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Abstract

One key challenge in Out-of-Distribution (OOD) detection is the absence of ground-
truth OOD samples during training. One principled approach to address this issue
is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to
train OOD detectors. However, we find empirically that the outlier samples often
present a distribution shift compared to the true OOD samples, especially in Long-
Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced,
i.e., the true OOD samples exhibit very different probability distribution to the
head and tailed ID classes from the outliers. In this work, we propose a novel
approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle
this distribution shift problem. One of its key components is dynamic outlier
distribution adaptation that effectively adapts a vanilla outlier distribution based on
the outlier samples to the true OOD distribution by utilizing the OOD knowledge
in the predicted OOD samples during inference. Further, to obtain a more reliable
set of predicted OOD samples on long-tailed ID data, a novel dual-normalized
energy loss is introduced in AdaptOD, which leverages class- and sample-wise
normalized energy to enforce a more balanced prediction energy on imbalanced ID
samples. This helps avoid bias toward the head samples and learn a substantially
better vanilla outlier distribution than existing energy losses during training. It also
eliminates the need of manually tuning the sensitive margin hyperparameters in
energy losses. Empirical results on three popular benchmarks for OOD detection
in LTR show the superior performance of AdaptOD over state-of-the-art methods.
Code is available at https://github.com/mala-lab/AdaptOD.

1 Introduction

Deep neural networks (DNNs) are widely known to be overconfident about what they do not know
when applying them to real-world scenarios in open environments [15,42], such as autonomous driving
[18] and medical diagnosis [21]. Consequently, the high-confidence predictions can misclassify
out-of-distribution (OOD) samples from unknown classes as one of the known or in-distribution
(ID) classes [24, 48]. This issue is further amplified when ID samples exhibit a class-imbalanced
distribution in Long-Tailed Recognition (LTR) scenarios. This is because head samples often receive
similarly high-confident prediction as OOD samples, while the tail samples receive substantially
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Figure 1: (a) Mean energy distribution on six OOD datasets with CIFAR100-LT [3] as ID data. (b)
The results of the energy distribution of the OOD dataset SVHN [31] using our proposed dynamic
outlier distribution adaptation (DODA) and an existing energy loss EnergyOE [24], where the outlier
data is taken from TinyImages80M [38]. (c) The results of using both of our proposed DODA and
dual-normalized energy loss (DNE). (d) The ratio of the energy of each ID class to the aggregated
energy of all ID classes.

lower-confident prediction, leading to an indistinguishability between OOD and head samples and
the tendency of wrongly detecting tail samples as OOD samples [30, 40, 59]. We address the problem
of long-tailed OOD detection, aiming at ensuring LTR accuracy while rejecting unknown samples.

One notorious challenge in OOD detection is the lack of ground-truth information on OOD samples,
as they can be drawn from any unknown distribution. One popular solution to tackle this challenge is
to use samples from external datasets as outliers (i.e., samples that do not overlap with ID and OOD
samples, also known as pseudo OOD samples) to train OOD detectors [4,12,17,24,30]. This approach
can be implemented by fitting the prediction probability of the outlier data to a prior distribution over
the ID classes [17] or a margin-based global energy function [4]. Despite showing good performance
on various benchmarks, all of these methods assume that the distribution of the outliers is well aligned
with that of the true OOD samples in the target data. However, the outliers often present a distribution
shift compared to the true OOD samples, especially in LTR scenarios [49, 56], i.e., the true OOD
samples exhibit very different probability distribution to the head and tailed ID classes from the
outliers. Due to the bias toward head classes, the distribution shift is particularly severe w.r.t. the
head samples. For example, as shown in Fig. 1a, the energy distribution of six popular OOD datasets
differs significantly from each other, where CIFAR100-LT [3] is used as the ID dataset. This implies
that any of these OOD datasets used as outlier data source can largely mismatch the distribution of
the true OOD data if the other five datasets are used as the true OOD data. Such a distribution shift
can largely mislead the training of detection models, leading to downgraded detection performance.

To tackle this problem, in this work, we propose a novel approach for OOD detection in LTR, namely
Normalized Outlier Distribution Adaptation (AdaptOD). Dynamic Outlier Distribution Adaptation
(DODA) is a key component of AdaptOD. Given a vanilla outlier distribution, DODA performs test-
time adaptation (TTA) to dynamically adapt the outlier distribution to the true OOD distribution by
utilizing the OOD knowledge embedded in the predicted OOD samples. This reduces the distribution
gap between the outlier and the OOD distributions, enabling a more accurate estimation of OOD
scores. As illustrated in Fig. 1b, a large gap exists between the energy distribution of the outlier
data (TinyImages80M [38]) and the true OOD data (SVHN [31]). By contrast, our adapted outlier
distribution is better aligned to the OOD distribution. Importantly, the ground truth of the test data is
assumed to be unavailable during TTA, and as we will show in the experiments (see Table 5), DODA
based on the predicted OOD samples can well approximate the upper-bound performance obtained
when DODA can get access to the ground truth of the test data to perform TTA (i.e., an oracle model).
There have been a few TTA methods for OOD detection, but they require online model retraining [49]
or feature memory augmentation [56]. By contrast, DODA focuses on the calibration of the outlier
distribution, effectively eliminating the retraining or memory overheads.

On the other hand, training OOD detectors using energy loss functions [4,24] is a principled approach
to learn the vanilla outlier distribution. However, existing energy losses can underestimate the
tail class distribution and involve sensitive hyperparameters on energy margins. As a result, the
vanilla outlier distribution learned by using these losses often misclassifies tail samples as OOD
samples during TTA. This can significantly affect the distribution adaptation in DODA, leading to
still a relatively large gap between the adapted outlier distribution and the OOD distribution, as
shown in Fig. 1b. Therefore, AdaptOD introduces a novel Dual-Normalized Energy loss (DNE) to
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balance energy prediction for imbalanced ID samples and learn a better vanilla outlier distribution for
subsequent DODA. Unlike existing energy losses that are focused on sample-wise energy estimation,
DNE utilizes both class-wise and sample-wise normalized energy. This helps obtain more balanced
prediction energy on the head and tail samples, transferring the energy from the head samples to
the tail samples, thereby avoiding the bias toward the head classes (see Fig. 1d). In doing so, DNE
is also free of energy margin hyperparameters and enables the learning of a better vanilla outlier
distribution. This guarantees a better starting point for the outlier distribution adaptation and the
accuracy of the predicted OOD samples at testing time in DODA, and thus yielding substantially
better aligned outlier distribution (see Fig. 1c vs. Fig. 1b). Our main contributions are as follows:

• We propose the novel approach AdaptOD for OOD detection in LTR. To our best knowledge,
it is the first approach for adapting the outlier distribution to the true OOD distribution from
both the training and inference stages.

• In AdaptOD, we introduce two new components, DODA and DNE, to reduce the gap
between the learned outlier distribution and the true OOD distribution in the presence of
long-tailed ID data. DODA builds upon a vanilla outlier distribution and then dynamically
adapts this distribution to the true OOD distribution with the OOD knowledge obtained at
testing time. DNE is designed to perform class- and sample-wise normalized energy training,
which enforces more balanced prediction energy for imbalanced ID samples, enabling the
learning of largely enhanced vanilla outlier distribution for more effective DODA.

• Extensive empirical results on three LTR benchmarks CIFAR10-LT, CIFAR100-LT, and
ImageNet-LT using six popular OOD datasets demonstrate that AdaptOD substantially
outperforms the state-of-the-art (SOTA) OOD detection methods in various LTR scenarios.

2 Related Work

OOD Detection in Long-Tailed Recognition (LTR). In recent years, OOD detection and LTR have
been extensively developed. The former determines whether a given input sample belongs to known
classes (in-distribution) or unknown classes (out-of-distribution) [22, 23, 25, 35, 37, 43, 44, 52, 57],
while the latter expects to train on class-imbalanced datasets [1, 2, 9, 13, 33, 34, 36]. PASCL [40]
reveals the difficulty of the OOD detection problem in LTR, and establishes performance benchmarks
for OOD detection in LTR based on the SC-OOD benchmark [48]. This setting is also extended
to medical image analysis [28, 50], which utilizes a strong data augmentation to discriminate ID
data and OOD data. Recent studies [4, 17] find that fitting the prediction probability of outlier data
to a long-tailed distribution is more effective than using a uniform distribution. They specify this
distribution based on the number of samples in ID classes or a pre-trained ID model to learn this
outlier distribution. However, it is difficult to obtain such an accurate distribution for outliers in
LTR. Other studies [30, 45] attempt to learn an extra outlier class to overcome the need for learning
long-tailed distributions of outliers. But they need a more complex model design. More importantly,
all these methods assume that the outlier samples can well represent the distribution of the true
OOD data, but this often does not hold in practice since OOD data can be sampled from highly
different unknown distributions in different application scenarios. Our approach tackles this problem
by adapting the outlier distribution to that of the true OOD data.

Test-Time Adaptation (TTA) for OOD Detection. Recently, TTA [8, 14, 53] has been introduced
to OOD detection, in which unlabeled test data that can be seen only once are used to perform
online updating pre-trained DNNs for enhancing task performance and quickly adapting to real-world
scenarios. There are two primary approaches for TTA in other tasks: retraining the model based
on unsupervised objectives [39, 41, 54] and updating the feature memory for each class [16, 47, 55].
However, unlike these TTA methods that generalize training data to test data and maintain the same
label space between them, TTA for OOD detection [7, 49, 56] addresses the challenge of identifying
unknown classes in test data. While training data includes ID data and outlier data, test data comprises
not only ID data but also true OOD data consisting of unknown classes that do not overlap with the ID
and outlier data. In particular, AUTO [49] is a recent method that attempts to assign pseudo labels to
unlabeled test data, and then directly uses these pseudo-labels and test data to retrain the model online
through Outlier Exposure [12]. AdaOOD [56] utilizes a memory bank to store feature memories
of ID data, then updates these memories online during inference, and lastly employs a kNN-based
distance method to detect OOD samples. However, they fail to work well in the LTR scenarios due
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Figure 2: Overview of AdaptOD, which consists of two components, DODA (Left) and DNE (Right).
Left: Each test sample is assigned a global energy-based OOD score G(x) to adapt the outlier
distribution Pout. DODA then uses the adapted outlier distribution Pout to calibrate the global
energy score G(x), obtaining the calibrated global energy score GP(x) as the OOD score. Right: For
each iteration, DNE first applies Batch Energy Normalization on logit output to obtain the normalized
energy, and then utilizes this energy to optimize a dual energy loss function at both the class and
sample levels.

to the large variation in the heavily imbalanced training ID data. Moreover, these methods require
retraining or additional memory overheads. ETLT [7] attempts to calibrate OOD scores by a linear
regression of its input feature but requires a batch-wise inference to obtain sufficient test samples for
the regression. DODA instead utilizes the dynamically adapted outlier distribution to calibrate the
prediction output of test data during inference without any retraining or memory overhead.

3 Approach

Preliminaries. Let Xin denote the input space of the ID data and Y in = {1, 2, . . . , k} be the
set of k imbalanced ID classes in the label space. We have genuine OOD data Xtrue_out that is
different from Xin. It is normally assumed that genuine OOD data Xtrue_out are not available during
training since OOD samples are unknown instances. However, we can obtain auxiliary OOD data
from external datasets, which can be used as outliers Xaux_out to act as surrogate OOD data for
training/fine-tuning LTR models. That is, Xaux_out is still different from Xtrue_out, but both of
them are OOD w.r.t. Xin. There is no class overlapping among ID data Xin, genuine OOD data
Xtrue_out, and outlier data Xaux_out. Then the training and test sets can be respectively denoted as:
X train = Xin ∪Xaux_out and X test = Xin ∪Xtrue_out.

OOD detection in LTR is to learn a classifier f with training data X train so that for any test data
x ∈ X test, if x is drawn from Xin (from either head or tail classes), then f can classify x into the
correct ID class, whereas if x is drawn from Xtrue_out, then f can detect x as OOD data.

TTA for OOD detection in LTR is to online update the above pre-trained classifier f with test data
X test during the inference stage, in which for any unlabeled single test sample x ∈ X test, utilizing
pre-trained classifier f to predict whether x belongs to ID or OOD data at the current iteration, then
using the predicted label and the test sample x to update the classifier f . At the next iteration, the
updated classifier f is used to identify a new test sample and continuously update the classifier f .
Notably, each sample can only be seen by f once during inference.

3.1 Overview of AdaptOD

The proposed AdaptOD approach is designed to tackle the aforementioned distribution shift issue
for OOD detection in LTR. As shown in Fig. 2, AdaptOD consists of two components, namely
Dynamic Outlier Distribution Adaptation (DODA) and Dual-Normalized Energy Loss (DNE). DODA
dynamically adapts the learned outlier distribution to the true OOD distribution during inference
to reduce the distribution gap between them. DNE is designed to perform both class-wise and
sample-wise normalized energy training to obtain more balanced prediction energy on imbalanced ID
samples, thereby yielding an enhanced vanilla outlier distribution and enabling better distribution
adaptation in DODA. Below we introduce each component in detail.

4



3.2 DODA: Dynamic Outlier Distribution Adaptation

Previous OOD detection methods in LTR suffer from a distribution shift between outlier data and
true OOD data. This issue can largely limit the performance of these OOD detectors. Therefore, we
propose to dynamically adapt the outlier distribution to the true OOD distribution and further use it to
calibrate the prediction output of test samples at the inference stage.

Dynamic Distribution Adaptation with Predicted OOD Samples. Recently, energy-based meth-
ods [4,24], which use a global energy score over the ID classes as an OOD score for each test sample,
have achieved SOTA performance for OOD detection in LTR. Motivated by this success, we learn
and adapt the vanilla outlier distribution Pout, which is initialized by the global energy from the LTR
model predictions on the outlier data, to that of the true OOD data, and then use a Pout-calibrated
global energy score as the OOD score. Specifically, given a set of k ID classes, for any test sample
x ∈ X test, its global energy score G(·) is defined as [24]:

G(x) =

k∑
j=1

efj(x), (1)

where fj(x) is the logit output of sample x in class j, j ∈ {1, 2, . . . , k}. Let Pout ∈ Rk be an initial
outlier distribution. DODA performs test-time adaptation to dynamically adapt the outlier distribution
Pout to the true OOD distribution based on the OOD knowledge from the samples predicted as OOD
during inference. To this end, we designed an OOD filter using training data to identify OOD samples.
Since it is easy to obtain the distribution of global energy score for training ID samples, we use an
offline method to determine a threshold for filtering OOD samples based on this energy distribution.
This avoids adverse effects on the adaptation speed during inference. Formally, given ID examples
from training data x = {x1, x2, ..., xn}, where x ∈ Xin and n is the number of training ID samples,
we estimate the mean µin and standard deviation σin of the global energy distribution by:

µin =

∑n
i=1 G(xi)

n
, σin =

√∑n
i=1 (G(xi)− µin)2

n− 1
. (2)

We then utilize a Z-score-based method to implement the OOD filter, with the Z-score defined as:

R = µin − α× σin, (3)

where α is a hyperparameter. α = 3 is used by default during the inference stage, and this setting
works well throughout our experiments. More discussion about α is described in Appendix D.3.3.

To adapt the outlier distribution Pout, DODA utilizes the predicted OOD samples by the OOD filter
to perform a momentum update of Pout during inference, so that Pout will represent the mean of
energy distribution for the predicted OOD samples. The entries in the vanilla outlier distribution
Pout are initialized from the mean energy distribution of the outlier data, and they are updated in an
online fashion. Specifically, when the OOD filter detects the t-th test sample x as an OOD sample
(i.e., its global energy G(x) < R), DODA performs an update of Pout as follows:

Pout(t+ 1) =

{
M∗Pout(t)+ef(x)

M+1 , G(x) < R

Pout(t), G(x) ≥ R
(4)

where DODA only keep the number of predicted OOD samples M and current Pout during inference.

Calibrated OOD Score based on the Adapted Outlier Distribution. After obtaining the adapted
Pout, we use it to calibrate the global energy score G(·) and define the OOD score as follows:

GP(x) =

k∑
j=1

efj(x)

1 + Pout
j

, (5)

where x ∈ X test and GP(·) denotes the calibrated global energy score with the adapted outlier
distribution. This way helps reduce the energy proportion of the head classes that true OOD
distribution leans toward in the original global energy score G(·). In doing so, the distribution gap
between the outliers and true OOD is effectively reduced in final OOD score GP(·), enabling more
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accurate estimation of OOD scores in heavily imbalanced ID data without incurring any retraining
cost or additional memory expense.

3.3 DNE: Dual-Normalized Energy Loss

When using existing global energy loss to obtain the vanilla outlier distribution Pout, the distribution
of tail samples is indistinguishable from that of OOD samples due to the underestimating of tail
samples. We are also required to manually tune the sensitive hyperparameters on energy margins under
complex class imbalance. These can lead an inaccurate OOD filter used in Eq. 3 and subsequently
affect the distribution adaptation in DODA. To tackle these issues, we propose a Dual-Normalized
Energy Loss (DNE), which consists of two novel components, namely class-wise normalized energy
loss (DNE-C) and sample-wise normalized energy loss (DNE-S). DNE-C is a class-wise training loss
for balancing the sum of energy on all ID samples for each ID class, whereas DNE-S is a sample-wise
training loss for balancing the sum of energy on all ID classes for each ID sample. DNE learns a
balanced prediction energy distribution on imbalanced ID samples, which helps further reduce the
bias toward the head classes in Eq. 5, thereby improving vanilla outlier distribution for a better OOD
filter in Eq. 3 and a better vanilla outlier distribution Pout in Eq. 4. It also provides stable energy
margins, eliminating the need of manual tuning of these margins.

Batch Energy Normalization. To this end, we first propose a novel batch energy normalization
method, which conducts energy normalization on the logit output of each class for a batch of training
samples. In doing so, the energy of each sample is dependent on the energy of other ID samples and
OOD samples relative to the same class. This helps transfer the energy knowledge from the head
samples to the tail samples, enabling a better estimation for the energy distribution of tail samples.

Formally, let xin ∈ Xin be one training batch of ID data, with xin = {xin
1 , xin

2 , ..., xin
bin} and

bin be its batch size, and xout ∈ Xaux_out be a set of outlier data in a training batch, with xout =
{xout

1 , xout
2 , ..., xout

bout} whose set size is bout, then the batch energy normalization Fj(xi) for a sample
xi ∈ xin ∪ xout in class j ∈ {1, 2, ..., k} with classifier f is defined as:

Fj(xi) =
efj(xi)

efj(x
in
1 ) + ...+ efj(x

in
bin

) + efj(x
out
1 ) + ...+ efj(x

out
bout )

, (6)

where fj(x) is the logit output of sample x in class j. Essentially, we use the logit output of all
samples in a training batch on a class j to normalize the energy prediction of sample x. This largely
reduces the energy prediction bias toward the head samples. The energy of the outlier data is included
as a calibration modulation. Then, those normalized energy scores are used for the dual-normalized
energy losses, DNE-C and DNE-S, to better balance the prediction energy of long-tailed ID samples.

Additionally, compared to the current energy-based method [4, 24] for OOD detection in LTR that
requires manually designed energy margin hyperparameters, batch energy normalization adjusts the
energy of the batch samples on each class to the same scale, so it can provide stable energy margins
for the balanced training without relying on the training dataset and/or the class imbalance factor,
without the need of manually tuning them.

Class-wise Normalized Energy Loss (DNE-C). DNE-C independently regularizes the energy
for each class to enhance the normalized energy of ID samples for more class-wise balanced energy.
Formally, let Din = (Xin, Y in) and Dout = Xaux_out, then we can independently minimize the
class energy on each class as follows:

LC =

k∑
j=1

(E(x,y)∼Din
[(max(0,mc

in −Cj(x)))
2] + Ex∼Dout [(max(0,Cj(x)−mc

out))
2]), (7)

where mc
in = 1 and mc

out = 0 are the default margin hyperparameter settings without the need of
manual tuning on different datasets (see Appendix C for more details). The class-wise normalized
energy Cj(x), j ∈ {1, 2, ..., k} is defined as:

Cj(x) =

b∑
i=1

Fj(xi), (8)
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Table 1: Comparison of AdaptOD with EnergyOE and COCL on six OOD datasets.
OOD

Dataset Method ID Dataset: CIFAR10-LT ID Dataset: CIFAR100-LT
AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓

Texture [5]
EnergyOE [24] 95.53 97.42 92.93 18.44 79.56 86.03 70.88 79.45

COCL [30] 96.81 98.21 93.86 14.65 81.99 88.05 74.38 59.79
AdaptOD(Ours) 98.22 98.81 94.91 11.60 83.88 89.43 76.47 58.47

SVHN [31]
EnergyOE [24] 96.63 92.33 98.46 14.37 86.19 81.42 91.74 34.36

COCL [30] 96.98 93.25 98.61 12.59 89.20 81.57 94.21 54.46
AdaptOD(Ours) 98.13 94.34 99.11 10.33 93.09 91.32 96.86 17.63

CIFAR [19]
EnergyOE [24] 84.44 85.74 84.63 61.73 61.15 67.12 56.66 91.42

COCL [30] 86.63 86.66 86.28 52.21 62.05 66.14 56.82 93.88
AdaptOD(Ours) 89.05 89.93 88.22 45.51 72.77 76.37 70.58 86.04

TIN [20]
EnergyOE [24] 88.40 91.65 84.95 46.23 70.78 79.40 55.90 90.74

COCL [30] 90.43 92.52 87.03 46.12 71.87 81.89 57.12 83.93
AdaptOD(Ours) 91.40 93.85 88.18 42.77 72.87 82.06 58.92 88.24

LSUN [51]
EnergyOE [24] 94.00 94.78 93.70 28.42 81.61 86.57 69.16 80.57

COCL [30] 94.85 95.43 93.98 27.48 84.10 89.89 69.80 74.67
AdaptOD(Ours) 96.16 96.84 95.86 24.12 85.70 90.55 72.70 70.20

Place365 [58]
EnergyOE [24] 92.51 84.26 97.14 33.63 79.12 63.38 89.09 81.43

COCL [30] 93.97 87.36 97.56 32.25 80.30 68.65 89.16 77.83
AdaptOD(Ours) 95.19 89.56 98.44 29.22 83.27 68.82 91.44 71.63

where b is the batch size of the batch x (if x is xin that b is bin, and x is xout that b is bout), and
xi is the i-th sample in the batch x. Notably, even if some classes do not have the corresponding
ID samples in a certain training batch, this loss also can work well. This is because there is less
distribution shift among classes in the ID data compared to the OOD data. Therefore, the output of
ID samples on incorrect ID classes should also be higher than the OOD samples. DNE-C balances
the sum of energy on all ID samples for each ID class and distinguishes outlier samples from ID
samples, especially for the underestimated tail classes in a class-wise manner.

Sample-wise Normalized Energy Loss (DNE-S). DNE-S independently regularizes the energy
for each sample to enhance the energy of ID samples for sample-wise balanced energy. Formally, we
minimize the global energy over all classes of each sample as follows:

LS = E(x,y)∼Din
[(max(0,ms

in − S(x)))2] + Ex∼Dout
[(max(0,S(x)−ms

out))
2], (9)

where x ∈ xin ∪ xout, ms
in = k

bin and ms
out = 0 are the default margin hyperparameter settings that

can also work stably regardless of the ID/OOD datasets (see Appendix C). Then the sample-wise
normalized energy S(x) can be defined as:

S(x) =

k∑
j=1

Fj(x). (10)

After doing this, we can regularize the global energy of the ID data, particularly the low global energy
for tail samples. DNE-S efficiently balances the energy between head and tail samples. As a result,
the combination of DNE-C and DNE-S can learn substantially more balanced prediction energy of
ID samples, facilitating DODA to solve the distribution shift problems.

Overall Training Objective. Overall, we utilize the cross-entropy loss, together with our two
normalized energy losses, to train our model. The final objective of our DNE training is as follows:

Ltotal = Ex,y∼Din [ℓ(f(x), y] + Ldne, (11)
where ℓ is a cross-entropy loss, along with the two normalized energy losses:

Ldne =LS + LC = E(x,y)∼Din
[(max(0,ms

in − S(x)))2] + Ex∼Dout [(max(0,S(x)−ms
out))

2],

+

k∑
j=1

(E(x,y)∼Din
[(max(0,mc

in −Cj(x)))
2] + Ex∼Dout [(max(0,Cj(x)−mc

out))
2])

(12)

where LC is as defined in Eq. 7 and LS is as defined in Eq. 9. The algorithm of AdaptOD described
in Appendix B.
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Table 2: Comparison to different long-tailed OOD detection methods.
Method ID Dataset: CIFAR10-LT ID Dataset: CIFAR100-LT

AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑ AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑
OE [12] 89.76 89.45 87.22 53.19 73.59 73.52 75.06 67.27 86.30 39.42

EnergyOE [24] 91.92 91.03 91.97 33.80 74.57 76.40 77.32 72.24 76.33 41.32
PASCL [40] 90.99 90.56 89.24 42.90 77.08 73.32 74.84 67.18 79.38 43.10

EAT [45] 92.87 91.76 92.40 32.42 81.31 75.45 76.02 70.87 77.83 46.23
Class Prior [17] 92.08 91.17 90.86 34.42 74.33 76.03 77.31 72.26 76.43 40.77

BERL [4] 92.56 91.41 91.94 32.83 81.37 77.75 78.61 73.10 74.86 45.88
COCL [30] 93.28 92.24 92.89 30.88 81.56 78.25 79.37 73.58 74.09 46.41

OE [12]+DODA(Ours) 91.62 90.55 89.39 49.02 73.59 75.46 77.14 69.88 83.67 39.42
EnergyOE [24]+DODA(Ours) 93.36 92.17 92.97 30.82 74.57 79.40 80.89 76.54 72.63 41.32

BERL [4]+DODA(Ours) 93.77 92.62 93.15 29.41 81.37 79.45 81.15 75.52 70.51 45.88
COCL [30]+DODA(Ours) 93.89 93.06 93.39 29.25 81.56 79.81 81.26 75.93 70.14 46.41

AdaptOD(Ours) 94.69 93.89 94.12 27.26 82.27 81.93 83.09 77.83 67.37 47.91

Table 3: Comparison to different TTA-based OOD detection methods.
Training
Method

TTA
Method

ID Dataset: CIFAR10-LT ID Dataset: CIFAR100-LT
AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓

OE [12]

w/o TTA 89.76±0.27 89.45±0.56 87.22±0.61 53.19±0.42 73.52±0.68 75.06±0.59 67.27±0.57 86.30±0.92

AUTO [49] 90.49±0.29 89.83±0.52 87.45±0.83 52.63±0.47 73.93±0.89 75.98±0.81 67.74±0.65 85.71±1.00

AdaODD [56] 90.89±0.26 90.17±0.51 87.88±0.84 51.44±0.56 74.67±0.92 76.53±0.64 67.89±0.82 85.34±0.94

DODA(Ours) 91.62±0.23 90.55±0.45 89.39±0.68 49.02±0.41 75.46±0.77 77.14±0.59 69.88±0.80 83.67±0.88

EnergyOE [24]

w/o TTA 91.92±0.30 91.03±0.53 91.97±0.62 33.80±0.56 76.40±0.86 77.32±0.59 72.24±0.62 76.33±1.03

AUTO [49] 92.48±0.32 91.43±0.55 92.44±0.79 31.99±0.36 77.65±1.01 78.11±0.62 74.18±0.78 74.66±0.99

AdaODD [56] 92.28±0.26 91.63±0.56 91.73±0.61 32.83±0.59 77.67±0.82 78.47±0.81 74.05±0.83 74.86±0.98

DODA(Ours) 93.36±0.28 92.17±0.53 92.97±0.70 30.82±0.51 79.40±0.98 80.89±0.84 76.54±0.64 72.63±0.94

BERL [4]

w/o TTA 92.56±0.40 91.41±0.83 91.94±0.85 32.83±0.38 77.75±0.77 78.61±0.56 73.10±0.73 74.86±1.07

AUTO [49] 92.41±0.49 91.73±0.56 92.42±0.90 31.91±0.36 77.99±0.75 78.50±0.84 73.50±0.87 74.03±1.00

AdaODD [56] 92.68±0.26 91.79±0.54 92.20±0.67 31.41±0.51 78.26±0.97 78.94±0.81 73.61±0.75 73.76±1.12

DODA(Ours) 93.77±0.30 92.62±0.51 93.15±0.73 29.41±0.37 79.45±0.83 81.15±0.79 75.52±0.69 70.51±0.91

COCL [30]

w/o TTA 93.28±0.30 92.24±0.78 92.89±0.72 30.88±0.63 78.25±0.99 79.37±0.65 73.58±0.76 74.09±0.85

AUTO [49] 93.62±0.43 92.74±0.83 93.10±0.59 30.41±0.40 78.85±0.97 79.99±0.72 74.01±0.86 72.75±0.95

AdaODD [56] 93.48±0.22 92.60±0.66 93.05±0.81 30.79±0.39 79.07±0.70 80.00±0.60 74.60±0.84 73.09±0.91

DODA(Ours) 93.89±0.36 93.06±0.56 93.39±0.74 29.25±0.40 79.81±0.96 81.26±0.59 75.93±0.72 70.14±0.98

DNE
(Ours)

w/o TTA 92.77±0.48 92.18±0.71 92.62±0.61 31.48±0.36 77.92±0.75 78.97±0.61 73.92±0.81 74.44±0.99

AUTO [49] 92.89±0.44 92.69±0.86 92.25±0.60 30.85±0.62 79.36±0.91 80.19±0.63 74.81±0.80 72.10±1.19

AdaODD [56] 93.39±0.46 92.27±0.69 92.92±0.59 30.78±0.55 80.26±0.81 81.72±0.68 75.62±0.88 71.96±0.95

DODA(Ours) 94.69±0.22 93.89±0.68 94.12±0.58 27.26±0.49 81.93±0.71 83.09±0.64 77.83±0.76 67.37±0.93

4 Experiments

4.1 Experiment Settings

Datasets. Following [30, 40, 45], we use three popular long-tailed datasets CIFAR10-LT [3],
CIFAR100-LT [3] and ImageNet-LT [26] as ID data Xin. The default imbalance ratio is set to ρ = 100
on CIFAR10/100-LT. TinyImages80M [38] is used as the outlier data Xaux_out for CIFAR10/100-LT
and ImageNet-Extra [40] is used as outlier data for ImageNet-LT. We use six datasets CIFAR [19],
Texture [5], SVHN [31], LSUN [51], Places365 [58] and TinyImageNet [20], all of which are
introduced in the SC-OOD benchmark [48] as the OOD test set for CIFAR10/100-LT, and ImageNet-
1k-OOD [40] as the OOD test set for ImageNet-LT. More details about the datasets are presented in
Appendix A.1.

Implementation Details. Our AdaptOD is compared with seven SOTA OOD detection methods
on long-tailed data, including two popular methods: OE [12] and EnergyOE [24], and five recent
methods: PASCL [40], EAT [45], Class Prior [17], BERL [4], and COCL [30]. Further, we also
compare AdaptOD with two SOTA TTA methods for OOD detection, including AUTO [49] and
AdaOOD [56]. We use ResNet18 [11] as our backbone on CIFAR10/100-LT and ResNet50 [11] on
ImageNet-LT. Following fine-tuning-based methods OE [12], EnergyOE [24], and BERL [4], our
approach AdaptOD employs a similar training strategy to them that we obtain a pre-trained model
with only ID data and fine-tune this model with both ID data and outlier data. The reported results
are averaged over six independent runs. More details about the implementation details are presented
in Appendix A.2.
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Table 4: Comparison results on the large-scale ID dataset ImageNet-LT.

Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑
OE [12] 68.33 43.87 82.54 90.98 44.00

EnergyOE [24] 69.43 45.12 84.75 76.89 44.42
EAT [45] 69.84 43.15 81.32 80.97 46.79

PASCL [40] 68.00 43.32 82.69 82.28 47.29
Class Prior [17] 70.43 45.26 84.82 77.63 46.83

BERL [4] 71.16 45.97 85.63 76.98 50.42
COCL [30] 71.85 46.76 86.21 75.60 51.11

BERL [4]+DODA 73.12 47.34 86.95 74.92 50.42
COCL [30]+DODA 73.27 47.98 87.77 74.71 51.11

AdaptOD(Ours) 74.32 49.02 88.63 72.91 51.67

Training Test AUC↑ AP-in↑ AP-out↑ FPR↓

BERL [4]

w/o TTA 71.16±0.96 45.97±0.85 85.63±0.77 76.98±1.79

AUTO [49] 71.66±1.20 46.58±0.80 86.05±0.77 76.09±1.63

AdaODD [56] 71.80±1.14 46.47±0.63 85.56±1.01 77.36±1.69

DODA(Ours) 73.12±1.18 47.34±0.75 86.95±0.76 74.92±1.67

COCL [30]

w/o TTA 71.85±1.15 46.76±1.13 86.21±1.11 75.60±1.38

AUTO [49] 71.79±1.22 46.84±0.81 86.89±1.18 75.28±1.69

AdaODD [56] 72.35±1.10 47.20±1.16 86.89±0.96 75.06±1.91

DODA(Ours) 73.27±1.19 47.98±1.00 87.77±0.74 74.71±1.55

DNE
(Ours)

w/o TTA 72.04±1.07 46.53±0.72 86.06±0.78 75.82±1.38

AUTO [49] 73.31±1.26 47.26±1.14 87.11±1.19 74.60±1.27

AdaODD [56] 73.10±0.81 46.83±0.76 86.68±0.74 74.64±1.41

DODA(Ours) 74.32±0.92 49.02±0.70 88.63±0.73 72.91±1.28

Evaluation Measures. Following [30, 48], we use the below common metrics for OOD detection
and ID classification: (1) FPR is the false positive rate of OOD examples when the true positive rate
of ID examples is at 95%, (2) AUC computes the area under the receiver operating characteristic
curve of detecting OOD samples, (3) AP measures the area under the precision-recall curve, which
can be either AP-in in which ID samples are treated as positive or AP-out in which OOD samples are
regarded as positive, and (4) ACC calculates the classification accuracy of the long-tailed ID data.
The reported results are averaged over six independent runs with different random seeds by default.

4.2 Empirical Results

AdaptOD vs. Other OOD Detection Methods in LTR. Table 1 presents the comparison of our
AdaptOD with two SOTA OOD detectors in LTR (EnergyOE [24], COCL [30]) on CIFAR10/100-LT
using six OOD test datasets. These fine-grained results are not available for the other competing
methods and thus they are omitted in this table. AdaptOD shows the best performance in all four
metrics on each of the six OOD datasets. Table 2 shows the comparison of our AdaptOD with SOTA
OOD detectors in LTR on CIFAR10/100-LT, which is the average performance over six OOD test
datasets. Following the previous methods [4, 40, 45], we report our accuracy with AdjLogit [29] for a
fair comparison. AdaptOD is also the best performers in the averaged results when comparing to
all seven competing methods. This consistent improvement and SOTA performance of AdaptOD on
both ID and OOD data indicate that the distribution gap between the outlier samples and the true
OOD samples is effectively reduced by AdaptOD. Notably, the improvement is large on the near
OOD dataset CIFAR [19], which cannot be achieved by previous SOTA methods [4, 30].

DODA as an Enabler to Existing Methods. Table 2 also presents the results of our proposed
component DODA in using as a plug-in to tackle the distribution shift problem in four SOTA methods
(OE, EnergyOE, BERL, and COCL) on CIFAR10/100-LT. It shows that DODA can consistently
enhance the OOD detectors in all four metrics, demonstrating the strong capability of DODA in
reducing the learned outlier distribution gap to the distribution of the true OOD data (see Appendix
D for more details). The consistent improvement of having DODA as ‘plug-and-play’ indicates
the presence of the distribution shift problem encountered by existing SOTA detectors and the
universal effectiveness of DODA in tackling the problem. Note that AdaptOD as a whole achieves
consistent and substantial improvement over the four DODA-enabled models, showcasing that the
other component of AdaptOD, DNE, helps to learn balanced ID prediction energy and better align
the adapted outlier distribution to the true OOD one.

AdaptOD vs. Other TTA Methods for OOD Detection. Table 3 shows the comparison of
AdaptOD with two SOTA TTA methods AUTO and AdaODD for OOD detection on CIFAR10/100-
LT. To have a straightforward and extensive comparison, we compare DODA with the two TTA
methods, all of which are added on top of the same training method. In the experiments, we use five
training methods, including four SOTA long-tailed OOD detection methods and our proposed DNE
method. It is impressive that our DODA component consistently remains the best performer when
the TTA methods are combined with all five different training methods on both ID datasets. DODA
achieves better performance in all four OOD detection metrics across five OOD training methods,
indicating that DODA is a stronger and more generic TTA method for different OOD detectors.
Moreover, the combination of our training method DNE and TTA method DODA, which is our
approach AdaptOD as a whole, achieves the best performance across all 20 possible combinations.
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Table 5: Ablation study results on CIFAR10-LT, CIFAR100-LT and ImageNet-LT.

DODA DNE-C DNE-S ID Dataset: CIFAR10-LT ID Dataset: CIFAR100-LT ID Dataset: ImageNet-LT
AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓

Baseline (EnergyOE [24]) 91.92 91.03 91.97 33.80 76.40 77.32 72.24 76.33 69.43 45.12 84.75 76.89
✗ ✗ ✗ 80.33 81.46 77.02 78.71 67.42 68.29 63.86 85.44 58.33 38.40 77.61 89.73
✓ ✗ ✗ 92.63 92.05 92.46 30.17 78.10 80.22 74.17 71.65 71.71 45.99 86.37 74.31
✗ ✓ ✗ 92.12 91.54 92.33 31.85 76.89 77.94 72.76 74.97 71.11 45.59 85.77 76.83
✗ ✗ ✓ 91.98 91.36 91.92 32.44 76.53 77.46 72.55 74.62 70.55 45.36 84.95 77.02
✗ ✓ ✓ 92.77 92.18 92.62 31.48 77.92 78.97 73.92 74.44 72.04 46.53 86.06 75.82
✓ ✓ ✗ 93.81 93.32 93.53 28.69 80.07 82.13 75.73 68.64 73.14 47.61 87.19 73.67
✓ ✗ ✓ 93.49 92.98 93.02 29.52 79.76 81.89 75.31 69.19 72.76 47.32 86.83 74.48
✓ ✓ ✓ 94.69 93.89 94.12 27.26 81.93 83.09 77.83 67.37 74.32 49.02 88.63 72.91

Oracle Model 95.33 94.75 94.96 25.02 83.60 85.09 78.85 65.37 75.84 50.20 89.97 70.71

Performance on Large-scale ID Data. To demonstrate the scalability of our approach, we also
perform experiments on the large-scale ID dataset ImageNet-LT. The empirical results are presented
in Table 4, which shows that our approach AdaptOD also achieves the SOTA performance in both the
OOD detection performance and the ID classification accuracy.

4.3 Further Analysis of AdaptOD

Figure 3: The average performance over six
OOD datasets on CIFAR100-LT with an in-
creasing percentage of true OOD samples fed
to TTA methods.

Ablation Study. The effectiveness of our two pro-
posed components, DODA and DNE, have been justi-
fied in Table 3. Here we provide a more fine-grained
analysis of DODA and its combination to two im-
proved energy losses used in DNE, LC (Eq. 7, de-
noted as DNE-C) and LS (Eq. 9, denoted as DNE-S),
in Table 5, with EnergyOE [24] used as baseline. The
results show the important contribution of each com-
ponent to the overall superior performance of the full
model AdaptOD. Further, we compare AdaptOD to
an oracle model that utilizes the ground true OOD
data to update the outlier distribution Pout in DODA.
It shows that AdaptOD has only a small performance
gap to the oracle model, indicating that AdaptOD
can well approximate the true OOD distribution by
the predicted labels of the OOD samples, without
involving any ground truth during TTA.

OOD Data Exploitation in TTA. To independently evaluate the effectiveness of exploiting OOD
data to adapt the outlier distribution, we report the performance of three TTA methods with an
increasing number of labeled OOD samples based on our DNE in Fig. 3. All three TTA methods
achieve increasing performance for OOD detection in LTR with more and more true OOD data
used for the adaptation. However, AUTO and AdaOOD struggle with the difference between
training and testing ID data at the early stage of inference, while AdaptOD can utilize the adapted
outlier distribution to quickly adapt to the true OOD distribution and achieve significantly improved
performance.

5 Conclusion

To address the distribution shift problem in long-tailed OOD detection, we propose a novel approach
called AdaptOD. It utilizes a novel normalized energy-based loss – dual-normalized energy loss
(DNE) – to learn balanced prediction energy on imbalanced ID samples and enhanced vanilla
outlier distribution, then uses a dynamic outlier distribution adaptation (DODA) to adapt the outlier
distribution to the true OOD distribution. DODA is shown to be a significantly improved TTA method
than existing TTA methods for OOD detection. We also show that DNE can be used to support DODA
with its specially designed energy training for better test-time distribution adaptation. Experiments
on three popular benchmarks demonstrated that AdaptOD significantly enhances the performance of
both OOD detection and long-tailed classification.
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A More Experiment Settings

A.1 Datasets

For ID datasets, the original version of CIFAR10 [10] and CIFAR100 [10] contains 50, 000 training
images and 10, 000 validation images of size 32×32 with 10 and 100 classes, respectively. CIFAR10-
LT and CIFAR100-LT are the imbalanced version of them, which reduce the number of training
examples per class and keep the validation set unchanged. The imbalance ratio ρ denotes the ratio
between sample sizes of the most frequent class and least frequent class. Following [3], we utilize an
exponential decay in sample sizes across different classes.

ImageNet-LT [46] is a large-scale dataset in long-tail recognition, which truncates the balanced
version ImageNet [6]. ImageNet-LT has 1, 000 classes, which contain 115, 846 training images with
the number of per-class training data ranging from 5 to 1, 280, and 20, 000 validation images with a
balanced class size.

For outlier data, TinyImages80M [38] contains 80 million images with a size of 3232. We use a
subset of random 30K images as the outlier data for CIFAR10-LT and CIFAR100-LT [4, 40]. We use
ImageNet-Extra [40] that contains 517, 711 images belonging to 500 classes from ImageNet-22k [6]
but having not overlapping with the 1, 000 in-distribution classes in ImageNet-LT [4, 40].

For OOD datasets, we use SC-OOD benchmark [48] as true OOD data for CIFAR10-LT and
CIFAR100-LT [4, 40] following [4, 40]. The SC-OOD benchmark contains six datasets: CIFAR [19]
with 10, 000 images, Texture [5] with 5, 640 images, SVHN [31] with 26, 032 images, LSUN [51]
with 9, 998 images for CIFAR10-LT and 7, 571 images for CIFAR100-LT, Places365 [58] with
35, 195 images for CIFAR10-LT and 33, 773 images for CIFAR100-LT, and TinyImageNet [20]
with 8, 793 images for CIFAR10-LT and 7, 498 images for CIFAR100-LT. Following [30, 40], we
use ImageNet-1k-OOD [40] that contains 50, 000 images belonging to 1, 000 classes evenly from
ImageNet-22k, which have not overlapping with the 1, 000 ID classes in ImageNet-LT and the 500
outlier classes in ImageNet-Extra. A summary of the ID and OOD datasets is presented in Table 6.

Table 6: Key statistics of the ID and OOD datasets used.

Benchmark CIFAR10-LT CIFAR100-LT ImageNet-LT
Dataset Images Class Dataset Images Class Dataset Images Class

ID data (Training) CIFAR10-LT / 10 CIFAR100-LT / 100 ImageNet-LT 115,846 1,000
ID data (Testing) CIFAR10-LT 10,000 10 CIFAR100-LT 10,000 100 ImageNet-LT 20,000 1,000

Outlier data TinyImages80M 30,000 / TinyImages80M 30,000 / ImageNet-Extra 517,711 500

OOD data

CIFAR100 10,000 100 CIFAR10 10,000 10

ImageNet-
1k-OOD 50,000 1000

Texture 5,640 47 Texture 5,640 47
SVHN 26,032 10 SVHN 26,032 10
LSUN 9,998 10 LSUN 7,571 /

Places365 35,195 / Places365 33,773 /
TinyImageNet 8,793 / TinyImageNet 7,498 /

A.2 Implementation Details

For experiments on CIFAR10-LT [3] and CIFAR100-LT [3], we pre-train our model based on
ResNet18 [11] for 320 epochs with an initial learning rate 0.01 [1, 4] using only cross-entropy
loss and fine-tune the linear classifier of this model for 20 epochs with an initial learning rate
0.001 [4, 24]. The batch size is 64 for ID data at the pre-training stage, 128 for ID data at the
fine-tuning stage, and 256 for outlier data at the fine-tuning stage [4, 30, 40]. Our outlier dataset is a
subset of TinyImages80M [38] with 30K images [4, 40].

For large-scale dataset ImageNet-LT, which contains 115,846 images of 1,000 classes, we train
our model based on ResNet50 [11] for 100 epochs with an initial learning rate of 0.1 [30] using
only cross-entropy loss and also fine-tune the linear classifier of this model for 20 epochs with an
initial learning rate 0.01. Our auxiliary dataset is a subset of ImageNet22k [32] with 516K images,
following [30, 40].

All experiments use SGD optimizer and decay the learning rate to zero using a cosine annealing
learning rate scheduler [27]. All experiences are performed with 8 NVIDIA RTX 3090.
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B The AdaptOD Algorithm

The full steps of the training and inference in AdaptOD are given in Algorithm 1 below.

Algorithm 1 : AdaptOD
Training
Input: Pre-trained model f
Data: Training dataset Dtrain

in , Auxiliary dataset Dtrain
out

1: for each iteration do
2: Sample a mini-batch of ID training data:

{
(xin

i , yi)
}n

i=1
from Dtrain

in

3: Sample a mini-batch of OOD auxiliary data: {(xout
i )}ni=1 from Dtrain

out
4: Perform batch energy normalization based on Eq. 6
5: Perform gradient descent on model f with Ltotal based on Eq. 11
6: end for

Inference
Input: Outlier distribution Pout; Fine-tuned model f
Data: Test dataset Dtest

in∪out

1: for each sample x in dataset Dtest
in∪out do

2: Adapt the outlier distribution Pout with sample x and model f based on Eq. 4
3: Obtain calibrated global energy score GP(x) for sample x as OOD score using the outlier

distribution Pout based on Eq. 5
4: end for

C Discussion of Stable Margin Hyperparameters in DNE

C.1 Margin Hyperparameters in DNE-C

To identify OOD samples, we expect ID samples to have high energy, while OOD samples to have
low energy. Formally, let xin = {xin

1 , xin
2 , ..., xin

bin},x
in ∈ Xin be one training batch of ID data,

with bin be its batch size, and a corresponding batch of outlier data xout = {xout
1 , xout

2 , ..., xout
bout}

whose batch size is bout, the sum of class-normalized energy Fj(x) for all training samples in one
batch (ID samples and outlier samples in one batch) in each class j would be one:

Cj(x
in) +Cj(x

out) =

bin∑
i=1

Fj(x
in
i ) +

bout∑
i=1

Fj(x
out
i ) = 1. (13)

DNE-C class-wisely constrains the energy that optimizes the class energy of ID samples to be large
for each class, while the class energy of outlier samples is small for each class. Therefore, the
expected class-wise normalized energy for the batch of outlier samples Cj(x

in), j ∈ {1, 2, ..., k}
would be 1 on all classes, while the expected class-wise normalized energy for the batch of ID
samples Cj(x

out), j ∈ {1, 2, ..., k} would be zero on all classes:{
Cj(x

in) → 1,

Cj(x
out) → 0.

(14)

To this end, we set mc
in = 1 and mc

out = 0 for each class margin in Eq. 7, which optimizes the
class-wise normalized energy for the batch of outlier samples Cj(x

in) on each class j towards one,
while at the same time optimizing the class-wise normalized energy for the batch of ID samples
Cj(x

out) on each class j towards zero. In this way, these energy margin hyperparameters do not
rely on the training dataset and/or the imbalance factor.

C.2 Margin Hyperparameters in DNE-S

Similarly, the sum of class-normalized energy Fj(x) for all training samples in one batch (ID samples
and outlier samples in one batch) in each class j would be one. Furthermore, the sum of class-
normalized energy Fj(x) for all training samples in one batch over all classes would be k since there
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are k categories in the ID data:

bin∑
i=1

S(xin
i ) +

bout∑
i=1

S(xout
i ) =

bin∑
i=1

k∑
j=1

Fj(x
in
i ) +

bout∑
i=1

k∑
j=1

Fj(x
out
i ) = k. (15)

DNE-S sample-wisely constrains the energy that optimizes the global energy of each ID sample to be
large, while being well-balanced between head samples and tail samples. Therefore, the expected
sample-wise normalized energy S(x), x ∈ xin would be k

bin for each ID sample, which is evenly
divided the same scale to each ID sample (for either head samples or tail samples). And the expected
sample-wise normalized energy S(x), x ∈ xout would be zero for each outlier sample:{

S(x) → k
bin , x ∈ xin,

S(x) → 0, x ∈ xout.
(16)

Therefore, we set ms
in = k

bin and ms
out = 0, which optimizes the sum of class-normalized energy on

all classes S(x) for each ID sample to k
bin and optimizes the sum of class-normalized energy on all

classes S(x) for each outlier sample to zero. After doing this, we can regularize the global energy of
the ID data, particularly the low global energy for tail samples, reducing the over-confident prediction
of head samples. The same as the DNE-C loss, these specified margin parameters for training in
DNE-S also do not rely on the training dataset and/or the imbalance factor.

D More Experimental Results

D.1 More Results for DODA

Table 7 presents the results of our proposed component DODA in enabling two popular baselines
OE [12] and EnergyOE [24] on CIFAR10/100-LT on the six OOD test datasets. It shows that DODA
can consistently enhance the OOD detection for both baselines in all four metrics across all six
datasets, demonstrating the strong capability of DODA in reducing the learned outlier distribution gap
to the true OOD. Nevertheless, these DODA-enabled baselines underperform AdaptOD, indicating
that the other component of AdaptOD (i.e., DNE) helps to produce a largely enhanced vanilla outlier
distribution for DODA.

D.2 Differentiating OOD Data from Head and Tail Samples.

To evaluate the effectiveness in distinguishing OOD data from head and tail samples, we perform two
particular inference settings: one with only tail samples and OOD samples, and another one with only
head samples and OOD samples. Table 8 shows the averaged results over the six OOD test datasets
on CIFAR10/100-LT of the baseline EnergyOE [24], previous SOTA model COCL [30], and our
AdaptOD. It can be observed that AdaptOD does a better job than the two methods in both scenarios,
resulting in significantly enhanced overall detection performance.

D.3 More Ablation Study

D.3.1 Imbalance Ratio

In the Experiments section, we use the default imbalance ratio ρ = 100 on both CIFAR10-LT and
CIFAR100-LT. In this section, we show that our method can work well under different imbalance
ratios. Table 9 shows the comparison of AdaptOD with two SOTA long-tailed OOD detection
methods EnergyOE [24] and COCL [30] on CIFAR10-LT with ρ = 50 and ρ = 10. Our approach
can significantly outperform these baselines in not only OOD detection performance but also ID
classification accuracy by a considerable margin with different imbalance ratios. Furthermore,
our approach AdaptOD performs better in more imbalanced datasets, indicating the superiority of
AdaptOD for OOD detection in long-tail recognition.

Table 10 shows the comparison of our approach AdaptOD with two SOTA TTA methods AUTO
and AdaODD for OOD detection on CIFAR10-LT with ρ = 50. To have a straightforward and
extensive comparison, we compare DODA (the component of AdaptOD) with the two TTA methods,
all of which are added on top of the same training method. In the experiments, we use three training
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Table 7: Results of original and DODA-enabled OE and EnergyOE, and AdaptOD.
OOD

Dataset Method ID Dataset: CIFAR10-LT ID Dataset: CIFAR100-LT
AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓

Texture [5]

OE [12] 92.30 96.01 82.57 48.65 76.01 85.28 57.47 87.45
OE [12]+DODA(Ours) 95.02 96.97 84.40 46.99 77.93 86.51 62.48 82.75

EnergyOE [24] 95.53 97.42 92.93 18.44 79.56 86.03 70.88 79.45
EnergyOE [24]+DODA(Ours) 97.32 97.88 93.65 16.28 80.85 87.34 75.52 77.00

AdaptOD(Ours) 98.22 98.81 94.91 11.60 83.88 89.43 76.47 58.47

SVHN [31]

OE [12] 94.86 91.59 97.00 29.11 81.82 73.25 89.10 80.98
OE [12]+DODA(Ours) 95.95 92.01 98.16 25.75 84.20 75.78 91.68 74.86

EnergyOE [24] 96.63 92.33 98.46 14.37 86.19 81.42 91.74 34.36
EnergyOE [24]+DODA(Ours) 97.24 92.88 98.73 12.86 90.26 88.13 95.30 21.73

AdaptOD(Ours) 98.13 94.34 99.11 10.33 93.09 91.32 96.86 17.63

CIFAR [19]

OE [12] 83.32 84.06 80.83 65.82 62.60 66.16 57.77 93.53
OE [12]+DODA(Ours) 85.52 86.03 83.15 60.99 66.02 72.11 62.03 90.85

EnergyOE [24] 84.44 85.74 84.63 61.73 61.15 67.12 56.66 91.42
EnergyOE [24]+DODA(Ours) 86.71 87.86 87.01 54.33 70.42 76.10 68.66 89.87

AdaptOD(Ours) 89.05 89.93 88.22 45.51 72.77 76.37 70.58 86.04

TIN [20]

OE [12] 86.35 89.88 79.30 64.50 68.22 79.36 51.82 88.54
OE [12]+DODA(Ours) 88.39 90.88 82.70 61.40 70.36 79.72 53.44 88.38

EnergyOE [24] 88.40 91.65 84.95 46.23 70.78 79.40 55.90 90.74
EnergyOE [24]+DODA(Ours) 89.93 92.46 86.12 44.02 71.25 79.80 57.91 89.42

AdaptOD(Ours) 91.40 93.85 88.18 42.77 72.87 82.06 58.92 88.24

LSUN [51]

OE 91.57 93.06 88.37 53.99 76.81 85.33 60.94 83.79
OE [12]+DODA(Ours) 93.09 93.42 91.30 48.39 77.83 86.24 62.10 82.44

EnergyOE [24] 94.00 94.78 93.70 28.42 81.61 86.57 69.16 80.57
EnergyOE [24]+DODA(Ours) 94.92 95.77 94.56 26.17 82.54 88.12 70.88 77.68

AdaptOD(Ours) 96.16 96.84 95.86 24.12 85.70 90.55 72.70 70.20

Place365 [58]

OE [12] 90.20 82.09 95.24 57.06 75.68 60.99 86.51 83.55
OE [12]+DODA(Ours) 91.74 83.99 96.64 52.57 76.39 62.48 87.52 82.72

EnergyOE [24] 92.51 84.26 97.14 33.63 79.12 63.38 89.09 81.43
EnergyOE [24]+DODA(Ours) 94.03 86.15 97.75 31.23 81.08 65.85 90.94 80.09

AdaptOD(Ours) 95.19 89.56 98.44 29.22 83.27 68.82 91.44 71.63

Table 8: Comparison results on separating head/tail samples from OOD samples.
ID dataset method Head Samples Tail Samples

AUC↑ AP-in↑ AP-out↑ FPR↓ AUC↑ AP-in↑ AP-out↑ FPR↓

CIFAR10-LT
EnergyOE [24] 95.88 89.67 98.31 23.06 83.45 61.07 93.37 58.61

COCL [30] 96.34 93.34 98.67 19.59 91.91 76.98 97.15 34.30
AdaptOD(Ours) 98.20 96.80 99.00 11.20 93.40 80.58 98.27 30.70

CIFAR100-LT
EnergyOE [24] 84.22 69.70 92.81 69.42 67.63 35.85 85.96 81.77

COCL [30] 87.73 73.84 93.94 66.01 74.85 47.76 87.59 77.01
AdaptOD(Ours) 91.81 80.42 96.43 58.49 78.34 56.67 91.15 70.82

Table 9: Comparison results of imbalance ratio among EnergyOE [24], COCL [30], and our approach
AdaptOD on CIFAR10-LT.

Imbalance Ratio Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑

ρ = 100
EnergyOE [24] 91.92 91.03 91.97 33.80 74.57

COCL [30] 93.28 92.24 92.89 30.88 81.56
AdaptOD(Ours) 94.69 93.89 94.12 27.26 82.27

ρ = 50
EnergyOE [24] 93.48 92.68 93.05 29.74 81.23

COCL [30] 94.30 93.85 93.31 26.98 84.89
AdaptOD(Ours) 95.14 94.53 94.66 24.43 85.77

ρ = 10
EnergyOE [24] 95.03 94.34 94.83 25.26 88.47

COCL [30] 95.71 95.12 95.33 20.91 89.65
AdaptOD(Ours) 96.34 95.72 95.86 18.33 90.24

methods, including two SOTA long-tailed OOD detection methods and our proposed DNE-based
training method. It is impressive that our DODA component consistently remains the best performer
when the TTA methods are combined with all three different training methods on the CIFAR10-LT
datasets.

D.3.2 Network Architectures

In the Experiments section, we use the standard ResNet18 as the backbone model on both CIFAR10-
LT and CIFAR100-LT. To show the generality of our method, we also perform a long-tailed OOD
detection experiment using both ResNet34 and ResNet18. The results are shown in Table 11 and

18



Table 10: Comparison to different TTA-based OOD detection methods on CIFAR10-LT with ρ = 50.
Training Test AUC↑ AP-in↑ AP-out↑ FPR↓

EnergyOE [24]

w/o TTA 93.48±0.25 92.68±0.33 93.05±0.30 29.74±0.22
AUTO [49] 93.85±0.29 92.84±0.25 93.34±0.9 29.10±0.35

AdaODD [56] 94.14±0.33 92.92±0.32 93.60±0.33 29.01±0.20
DODA(Ours) 94.60±0.28 93.46±0.36 93.91±0.26 28.42±0.24

COCL [30]

w/o TTA 94.30±0.25 93.85±0.25 93.31±0.44 26.98±0.28
AUTO [49] 94.62±0.31 93.91±0.33 93.52±0.40 26.49±0.37

AdaODD [56] 94.41±0.29 93.84±0.31 93.35±0.46 26.67±0.35
DODA(Ours) 94.82±0.24 94.13±0.29 94.21±0.36 26.02±0.30

DNE
(Ours)

w/o TTA 93.85±0.38 93.43±0.28 93.62±0.39 27.47±0.38
AUTO [49] 94.59±0.43 93.68±0.33 93.98±0.38 26.50±0.35

AdaODD [56] 94.75±0.42 93.78±0.32 94.22±0.44 25.64±0.37
DODA(Ours) 95.14±0.41 94.53±0.27 94.66±0.36 24.43±0.32

Table 11: Comparison results of model structure among EnergyOE [24], COCL [30], and our
approach AdaptOD on CIFAR10-LT.

Model Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑

ResNet18
EnergyOE [24] 91.92 91.03 91.97 33.80 74.57

COCL [30] 93.28 92.24 92.89 30.88 81.56
AdaptOD(Ours) 94.69 93.89 94.12 27.26 82.27

ResNet34
EnergyOE [24] 92.25 91.37 92.31 32.44 74.89

COCL [30] 93.52 92.93 92.83 30.74 81.75
AdaptOD(Ours) 94.98 94.33 94.52 26.61 83.47

Table 12: Comparison to different TTA-based OOD detection methods on CIFAR10-LT using
ResNet34. The results are averaged over the six OOD test datasets in the SC-OOD benchmark.

Training Test AUC↑ AP-in↑ AP-out↑ FPR↓

EnergyOE [24]

w/o TTA 92.25±0.32 91.37±0.31 92.31±0.28 32.44±0.37
AUTO [49] 92.98±0.40 91.93±0.26 92.60±0.38 32.03±0.38

AdaODD [56] 93.16±0.36 92.10±0.50 92.90±0.46 31.87±0.47
DODA(Ours) 93.81±0.32 92.68±0.28 93.27±0.39 29.65±0.36

COCL [30]

w/o TTA 93.52±0.36 92.93±0.48 92.83±0.27 30.74±0.38
AUTO [49] 93.73±0.45 93.04±0.40 93.26±0.31 29.60±0.40

AdaODD [56] 93.90±0.47 93.19±0.35 93.46±0.44 29.31±0.41
DODA(Ours) 94.27±0.39 93.57±0.38 93.82±0.36 28.78±0.34

DNE
(Ours)

w/o TTA 93.28±0.30 92.64±0.25 92.95±0.32 31.18±0.33
AUTO [49] 93.77±0.33 92.83±0.50 93.36±0.45 29.99±0.47

AdaODD [56] 93.84±0.42 93.04±0.39 93.61±0.37 29.53±0.42
DODA(Ours) 94.98±0.35 94.33±0.33 94.52±0.40 26.61±0.37

Table 12. Table 11 shows the comparison of AdaptOD with two SOTA long-tailed OOD detection
methods EnergyOE [24] and COCL [30] on CIFAR10-LT using different backbone models. Table 12
shows the comparison of AdaptOD with two SOTA TTA methods AUTO and AdaODD for OOD
detection on CIFAR10-LT using ResNet34. AdaptOD maintains its superiority with different network
architectures.

D.3.3 Sensitivity

In the Approach section, we utilize a Z-score-based method based on training ID data to implement
the OOD filter, which predicts true OOD samples for adapting outlier distribution in DODA. The
threshold R in the OOD filter is calculated with only training ID data and can be directly used during
inference. α is a hyperparameter to adjust the threshold R. A too high value of R can misclassify a
large number of ID samples as OOD samples. On the other hand, a too low value of R will filter out
too many true OOD samples. In both cases, the outlier distribution adaptation becomes ineffective.
Fig. 4 shows the sensitivity of AdaptOD with respect to α in Eq. 3, showing that the performance of
AdaptOD is relatively stable with a relatively large range of α values, e.g., [2.5, 3.5].

D.3.4 Computational Overhead

AdaptOD performs normalization on the logit output of each class for each batch of training samples
before energy training. Fig. 13 shows the computational overhead of AdaptOD compared to the
baseline EnergyOE and the previous SOTA method BERL using the same backbone on CIFAR100-LT
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Figure 4: Average performance of AdaptOD w.r.t. α over six OOD datasets on CIFAR100-LT.

with a single NVIDIA RTX 3090, in which they are all fine-tuning-based and energy-based methods.
It shows that the training speed of AdaptOD is similar with the previous methods on both ResNet18
backbone and ResNet34 backbones.

Table 13: Comparison results of training time (seconds) on CIFAR100-LT.
Model Training Time (seconds)

EnergyOE [24] BERL [4] AdaptOD(Ours)
ResNet18 8.56 9.12 8.84
ResNet34 12.65 13.12 12.89

Table 14: Comparison results on synthetic OOD datasets with CIFAR10-LT.
Dataset Method AUC↑ AP-in↑ AP-out↑ FPR↓

Gaussian

EnergyOE [24] 99.74 99.76 99.33 1.96
BERL [4] 99.76 99.34 99.16 0.49

COCL [30] 99.68 99.79 99.39 0.02
AdaptOD(Ours) 99.83 99.87 99.58 0.08

Rademacher

EnergyOE [24] 99.13 99.25 97.16 2.32
BERL [4] 99.00 99.06 96.26 1.42

COCL [30] 99.76 99.84 99.56 0.01
AdaptOD(Ours) 99.78 99.65 99.61 0.04

Blobs

EnergyOE [24] 90.16 93.25 85.39 9.44
BERL [4] 93.18 96.87 89.34 6.54

COCL [30] 98.75 99.17 97.49 1.04
AdaptOD(Ours) 99.12 99.43 98.62 0.53

Average

EnergyOE [24] 96.34 97.42 93.96 4.57
BERL [4] 97.32 98.42 94.92 2.81

COCL [30] 99.40 99.60 98.81 0.35
AdaptOD(Ours) 99.58 99.65 99.27 0.22

D.4 Experiment Results on Synthetic OOD Datasets

To demonstrate the superiority of our approach AdaptOD on diverse OOD datasets, we also evaluate
our approach AdaptOD with three synthetic OOD datasets on CIFAR10-LT, including Gaussian,
Rademacher, and Blobs. Specifically, Gaussian noises have each dimension sampled from an isotropic
Gaussian distribution. Rademacher noises are images where each dimension is -1 or 1 with equal
probability, so each dimension is sampled from a symmetric Rademacher distribution. Blobs noises
consist of algorithmically generated amorphous shapes with definite edges. We use three SOTA
methods for comparison, including EnergyOE [24], BERL [4], and COCL [30]. As in Table 14, our
approach AdaptOD achieves similarly significant improvement over these methods on these synthetic
OOD datasets as on the other OOD datasets.
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E Limitation and Broader Impacts

E.1 Limitation

While AdaptOD offers a straightforward and competitive solution for out-of-distribution detection in
long-tailed recognition, it necessitates the incorporation of additional outlier data to learn an enhanced
vanilla outlier distribution, increasing the difficulty of applying it to real-world scenarios. The DODA
component in AdaptOD is an attempt that utilizes the detected OOD samples during the inference
stage to improve OOD detection performance. This requires online updating of the learned outlier
distribution. An alternative way is to optimize the outlier distribution and reduce its gap to the OOD
distribution during training, eliminating the online updating step. The lack of true OOD data remains
as a major challenge in such approaches. We leave it for future work.

E.2 Broader Impacts

OOD detection is a branch of anomaly detection that typically plays a positive role in enhancing
model security in various safety-critical applications such as autonomous driving. When applying
our methods, we need to ensure that the models are only used for the purpose of enhancing the safety
of deep learning models in real-world environments and do not infringe on human privacy.
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NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Appendix E.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our paper provides open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specifies all the training and testing details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our paper shows average results over six runs with different random seeds and
report the variance for our metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our paper provides sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of the work are discussed in Appendix E.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our paper gives proper acknowledgement of the original papers that produced
the code packages or datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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