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Abstract

Research on LLM-based knowledge-graph
(KG) automation is accelerating, while
retrieval-augmented generation (RAG) is
becoming the de-facto strategy for grounding
large language models in external facts.
Together these trends highlight a pressing
demand for KGs that are not only domain-
specialised but also endowed with multi-layer
explanations that an LLM can traverse when
reasoning.

We introduce SAKGC, an iterative two-phase
framework that (i) extracts and organises large
volumes of heterogeneous data into a com-
pact horizontal KG and (ii) uses RAG to at-
tach complexity-aware, hierarchical explana-
tions to every non-trivial entity. Extensive ex-
periments on three corpora of increasing scale
show that SAKGC improves triple accuracy,
reduces redundancy and internal-knowledge
leakage, and boosts answer correctness and
chain-of-thought clarity in downstream QA.
Code and data are available at https://
anonymous. 4open.science/r/SAKGC-3E67.

1 Introduction

Knowledge graphs (KGs) are structured col-
lections of factual triples, typically expressed
as (head entity, relation, tail entity), that represent
human knowledge in a machine-readable format.
Recent research has increasingly explored the syn-
ergy between large language models (LLMs) and
KGs (Yang et al., 2024) (Pan et al., 2024). On
one hand, LLMs have been used to automati-
cally construct KGs from raw text corpora; on
the other, KGs have been integrated into KG-
based retrieval-augmented generation (KG-RAG)
pipelines to improve the factual accuracy and con-
sistency of LLM outputs. These advances high-
light significant potential: heterogeneous Web
data can be transformed into structured, queryable
KGs, while LLMsenhanced by subgraph match-

ing and related reasoning algorithmscan accu-
rately retrieve relevant facts to support complex
queries. This promise is especially salient in the
context of domain-specific knowledge graphs,
where high-precision factual content is essential
for expert-level question answering and decision
support (Santos et al., 2022) (Zhang et al., 2022).
As a result, the central challenge becomes the
efficient, domain-specialised, and fully automatic
construction of KGs that are tightly aligned with
the capabilities and reasoning patterns of LLMs.

Despite promising progress, current LLM-
centric approaches remain insufficient for real-
world deployment. Domain-specific corpora are
typically vast and repetitive, leading models to
generate multiple triples that express the same
meaning in slightly varied forms. This redundancy
inflates both storage and retrieval costs without
yielding meaningful performance gains. In addi-
tion, some methods rely exclusively on the rea-
soning capacity of LLMs while ignoring knowl-
edge already internalized by the model, result-
ing in repeated regeneration of known facts (Cao,
2023). Most automatically constructed KGs also
limit themselves to surface-level triple extrac-
tion from factual text, without deeper semantic
structuring or abstractionthereby restricting down-
stream explainability. Combined with contextual
noise in the input, these limitations degrade ex-
traction quality and increase the risk of halluci-
nated outputs when grounding is weak or incon-
sistent (Zhang et al., 2023).

To address these challenges, we propose Stereo
Automatic Knowledge Graph Construction
(SAKGC), a framework that constructs domain-
specific knowledge graphs from raw text along
two complementary dimensions. The horizontal
dimension performs an iterative extraction pro-
cess to mine high-quality factual triples from do-
main corpora. A redundancy-merging module
consolidates semantically equivalent triples, while
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an internal-knowledge pruning module removes
facts already embedded in the LLM, thereby re-
ducing storage cost and improving retrieval ef-
ficiency. The vertical dimension enriches each
entity in the horizontal KG by generating hi-
erarchical, complexity-aware explanations using
retrieval-augmented generation (RAG), guided by
a proposed entity complexity metric. We further
design a reliable evaluation scheme to validate the
effectiveness of SAKGC through extensive exper-
iments across multiple settings.

In summary, this paper makes the following
main contributions:

1. SAKGC framework. We introduce Stereo
Automatic Knowledge Construction, a two-
dimensional pipeline that couples horizon-
tal factual extraction with vertical hierarchi-
cal explanation, aligning the graphs struc-
ture with the information-seeking behaviour
of LLMs.

2. Redundancy-aware compression. A dedi-
cated merging module detects and fuses se-
mantically equivalent triples, and an internal-
knowledge pruning component eliminates
facts already memorised by the LLM, jointly
reducing storage cost while preserving recall.

3. Entity-complexitydriven explanation. We
formalise entity complexity and leverage it to
trigger retrieval-augmented generation, yield-
ing multi-level explanations that enhance the
interpretability of KG-assisted reasoning.

4. Evaluation protocol. We survey existing
evaluation practices in knowledge graph con-
struction, propose a more comprehensive and
domain-oriented evaluation scheme, and con-
duct extensive experiments based on this
protocol to demonstrate the advantages of
SAKGC.

2 Related Work

2.1 LLM-Based Automatic Knowledge
Graph Construction

Recent studies show that large language models
(LLMs) can drive fully automated KG construc-
tion by directly extracting, categorising, and link-
ing entities from unstructured text. With a pre-
defined target schemaor even an induced schema
when none existsan LLM turns raw documents
into triples, enabling nearreal-time graph updates

with minimal human oversight (Zhang and Soh,
2024). This ability has already yielded prac-
tical gains in specialised domains: in health-
care and biomedicine, LLM pipelines distil enti-
ties and relations from electronic health records
and scholarly articles, slashing annotation time
while maintaining high recall (Xu et al., 2024; Ar-
senyan et al., 2023); in mental-health research,
depression-related corpora are organised cheaply
and rapidly for downstream analysis (Park et al.,
2024).

Building on these extraction capabilities, end-
to-end frameworks integrate knowledge extrac-
tion, refinement and updating into a unified
pipeline. Auto-KGQA supplies KG fragments
as context so that an LLM can convert natural-
language queries into structured SPARQL, over-
coming token-length limits (Avila et al., 2024).
Semi-automated toolkits assist ontology expan-
sion with limited expert input (Kommineni et al.,
2024b,a), while KELDaR improves graph fi-
delity through competency-question generation
and retrieval-based verification (Li et al., 2024).
Complementary efforts tackle hallucination by
cross-checking model outputs against trusted
graphs (KGR) (Guan et al., 2024), align knowl-
edge and rerank entities without fine-tuning (Chen
et al., 2024), benchmark LLMs on RDF-centric
formats (Frey et al., 2024), and adapt construction
to streaming or temporal data via Text-to-KG and
dynamic TKG pipelines (Ghanem and Cruz, 2024;
Di Maio et al., 2024).

While LLMs have unlocked promising levels
of automation, several challenges remain. Hal-
lucination is foremost: models can invent facts
when faced with noisy inputs, sparse evidence or
ambiguous wording, thereby degrading KG reli-
ability (Guan et al., 2024). Furthermore, most
pipelines stop at surface-level triples and omit
deeper semantic explanations, limiting the inter-
pretability of downstream reasoning. Finally, em-
pirical studies reveal that different LLMs exhibit
highly variable performance across RDF parsing,
SPARQL generation and temporal reasoning tasks,
making robust model selection an open research
question.

Based on these findings, our work targets hallu-
cination and explainability by producing lean, hier-
archically explained graphs that align more closely
with LLM reasoning.
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Figure 1: The freamwork of SAKGC. SAKGC consists of two components: horizontal knowledge graph expansion
(upper part) and vertical knowledge graph expansion (lower part).

2.2 Retrieval-Augmented Generation (RAG)

Text-centric RAG. Retrieval-augmented genera-
tion combines neural language models with non-
parametric memory so that the model can consult
external documents at inference time, thereby im-
proving factual accuracy and reducing parametric
load (Li et al., 2022; Khandelwal et al., 2019a).
Early instantiations such as REALM (Guu et al.,
2020) and RAG (Lewis et al., 2020) jointly train
a dense retriever and a generator by treating re-
trieved documents as latent variables. Subsequent
work scales memory and architecture: kNN-LM
replaces LSTMs with Transformers and indexes
billions of tokens (Khandelwal et al., 2019b),
while RETRO pushes the retrieval store to the
trillion-token scale and feeds the retrieved pas-
sages directly into the decoder (Borgeaud et al.,
2022). More recent systems query live search en-
gines to obtain up-to-date evidence before genera-
tion (Shuster et al., 2022; Lazaridou et al., 2022).
Graph-based RAG. Traditional RAG treats the
knowledge source as flat text, which under-utilises
the rich relational structure present in many do-
mains. GraphRAG addresses this gap by retriev-
ing subgraphsnot passagesfrom a graph database
and injecting their structured context into the lan-
guage model. By coupling graph neural networks
with LLMs, GraphRAG can exploit non-Euclidean

topology, yielding superior accuracy on tasks such
as node and edge classification (Zhu et al., 2024).
Empirical studies report consistent gains when
relational signals are provided alongside textual
cues, especially for multi-hop or multi-entity ques-
tions.

KG-enhanced RAG. A further specialisation
integrates explicit knowledge graphs (KGs) into
the retrieval loop. Here, the model first pulls
entityrelation triples via KG reasoning and then
conditions generation on those triples. KGLM
exemplifies the paradigm: it retrieves facts rele-
vant to the current context and verbalises them
as factual sentences, enabling the LLM to employ
out-of-vocabulary entities and domain-specific re-
lations (Logan IV et al., 2019). While LLMs aug-
mented in this way achieve impressive domain
precision, they remain vulnerable to hallucination
when the KG is incomplete or ambiguous.

Therefore, we design SAKGC framework
to supply hierarchically explained, redundancy-
reduced KG evidence that mitigates hallucination
and improves answer faithfulness.



3 Methodology

3.1 Task Formulation

Given a domain corpus D = {d;}_, and an initial
entity list & containing the core concepts of that
domain, our goal is to automatically construct a
stereo knowledge graph that couples surface facts
with hierarchical explanations. Concretely,

g = (gH> gV)7 (1)

where the horizontal graph G stores triples ex-
tracted from D and the vertical graph Gy, expands
high-complexity entities in Gy into successively
simpler explanatory triples. The construction pro-
ceeds iteratively: a horizontal loop grows Gy until
no new entities remain, and a vertical loop then
refines selected entities according to a complex-
ity threshold 7. The process terminates once both
loops converge, yielding a compact, hierarchically
explained stereo KG.

3.2 SAKGC Framework

We propose a novel system called Stereo Auto-
matic Knowledge Enrichment (SAKGC) to ad-
dress this task. The framework of SAKGC is illus-
trated in Figure 1.

Horizontal expansion. Let the working entity
queue be & (initially &). For each unvisited en-
tity e € &, the following LLM-driven pipeline is
executed:

1. Generator (D,e,b) — Tgen: To extract a
comprehensive set of triples headed by entity
e, we design a generator module that lever-
ages large language models (LLMs) via few-
shot prompting.

We first retrieve a small set of reference
triples involving e from Wikipedia. These ex-
amples are then formatted as demonstrations
to guide the LLM in extracting additional
triples from a given corpus D. Specifically,
the corpus is divided into sentence batches of
size b to ensure compatibility with the LLMs
context window. Each batch is paired with
the prompt, instructing the model to identify
all relation triples where e appears as the head
entity.

This process results in a set of generated
triples 7gen, Which capture diverse relational
knowledge about e grounded in textual evi-
dence.

2. Validator 7g, — 7Tva: To ensure the qual-

ity and factuality of the generated triples, we
introduce a validator module that filters out
invalid or illogical entries from 7geq.

Each triple is evaluated by prompting an
LLM with a factuality judgment task framed
from an engineer’s perspective. The prompt
explicitly asks the model to label a triple as
"incorrect" only if it is certain the informa-
tion is factually wrong. If the triple is factu-
ally accurate, or if there is insufficient con-
text to make a definitive judgment, the model
returns "correct." This conservative strategy
minimizes false negatives while maintaining
precision, resulting in a validated triple set

7:/al .

. Merger T,a — Tmre: To reduce redundancy

and optimize downstream usage, we design a
similarity-based merger that identifies seman-
tically overlapping triples in 7y, . A pairwise
similarity function is applied to assess seman-
tic closeness between triples, and highly sim-
ilar triples are merged into unified representa-
tions.

This process helps preserve the core infor-
mational content while reducing storage cost
and retrieval overhead in downstream tasks.
Details of the merging algorithm are provided
in Section 3.3, and its impact on retrieval-
based knowledge graph augmentation is eval-
uated in Section 4.4.

. Pruner 7y¢ — Tpm: To avoid redundant

knowledge and maximize the utility of exter-
nal triples, we implement a pruning module
that identifies and removes triples likely al-
ready memorized by the LLM.

A relatively strict protocol is used to assess
whether a given triple reflects internal knowl-
edge encoded within the LLM. This ensures
that the retained triples contribute novel or
complementary information during retrieval.

The implementation details of this module
are described in Section 3.4, and its effect
on retrieval performance is empirically eval-
uated in Section 4.5.

. Iterator 7, — AE: To enable iterative ex-

pansion of the knowledge graph, we design
an iterator module that determines which tail



entities in 7,y should be promoted as new
head entities for the next round.

This decision is made by querying the LLM
through an API, asking whether a given tail
entity is sufficiently central or informative to
justify further exploration. The selected enti-
ties A€ serve as the seeds for the subsequent
iteration.

The final set 7, is added to Gpy. The current en-
tity e is marked as visited, and the new entities AE
are merged into the queue. This loop repeats un-
til no new entities are generated or the maximum
depth k; is reached.

Vertical expansion. Based on the horizontal
graphs entity set Vg, SAKGC constructs a hier-
archical explanation graph via the mapping:

Jeer s Vi, 7, k2) — Gy 2

Entities with complexity c(e) > 7 are queued
for vertical expansion. For each such entity:

1. RAG Explainer ¢ — d(e): Retrieves a
concise definition text for e using retrieval-
augmented generation.

2. Converter (e,d(e)) — Scony: Converts the
definition into a set of explanatory triples
with e as the head in every triple.

3. Vertical Pruner S.o,y — Spm: Removes any
triple whose tail entity has complexity higher
than e.

The filtered triples Sy, are added to Gy, and el-
igible tail entities are added to the vertical queue
if their complexity satisfies 7 < ¢(t) < c(e). The
process repeats until the queue is empty or a re-
cursion depth ko is reached. Formal definitions of
complexity, the RAG retrieval process, and triple
conversion rules are provided in Section 3.5.

3.3 Merger Module

Given the validated triple multiset Tva(e) = {t; =
(€,7k,0k) iy, we first define the similarity be-
tween two triples as

S(tmtj) € [07 1]7 (3)

where larger values indicate stronger synonymy.
This score is computed by prompting the back-
bone LLM with the pair (¢;,¢;) and reading its
real-valued output. Evaluating all pairs produces

an n X n symmetric matrix S = [S;;] with S;; =
S(ti, tj ) .

A threshold 7 binarises the matrix into A;; =
I[S;; > 7]. Starting from the full index set R =
{1,...,n}, we repeatedly remove the node with
the largest degree d(i) = >_; ; Aij (ties broken
by input order) until R contains no edges. The
surviving indices K C R define the deduplicated
output

Tmore(e) = {ti | k € K}. 4)

To alleviate the O(n?) oracle cost, triples are pro-
cessed in mini-batches of size B; each batch needs
B? similarity calls and there are n/B batches in
total, giving an overall complexity of O(nB). Be-
cause batches run in parallel threads, the wall-time
is further reduced in practice.

3.4 Internal-Knowledge Pruning

In a triple (h,r,t) the relation  can be viewed as
a logical condition that links two concepts h and
t. We call r a sufficient condition for ¢ with re-
spect to h if the statement (h,r) = ¢ holds for
the LLM, and a necessary condition if ¢ together
with 7 implies h, i.e. (r,t) = h. When both impli-
cations hold, r is a necessary and sufficient con-
dition, meaning the three elements are mutually
derivable. Under this theory we adopt the hypothe-
sis that an LLM already possesses a fact whenever
it can (i) recover the correct relation from the head-
tail pair,

7 = pred(h, t), P, 5)
and (ii) derive at least one entity from the re-
lation plus the other entity, { = pred(h,r) or
h = pred(r,t), with the predicted element se-
mantically equivalent to its ground-truth counter-
part. Triples satisfying this two-step test form the
internal set Tin(e) and are removed; the remain-
der Tom(e) is retained. Prompt batching of size
 cuts the number of LLM calls from 3|7py| to
3| Tmre|/ B, and parallel threads accelerate execu-
tion.

Consider the triple (Obama, nationality, USA).
If the LLLM truly knows this fact, it correctly pre-
dicts nationality from the pair (Obama, USA); the
relation is therefore at least sufficient. Further-
more, the model can use (Obama, nationality) to
infer USA, satisfying the at least one entity clause,
so the triple is discarded as internal. Now sup-
pose the model lacks information about Obama. It
still predicts the relation from (Obama, USA) but



fails to obtain USA from (Obama, nationality); the
sufficient condition holds but the entity inference
fails, so the triple is kept. Conversely, even if the
model is familiar with both Obama and USA, it
cannot invert (USA, nationality) to recover Obama
because nationality is not a sufficient condition in
that direction; only one entity inference succeeds,
and the triple remains novel. Thus the criterion
removes a substantial portion of already encoded
knowledge while preserving facts that extend the
LLMs capabilities.

3.5 Vertical Expansion of the Stereo KG

Input and fine-grained complexity. The verti-
cal module consumes the horizontal entity set Vg
and outputs a hierarchical explanation graph Gy .
For every entity e we obtain four ratings from one
LLM prompt and combine them as

C(e)=D(e)+ L(e) + I(e) + Cs(e)  (6)

Here D(e) counts how many knowledge domains
(biology, law, history, technology, art) are in-
volved; L(e) maps to primary, secondary, bache-
lor, master, or doctoral knowledge; I(e) is public
comprehension difficulty (very easy very hard);
Cs(e) € {0,1,2} marks West-centric, neutral, or
East-centric background so that culturally distant
concepts are penalised when the target audience is
known. Entities with C'(€) > Clpyresh enter the ex-
pansion queue.

RAG-driven recursive expansion. Many
graph entities are rare terms that lack a canon-
ical encyclopedia entry. We therefore retrieve
the & nearest neighbours Si(e) from an external
corpus and assemble their definitions and triples
into a context prompt C.. A GPT-class generator
uses C, to synthesise a fresh definition d(e) for e
and then converts that definition into explanatory
triples

{(6, rivti)}zril (7

each headed by the original entity ein effect, a set
of tail entities that explain e. A triple is kept only
when the tail complexity satisfies

C(ti) < C(e) (8)

so that more complex entities are never used to
clarify a simpler one. Accepted tails with C'(¢;) >
Cinresh are queued for the next recursion; the loop
ends when the queue is empty or a depth limit ko
is reached.

Figure 2: An example of recursive vertical expansion
for a given entity (deep learning). Green boxes indicate
the newly expanded entities, while orange boxes repre-
sent definitions for the final-layer entities. The number
inside each green box denotes the entity’s complexity.
A definition is generated only if complexity exceeds 8.
In this case, the expansion reaches 3 layers.

Illustrative example. For the entity Deep learn-
ing (C = 13), our RAG pipeline first retrieves
an authoritative textual definition, then initiates a
complexity-aware depth-first expansion (Fig. 2).

In layer 1, the system discovers two tail entities:
machine learning (C' = 12) and large amounts of
data (C = 10). The former is further expanded,
while the latter haltsits definition is parsed, but
all resulting triples point to entities of compara-
ble or higher complexity, violating the simplifica-
tion constraint. Layer 2 expands machine learn-
ing into three entities: systems to learn from data
(C = 11), performance on tasks (C = 8), and ex-
plicit programming (C = 10). The second entity
is too simple to justify further definition, but the
other two are expanded into new triples in layer 3.
Layer 3 yields four leaf entities: data (C' = 8),
patterns (C' = 8), predictions (C = 9), and de-
cisions (C = 8). Only predictions and decisions
exceed the complexity threshold and are assigned
definitions. The rest are considered sufficiently
simple to be handled by the LLMs background
knowledge.

As the recursion depth is capped at 3, the ex-
pansion concludes at this layer. The entire process
follows the rule C'(t) < C'(h) — 1: each concept is
grounded through strictly simpler ones, ensuring
meaningful abstraction, bounded graph size, and
efficient retrieval. This structured explanation path
also serves as an explicit chain-of-thought for the



Method TC TR Prec. Rec. F1

Pive 147  0.608 0.3749 09101 0.4819
KG-LLM 223 0.611 0.2287 0.7929 0.3227
CoKGC 97 0.740 0.5165 0.8435 0.5785
SAKGC 400 0.805 0.1376 0.8876 0.2382

Table 1: Evaluation on Genwiki-5K. TC: Triple Count;
TR: Triple Relevance. Rec.: Recall.

Method TC TR Prec. Rec. F1
Pive 18,562 0.577 0.3749 0.9101 0.4819
KG-LLM 12,060 0.742 0.2287 0.7929 0.3227
CoKGC 12,691 0.584 0.4704 0.8777 0.5559
SAKGC 41,377 0.956 - - -

Table 2: Evaluation on Genwiki-500K. TC: Triple
Count; TR: Triple Relevance. Rec.: Recall.

language model.

4 Experiments

To evaluate the effectiveness of SAKGC, we de-
sign a two-stage experimental setup. In the first
stage, we extend a standard suite of text-based
knowledge graph construction benchmarks to as-
sess the quality of horizontally expanded graphs
across datasets of increasing size. We also de-
sign separate experiments to independently verify
the utility of the redundancy-merging and internal-
knowledge pruning modules. In the second stage,
we incorporate the vertically structured graph into
a QA pipeline, prompting the language model to
generate both answers and their corresponding rea-
soning traces. We evaluate the quality of the gener-
ated answers and reasoning chains to demonstrate
the benefit of complexity-driven recursion. Re-
sults are presented in Sections 4.1-4.5. All evalua-
tion metrics, baseline descriptions, and implemen-
tation details are provided in Appendix A.

4.1 Evaluation on Standard Benchmark

We evaluate the quality of horizontally expanded
knowledge graphs on the Genwiki dataset at two
corpus scales: 5K and 500K. For each setting, we
report all proposed metrics except Triple Similar-
ity (TS). The reason TS is excluded is that, under
small-scale data settings, the number of generated
triples is relatively low, making it unlikely to ob-
serve redundant triples with the same head entity.

As shown in Tables 1 and 2, our method pro-
duces substantially more triples than all baselines
and achieves the highest relevance (TR), reflecting
strong alignment with the source text. Although
our system covers most ground-truth triples, its

Method TC TR TS
Pive 277,410  0.866  0.0004
KG-LLM 34,194 0.841 -
CoKGC 101,523  0.728  0.0004
Ours 854,874 0.998  0.0002

Table 3: Evaluation on the real-world dataset (no gold-
standard available). TS: Triple Similarity.

precision appears lower because the metric’s de-
nominator grows with the total number of gener-
ated triples. We exclude G-BERTScore on the
500K set, as it operates at the sentence level, while
our model generates triples at the document level-
making sentence-wise alignment prohibitively ex-
pensive at scale.

4.2 Evaluation on Real-World Corpus

We further evaluate the quality of horizontally ex-
panded graphs on a real-world dataset combining
two heterogeneous corpora related to the automo-
tive domain. Since no gold-standard triples are
available, we exclude G-BERTScore and focus on
the remaining three metrics: Triple Count (TC),
Triple Relevance (TR), and Triple Similarity (TS).
Results are shown in Table 3.

Our method produces the highest number of
triples with the best relevance score and the lowest
semantic redundancy (TS). The low TS score in-
dicates that our deduplication module effectively
eliminates near-duplicate triples, improving the
quality of the resulting graph. KG-LLM often fails
to generate triples in this setting, resulting in a very
low overall triple count. Due to the small output
size, we omit similarity evaluation for this method.

4.3 Effectiveness of Redundancy Reduction

To assess whether merging synonymous triples af-
fects answer quality, we conduct a controlled ex-
periment. From a physics corpus, we sample
50 triples and generate 10 semantically equiva-
lent variants for each. For each group, we for-
mulate two factual questionsone inferring the tail
given the head and relation, the other inferring the
head given the tail and relation. These questions
are then posed under three prompting conditions:
(1) no triples, (2) 10 unmerged triples, and (3) 1
merged triple. Accuracy is measured across eight
language models.

As shown in Table 4, most models perform
poorly when no triples are provided, but achieve
over 95% accuracy with either unmerged or
merged triples. This indicates that merging redun-



Model Count No Trip. Unm. Merged Setting Triple Included?  Accuracy
deepseek-chat 100 0.08 0.98 0.93 Direct Question No 98.5%
glm-4 100 0.02 0.93 0.82 With Triple Yes 99.0%
gpt-3.5-turbo 100 0.04 0.66 0.84
gPt-j %88 8(1)(5) 835 83; Table 6: Accuracy of GPT-40 on location classification
gpt-4o X X X . . .. . .
apt-4o-min 100 0.07 0.98 0.98 with and without explicit supporting triples.
gpt-4-turbo 100 0.07 0.97 0.96
QWCHQWQ-32B 100 0.11 0.96 0.96 Method Accuracy Rel. Ent. Steps
zero_shot  0.79 (158/200) 3.36 2.07
. . . . is_a 0.80 (160/200) 3.27 2.06
Table 4: Accuracy of different models with and without araph 0.81 (163/200) 3.65 229

triple context.

Model Count No Trip, Unm. Merged
deepseek-chat 100 79.72 237.51 102.45
glm-4 100 77.09 236.37 99.02
gpt-3.5-turbo 100 67.23 230.01 89.97
gpt-4 100 67.23 230.01 89.97
gpt-4o 100 67.23 230.01 89.97
gpt-40-mini 100 67.23 230.01 89.97
gpt-4-turbo 100 67.23 230.01 89.97
QwenQwQ-32B 100 73.67 233.31 95.23

Table 5: Avg. token usage per setting.

dant triples preserves essential semantics while re-
ducing repetition.

We also compare token consumption across set-
tings. As shown in Table 5, merged triples greatly
reduce token usage compared to unmerged ones,
lowering inference cost with minimal impact. Mi-
nor differences across models stem from varying
tokenization schemes.

4.4 Pruning Internal Knowledge

To test whether factual triples already known to
the LLM can be pruned, we construct 200 yes/no
questions of the form Is city A located in country
B?, sampled from Wikipedia with a 50% true/false
split.

We evaluate GPT-3.5-turbo under two settings:
(1) the question alone, and (2) the question with a
supporting triple (city, location, country).
As shown in Table 6, both settings yield nearly
identical accuracy, suggesting that including facts
already internalized by the model provides little
added value. This supports pruning as a way to re-
duce token usage without harming answer quality.

4.5 Evaluating Vertical Expansion

We evaluate the impact of hierarchical concept
expansion through a QA task in the Al domain,
which contains rich and diverse entities spanning
multiple complexity levels. We collect 200 Al-
related entities and generate one reasoning-based
question per entity, each paired with a refer-
ence answer. Three knowledge formats are com-

Table 7: Performance of different knowledge formats.
Rel. Ent.: Relevant Entities. Steps: Reasoning Steps.

pared: zero_shot (entity only), is_a (entity + one-
sentence definition), and graph (entity + defini-
tion + hierarchical triples).

We use GPT-3.5-Turbo to generate both the
questions and reference answers. For answer gen-
eration, we prompt THUDM/GLM-Z1-32B-0414,
a weaker model chosen to better reveal the utility
of external knowledgestronger models might an-
swer correctly without any support, masking the
effect of the knowledge input. In addition to an-
swers, the model outputs reasoning traces in triple
format.

We then evaluate: (a) Accuracy whether the an-
swer matches the reference (strict for missing key
content, tolerant for additions), (b) Relevant Enti-
ties number of distinct entities used in reasoning,
(c) Reasoning Steps length of the reasoning chain.
As shown in Table 7, accuracy improves with
richer knowledge formats, with our graph-based
method performing best. It also yields broader en-
tity coverage and deeper reasoning, indicating that
structured explanations help the model integrate
more relevant concepts. Additionally, our method
produces clearer, more traceable reasoning paths,
enhancing interpretability for real-world use.

5 Conclusion

We introduced SAKGC, an iterative framework
that constructs stereo knowledge graphs from raw
domain text. It combines horizontal triple extrac-
tion with redundancy control, and vertical expan-
sion via RAG to generate complexity-aware, hi-
erarchical explanations. Experiments show that
SAKGC yields significantly more relevant triples
with lower redundancy, and improves answer accu-
racy and reasoning coherence in QA tasks. Our re-
sults suggest that SAKGC provides a scalable and
interpretable solution for domain-specific KG con-
struction.



Limitations

This study demonstrates how a large language
model, coupled with retrieval-augmented genera-
tion, can construct a stereo KG while refusing
redundant or already-internal facts. Although
promising, the framework is not yet ready for
seamless industrial deployment and several limi-
tations remain.

Construction efficiency and computational
cost. Each entity traverses four horizontal and up
to two vertical modules, every step invoking the
LLM. Even with parallel batches, the generator
must scan the full document set, yielding O(n?)
worst-case complexity. On very large corpora the
resulting latency and API cost may be prohibitive;
smarter indexing and caching are required.

Scope of the pruning modules. Redun-
dancy merging and internal-knowledge pruning
are tuned for the RAG-QA scenario. When used
for direct KG-QA or with a different backbone
model, they may delete helpful triples or miss
memorised facts. An adaptive pruning strategy is
needed for broader use.

Metric ambiguity. Redundancy, entity com-
plexity and internal knowledge are fuzzy notions.
Our operational definitions work in practice but
do not cover all edge cases; sharper formalisations
and learning-based estimators could improve reli-
ability.

Scalability. Experiments were limited to a
15-million-sentence corpus. Performance at web
scalebillions of sentencesremains unknown and
may expose new bottlenecks in storage, retrieval
or recursion depth, calling for distributed imple-
mentations and further evaluation.
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A Experimental Setup

Datasets. We evaluate SAKGC on three text-
only corpora of increasing size: 5K, 500K, and
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15M tokens. The 5K and 500K sets are con-
structed from Genwiki (Jin et al., 2020), a bench-
mark dataset for text-based knowledge graph
construction, which provides sentence-level gold-
standard triples. To focus on a specific do-
main, we extract only physics-related content and
consolidate it into the final corpus. The 15M
dataset serves as a realistic open-domain scenario,
comprising two equal parts: automotive-related
content from a technical e-book and discussions
scraped from Reddit on car topics.

Evaluation Metrics. While prior work com-
monly adopts G-BERTScore for evaluating triple
prediction quality against reference data, it does
not capture several important aspects of the text-
to-triple generation process. To address this, we
extend the evaluation protocol with three comple-
mentary metricsTriple Count (TC), Triple Rele-
vance (TR), and Triple Similarity (TS)that offer a
more holistic assessment of system behavior.

(1) Triple Count (TC): Measures the total num-
ber of generated triples, reflecting the model’s abil-
ity to extract structured facts.

(2) Triple Relevance (TR): Quantifies how
well the generated triples align with the input text.
For each triple, we check whether the head, rela-
tion, and tail strings appear in the source sentence
via exact match. TR is computed as the proportion
of matched elements across all triples.

(3) Triple Similarity (TS): Evaluates semantic
redundancy among triples sharing the same head
entity. We randomly sample 10,000 distinct triple
pairs and query an LLLM to determine whether they
are semantically synonymous. TS is the percent-
age of pairs classified as synonymous.

(4) G-BERTScore (G-BS): We adopt G-
BERTScore (Saha et al., 2021), an extension of
BERTScore (Zhang et al., 2019), to compare
predicted triples with gold-standard references.
Triples are verbalized into natural language sen-
tences, and alignment is computed via semantic
similarity. We report precision, recall, and F1:

Z(ILQ)'EAlignmem BERTScore (p, g)

Precision —
recsiof |Predicted Triples| ’
(€))
Recall — Z(p,g)EAlignment BERTSCOI‘G(p, g)
|Ground-Truth Triples|
(10)
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Precision - Recall

Fl =2 (11)

Here, p € Predicted Triples and g €
Ground-Truth Triples. The alignment set consists
of one-to-one mappings between predicted and ref-
erence triples, based on their BERTScore similar-

ity.

" Precision + Recall

Baselines. We compare SAKGC against three
recent and representative triple extraction meth-
ods:

Pive (Han et al., 2023) introduces an auxiliary
module that detects missing elements in initially
generated triples. If a triple is found incomplete,
the model iteratively regenerates missing parts, im-
proving triple completeness.

KG-LLM-Prompting (Carta et al., 2024) con-
structs a structured pipeline using LLMs to extract
entities and relations sequentially. It uses prompt
chaining and task decomposition to facilitate triple
generation.

CodeKGC (Bi et al., 2024) reformulates triple
extraction as a code generation task. It prompts
the LLM using code-style instructions rather than
natural language, leveraging domain-specific few-
shot examples to improve generation accuracy.

Implementation Details. For horizontal expan-
sion, we set the number of iterations k; = 3, with
a batch size of b = 4K tokens per iteration. The
similarity threshold for merging semantically re-
dundant triples is fixed at 0.7. For vertical expan-
sion, we also use a maximum recursion depth of
ko = 3, and only expand entities with complexity
scores greater than 8. Unless otherwise specified,
all stages of our method rely on the DeepSeek lan-
guage model as the backend for definition genera-
tion, triple extraction, and reasoning.
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