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Abstract001

Research on LLM-based knowledge-graph002
(KG) automation is accelerating, while003
retrieval-augmented generation (RAG) is004
becoming the de-facto strategy for grounding005
large language models in external facts.006
Together these trends highlight a pressing007
demand for KGs that are not only domain-008
specialised but also endowed with multi-layer009
explanations that an LLM can traverse when010
reasoning.011

We introduce SAKGC, an iterative two-phase012
framework that (i) extracts and organises large013
volumes of heterogeneous data into a com-014
pact horizontal KG and (ii) uses RAG to at-015
tach complexity-aware, hierarchical explana-016
tions to every non-trivial entity. Extensive ex-017
periments on three corpora of increasing scale018
show that SAKGC improves triple accuracy,019
reduces redundancy and internal-knowledge020
leakage, and boosts answer correctness and021
chain-of-thought clarity in downstream QA.022
Code and data are available at https://023
anonymous.4open.science/r/SAKGC-3E67.024

1 Introduction025

Knowledge graphs (KGs) are structured col-026

lections of factual triples, typically expressed027

as (head entity, relation, tail entity), that represent028

human knowledge in a machine-readable format.029

Recent research has increasingly explored the syn-030

ergy between large language models (LLMs) and031

KGs (Yang et al., 2024) (Pan et al., 2024). On032

one hand, LLMs have been used to automati-033

cally construct KGs from raw text corpora; on034

the other, KGs have been integrated into KG-035

based retrieval-augmented generation (KG-RAG)036

pipelines to improve the factual accuracy and con-037

sistency of LLM outputs. These advances high-038

light significant potential: heterogeneous Web039

data can be transformed into structured, queryable040

KGs, while LLMsenhanced by subgraph match-041

ing and related reasoning algorithmscan accu- 042

rately retrieve relevant facts to support complex 043

queries. This promise is especially salient in the 044

context of domain-specific knowledge graphs, 045

where high-precision factual content is essential 046

for expert-level question answering and decision 047

support (Santos et al., 2022) (Zhang et al., 2022). 048

As a result, the central challenge becomes the 049

efficient, domain-specialised, and fully automatic 050

construction of KGs that are tightly aligned with 051

the capabilities and reasoning patterns of LLMs. 052

Despite promising progress, current LLM- 053

centric approaches remain insufficient for real- 054

world deployment. Domain-specific corpora are 055

typically vast and repetitive, leading models to 056

generate multiple triples that express the same 057

meaning in slightly varied forms. This redundancy 058

inflates both storage and retrieval costs without 059

yielding meaningful performance gains. In addi- 060

tion, some methods rely exclusively on the rea- 061

soning capacity of LLMs while ignoring knowl- 062

edge already internalized by the model, result- 063

ing in repeated regeneration of known facts (Cao, 064

2023). Most automatically constructed KGs also 065

limit themselves to surface-level triple extrac- 066

tion from factual text, without deeper semantic 067

structuring or abstractionthereby restricting down- 068

stream explainability. Combined with contextual 069

noise in the input, these limitations degrade ex- 070

traction quality and increase the risk of halluci- 071

nated outputs when grounding is weak or incon- 072

sistent (Zhang et al., 2023). 073

To address these challenges, we propose Stereo 074

Automatic Knowledge Graph Construction 075

(SAKGC), a framework that constructs domain- 076

specific knowledge graphs from raw text along 077

two complementary dimensions. The horizontal 078

dimension performs an iterative extraction pro- 079

cess to mine high-quality factual triples from do- 080

main corpora. A redundancy-merging module 081

consolidates semantically equivalent triples, while 082
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an internal-knowledge pruning module removes083

facts already embedded in the LLM, thereby re-084

ducing storage cost and improving retrieval ef-085

ficiency. The vertical dimension enriches each086

entity in the horizontal KG by generating hi-087

erarchical, complexity-aware explanations using088

retrieval-augmented generation (RAG), guided by089

a proposed entity complexity metric. We further090

design a reliable evaluation scheme to validate the091

effectiveness of SAKGC through extensive exper-092

iments across multiple settings.093

In summary, this paper makes the following094

main contributions:095

1. SAKGC framework. We introduce Stereo096

Automatic Knowledge Construction, a two-097

dimensional pipeline that couples horizon-098

tal factual extraction with vertical hierarchi-099

cal explanation, aligning the graphs struc-100

ture with the information-seeking behaviour101

of LLMs.102

2. Redundancy-aware compression. A dedi-103

cated merging module detects and fuses se-104

mantically equivalent triples, and an internal-105

knowledge pruning component eliminates106

facts already memorised by the LLM, jointly107

reducing storage cost while preserving recall.108

3. Entity-complexitydriven explanation. We109

formalise entity complexity and leverage it to110

trigger retrieval-augmented generation, yield-111

ing multi-level explanations that enhance the112

interpretability of KG-assisted reasoning.113

4. Evaluation protocol. We survey existing114

evaluation practices in knowledge graph con-115

struction, propose a more comprehensive and116

domain-oriented evaluation scheme, and con-117

duct extensive experiments based on this118

protocol to demonstrate the advantages of119

SAKGC.120

2 Related Work121

2.1 LLM-Based Automatic Knowledge122

Graph Construction123

Recent studies show that large language models124

(LLMs) can drive fully automated KG construc-125

tion by directly extracting, categorising, and link-126

ing entities from unstructured text. With a pre-127

defined target schemaor even an induced schema128

when none existsan LLM turns raw documents129

into triples, enabling nearreal-time graph updates130

with minimal human oversight (Zhang and Soh, 131

2024). This ability has already yielded prac- 132

tical gains in specialised domains: in health- 133

care and biomedicine, LLM pipelines distil enti- 134

ties and relations from electronic health records 135

and scholarly articles, slashing annotation time 136

while maintaining high recall (Xu et al., 2024; Ar- 137

senyan et al., 2023); in mental-health research, 138

depression-related corpora are organised cheaply 139

and rapidly for downstream analysis (Park et al., 140

2024). 141

Building on these extraction capabilities, end- 142

to-end frameworks integrate knowledge extrac- 143

tion, refinement and updating into a unified 144

pipeline. Auto-KGQA supplies KG fragments 145

as context so that an LLM can convert natural- 146

language queries into structured SPARQL, over- 147

coming token-length limits (Avila et al., 2024). 148

Semi-automated toolkits assist ontology expan- 149

sion with limited expert input (Kommineni et al., 150

2024b,a), while KELDaR improves graph fi- 151

delity through competency-question generation 152

and retrieval-based verification (Li et al., 2024). 153

Complementary efforts tackle hallucination by 154

cross-checking model outputs against trusted 155

graphs (KGR) (Guan et al., 2024), align knowl- 156

edge and rerank entities without fine-tuning (Chen 157

et al., 2024), benchmark LLMs on RDF-centric 158

formats (Frey et al., 2024), and adapt construction 159

to streaming or temporal data via Text-to-KG and 160

dynamic TKG pipelines (Ghanem and Cruz, 2024; 161

Di Maio et al., 2024). 162

While LLMs have unlocked promising levels 163

of automation, several challenges remain. Hal- 164

lucination is foremost: models can invent facts 165

when faced with noisy inputs, sparse evidence or 166

ambiguous wording, thereby degrading KG reli- 167

ability (Guan et al., 2024). Furthermore, most 168

pipelines stop at surface-level triples and omit 169

deeper semantic explanations, limiting the inter- 170

pretability of downstream reasoning. Finally, em- 171

pirical studies reveal that different LLMs exhibit 172

highly variable performance across RDF parsing, 173

SPARQL generation and temporal reasoning tasks, 174

making robust model selection an open research 175

question. 176

Based on these findings, our work targets hallu- 177

cination and explainability by producing lean, hier- 178

archically explained graphs that align more closely 179

with LLM reasoning. 180
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Figure 1: The freamwork of SAKGC. SAKGC consists of two components: horizontal knowledge graph expansion
(upper part) and vertical knowledge graph expansion (lower part).

2.2 Retrieval-Augmented Generation (RAG)181

Text-centric RAG. Retrieval-augmented genera-182

tion combines neural language models with non-183

parametric memory so that the model can consult184

external documents at inference time, thereby im-185

proving factual accuracy and reducing parametric186

load (Li et al., 2022; Khandelwal et al., 2019a).187

Early instantiations such as REALM (Guu et al.,188

2020) and RAG (Lewis et al., 2020) jointly train189

a dense retriever and a generator by treating re-190

trieved documents as latent variables. Subsequent191

work scales memory and architecture: kNN-LM192

replaces LSTMs with Transformers and indexes193

billions of tokens (Khandelwal et al., 2019b),194

while RETRO pushes the retrieval store to the195

trillion-token scale and feeds the retrieved pas-196

sages directly into the decoder (Borgeaud et al.,197

2022). More recent systems query live search en-198

gines to obtain up-to-date evidence before genera-199

tion (Shuster et al., 2022; Lazaridou et al., 2022).200

Graph-based RAG. Traditional RAG treats the201

knowledge source as flat text, which under-utilises202

the rich relational structure present in many do-203

mains. GraphRAG addresses this gap by retriev-204

ing subgraphsnot passagesfrom a graph database205

and injecting their structured context into the lan-206

guage model. By coupling graph neural networks207

with LLMs, GraphRAG can exploit non-Euclidean208

topology, yielding superior accuracy on tasks such 209

as node and edge classification (Zhu et al., 2024). 210

Empirical studies report consistent gains when 211

relational signals are provided alongside textual 212

cues, especially for multi-hop or multi-entity ques- 213

tions. 214

KG-enhanced RAG. A further specialisation 215

integrates explicit knowledge graphs (KGs) into 216

the retrieval loop. Here, the model first pulls 217

entityrelation triples via KG reasoning and then 218

conditions generation on those triples. KGLM 219

exemplifies the paradigm: it retrieves facts rele- 220

vant to the current context and verbalises them 221

as factual sentences, enabling the LLM to employ 222

out-of-vocabulary entities and domain-specific re- 223

lations (Logan IV et al., 2019). While LLMs aug- 224

mented in this way achieve impressive domain 225

precision, they remain vulnerable to hallucination 226

when the KG is incomplete or ambiguous. 227

Therefore, we design SAKGC framework 228

to supply hierarchically explained, redundancy- 229

reduced KG evidence that mitigates hallucination 230

and improves answer faithfulness. 231
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3 Methodology232

3.1 Task Formulation233

Given a domain corpus D = {di}Ni=1 and an initial234

entity list E0 containing the core concepts of that235

domain, our goal is to automatically construct a236

stereo knowledge graph that couples surface facts237

with hierarchical explanations. Concretely,238

G =
(
GH , GV

)
, (1)239

where the horizontal graph GH stores triples ex-240

tracted from D and the vertical graph GV expands241

high-complexity entities in GH into successively242

simpler explanatory triples. The construction pro-243

ceeds iteratively: a horizontal loop grows GH until244

no new entities remain, and a vertical loop then245

refines selected entities according to a complex-246

ity threshold τ . The process terminates once both247

loops converge, yielding a compact, hierarchically248

explained stereo KG.249

3.2 SAKGC Framework250

We propose a novel system called Stereo Auto-251

matic Knowledge Enrichment (SAKGC) to ad-252

dress this task. The framework of SAKGC is illus-253

trated in Figure 1.254

Horizontal expansion. Let the working entity255

queue be E (initially E0). For each unvisited en-256

tity e ∈ E , the following LLM-driven pipeline is257

executed:258

1. Generator (D, e, b) → Tgen: To extract a259

comprehensive set of triples headed by entity260

e, we design a generator module that lever-261

ages large language models (LLMs) via few-262

shot prompting.263

We first retrieve a small set of reference264

triples involving e from Wikipedia. These ex-265

amples are then formatted as demonstrations266

to guide the LLM in extracting additional267

triples from a given corpus D. Specifically,268

the corpus is divided into sentence batches of269

size b to ensure compatibility with the LLMs270

context window. Each batch is paired with271

the prompt, instructing the model to identify272

all relation triples where e appears as the head273

entity.274

This process results in a set of generated275

triples Tgen, which capture diverse relational276

knowledge about e grounded in textual evi-277

dence.278

2. Validator Tgen → Tval: To ensure the qual- 279

ity and factuality of the generated triples, we 280

introduce a validator module that filters out 281

invalid or illogical entries from Tgen. 282

Each triple is evaluated by prompting an 283

LLM with a factuality judgment task framed 284

from an engineer’s perspective. The prompt 285

explicitly asks the model to label a triple as 286

"incorrect" only if it is certain the informa- 287

tion is factually wrong. If the triple is factu- 288

ally accurate, or if there is insufficient con- 289

text to make a definitive judgment, the model 290

returns "correct." This conservative strategy 291

minimizes false negatives while maintaining 292

precision, resulting in a validated triple set 293

Tval. 294

3. Merger Tval → Tmrg: To reduce redundancy 295

and optimize downstream usage, we design a 296

similarity-based merger that identifies seman- 297

tically overlapping triples in Tval. A pairwise 298

similarity function is applied to assess seman- 299

tic closeness between triples, and highly sim- 300

ilar triples are merged into unified representa- 301

tions. 302

This process helps preserve the core infor- 303

mational content while reducing storage cost 304

and retrieval overhead in downstream tasks. 305

Details of the merging algorithm are provided 306

in Section 3.3, and its impact on retrieval- 307

based knowledge graph augmentation is eval- 308

uated in Section 4.4. 309

4. Pruner Tmrg → Tprn: To avoid redundant 310

knowledge and maximize the utility of exter- 311

nal triples, we implement a pruning module 312

that identifies and removes triples likely al- 313

ready memorized by the LLM. 314

A relatively strict protocol is used to assess 315

whether a given triple reflects internal knowl- 316

edge encoded within the LLM. This ensures 317

that the retained triples contribute novel or 318

complementary information during retrieval. 319

The implementation details of this module 320

are described in Section 3.4, and its effect 321

on retrieval performance is empirically eval- 322

uated in Section 4.5. 323

5. Iterator Tprn → ∆E : To enable iterative ex- 324

pansion of the knowledge graph, we design 325

an iterator module that determines which tail 326
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entities in Tprn should be promoted as new327

head entities for the next round.328

This decision is made by querying the LLM329

through an API, asking whether a given tail330

entity is sufficiently central or informative to331

justify further exploration. The selected enti-332

ties ∆E serve as the seeds for the subsequent333

iteration.334

The final set Tprn is added to GH . The current en-335

tity e is marked as visited, and the new entities ∆E336

are merged into the queue. This loop repeats un-337

til no new entities are generated or the maximum338

depth k1 is reached.339

Vertical expansion. Based on the horizontal340

graphs entity set VH , SAKGC constructs a hier-341

archical explanation graph via the mapping:342

fvert : (VH , τ, k2) −→ GV . (2)343

Entities with complexity c(e) > τ are queued344

for vertical expansion. For each such entity:345

1. RAG Explainer e → d(e): Retrieves a346

concise definition text for e using retrieval-347

augmented generation.348

2. Converter (e, d(e)) → Sconv: Converts the349

definition into a set of explanatory triples350

with e as the head in every triple.351

3. Vertical Pruner Sconv → Sprn: Removes any352

triple whose tail entity has complexity higher353

than e.354

The filtered triples Sprn are added to GV , and el-355

igible tail entities are added to the vertical queue356

if their complexity satisfies τ < c(t) < c(e). The357

process repeats until the queue is empty or a re-358

cursion depth k2 is reached. Formal definitions of359

complexity, the RAG retrieval process, and triple360

conversion rules are provided in Section 3.5.361

3.3 Merger Module362

Given the validated triple multiset Tval(e) = {tk =363

(e, rk, ok)}nk=1, we first define the similarity be-364

tween two triples as365

s(ti, tj) ∈ [0, 1], (3)366

where larger values indicate stronger synonymy.367

This score is computed by prompting the back-368

bone LLM with the pair ⟨ti, tj⟩ and reading its369

real-valued output. Evaluating all pairs produces370

an n × n symmetric matrix S = [Sij ] with Sij = 371

s(ti, tj). 372

A threshold τ binarises the matrix into Aij = 373

I[Sij ≥ τ ]. Starting from the full index set R = 374

{1, . . . , n}, we repeatedly remove the node with 375

the largest degree d(i) =
∑

j ̸=iAij (ties broken 376

by input order) until R contains no edges. The 377

surviving indices K ⊆ R define the deduplicated 378

output 379

Tmrg(e) = { tk | k ∈ K}. (4) 380

To alleviate the O(n2) oracle cost, triples are pro- 381

cessed in mini-batches of size B; each batch needs 382

B2 similarity calls and there are n/B batches in 383

total, giving an overall complexity of O(nB). Be- 384

cause batches run in parallel threads, the wall-time 385

is further reduced in practice. 386

3.4 Internal-Knowledge Pruning 387

In a triple (h, r, t) the relation r can be viewed as 388

a logical condition that links two concepts h and 389

t. We call r a sufficient condition for t with re- 390

spect to h if the statement (h, r) ⇒ t holds for 391

the LLM, and a necessary condition if t together 392

with r implies h, i.e. (r, t)⇒h. When both impli- 393

cations hold, r is a necessary and sufficient con- 394

dition, meaning the three elements are mutually 395

derivable. Under this theory we adopt the hypothe- 396

sis that an LLM already possesses a fact whenever 397

it can (i) recover the correct relation from the head- 398

tail pair, 399

r̂ = pred(h, t), r̂ ≈ r, (5) 400

and (ii) derive at least one entity from the re- 401

lation plus the other entity, t̂ = pred(h, r) or 402

ĥ = pred(r, t), with the predicted element se- 403

mantically equivalent to its ground-truth counter- 404

part. Triples satisfying this two-step test form the 405

internal set Tint(e) and are removed; the remain- 406

der Tprn(e) is retained. Prompt batching of size 407

β cuts the number of LLM calls from 3|Tmrg| to 408

3|Tmrg|/β, and parallel threads accelerate execu- 409

tion. 410

Consider the triple (Obama, nationality, USA). 411

If the LLM truly knows this fact, it correctly pre- 412

dicts nationality from the pair (Obama, USA); the 413

relation is therefore at least sufficient. Further- 414

more, the model can use (Obama, nationality) to 415

infer USA, satisfying the at least one entity clause, 416

so the triple is discarded as internal. Now sup- 417

pose the model lacks information about Obama. It 418

still predicts the relation from (Obama, USA) but 419
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fails to obtain USA from (Obama, nationality); the420

sufficient condition holds but the entity inference421

fails, so the triple is kept. Conversely, even if the422

model is familiar with both Obama and USA, it423

cannot invert (USA, nationality) to recover Obama424

because nationality is not a sufficient condition in425

that direction; only one entity inference succeeds,426

and the triple remains novel. Thus the criterion427

removes a substantial portion of already encoded428

knowledge while preserving facts that extend the429

LLMs capabilities.430

3.5 Vertical Expansion of the Stereo KG431

Input and fine-grained complexity. The verti-432

cal module consumes the horizontal entity set VH433

and outputs a hierarchical explanation graph GV .434

For every entity e we obtain four ratings from one435

LLM prompt and combine them as436

C(e) = D(e) + L(e) + I(e) + Cs(e) (6)437

Here D(e) counts how many knowledge domains438

(biology, law, history, technology, art) are in-439

volved; L(e) maps to primary, secondary, bache-440

lor, master, or doctoral knowledge; I(e) is public441

comprehension difficulty (very easy very hard);442

Cs(e) ∈ {0, 1, 2} marks West-centric, neutral, or443

East-centric background so that culturally distant444

concepts are penalised when the target audience is445

known. Entities with C(e) > Cthresh enter the ex-446

pansion queue.447

RAG-driven recursive expansion. Many448

graph entities are rare terms that lack a canon-449

ical encyclopedia entry. We therefore retrieve450

the k nearest neighbours Sk(e) from an external451

corpus and assemble their definitions and triples452

into a context prompt Ce. A GPT-class generator453

uses Ce to synthesise a fresh definition d(e) for e454

and then converts that definition into explanatory455

triples456

{(e, ri, ti)}mi=1 (7)457

each headed by the original entity ein effect, a set458

of tail entities that explain e. A triple is kept only459

when the tail complexity satisfies460

C(ti) < C(e) (8)461

so that more complex entities are never used to462

clarify a simpler one. Accepted tails with C(ti)>463

Cthresh are queued for the next recursion; the loop464

ends when the queue is empty or a depth limit k2465

is reached.466

Figure 2: An example of recursive vertical expansion
for a given entity (deep learning). Green boxes indicate
the newly expanded entities, while orange boxes repre-
sent definitions for the final-layer entities. The number
inside each green box denotes the entity’s complexity.
A definition is generated only if complexity exceeds 8.
In this case, the expansion reaches 3 layers.

Illustrative example. For the entity Deep learn- 467

ing (C = 13), our RAG pipeline first retrieves 468

an authoritative textual definition, then initiates a 469

complexity-aware depth-first expansion (Fig. 2). 470

In layer 1, the system discovers two tail entities: 471

machine learning (C = 12) and large amounts of 472

data (C = 10). The former is further expanded, 473

while the latter haltsits definition is parsed, but 474

all resulting triples point to entities of compara- 475

ble or higher complexity, violating the simplifica- 476

tion constraint. Layer 2 expands machine learn- 477

ing into three entities: systems to learn from data 478

(C = 11), performance on tasks (C = 8), and ex- 479

plicit programming (C = 10). The second entity 480

is too simple to justify further definition, but the 481

other two are expanded into new triples in layer 3. 482

Layer 3 yields four leaf entities: data (C = 8), 483

patterns (C = 8), predictions (C = 9), and de- 484

cisions (C = 8). Only predictions and decisions 485

exceed the complexity threshold and are assigned 486

definitions. The rest are considered sufficiently 487

simple to be handled by the LLMs background 488

knowledge. 489

As the recursion depth is capped at 3, the ex- 490

pansion concludes at this layer. The entire process 491

follows the rule C(t) < C(h)−1: each concept is 492

grounded through strictly simpler ones, ensuring 493

meaningful abstraction, bounded graph size, and 494

efficient retrieval. This structured explanation path 495

also serves as an explicit chain-of-thought for the 496
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Method TC TR Prec. Rec. F1
Pive 147 0.608 0.3749 0.9101 0.4819
KG-LLM 223 0.611 0.2287 0.7929 0.3227
CoKGC 97 0.740 0.5165 0.8435 0.5785
SAKGC 400 0.805 0.1376 0.8876 0.2382

Table 1: Evaluation on Genwiki-5K. TC: Triple Count;
TR: Triple Relevance. Rec.: Recall.

Method TC TR Prec. Rec. F1
Pive 18,562 0.577 0.3749 0.9101 0.4819
KG-LLM 12,060 0.742 0.2287 0.7929 0.3227
CoKGC 12,691 0.584 0.4704 0.8777 0.5559
SAKGC 41,377 0.956 - - -

Table 2: Evaluation on Genwiki-500K. TC: Triple
Count; TR: Triple Relevance. Rec.: Recall.

language model.497

4 Experiments498

To evaluate the effectiveness of SAKGC, we de-499

sign a two-stage experimental setup. In the first500

stage, we extend a standard suite of text-based501

knowledge graph construction benchmarks to as-502

sess the quality of horizontally expanded graphs503

across datasets of increasing size. We also de-504

sign separate experiments to independently verify505

the utility of the redundancy-merging and internal-506

knowledge pruning modules. In the second stage,507

we incorporate the vertically structured graph into508

a QA pipeline, prompting the language model to509

generate both answers and their corresponding rea-510

soning traces. We evaluate the quality of the gener-511

ated answers and reasoning chains to demonstrate512

the benefit of complexity-driven recursion. Re-513

sults are presented in Sections 4.1–4.5. All evalua-514

tion metrics, baseline descriptions, and implemen-515

tation details are provided in Appendix A.516

4.1 Evaluation on Standard Benchmark517

We evaluate the quality of horizontally expanded518

knowledge graphs on the Genwiki dataset at two519

corpus scales: 5K and 500K. For each setting, we520

report all proposed metrics except Triple Similar-521

ity (TS). The reason TS is excluded is that, under522

small-scale data settings, the number of generated523

triples is relatively low, making it unlikely to ob-524

serve redundant triples with the same head entity.525

526

As shown in Tables 1 and 2, our method pro-527

duces substantially more triples than all baselines528

and achieves the highest relevance (TR), reflecting529

strong alignment with the source text. Although530

our system covers most ground-truth triples, its531

Method TC TR TS
Pive 277,410 0.866 0.0004
KG-LLM 34,194 0.841 -
CoKGC 101,523 0.728 0.0004
Ours 854,874 0.998 0.0002

Table 3: Evaluation on the real-world dataset (no gold-
standard available). TS: Triple Similarity.

precision appears lower because the metric’s de- 532

nominator grows with the total number of gener- 533

ated triples. We exclude G-BERTScore on the 534

500K set, as it operates at the sentence level, while 535

our model generates triples at the document level- 536

making sentence-wise alignment prohibitively ex- 537

pensive at scale. 538

4.2 Evaluation on Real-World Corpus 539

We further evaluate the quality of horizontally ex- 540

panded graphs on a real-world dataset combining 541

two heterogeneous corpora related to the automo- 542

tive domain. Since no gold-standard triples are 543

available, we exclude G-BERTScore and focus on 544

the remaining three metrics: Triple Count (TC), 545

Triple Relevance (TR), and Triple Similarity (TS). 546

Results are shown in Table 3. 547

Our method produces the highest number of 548

triples with the best relevance score and the lowest 549

semantic redundancy (TS). The low TS score in- 550

dicates that our deduplication module effectively 551

eliminates near-duplicate triples, improving the 552

quality of the resulting graph. KG-LLM often fails 553

to generate triples in this setting, resulting in a very 554

low overall triple count. Due to the small output 555

size, we omit similarity evaluation for this method. 556

4.3 Effectiveness of Redundancy Reduction 557

To assess whether merging synonymous triples af- 558

fects answer quality, we conduct a controlled ex- 559

periment. From a physics corpus, we sample 560

50 triples and generate 10 semantically equiva- 561

lent variants for each. For each group, we for- 562

mulate two factual questionsone inferring the tail 563

given the head and relation, the other inferring the 564

head given the tail and relation. These questions 565

are then posed under three prompting conditions: 566

(1) no triples, (2) 10 unmerged triples, and (3) 1 567

merged triple. Accuracy is measured across eight 568

language models. 569

As shown in Table 4, most models perform 570

poorly when no triples are provided, but achieve 571

over 95% accuracy with either unmerged or 572

merged triples. This indicates that merging redun- 573
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Model Count No Trip. Unm. Merged
deepseek-chat 100 0.08 0.98 0.93
glm-4 100 0.02 0.93 0.82
gpt-3.5-turbo 100 0.04 0.66 0.84
gpt-4 100 0.05 0.98 0.97
gpt-4o 100 0.10 0.97 0.97
gpt-4o-mini 100 0.07 0.98 0.98
gpt-4-turbo 100 0.07 0.97 0.96
QwenQwQ-32B 100 0.11 0.96 0.96

Table 4: Accuracy of different models with and without
triple context.

Model Count No Trip, Unm. Merged
deepseek-chat 100 79.72 237.51 102.45
glm-4 100 77.09 236.37 99.02
gpt-3.5-turbo 100 67.23 230.01 89.97
gpt-4 100 67.23 230.01 89.97
gpt-4o 100 67.23 230.01 89.97
gpt-4o-mini 100 67.23 230.01 89.97
gpt-4-turbo 100 67.23 230.01 89.97
QwenQwQ-32B 100 73.67 233.31 95.23

Table 5: Avg. token usage per setting.

dant triples preserves essential semantics while re-574

ducing repetition.575

We also compare token consumption across set-576

tings. As shown in Table 5, merged triples greatly577

reduce token usage compared to unmerged ones,578

lowering inference cost with minimal impact. Mi-579

nor differences across models stem from varying580

tokenization schemes.581

4.4 Pruning Internal Knowledge582

To test whether factual triples already known to583

the LLM can be pruned, we construct 200 yes/no584

questions of the form Is city A located in country585

B?, sampled from Wikipedia with a 50% true/false586

split.587

We evaluate GPT-3.5-turbo under two settings:588

(1) the question alone, and (2) the question with a589

supporting triple (city, location, country).590

As shown in Table 6, both settings yield nearly591

identical accuracy, suggesting that including facts592

already internalized by the model provides little593

added value. This supports pruning as a way to re-594

duce token usage without harming answer quality.595

4.5 Evaluating Vertical Expansion596

We evaluate the impact of hierarchical concept597

expansion through a QA task in the AI domain,598

which contains rich and diverse entities spanning599

multiple complexity levels. We collect 200 AI-600

related entities and generate one reasoning-based601

question per entity, each paired with a refer-602

ence answer. Three knowledge formats are com-603

Setting Triple Included? Accuracy
Direct Question No 98.5%
With Triple Yes 99.0%

Table 6: Accuracy of GPT-4o on location classification
with and without explicit supporting triples.

Method Accuracy Rel. Ent. Steps
zero_shot 0.79 (158/200) 3.36 2.07
is_a 0.80 (160/200) 3.27 2.06
graph 0.81 (163/200) 3.65 2.29

Table 7: Performance of different knowledge formats.
Rel. Ent.: Relevant Entities. Steps: Reasoning Steps.

pared: zero_shot (entity only), is_a (entity + one- 604

sentence definition), and graph (entity + defini- 605

tion + hierarchical triples). 606

We use GPT-3.5-Turbo to generate both the 607

questions and reference answers. For answer gen- 608

eration, we prompt THUDM/GLM-Z1-32B-0414, 609

a weaker model chosen to better reveal the utility 610

of external knowledgestronger models might an- 611

swer correctly without any support, masking the 612

effect of the knowledge input. In addition to an- 613

swers, the model outputs reasoning traces in triple 614

format. 615

We then evaluate: (a) Accuracy whether the an- 616

swer matches the reference (strict for missing key 617

content, tolerant for additions), (b) Relevant Enti- 618

ties number of distinct entities used in reasoning, 619

(c) Reasoning Steps length of the reasoning chain. 620

As shown in Table 7, accuracy improves with 621

richer knowledge formats, with our graph-based 622

method performing best. It also yields broader en- 623

tity coverage and deeper reasoning, indicating that 624

structured explanations help the model integrate 625

more relevant concepts. Additionally, our method 626

produces clearer, more traceable reasoning paths, 627

enhancing interpretability for real-world use. 628

5 Conclusion 629

We introduced SAKGC, an iterative framework 630

that constructs stereo knowledge graphs from raw 631

domain text. It combines horizontal triple extrac- 632

tion with redundancy control, and vertical expan- 633

sion via RAG to generate complexity-aware, hi- 634

erarchical explanations. Experiments show that 635

SAKGC yields significantly more relevant triples 636

with lower redundancy, and improves answer accu- 637

racy and reasoning coherence in QA tasks. Our re- 638

sults suggest that SAKGC provides a scalable and 639

interpretable solution for domain-specific KG con- 640

struction. 641
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Limitations642

This study demonstrates how a large language643

model, coupled with retrieval-augmented genera-644

tion, can construct a stereo KG while refusing645

redundant or already-internal facts. Although646

promising, the framework is not yet ready for647

seamless industrial deployment and several limi-648

tations remain.649

Construction efficiency and computational650

cost. Each entity traverses four horizontal and up651

to two vertical modules, every step invoking the652

LLM. Even with parallel batches, the generator653

must scan the full document set, yielding O(n2)654

worst-case complexity. On very large corpora the655

resulting latency and API cost may be prohibitive;656

smarter indexing and caching are required.657

Scope of the pruning modules. Redun-658

dancy merging and internal-knowledge pruning659

are tuned for the RAG-QA scenario. When used660

for direct KG-QA or with a different backbone661

model, they may delete helpful triples or miss662

memorised facts. An adaptive pruning strategy is663

needed for broader use.664

Metric ambiguity. Redundancy, entity com-665

plexity and internal knowledge are fuzzy notions.666

Our operational definitions work in practice but667

do not cover all edge cases; sharper formalisations668

and learning-based estimators could improve reli-669

ability.670

Scalability. Experiments were limited to a671

15-million-sentence corpus. Performance at web672

scalebillions of sentencesremains unknown and673

may expose new bottlenecks in storage, retrieval674

or recursion depth, calling for distributed imple-675

mentations and further evaluation.676
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15M tokens. The 5K and 500K sets are con-851

structed from Genwiki (Jin et al., 2020), a bench-852

mark dataset for text-based knowledge graph853

construction, which provides sentence-level gold-854

standard triples. To focus on a specific do-855

main, we extract only physics-related content and856

consolidate it into the final corpus. The 15M857

dataset serves as a realistic open-domain scenario,858

comprising two equal parts: automotive-related859

content from a technical e-book and discussions860

scraped from Reddit on car topics.861

Evaluation Metrics. While prior work com-862

monly adopts G-BERTScore for evaluating triple863

prediction quality against reference data, it does864

not capture several important aspects of the text-865

to-triple generation process. To address this, we866

extend the evaluation protocol with three comple-867

mentary metricsTriple Count (TC), Triple Rele-868

vance (TR), and Triple Similarity (TS)that offer a869

more holistic assessment of system behavior.870

(1) Triple Count (TC): Measures the total num-871

ber of generated triples, reflecting the model’s abil-872

ity to extract structured facts.873

(2) Triple Relevance (TR): Quantifies how874

well the generated triples align with the input text.875

For each triple, we check whether the head, rela-876

tion, and tail strings appear in the source sentence877

via exact match. TR is computed as the proportion878

of matched elements across all triples.879

(3) Triple Similarity (TS): Evaluates semantic880

redundancy among triples sharing the same head881

entity. We randomly sample 10,000 distinct triple882

pairs and query an LLM to determine whether they883

are semantically synonymous. TS is the percent-884

age of pairs classified as synonymous.885

(4) G-BERTScore (G-BS): We adopt G-886

BERTScore (Saha et al., 2021), an extension of887

BERTScore (Zhang et al., 2019), to compare888

predicted triples with gold-standard references.889

Triples are verbalized into natural language sen-890

tences, and alignment is computed via semantic891

similarity. We report precision, recall, and F1:892

Precision =

∑
(p,g)∈Alignment BERTScore(p, g)

|Predicted Triples|
,

(9)893

Recall =

∑
(p,g)∈Alignment BERTScore(p, g)

|Ground-Truth Triples|
,

(10)894

F1 = 2 · Precision · Recall
Precision + Recall

(11) 895

Here, p ∈ Predicted Triples and g ∈ 896

Ground-Truth Triples. The alignment set consists 897

of one-to-one mappings between predicted and ref- 898

erence triples, based on their BERTScore similar- 899

ity. 900

Baselines. We compare SAKGC against three 901

recent and representative triple extraction meth- 902

ods: 903

Pive (Han et al., 2023) introduces an auxiliary 904

module that detects missing elements in initially 905

generated triples. If a triple is found incomplete, 906

the model iteratively regenerates missing parts, im- 907

proving triple completeness. 908

KG-LLM-Prompting (Carta et al., 2024) con- 909

structs a structured pipeline using LLMs to extract 910

entities and relations sequentially. It uses prompt 911

chaining and task decomposition to facilitate triple 912

generation. 913

CodeKGC (Bi et al., 2024) reformulates triple 914

extraction as a code generation task. It prompts 915

the LLM using code-style instructions rather than 916

natural language, leveraging domain-specific few- 917

shot examples to improve generation accuracy. 918

Implementation Details. For horizontal expan- 919

sion, we set the number of iterations k1 = 3, with 920

a batch size of b = 4K tokens per iteration. The 921

similarity threshold for merging semantically re- 922

dundant triples is fixed at 0.7. For vertical expan- 923

sion, we also use a maximum recursion depth of 924

k2 = 3, and only expand entities with complexity 925

scores greater than 8. Unless otherwise specified, 926

all stages of our method rely on the DeepSeek lan- 927

guage model as the backend for definition genera- 928

tion, triple extraction, and reasoning. 929
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