (Zeghidour et al., 2022) using meta-path-based em-
beddings. Our results show that simply applying K-Means
outperforms other grouping methods in most cases.

Embedding Extraction. To assess the necessity of the meta-
path approach, we perform an ablation study where the meta-
path structure is removed, and the embeddings are learned
purely based on user-item interactions without higher-order
relationships with Matrix Factorization (MF) (Koren et al.,
2009b). We also compare our approach with more recent
graph-based models GCN (Kipf and Welling, 2017), which
are designed to capture higher-order relationships in graph-
structured data. As shown in Table 5, the meta-path-based
embedding used in our approach outperforms than oth-
ers. This is due to our training on user-item interaction
sequences, which allows it to better capture temporal dy-
namics and patterns in user behavior.

OOV Token Size. Since varying cluster sizes G result in
different numbers of OOV tokens, we also investigate the
impact of different cluster sizes for META ID in Figure 4.
We find that the granularity of token clusters plays a crucial
role in recommendation performance. An excessive token
scale can introduce noise, reducing the performance. There-
fore, finding an optimal token size is vital to ensure that
META ID effectively adapts to various datasets’ nuances.

7. Conclusion
This study introduces META ID, a method enhancing Large
Language Models (LLMs) for recommender systems us-
ing OOV tokens. Moving beyond constructing IDs with
in-vocabulary tokens, META ID incorporates user-item in-
teraction information to align LLMs more effectively with
recommendation tasks. We learn representations from user-
item interactions utilizing meta-paths sampling. By clus-
tering these representations we generate OOV tokens to
construct META ID. This approach guarantees tokens cap-
turing correlations between users and items from historical
data while ensuring distinctiveness among item. Our ex-
periments across various real-world datasets demonstrate
META ID’s robust performance in diverse recommendation
tasks, including sequential and direct recommendation, as
well as complex tasks requiring detailed textual responses.
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Essentially, META ID effectively combines the capabilities
of LLMs with the nuanced requirements of recommendation
scenarios, such as planning highly personalized content for
users as virtual shopping assistants.
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Appendix

We provide details omitted in the main paper.

• Appendix A: Workflow of META ID, encompassing
the construction of OOV tokens.

• Appendix B: Details of memorization score (MS) and
diversity score (DS).

• Appendix C: Experimental setups and implementation
details of META ID.

• Appendix D: Additional experimental result analysis.

• Appendix E: Discussions and limitations of META ID.

A. Details of META ID
In the Section 5 of the main text, we elucidate the compre-
hensive workflow for generating META ID. This process
encompasses three main steps, including (1) the extraction
of meta-path-based embedding, (2) the generation of OOV
tokens, and (3) the incorporation of META ID with LLMs,
thereby handling with various downstream recommendation
tasks.

A.1. How to extract the meta-path-based embedding

This section supplements the details of subsection 5.1, i.e.,
the users / items representations extracted from a skip-gram
model, including the sampling process of meta-paths as
training data.

In META ID, we enable a skip-gram model to learn effective
users / items representations from the sampled meta-paths,
which is learning user representations WU and item rep-
resentations WI . The objective of the skip-gram model
learning paradigm is to map the users and items in the
meta-paths seqeuences into a lower-dimensional space as
in (Dong et al., 2017)

Meta-paths sampling. Firstly, we constructs a node se-
quence based on random walks of meta-paths. A meta-path

p = P1
R1−−→ P2

R2−−→ ...
Rk−1−−−→ Pk is a path that is defined

on a graph, where Ri signifies a composite relation between
different node P . We define user-item-user (U-I-U) as our
meta-path, where paths only exist if users has given the
same ratings Ri to one item. We sample 32 rounds starting
from each user and item with the sampled length k = 64.

Skip-gram model training. In the second step, through
sampling meta-paths based on random walks as training cor-
pus, we train a skip-gram model thus learn the vector repre-
sentations (WU ,WI) for all users and items. The objective
of the skip-gram model is to maximize the conditional prob-
ability P (ni|v) for the node v ∈ V of its neighboring node

ni ∈ Nv:

argmax
θ

∑
v∈V

∑
t∈U,I

∑
ni∈Nv

logP (ni|v) (9)

and the P (ni|v) is calculated as:

P (ni|v) =
exp(wT

ni
wv)∑

j∈V exp(wT
j wv)

(10)

where w means the representation of one user or item. In
experiments, we set number of negative sampling to 5, and
train the skip-gram model for 10 epoch with learning rate
of 0.001.

A.2. How to generate OOV tokens

This section complements subsection 5.2, where we gener-
ate OOV tokens from users and items representations for
constructing META ID. Essentially, we need to build a hier-
archical classification system for IDs in order to express a
wider range of items and users with as few OOV tokens as
possible, so that similar items and users are under the same
hierarchical branch.

This hierarchical construction mechanism is very reminis-
cent of clustering methods, as we apply in META ID, in
which we use out-of-class indexes and in-class indexes as
two levels of IDs. Though more sophisticated clustering
method s for multi-levels structure can be applied, in ex-
periments, we use the simple K-Means clustering, which
is more suitable for large-scale data volume due to its sim-
ple and easy to optimize nature. We also demonstrate the
effectiveness of this approach in Table 4.

In experiments, we cluster user and item representations
together. We then create the between-cluster tokens ⟨CTi⟩
for cluster i, and sort the in-cluster users / items based
on the cosine distance to the cluster centroids to get in-
cluster tokens ⟨yi⟩. Finally, we add a prefix token ⟨Item⟩ or
⟨User⟩ to denote its type. For example, an item might be
represented as ”⟨Item⟩ ⟨CTi⟩ ⟨j⟩” labeled with three tokens
(”⟨Item⟩”, ”⟨CTi⟩”, ”⟨j⟩”), where ”⟨Item⟩” denotes it as an
item, ”⟨CTi⟩” is its cluster token, and ”⟨yi⟩” is its in-cluster
token.

It is worth noting that a naive approach to generating user
and item IDs is to assign an independent OOV token as
ID (IID) that needs to be learned for each item and user.
However, this is not applicable to modern recommender
systems with a large number of items and users, as the
training time may be too long if a large number of new
tokens need to be created. We also show it in Table 8,
where we use the meta-path-based embeddings with a linear
projection layer for initialization, which shows that it is
ineffective compared to META ID.
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Table 6: Examples of prompts for recommendation tasks (Part 1).

Sequential Recommendation Direct Recommendation Rating Prediction

Task Input: Considering user 2024 has interacted
with items item 1, item 2. What is the
next recommendation for the user?

What should we recommend for
user 2024?

Which star rating will user 2024
give to item item 2? (1 being the
lowest and 5 being the highest).

Task Output: item 2024 item 2024 5

Table 7: Examples of prompts for recommendation tasks (Part 2).

Explanation Review

Task Input: According to the feature word quality, generate
a 5-star explanation for user 2 about item 2.

Write a short sentence to summarize the fol-
lowing product review from user 2: Absolutely
great product. I bought this for ...

Task Output: Absolutely great product! Perfect!

Table 8: Comparison of independent ID (IID) with META ID on sequential recommendation task.

Methods
Sports Beauty Toys

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

IID 0.0114 0.0073 0.0208 0.0103 0.0302 0.0194 0.0494 0.0256 0.0146 0.0091 0.0217 0.0114
META ID 0.0357 0.0256 0.0520 0.0308 0.0480 0.0336 0.0689 0.0403 0.0564 0.0391 0.0803 0.0468

A.3. How to incorporate META ID with LLMs

As mentioned in subsection 3.1, we convert every rec-
ommendation tasks into question&answering template, in
which we describe the recommendation tasks in natural lan-
guage form, and replace user and item IDs with different
dataset like a cloze test. The full templates for every tasks
in this format is from (Geng et al., 2022), where we give
some examples in Table 6 and Table 7.

Take rating prediction task as example. We might ask the
LLM, ”Which star rating will user ⟨User⟩ ⟨CT1⟩ ⟨18⟩ give
item ⟨Item⟩ ⟨CT8⟩ ⟨24⟩ ?”, and expect the LLM to answer
”5”.

We construct the fine-tuning and testing dataset for LLM in
this unified way. Then LLM is able to acquire the general-
ized knowledge across different tasks, and even carve out
user and item characteristics through those tokens construct-
ing IDs to handle different recommendation tasks.

B. Details of memorization score (MS) and
diversity score (DS)

This section complements subsection 4. The token embed-
ding layer in LLMs transforms each input token into token
embedding vectors. And we use ID representation to indi-
cate that these token embedding vectors corresponding to
an ID, i.e., the representation of an item or user in LLMs.

The convergence of DS. DS is a metric designed to quantify
the diversity of ID representations in LLMs. Given the high

computational demand of calculating KL divergence for all
embedding pairs in large datasets, DS employs a random
sampling approach, thus we present a convergence analysis
for DS in Figure 5. The stability of DS is evident across
both datasets, demonstrating a trend towards convergence as
the number of sampled pairs grows. This sampling strategy
reducesthe computational complexity from O(|I|2 ·D) to
O(N ·D), where the |I| means the size of items, D is the
dimension of ID representation, which is equal to the LLM’s
token embedding dimension.

The approximate value of MS. The adjusted cosine simi-
larity for items is given by:

sim(i, j) =

∑
u∈U (Ru,i − R̄u) · (Ru,j − R̄u)√∑

u∈U (Ru,i − R̄u)2 ·
∑

u∈U (Ru,j − R̄u)2

(11)
where Ru,i and Ru,j denote user u’s ratings for items i
and j, respectively, while R̄u is user u’s average rating.
To enhance computational efficiency, especially for large-
scale datasets, we precalculate the rating deviation sums and
squared sums for each item and user:

sim′(i, j) =
Dev(i) · Dev(j)√

DevS(i) ·
√

DevS(j)
(12)

where the rating deviation sums and squared sums for each
item is:

Dev(i) =
∑
u∈Ui

(Ru,i− R̄u), DevS(i) =
∑
u∈Ui

(Ru,i− R̄u)
2

(13)
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Figure 5: Convergence analysis of DS metric for Beauty and Sports datasets, with 95% confidence interval error bars
indicating variability across 5 trials.

This approach reduces complexity from O(|U | · |I|2) to
O(|I|2), a significant improvement for large-scale datasets.

C. Experimental Setups and Implementation
Details

Table 9: Basic statistics of the experimental datasets.

Dataset Sports Beauty Toys

#Users 35,598 22,363 19,412
#Items 18,357 12,101 11,924
#Reviews 296,337 198,502 167,597
#Sparsity (%) 0.0453 0.0734 0.0724

C.1. Datasets Descriptions and Preprocessing

We conduct extensive experiments over three real-world
datasets. The Amazon datasets are collected from Amazon
platform2 with user ratings and reviews on 29 categories
of products. In this paper, we adopt three of them to eval-
uate our method, Sports&Outdoors, Beauty, Toys&Games.
We follow (Geng et al., 2022) and use transaction records
between January 1, 2019 to December 31, 2019. Detailed
dataset statistics are available in Table 9.

We divide tasks into ratings, explanations, and reviews,
adhering to the data-splitting approaches of similar stud-
ies (Geng et al., 2022; Li et al., 2020; 2021). For both
sequential and direct recommendation tasks, we adopt the
methodology of (Zhou et al., 2020; Geng et al., 2022; Ren
et al., 2020), using the final item in a user’s interaction se-
quence for testing while carefully structuring the training
data to avoid leakage. For rating, explanation, and review
task families, we randomly split each dataset into training
(80%), validation (10%) and testing (10%) sets, and ensure

2https://nijianmo.github.io/amazon

that there is at least one instance included in the training set
for each user and item.

C.2. Baselines

Our approach is compared to a variety of established mod-
els, spanning from CNN-based to LLM-based frameworks.
Caser (Tang and Wang, 2018) applies CNNs to capture high-
order Markov Chains in sequential recommendation. HGN
(Ma et al., 2019) utilizes hierarchical gating networks for
modeling long and short-term user interests. GRU4Rec
(Hidasi et al., 2016) employs GRUs for session-based rec-
ommendation, representing items with embedding vectors.
BERT4Rec (Sun et al., 2019), S3-rec (Zhou et al., 2020) and
SASRec (Kang and McAuley, 2018) employ self-attention
mechanisms for sequential recommendation, focusing on
bidirectional understanding and multi-head attention, re-
spectively. FDSA (Hao et al., 2023) adopts feature-level
self-attention for feature transitions. CL4SRec (Xie et al.,
2022) introduces contrastive learning with data augmenta-
tion in sequential recommendation. P5 (Geng et al., 2022)
learns different tasks with the same language modeling ob-
jective during pretraining, serving as the foundation model
for various downstream recommendation tasks. P5 (Geng
et al., 2022) is a recent method that uses a pretrained Large
Language Model (LLM) to unify different recommenda-
tion tasks in a single model. Since there is no open source
code for the recent work (Rajput et al., 2023) yet, we im-
plemented the key ID construction of it ourselves in subsec-
tion 6.4.

In particular, we provide P5 with its variations (Hua et al.,
2023), equipped with different ID constructs like Sequen-
tial IDs (SID), Random IDs (RID), and Collaborative IDs
(CID) as a benchmark for exploring the impact of different
ID strategies. RID Assigns each item with a random num-
ber as the item ID. The number is further tokenized into
a sequence of sub-tokens, as did in P5. For example, an
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Table 10: Table of the size of OOV tokens used by IDs.

OOV Tokens Size Sports Beauty Toys

RID 0 0 0
SID 0 0 0
CID 448 437 487
IID 18357 12101 11924
META ID 1600 1319 727

item is randomly assigned the number ”2024”, and ”2024”
is represented as a sequence of tokens ”20””24”. SID is a
straightforward method to leverage collaborative informa-
tion for item indexing, where items interacted consecutively
by a user are assigned consecutive numerical indices, re-
flecting their co-occurrence. CID approach employs spectral
clustering based on spectral matrix factorization to generate
item IDs. This method is based on the premise that items
with more frequent co-occurrence are more similar and
should share more overlapping tokens in ID construction.
The results for all baselines except P5 with its variations are
reproduced through open source code (Zhou et al., 2020).

C.3. Implementation Details

As mentioned in Appendix A, we generate the META ID
for users and items for each dataset, generalized to all ex-
periments below. For constructing META IDs, we sampling
rating-based meta-paths in each dataset, where adjacent
users assigned equal ratings to an item. We set the sampling
path length to 64, and use a skip-gram model for training,
with a window size of 5 and learning rate set at 1e−3. The
embedding clusters groups are limited to |G| = 100 (200
for Toys) to manage vocabulary size effectively. The OOV
tokens size is shown in Table 10.

C.3.1. EVALUATION ON SEQUENTIAL AND DIRECT
RECOMMENDATION TASKS

We first evaluate META ID on sequential recommenda-
tion tasks and direct recommendation tasks following (Hua
et al., 2023). Our implementation first utilizes T5 (Raffel
et al., 2020b) as the backbone with parameters around 60.75
million. As mentioned in subsection 5.3, we add a linear
layer where the OOV tokens undergo an extra linear trans-
formation before the token embedding layer for a better
initialization with α = 0.1. We also consider decoder-only
architecture LLaMA2-7b (Touvron et al., 2023) with 7B
parameters. For tokenization, we use the default Senten-
cePiece tokenizer with extended OOV tokens for parsing
sub-word units. We use the same sequential recommenda-
tion and direct recommendation prompts in P5 (Geng et al.,
2022) to convert sequential information into texts.

For LLM fine-tuning, we pre-train T5 for 10 epochs using
AdamW optimizer on two NVIDIA RTX 3090 GPUs with

a batch size of 64, a peak learning rate of 1e−3. We apply
warm-up for the first 5% of all training steps to adjust the
learning rate, a maximum input token length of 1024. We
use the lora (Hu et al., 2022) technique to fine-tune the token
embedding layer and linear head layer of LLaMA2-7b for
1 epochs using AdamW optimizer on two NVIDIA RTX
A6000 GPUs with a batch size of 28, a peak learning rate
of 1e−5, the lora attention dimension of 16 and the alpha
parameter of 32.

For LLM inferencing, beam search is utilized to generate
a list of potential next items, evaluated under the all-item
setting. To prevent the generation of non-existent IDs, we
apply a constrained decoding method (Hua et al., 2023),
setting the generation probability of invalid IDs to zero.

C.3.2. EVALUATION ON RATING, EXPLANATION AND
REVIEW TASKS

To validate META ID’s adaptability, we extend our evalua-
tion to rating prediction, explanation generation, and review
tasks, akin to P5. We use the same prompts in P5 (Geng
et al., 2022) to convert all information into training texts.

For LLM fine-tuning, we pre-train T5 for 10 epochs using
AdamW optimizer on two NVIDIA RTX 3090 GPUs with
a batch size of 32, a peak learning rate of 1e−3. We apply
warm-up for the first 5% of all training steps to adjust the
learning rate, a maximum input token length of 512 and
maximum generation length of 64.

For LLM inferencing, greedy decoding is applied for rating
prediction, explanation generation, and review tasks.

The full results are shown in Table 11.

D. Additional Experimental Results
Initialization Approaches. We explore the impact of dif-
ferent token initialization methods on the performance of
META ID. Recognizing that the LLM’s vocabulary includes
numeric tokens for linguistic IDs, we first consider whether
reinitializing these numeric tokens helps LLM for recom-
mendation. As shown in Figure 6, our experiment, contrast-
ing random initializing numeric tokens (Random Init.) with
keeping T5’s original token embeddings (Embedding Init.),
reveals that random initialization does not enhance perfor-
mance, and be detrimental on Sports and Toys datasets. This
suggests that the influence of pre-training on these tokens
cannot be effectively negated through simple random ini-
tialization, thus not suitable for building IDs. This result
emphasizes the importance of introducing extra tokens for
IDs in LLM-based recommender systems. We also compare
two initialization approaches for META ID: random initial-
ization (Random Init.) and initializing OOV tokens using
the augmentation (Embedding Init.) (See Section 5.2). Our
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Table 11: Performance comparison of different methods on rating, explanation, and review task.

Task Type Metric Sports Beauty Toys

RID SID CID META ID RID SID CID META ID RID SID CID META ID

Rating RMSE 1.0382 1.0486 1.0383 1.0327 1.2829 1.3098 1.2819 1.2818 1.0725 1.0693 1.0766 1.0770

Explan. BLEU-1 16.2567 16.5825 16.6121 16.9005 18.2299 18.3981 19.3499 19.5106 19.9858 20.2198 20.4570 20.2270
BLEU-4 2.1782 2.1944 2.2332 2.3481 2.9027 2.8071 3.0626 3.0592 4.3495 4.3701 4.5844 4.4945

Review BLEU-1 7.6140 7.7948 7.6586 7.8819 6.2282 6.5055 6.5854 7.0500 8.5336 8.0862 7.3846 8.3080
BLEU-4 2.3228 1.2406 2.4109 2.6546 1.9891 1.2406 1.9718 2.7485 1.1315 1.8366 1.2128 1.7061
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Figure 6: Performance comparision between random initialization (Random Init.) and initializing ID token embeddings
using pre-trained ones (Embedding Init.). For RID and SID, random initialization does not have a positive effect compared
to keeping T5’s original token embeddings. For META ID, initializing using a learned strategy with the help of cluster
centroid embeddings (Embedding Init.) learned from meta-paths can significantly enhance the recommendation performance
of META ID compared to random initialization.
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Figure 7: Performance comparison of whether indexing both
items and users on Beauty dataset.

findings show that the latter method substantially improves
META ID’s performance, underlining the critical nature of
the token initialization method in achieving better results.

User or Item Indexing. Previous ID strategies for LLMs
only consider indexing for items, which come from the con-
vention that users are typically represented by a sequence of
interacted items in sequential recommendation (Geng et al.,
2022; Hua et al., 2023; Rajput et al., 2023). While META
ID models users and items, as shown in Table 7, reveals
that the combined user-item indexing (User&Item) outper-
forms either user-only or item-only indexing. This result

shows the importance of incorporating user preferences and
item attributes for LLMs to enhance the accuracy of the
recommendations.

Visualization of ID-related tokens. Directly applying in-
vocabulary tokens to construct IDs (RID and SID) brings
poor performance in Toys dataset. In Figure 2b, We use
t-SNE visualization to map ID token embeddings and ob-
served that these tokens tend to be homogeneous, whereas
CID and META IDs that use OOV tokens to construct IDs
have a wider distribution, reflecting difference and diversity
between their representations.

To further illustrate the impact on representation, we visual-
ized the attention mechanism in sequence recommendation
generation in Figure 8. This revealed that SID leads to uni-
form attention patterns, not distinguishing between different
items and user IDs. In contrast, META ID demonstrates
distinct attention patterns, successfully differentiating items
and emphasizing user IDs, thereby allowing models to grasp
more personalized and distinct information.

Statistics on training & Inference Time. We provide
statistics on the training and inference time of P5 models, we
collect the running time on the Toys dataset. As mentioned
in subsection C, we trained and test our models on two RTX
3090 GPUs. For training on sequential recommendation and
direct recommendation tasks, the T5 model spent 3.5 hours
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Figure 8: Visualization of attention between input and output tokens in sequence recommendation generation, where we
aggregate tokens within one ID for clarity. The visualization indicates that SID leads to undifferentiated attention across
items and neglects the user ID, whereas META ID distinctly allocates attention to sequence items, outputting item containing
the ” ⟨CT18⟩” token in both the user ID and item ID with the highest attention values.

Table 12: The standard error of the metrics for META ID(T) on sequential recommendation task.

Datasets HR@5 NCDG@5 HR@10 NCDG@10

Sports 0.0322 ± 0.00061 0.0223 ± 0.00060 0.0487 ± 0.00073 0.0277 ± 0.00055
Beauty 0.0510 ± 0.00038 0.0351 ± 0.00044 0.0753 ± 0.00131 0.0429 ± 0.00075
Toys 0.0533 ± 0.00091 0.0372 ± 0.00067 0.0761 ± 0.00138 0.0441 ± 0.00078

Table 13: Average inference time (in milliseconds) of T5 with META ID on different tasks on the Toy dataset.

Models per user per user-item pair per review

Sequential Direct Rating Explanation Summarization Preference

META ID (T) 74.05 68.60 5.21 17.28 9.67 8.55

to finish training. The average inference time of T5 model
on dferent tasks are presented in Table 13. Sequential and
direct recommendation tasks require much longer inference
time than other tasks due to the beam search step. Overall,
the inference is very fast. It is also promising to further
reduce the training and inference time with the help of
effcient Transformer techniques.

E. Discussions
There are two promising directions of META ID. First,
META ID uses a fixed database of users and items, while
newly appearing items and users do not have interaction
history. This could be solved using methods related to the
cold start issue. Second, META ID applies two-level tokens
for constructing IDs, while a more complicated hierarchical

structure could be considered. Then, META ID could be
applied to modern recommender system containing trillions
of users and items.
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