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Figure 1. Comparison of reprojected geometry obtained by Tosi et al. [19] and our approach with 3D-Gaussian Splatting.

Abstract

Recent advancements in stereo matching, driven by deep
learning techniques, have increased the need for datasets
containing dense ground truth disparity labels. Yet, the rar-
ity of real-world datasets with these labels presents signifi-
cant challenges stemming from the difficulties in generating
accurate dense disparity maps. Acquisition often involves
complex structured light setups, producing a constrained
quantity of high-quality samples, or employing laser-based
distance sensors, which offer more accessible but sparsely
labelled and less accurate data. A promising development
in this context is the utilization of Neural Radiance Fields
(NeRFs), which leverage a minimal set of RGB images to
synthesize stereo images with relatively accurate dense dis-
parity maps. Despite the high quality of synthesized images,
NeRF-generated disparity maps exhibit a significant num-
ber of outliers, necessitating complex training paradigms
for effective use. Our study investigates using 3D Gaus-
sian Splatting (3DGS) over NeRFs to produce stereo train-
ing views and dense disparity labels. We demonstrate that
3DGS offers enhanced accuracy in generating disparity la-
bels and propose an efficient strategy for identifying and
removing outliers, thereby significantly improving the dis-
parity labels quality.

1. Introduction

Stereo vision is a crucial facet of computer vision. It re-
lies on stereo matching to identify corresponding points in
each respective image. Depth information can then be sub-
sequently found using triangulation. Therefore, to estimate
valid depth values, correct correspondences among pixels
are required. Most early methods used accurately calibrated
cameras to capture images, then obtained epipolar rectifica-
tions and conducted pixel-based stereo matching in a local
neighborhood to complete disparity estimation [6]. With the
advancements of deep learning and the steady increase in
computing power, disparity estimation using deep learning
started to get traction compared to traditional hand-crafted
methods [12]. Lately, the advent of deep learning architec-
tures such as RAFT-Stereo [10] and IGEV-stereo [21] has
enabled greater accuracy and the ability to find correct cor-
respondences in occlusions or weakly textured areas. Deep
learning has since become the mainstream method for gen-
erating dense disparity maps.

End-to-end stereo-matching networks require a large
amount of labeled data for training [3]. Obtaining
real-world ground-truth data is both expensive and time-
consuming. The complexity can be observed in the pop-
ular Middlebury dataset. They utilized structured light
along with a complicated multi-stage calibration procedure.
The whole procedure is hardly scalable due to the required



equipment and post-processing required [16].
In response to these challenges, exploring novel stereo

data generation and enhancement techniques is essential.
Tosi et al. [19]. used NeRFs to generate a stereo-matching
dataset using only 100 images per scene captured by a hand-
held camera, offering a potential low-cost solution. How-
ever, the reconstructed disparity exhibited large errors and
a complicated training protocol using trinocular photomet-
ric loss was required to achieve good zero-shot generaliza-
tion. Consequently, the training compute required has been
substantially increased when compared to methods only su-
pervised with ground truth disparity. Recently, a technique
called 3D Gaussian Splatting [8] offered the possibility to
generate images of higher fidelity than NeRFs. While the
input to both methods is just images, 3DGS also constructs
an explicit 3D representation, offering a greater potential
for downstream tasks such as scene editing, and scene re-
lighting [4, 20].

Our work addresses the feasibility of using 3DGS for
stereo-dataset generation. The primary focus of our eval-
uation is on the quality of the disparity map in an attempt
to push the frontier of low-acquisition cost realistic stereo
datasets while removing the need for complicated training
protocol due to low accuracy disparity labels. We summa-
rize the contents of this work as follows:
• A comprehensive evaluation of disparity accuracy gener-

ated using NeRFs and 3DGS
• Quantitatively showing that 3DGS has potential to gener-

ate higher quality stereo matching datasets than NeRF.

2. Related work
Deep learning for stereo matching Deep learning tech-
niques has attracted great interest from the research com-
munity. Laga et al. [9], identified more than 150 published
papers in this area between 2014 and 2019, and since then
the trend of using deep learning techniques has only con-
tinued. Today, most published papers rely on iteratively
disparity refinement architectures such as RAFT-Stereo and
IGEV-Stereo [10, 21], however, hybrid systems are also an
option. Aleotti et al. [1] published a neural disparity refine-
ment technique with a switchable disparity estimator as the
backbone. They tested with both handcrafted AD-CENSUS
[22], SGM [6], and the learned C-CNN [11] stereo match-
ers. Their approach achieved good zero-shot generalization
by refining disparity maps obtained by SGM. [1] However,
regardless of hybrid or end-to-end deep learning systems,
these models are dependent on ground truth training data.

Self-supervised learning A method to train deep models
without the use of ground-truth depth data is self-supervised
stereo. Originally used in optical flow estimation, it has
been proposed as a possible solution in the absence of suf-
ficient ground truth. [7] A common approach is to use tra-
ditional image features to generate sparse stereo matches

with high confidence which is subsequently used to aid a
deep stereo estimator. [9] Another approach uses image re-
construction as the supervisory signal. Here, the input is a
set of images, and by hallucinating depth for an image and
projecting it into nearby views, the model is trained by min-
imizing the image reconstruction error. [5]. However, ac-
cording to Tosi et al. [19] self-supervised methods provide
good results in single domains, but often lack generalization
to other domains.

NeRF-Supervised Deep Stereo Leveraging NeRF to su-
pervise deep stereo networks marks a significant leap for-
ward as presented by Tosi et al. [19]. This approach en-
ables the training of stereo matching models without expen-
sive ground-truth depth data, relying instead on synthetic
views generated by NeRF from a real-world scene that was
captured using a single handheld camera. They proposed a
training procedure from rendered stereo triplets and showed
that stereo networks were capable of predicting sharp and
detailed disparity maps using only this procedure. How-
ever, it is observed that a lot of the points need to be filtered
due to inaccurate disparities. Figure 1 shows an example of
using such an unfiltered disparity map.

3D Gaussian Splatting Unlike the widely adopted Neu-
ral Radiance Fields, 3DGS adopts an explicit 3D Gaussian
point representation, forming our method’s basis for gen-
erating synthetic disparity labels. A 3D Gaussian point is
defined as:

G(x) = exp(−1

2
(x− µ)TΣ−1(x− µ)) (1)

Where µ and Σ denote the spatial mean and covariance
matrix respectively [24]. The Gaussians are also associ-
ated with a learned opacity o and a view-dependent color c.
In the rendering process the Gaussians are projected from
3D to 2D onto the image plane and then rasterized into an
image. The spatial position of the Gaussians are asserted
through ordinary projection and the 2D covariance matrices
are approximated as Σ′ = JWΣWTJT, where W and J
denote the viewing transformation and the jacobian of an
affine approximation of the perspective projection transfor-
mation. [24] From Kerbl et al. [8], A neural point-based
approach computes the color C of a pixel as:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (2)

For each point in N , Where ci is the learned color of each
point and αi is the evaluated 2D Gaussian with the 2D
screen projected covariance Σ′ and opacity o. In implemen-
tation, the points in the set N must be ordered from back
to front. Once the color is saturated above a certain thresh-
old the pixel is colored and presented. Given the explicit
3D representation of the scene, optimized Gaussian spatial



(a) Original input view from the dataset provided
by Tosi et al. [19]

(b) 3DGS filtered by right-to-left consistency
check with SSIM

(c) NeRF filtered with Ambient Occlusion map
according to Tosi et al. [19]

Figure 2. Comparison of disparity images of the same viewpoint for NeRF and 3DGS. In this sample 3DGS provides a more dense
disparity map than NeRF. Additionally, the accuracy compared with RAFT-oracle is also higher for 3DGS, showing strong potential for
dense disparity supervision.

means can be used to render a depth image based of the
Gaussian’s distance to the camera zcamera. Furthermore,
disparity image can be generated by using equation 3 be-
low:

d =
fb

zcamera
(3)

Where b is a virtual baseline and f is the focal length for
the camera used to capture the input views.

3. Evaluation methodology

To isolate variables for a fair comparison, we are directly
replicating the data generation procedure from Tosi et al.
[19]. The only change was utilizing 3DGS [8] instead of
Instant-NGP [13] for stereo image and disparity map gener-
ation. Otherwise, the dataset is identical across all parame-
ters.

3.1. Comparison metrics

To establish the accuracy of our generated disparity maps,
we utilize the concept of Oracle as a reference following
[19]. As the synthetized disparity maps contain rendering
errors, we further explore various filtering methods that can
potentially identify outliers which will be tested against am-
bient occlusion (AO) [13] filtering strategy used in [19].

Oracle stereo network The disparity labels extracted by
3DGS pipeline do not have an associated ground truth, pro-
hibiting quantitative evaluation. To rectify this, we use the
idea of Oracle stereo network following [19]. Therefore,
the disparity map obtained by Oracle will be assumed to
be the ground truth and used for evaluation in subsequent
experiments.

Left-right consistency check Provided that the disparity
map is accurate, it can be used to warp the right image to the
left one. Incorrect disparity values will result in faulty align-
ment, which can be easily identified on a per-pixel level us-
ing Structural Similarity Index Measure (SSIM) [14, 15].
Once every pixel is assigned a similarity score, a subset can
be chosen by selecting a similarity threshold, trading off
density for accuracy. One downside is that such a check

is not occlusion-aware, typically removing all the occluded
points from the disparity map.

Statistical outlier removal Outliers in 3D pointclouds
can be identified by computing for each point Pi its aver-
age Euclidean distance D̂i = 1

k

∑k
j=1 Dij to its k nearest

neighbors. A point Pi is flagged as an outlier if its D̂i ex-
ceeds a threshold defined by the global mean µ plus a mul-
tiplier α times the standard deviation σ of all average dis-
tances D̂ in the point cloud, as in: D̂i > µ+ α · σ. The 3D
point clouds can be generated by re-projecting the estimated
disparity map using the camera’s intrinsic parameters.[23]

4. Experimental Results

Tosi et al. provides 270 scenes captured with handheld cam-
eras. Each scene contains 100 bounded views of a static
scene such as the one presented in Figure 2a. Further-
more, each scene is provided with image poses, estimated
camera intrinsics, and a sparse point cloud generated with
COLMAP [17, 18]. The 3DGS models are trained with the
official implementation of Kerbl et al. [8]. No changes have
been made to their implementation and we are using the 30k
iteration models. Out of the 270 scenes, only 200 scenes are
sufficiently reconstructed with 3DGS and are used for eval-
uation. An example of an unusable scene is depicted in Fig-
ure 4, in the worst cases just a few instances of large Gaus-
sians were covering most of the rendered image. The ren-
dered views are generated using the SIBR interactive viewer
which has been repurposed for 3DGS by Kerbl et al. [2, 8],
and further modified by us to generate disparity images. We
select RAFT-Stereo [10] as the Oracle network with the of-
ficially supplied sceneflow checkpoint.

Ambient occlusion filtering The application of ambient
occlusion filtering within the NeRF framework leads to a
significant reduction in the number of disparity points, av-
eraging a 44% decrease with a standard deviation of 18.4%,
Almost half of the dataset is discarded due to inaccurate
disparities. This suggests that ambient occlusion filtering is
highly effective at eliminating poor-quality disparity. How-
ever, the extensive removal of points also indicates a general



Figure 3. We assess the quality of the data with respect to the RAFT-Oracle procedure. Each data point is calculated by randomly selecting
9 views from each of the reconstructed scenes. The 2px error is presented along the vertical axis and density along the horizontal axis.
Notice the y-axis is flipped. A density of 100% means that no points in the disparity image has been filtered, and no error means that the
generated Disparity is identical to RAFT-Oracle. The NeRF shows on average a lower error than 3DGS across all the scenes, but for the
top 5 well-reconstructed scenes the 3DGS as scored by the RAFT-Oracle, 3DGS shows an impressive density-to-error ratio.

(a) Failed 3DGS reconstruction of
scene 204

(b) The Disparity image by 3DGS in
scene 204 Figure 4a

(c) Nerf reconstructed image of
scene 204 in Tosi et al. [19]

(d) NeRF Rendered disparity image
of the scene rendered Figure 4c [19]

Figure 4. Comparison of disparity images of the same viewpoint
for NeRF and 3DGS. The results are from the same scene which
has been used for evaluation in section 4

lack of confidence in the accuracy of the disparity map pro-
duced. This trend continues for left-right consistency check
of all the 3DGS scenes; however, high confidence is seen in
the well-reconstructed scenes.
Left-Right consistency check Figure 3 shows that a left-
right consistency check filtering positively correlates with
increased accuracy. Furthermore, a more aggressive thresh-
old can be used to compensate density for accuracy.
Statistical outlier removal Given that the reconstructed
pointclouds have exhibited comet tail artefacts as can be ob-
served in figure 1, we have evaluated SOR filter as a poten-
tial candidate method to identify outliers. However, our ex-
periments have shown that SOR removed more good points
than outliers, reducing the density and accuracy of the dis-
parity map regardless of the selected threshold. As such, we

deem it unsuitable.
Discussion In general, the data quality generated by

3DGS shows comparable performance to NeRF, however
some of the scenes reconstructed with 3DGS contain large
amounts of Noise. A qualitative sample is presented in Fig-
ure 4. This observation suggests that not every scene effec-
tively modeled by NeRF guarantees successful reconstruc-
tion by 3DGS. Given that the data collected by Tosi et al.
[19] is used to assess the quality of synthetic data genera-
tion by NeRF, it implies that these scenes have already met
the criteria for successful modeling by NeRF. When exam-
ining the quality for the top 5 reconstructed scenes depicted
in Figure 3, it raises the question of whether it’s possible to
reconstruct all scenes in the dataset at the same quality level
using 3DGS and, if achievable, the effectiveness of training
a 3DGS-supervised deep stereo network with such data.

5. Conclusion

Our work proposes an alternative method to generate train-
ing data for stereo matching by leveraging 3D Gaussian
Splatting (3DGS) models, addressing the domain gap be-
tween synthetic and real-world data. Initial findings show
that compared to NeRF, our approach with 3DGS shows
promising results in generating dense and accurate ground
truth disparity maps. Furthermore, we outline a simple fil-
tering strategy which can be used to trade density for accu-
racy. However, further investigation into how training data
rendered using 3DGS could improve the performance of a
stereo-matching network is required.

This research was partially funded by Innovation Fund Denmark,
grant number 3129-00060B
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