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ABSTRACT

Code execution reasoning (CER), the ability to predict code execution on a given
input, has emerged as an important aspect of language models’ (LMs) coding
capabilities. However, many open-source small- to medium-sized LMs continue to
perform poorly on simple code snippets, and effective methodologies to enhance
CER capability have not yet been established. In this context, we first highlight
the limitations of LMs in basic operations in CER. Through our custom tests,
including a test that measures the understanding of individual grammar rules,
we indicate that code understanding in natural language does not imply actual
procedural understanding of code, and that it is necessary to accumulate reasoning
steps at a granularity finer than a line in a structured manner. Motivated by these
insights, we investigate ET-CoT (Execution Trace Chain of Thought), a method in
which execution traces are generated with our custom code interpreter PyTracify
and used as chain-of-thought rationales, in order to transform 8B-class LMs to
code interpreters specialized for CER. After fine-tuning with 127k examples, we
demonstrate the effectiveness of ET-CoT, improving Qwen2.5-7B-Instruct to 70.0%
on CruxEval-O and to 88.3% on LiveCodeBench (execution), thereby setting new
baselines for the class.

1 INTRODUCTION

With growing expectations for language models (LMs) to handle the entire cycle of code generation,
debugging, and optimization autonomously (Islam et al., 2024; Novikov et al., 2025), the coding-
related capabilities required of them now extend beyond generation alone (Hou et al., 2024).

Code execution reasoning (CER) (Austin et al., 2021; Nye et al., 2021), the prediction of how a piece
of code actually operates on specific input variables, constitutes one such capability. Such procedural
understanding of code is a natural competence of skilled human programmers, and it is critical for
debugging and repairing errors in generated code (Gu et al., 2024a). Therefore, CER tasks have been
incorporated into the evaluation suites for state-of-the-art general-purpose (Yang et al., 2025) and
code-specific (Hui et al., 2024b) LMs.

Despite its importance, CER remains challenging for many open-source models (Ding et al. (2024a);
Table 2 (a)). Also, the bottlenecks and effective methodologies for this task remain underexplored
(La Malfa et al., 2024), because datasets are often black boxes despite the availability of strong
open-source LMs (Groeneveld et al., 2024), and because many prior works regard CER as one of
the coding tasks rather than focusing on it. Existing approaches typically fine-tune LMs on natural
language datasets containing fine-grained explanations of code execution (Ni et al., 2024; Ding et al.,
2024a; Li et al., 2025). However, Wang et al. (2025) reported that they showed small improvement
over direct-output fine-tuning, questioning if true semantic understanding is achieved.

In principle, however, CER should be solved deterministically with a sufficiently detailed chain of
thought (CoT). Indeed, theoretical results suggest that CoT reasoning expands the class of problems
that Transformers can compute (Li et al., 2024; Merrill & Sabharwal, 2024). This naturally raises the
question of why many current LMs fail to do so, and whether systematic methods can be developed
to endow them with the capability to solve CER deterministically with CoT.
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<think>0 Statement
1 FunctionDef def fib(n):
0 Statement
1 Expr fib(1)
2 Call fib(1)
2 CallArg0 1
3 Constant 1
2 Statement
3 If if n <= 1:
4 Compare n <= 1
4 CompareLeft n
5 Name n = 1
4 CompareRight 1
5 Constant 1
4 CompareResult 1 <= 1 = True
3 IfCond True
3 Statement
4 Return return n
5 Name n = 1
2 Call fib(1) = 1
</think><answer>1
</answer>
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(a) Addition (n = 3) (b) Addition (n = 5)

(c) Jump DP (n = 3) (d) Jump DP (n = 5) (e) Jump DP (n = 8)

(f) Int. sched. (n = 3) (g) Int. sched. (n = 5) (h) Int. sched. (n = 12)

(i) BFS (n = 3) (j) BFS (n = 5) (k) BFS (n = 10)

Figure 9: ET-CoT mitigates the initial instability of iterative code simulation (full results).

# Fibonacci Function
def fib(n):

if n <= 1:
return n

return fib(n-1) + fib(n-2)

fib(1)

a

32

Figure 1: We demonstrate that execution traces can turn
small LMs into strong interpreters specialized for CER.

Lla
ma3

.1-
8B

Lla
ma+

SFT

Lla
ma+

ET-
CoT

Qwen
2.5

-7B

Qwen
+SFT

Qwen
2.5

-Cod
er-

7B

Qwen
+ET-

CoT
0

20

40

60

80

100

31.7 34.5

78.3

48.0 51.2
62.6

79.2

Figure 2: Average score of CruxEval and
LiveCodeBench (execution).

In this paper, we focus on solving CER with small-sized (≤8B) LMs. We begin by introducing
dedicated tests focusing on basic components of CER, which suggest the necessity of step-by-step
reasoning at a granularity finer than a line in a structured manner. This motivates the use of execution
traces and points to the intriguing possibility of transforming small-sized LMs into code interpreters
specialized for CER. To this end, we investigate ET-CoT (Execution Trace Chain of Thought), an
approach for utilizing execution traces as CoT rationales. The results show the effectiveness of this
approach, establishing new baselines for small-sized LMs (Figure 2).

The contributions of this work are summarized as follows:

• To evaluate the CER capability of small-sized LMs, we design two tests targeting fun-
damental components of CER (Section 3). The first test assesses line-level grammatical
understanding employed in CER benchmark (Section 3.1), while the second test evaluates
the iterative application of simple procedures on a per-step basis (Section 3.2). The findings
demonstrate not just the limitations of moderate-sized LMs, but also offer new perspectives
on the difficulty of CER. For example, natural language explanation ability does not guaran-
tee actual procedural understanding, substantial reasoning steps are necessary for a single
line, and access to procedural understanding in the model is unstable even when present.

• We collect and create Python snippets to address shortcomings of LMs in CER, develop our
custom Python interpreter PyTracify, construct synthetic CoT rationales of execution traces
using it, and fine-tune various 8B-class LMs (Section 4). In particular, with 127k samples
we bring them to a level at which they can function as code interpreters specialized for CER,
while most studies targeted multiple coding tasks simultaneously (Ding et al., 2024a; Li
et al., 2025; Li & Wang, 2025).

• As a result, we establish new baselines for 8B-class models (Section 5.1), raising the
performance of Qwen2.5-7B-Instruct (Qwen team, 2025) to 70.0% on CruxEval (Gu et al.,
2024b) and 88.3% on LiveCodeBench (execution) (Jain et al., 2024), surpassing Qwen2.5-
Coder-7B-Instruct (Hui et al., 2024a). Furthermore, we observe that ET-CoT can mitigate
the earlier CER bottlenecks (Section 5.2).

2 RELATED WORKS

Benchmark and challenges of CER. Apart from general-purpose datasets such as MBPP (Austin
et al., 2021), datasets dedicated to CER have only recently appeared. LiveCodeBench (execution)
(Jain et al., 2024) collects competitive programming problems, while CruxEval (output prediction)
(Gu et al., 2024b) is a synthetic dataset generated with Code Llama and recently extended to multi-
languages (Xu et al., 2024). Both contain code snippets of about ten lines with input–output pairs. As
for the challenges of CER, prior work has reported difficulties in handling snippets with multiple
operators and control flow, as well as error accumulation with increased critical path (Chen et al.,
2024; La Malfa et al., 2024; Liu et al., 2025; Liu & Jabbarvand, 2025). However, those discussions
mainly consider problems where even commercial models fail (though sometimes presented as simple
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(Gu et al., 2024b)), and the analyses of 8B-class models have often been limited to observing that they
generally fail on these problems. Finally, we note that CER performance is only weakly correlated
with code generation ability (Austin et al., 2021; Gu et al., 2024a; Luo et al., 2023; Wei et al., 2024).
Consequently, recent technical reports report CER performance alongside generation metrics (Hui
et al., 2024b; Yang et al., 2025), highlighting the importance of CER as an independent task.

Fine-tuning to improve the CER ability. Fine-tuning with direct code, input, and output pairs
was attempted in Austin et al. (2021); Gu et al. (2024b), yielding only limited improvements. To
further improve CER capability, recent work has attempted to incorporate intermediate reasoning
steps. In natural language, NExT (Ni et al., 2024) fine-tuned LMs on execution-aware rationales,
while SemCoder (Ding et al., 2024a) enhanced the semantic understanding of code with step-wise
explanations. Li et al. (2025) scaled this approach by developing an automatic pipeline to generate
such CoT data. On the other hand, interpreter-style execution trace was utilized by Scratchpad (Nye
et al., 2021) (but they used the same dataset for both training and evaluation). Such execution trace
data was also used by CodeExecutor (Liu et al., 2023) and Ding et al. (2024b) in pretraining. However,
Wang et al. (2025) reproduced Scratchpad, CodeExecutor, NeXT, and SemCoder and suggested that
intermediate reasoning steps may not more effective than SFT without traces to enhance semantic
understanding of the code. This might be because many previous studies addressed multiple tasks
simultaneously, which could limit the effect of step-wise simulation data.

In this context, we focus on CER capability and train LMs as specialized interpreters, demonstrating
that execution trace itself is sufficient to set a new baseline for CER. Finally, we remark that there is
an independent work that also uses execution trace (Armengol-Estapé et al., 2025) (see Appendix A).

Theoretical backgrounds. Transformers’ ability to act as interpreters is suggested by theoretical
results establishing their Turing completeness (Pérez et al., 2019; Pérez et al., 2021). In particular,
by repeatedly performing generation and computation as in CoT, Transformers can solve problems
requiring serial computation (Xu & Sato, 2025; Schuurmans et al., 2024; Bhattamishra et al., 2020;
Merrill & Sabharwal, 2024). In this spirit, Giannou et al. (2023) constructed a 13-layer looped
Transformer that executes general programs. However, without CoT of sufficient length, their
expressivity collapses to low-level circuit classes (Merrill & Sabharwal, 2023). We also remark
that Zhai et al. (2024) proved that Transformers can efficiently process compiler tasks such as
AST construction, symbol resolution, and type analysis. Overall, these theoretical results motivate
approaches to code reasoning with CoT, particularly those that mechanically simulate code execution.

3 WHY IS CODE EXECUTION REASONING DIFFICULT FOR LMS?

Our primary goal is to enhance the code execution reasoning ability of small-sized LMs (∼8B).
However, most existing datasets for code execution reasoning are designed to challenge advanced
commercial LLMs by combining multiple operations (Ma et al., 2023; Gu et al., 2024b; Jain et al.,
2024). Such complexity may obscure the specific issues faced by small-sized LMs. In this section,
we introduce our own tests and highlight two overlooked failure modes in this context: (i) limitations
of basic syntax understanding and (ii) initial instability in iterative operations.

3.1 LIMITATIONS OF BASIC SYNTAX UNDERSTANDING Function:

def f(o):
return o[-2::-1]

Input:

o = 'bab'

Figure 3: Sample problem.

Line-by-line syntax understanding is the minimal unit of code exe-
cution reasoning ability. We made original 800 examples to measure
this, based on CruxEval (Gu et al., 2024b). Specifically, from each
original snippet of up to 13 lines, we selected the most central line,
redefine its operation as a function, and prepared corresponding
inputs and outputs. An example is shown in Figure 3 (a case mispre-
dicted by GPT-4.1), with pipeline details provided in Appendix G.1.

We tested nine models on this dataset (Figure 4). Red denotes predictions with answer-only output,
while blue denotes predictions with CoT reasoning. Green indicates the correctness of natural
language function descriptions. Concretely, each model was asked to describe the function’s operation
in natural language, and GPT-4.1 then applied this description to the inputs and checked whether the
output matched. See Appendix G.2 for more details.

3
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Figure 4: Accuracy of execution simula-
tion for single-syntax functions.

From the results, we observe the following: (i) Even the
simulation of a single operation requires substantive
CoT—for many models, CoT improves accuracy by more
than 10% over direct prediction. (ii) Most 8B-class mod-
els have limitations in basic syntax understanding even
with CoT—except for Qwen3-8B, their accuracy stays
below 75%. (iii) Declarative understanding in natural
language does not imply procedural understanding—
models can provide accurate natural language descriptions
of operations, sufficient to derive the correct output, but
their ability to apply these operations to inputs substan-
tially diverges from their declarative understanding.

3.2 EVALUATION OF STEP-WISE
FAILURE RATES IN ITERATIVE OPERATIONS

Another basic component of CER is the repeated application of operations. Focusing on this,
simulating example algorithms with controllable complexity is a common means of evaluation (Liu
et al., 2025; Chen et al., 2024; Liu & Jabbarvand, 2025), also seen in natural language reasoning
(Shojaee et al., 2025). A common observation is that errors accumulate with repeated steps, eventually
leading models to fail in reasoning beyond a certain level of complexity (La Malfa et al., 2024).

We prepared four example programs to evaluate the repetition capability of small-sized LMs. For
this purpose, (i) we designed the code so that each step involved simple operations. Furthermore,
(ii) we inserted print statements within the code and required the models to predict these values,
thereby enforcing step-wise reasoning. The four algorithms we selected are: (a) digit-wise addition,
(b) dynamic programming for the jump game (where one moves from the start of the sequence
to the end by steps of size one or two, minimizing the total sum of differences along the path),
(c) interval scheduling of sorted jobs, and (d) breadth-first search. See Appendix H for details.

The results are shown in Figure 5. We indicate with a star the maximum step-wise error rate
((failure at step t)/(success up to step t−1)). First, (d) BFS exhibits the familiar failure due to accu-
mulated errors, and 8B-class LMs generally perform poorly. However, interestingly, (a), (b), and (c)
exhibit a behavior where errors concentrate in the initial steps, followed by stable reasoning in later
steps. Extensive results in Appendix H shows that this is not cherry picking. This tendency, observed
across both open and commercial models, implies a new failure mode that even when accurate
procedural understanding exists within the models their utilization of it can be unstable.
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Figure 5: Step-wise cumulative error rate for iterative code simulations.

4 TRAINING WITH EXECUTION TRACE COT

4.1 UTILIZING EXECUTION TRACE TO OVERCOME THE DIFFICULTIES OF CER

The preceding discussion implies that strengthening CER in 8B-class LMs requires a stable and
systematic method for accumulating sequential reasoning steps, at a granularity finer than a single line,
that align with actual program execution. To this end, we investigate training models on execution
traces with the aim of enabling them to function as interpreters. We expect the use of execution traces
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enables the model to solidify fundamental syntax and control-flow reasoning, generate an appropriate
amount of CoT for each instance, and perform CER in an execution-aligned manner. We refer to this
approach as Execution-Trace Chain of Thought (ET-CoT).

In order to efficiently generalize small-sized LMs as interpreters within the scope of fine-tuning,
we carefully select data and define the trace format. Below, we construct a high-quality and non-
duplicated code dataset with custom problems, and our original Python interpreter PyTracify.

4.2 ET-COT DATASET CONSTRUCTION

We started with creating a high-quality dataset of code, input, and output pairs. While some prior
work generates multiple input–output pairs from the same code (Li et al., 2025), we prioritized data
diversity to encourage generalization, and therefore constructed a dataset without code duplication.

Table 1: Distribution of the training dataset.
Dataset Source #Samples Pct. (%)
Nan-Do 50,426 39.6

AtCoder contests (33,290)
LeetCode contests (17,136)

APPS 25,908 20.3

Custom Dataset 38,879 30.5
String Functions (12,000)
Tokenizer Vocabulary (26,879)

PyX 10,958 8.6

MBPP 1,242 1.0

Total 127,413 100.0

Specifically, our dataset comprises five sources:
AtCoder and LeetCode subsets from the Nan-
Do dataset (Nan-Do, 2023) as competitive pro-
gramming problems, APPS (Hendrycks et al.,
2021) and MBPP (Austin et al., 2021) as more
general code generation problems, PyX as a
mixed dataset with guaranteed quality from a
leading prior work of Ding et al. (2024a), and fi-
nally, Custom Dataset described in Section 4.3.

To ensure that programs are correctly exe-
cutable, we imposed a 5-second execution limit
and retained only those that successfully passed.
Furthermore, we removed the top 20% of sam-
ples to filter out excessively long traces, based
on the trace length defined later by PyTracify.

Because our training data included the LeetCode subset of Nan-Do but our evaluation benchmark
LiveCodeBench is also based on it, we decontaminated the overlapping problems. We adapted the
decontamination script from Open-R1 (Face, 2025) with 8-gram matching and removed all problems
corresponding to LiveCodeBench’s evaluation set, following Sections 3.3 and A.3 of Jain et al. (2024).
After these procedures, we finally obtained 127,413 samples of code, input, and output, and the
distribution is shown in Table 1.

4.3 CUSTOM DATASET

As discussed in Section 3.1, 8B-class models exhibit limitations in basic syntax understanding.
Moreover, LMs process text token by token and often struggle with strings operations and position
identification within strings and lists. CER benchmarks contain such problems, but they are relatively
scarce in code generation datasets which we mainly depend in the previous section. To address these
issues, we developed customized problems as follows:

String Functions Dataset. To enhance capability of string manipulations, we created a dataset
focusing on eight string functions: slicing, replace, rpartition, find, join, len,
removeprefix, and rstrip. These are simple operations for both humans and computers but
are known to surprisingly mislead LMs (Gu et al., 2024b). For each function, we generated 1,500
samples by applying it to randomly generated strings of length 3–20 characters, resulting in a total of
1,500× 8 = 12,000 samples. An example is provided in Appendix D.

Tokenizer Vocabulary Length Dataset. Another cause of the limitations of string manipulation
ability would be the fact that LMs do not correctly recognize the concept of character length
due to tokenization. To give models correct understanding of string length, using Llama3.1-8B-
Instruct (Dubey et al., 2024b) as an example, we identified vocabulary items for which the model
failed to predict the correct token length. From this, we collected 26,879 samples.

Section 5.3.2 reports the performance impact of removing these custom datasets, highlighting their
contribution to improving CER accuracy.
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4.4 GENERATING EXECUTION TRACES WITH PYTRACIFY

We convert these problems into execution traces using our custom Python code interpreter, PyTracify.
When designing the trace format of PyTracify, we configured it to output variable updates and control
flow at the most basic level. Each line in the trace is represented as a triplet of nest depth, mnemonic,
and operation. Nest depth encodes the depth of current call or loop nesting so the model can easily
track recursion and control flow. Mnemonic tell the name of the operations, which follows those
used in Python AST node. Finally, operation records either the code fragment to be evaluated or the
resulting action and value. Figure 6 shows the example of the trace (excerpted).
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4.4 GENERATING EXECUTION TRACES WITH PYTRACIFY

We convert these problems into execution traces using our custom Python code interpreter, Pytracify.
When designing the trace format of Pytracify, we configured it to output variable updates and control
flow at the most basic level. Each line in the trace is represented as a triplet of nest depth, mnemonic,
and operation. Nest depth encodes the depth of current call or loop nesting so the model can easily
track recursion and control flow. Mnemonic tell the name of the operations, which follows those
used in Python AST node. Finally, Operation records either the code fragment to be evaluated or the
resulting action and value. Figure 6 shows the example of the trace (excerpted).

1 FunctionDef def fib(n):
...
3 If if n <= 1:
4 Compare n <= 1
4 CompareLeft n
4 CompareRight 1
4 CompareResult 1 <= 1 =

True
...
2 Call fib(1) = 1

Figure 6: Example of the Pytracify trace.

In addition to unrolling all loops, we decompose each
syntax to promote the model’s understanding at the line
level. For example, when comparing two values in a condi-
tional branch, we first indicate the start of the comparison
with Compare, then check the left and right values with
CompareLeft and CompareRight, and finally out-
put the result with CompareResult. We apply such
thorough breakdown to other operations such as evalu-
ation of the while loop condition and binary operations.
Moreover, operations such as len, whose complexity in-
creases with input length, are rewritten into for-loops for
evaluation, even though they are single-line operations.
Such designs are motivated by the insight from Section 3
that solving CER requires step-by-step reasoning at a
granularity finer than a single line of code. Although this
level of detail might seem unnecessary at first glance, Sec-
tion 5.3.1 quantifies the impact of removing these details
on model accuracy.

To construct the finegrained and well-structured execution trace dataset described in Section 4.4, we
implemented PyTracify. PyTracify is a Python interpreter that, when given a Python program as
input, executes the program and simultaneously outputs a trace in the format described in Section 4.4.
PyTracify is written in Python, parses source code with the ast module, and evaluates statements and
expressions recursively while maintaining explicit stack frames. Running a program under PyTracify
yields traces like those in Figure 1. With PyTracify, creating a dataset is straightforward: once a
collection of Python programs is gathered, running them through PyTracify automatically produces
the required traces for training. Because PyTracify executes programs independently of any LLM,
the dataset generation process incurs minimal computational cost and can be massively parallelized.
For example, by launching 100 parallel PyTracify processes, we generated the entire ET-CoT dataset
of over 127,413 samples in just 7 min 6.8 s. In Appendix B, we discuss syntactic differences between
CPython and Pytracify.

4.5 IMPLICATIONS FROM THEORY OF COMPUTATION

As seen in Section 2, theoretical analyses have shown that the presence and length of CoT strongly
influence the program-execution capabilities of autoregressive transformer models. This suggests
that an LM capable of consistently executing a wide range of programs must be able to generate CoT
traces whose length scales with the required computational cost, that is, the number of computational
steps. From this perspective, organizing the theory allows us to derive, for example, the following
lemma.

Proposition 1. Assuming L 6= NL, solving an NL-hard problem requires a number of CoT steps that
scales with n.

The proof is in Appendix E. Intuitively, this proposition says that, to solve a broad range of com-
putational problems consistently, autoregressive transformers require a long CoT whose length is
comparable to a reasonable number of computational steps. NL-hard includes many problems of our
interest, such as reachability in directed graphs, 2-SAT, and NFA simulations.

6

nest depth
mnemonic operation

Figure 6: Example of the PyTracify trace.

In addition to unrolling all loops, we decompose each
syntax to promote the model’s understanding at the line
level. For example, when comparing two values in a
conditional branch, we first indicate the start of the com-
parison with Compare, then check the left and right
values with CompareLeft and CompareRight, and
finally output the result with CompareResult. We
apply such thorough breakdown to other operations such
as evaluation of the while loop condition and binary
operations. Moreover, operations such as len, whose
complexity increases with input length, are rewritten into
for-loops for evaluation, even though they are single-line
operations. Such designs are motivated by the insight
from Section 3 that solving CER requires step-by-step
reasoning at a granularity finer than a single line of code.
Although this level of detail might seem unnecessary
at first glance, Section 5.3.1 quantifies the impact of
removing these details on model accuracy.

Regarding the implementation of PyTracify, PyTracify first parses source code with the ast module,
and then evaluates statements and expressions recursively while maintaining explicit stack frames.
The rule for evaluation largely follows CPython. However, given that the code under consideration is
relatively simple, there are several deviations such as variable scope. We refer readers to Appendix B
for details of syntactic differences between CPython and PyTracify.

Because the whole pipeline executes programs without using any LLM, generation of execution traces
requires minimal computational cost. In our case, by launching 100 parallel PyTracify processes, we
generated the entire ET-CoT dataset of 127,413 samples in just 7 mins.

4.5 IMPLICATIONS FROM THEORY OF COMPUTATION

Our approach generates execution traces that grow with the input, which may appear inefficient
at first glance. However, we emphasize that even for simple code, such traces cannot always be
compressed, by stating a theoretical result. As seen in Section 2, theoretical analyses have shown that
the presence and length of CoT strongly influence the program-execution capabilities of autoregressive
transformer models. Specifically, L and NL denote the classes of problems solvable by deterministic
and nondeterministic Turing machines, respectively, using logarithmic space in the input size n.
A canonical NL-complete problem (one of the hardest problems in the class NL) is reachability in
directed graphs (Sipser, 1996). For such a familiar class of problems, the following property can be
established.

Proposition 1. Assuming L ̸= NL, solving an NL-hard problem requires a number of CoT steps that
scales with the input size n.

Given that it is generally believed that L ̸= NL, this proposition suggests that an LM capable of
consistently executing a reasonably wide range of programs must be able to generate CoT traces whose
length scales with the required computational steps depending on each problem. See Appendix F for
the formal presentation and its proof, which is a straightforward consequence from Theorem 4 of
Merrill & Sabharwal (2024).
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Table 2: Performance on code-execution benchmarks (all reported with pass@1). ET-CoT consistently
improves CER ability across model–dataset pairs.

(a) ET-CoT compared to baseline, SFT, GRPO.

Model Size CruxEval-O LCB-Exec

Llama3.1-8B-Inst (Baseline) 8B 28.0 35.4
Llama3.1-8B-Inst + SFT 8B 36.1 (+8.1) 32.9 (-2.5)
Llama3.1-8B-Inst + GRPO 8B 28.2 (+0.2) 30.3 (-5.1)
Llama3.1-8B-Inst + ET-CoT 8B 67.8 (+39.8) 88.5 (+53.1)

Qwen2.5-7B-Inst (Baseline) 7B 45.0 50.9
Qwen2.5-Coder-7B-Inst 7B 65.9 (+20.9) 59.3 (+8.4)
Qwen2.5-7B-Inst + SFT 7B 44.8 (-0.2) 57.6 (+6.7)
Qwen2.5-7B-Inst + GRPO 7B 43.0 (-2.0) 54.2 (+3.3)
Qwen2.5-7B-Inst + ET-CoT 7B 70.0 (+25.0) 88.3 (+37.4)

Qwen3-8B (Baseline) 8B 51.3 88.9
Qwen3-8B + SFT 8B 51.4 (0.1) 53.4 (-35.5)
Qwen3-8B + ET-CoT 8B 73.9 (+22.6) 91.2 (+2.3)

OLMo2-7B-Inst (Baseline) 7B 28.6 9.1
OLMo2-7B-Inst + SFT 7B 27.5 (-1.1) 30.5 (+21.4)
OLMo2-7B-Inst + ET-CoT 7B 54.3 (+25.7) 75.4 (+66.3)

(b) Comparison with other baselines

Model Size CruxEval-O LCB-Exec

StarCoder2 (Lozhkov et al., 2024) 15B 46.2 33.6
StarCoder2-Inst (Lozhkov et al., 2024) 15B 50.9 29.6

CodeLlama-Python (Rozière et al., 2024) 13B 36.0 23.2
CodeLlama-Inst (Rozière et al., 2024) 13B 41.2 25.7

CodeLlama-Python (Rozière et al., 2024) 7B 34.0 23.0
CodeLlama-Inst (Rozière et al., 2024) 7B 36.8 30.7
StarCoder2 (Lozhkov et al., 2024) 7B 34.5 26.3
Magicoder-CL (Wei et al., 2024) 7B 35.5 28.6
Magicoder-S-CL (Wei et al., 2024) 7B 35.8 30.0

DeepSeekCoder (Guo et al., 2024) 6.7B 41.2 36.1
DeepSeekCoder-Inst (Guo et al., 2024) 6.7B 43.2 34.0
Magicoder-DS (Wei et al., 2024) 6.7B 41.9 38.8
Magicoder-S-DS (Wei et al., 2024) 6.7B 43.5 38.4
SemCoder (Ding et al., 2024a) 6.7B 65.1 59.7
SemCoder-S (Ding et al., 2024a) 6.7B 63.9 61.2

5 EXPERIMENTAL RESULTS

In this section, we present the fine-tuning results with ET-CoT and compare the performance with
other training methods and models. For this purpose, we selected four representative 8B-class models:
Llama3.1-8B-Instruct, Qwen2.5-7B-Instruct (Qwen team, 2025), Qwen3-8B (Yang et al., 2025), and
OLMo2-7B-Instruct (OLMo 2 team, 2025). All models were trained on the 127k ET-CoT dataset for
4 epochs using AdamW (Loshchilov & Hutter, 2019) as an optimizer (β1=0.9, β2=0.95, ϵ=1e-8)
and cosine decay learning rate (2e-5 → 4e-6). The batch size was 64 and context length was 8192
tokens, except that we utilized 4096 for OLMo2-7B-Instruct due to the inherent limit on the context
length. The prompt format we used is described in Appendix C.

5.1 PERFORMANCE ON CODE-EXECUTION BENCHMARKS

Following SemCoder (Ding et al., 2024a), we chose CruxEval-O (Gu et al., 2024b) and Live-
CodeBench (execution, LCB-Exec) (Jain et al., 2024) as CER benchmarks. We report the ET-CoT
results in Table 2a, as well as those of the original models, direct-output fine-tuning (denoted as SFT)
and Group Relative Policy Optimization (GRPO) (Shao et al., 2024). SFT and GRPO were trained on
pairs of code and answer of the ET-CoT dataset, eliminating execution traces. For SFT, the models
were trained on all 127,413 examples of ET-CoT, whereas for GRPO we report the results of the
best checkpoint within 2,000 steps, as GRPO required longer training time even within this range.
Table 2b shows the results of other methods using different base models.

Effectiveness of ET-CoT. From Table 2a, we observe that ET-CoT substantially improved over
baselines across all pairs of the models and benchmarks. For example, ET-CoT gains +39.8 on
CruxEval-O and +53.1 on LCB-Exec versus the baseline for Llama3.1-8B-Instruct, which cannot be
achieved by SFT/GRPO. Moreover, for Qwen2.5-7B-Instruct, ET-CoT achieved 70.0% on CruxEval-
O and 88.3% on LCB-Exec, and notably better than the results of Qwen2.5-Coder-7B-Instruct, a
code-specific model trained on black-box data. These results indicate the effectiveness of ET-CoT for
enhancing CER ability.

Table 2b reports the results of previous models from Ding et al. (2024a). Among that, SemCoder
family is representative within fine-tuning methods using intermediate reasoning steps, and also
the most performant. ET-CoT also surpasses this baseline, which we attribute to these factors: our
specialization in CER, the finer granularity of reasoning steps, and the reduced variability of execution
traces generated by PyTracify, compared to SemCoder, which relies on LMs to generate traces.

Limitations of the training on direct outputs The results of SFT and GRPO yielded only limited
improvements. Regarding SFT, the failure reflects a fundamental limitation of approaches without
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Figure 7: ET-CoT mitigates the initial instability of iterative code simulation.

intermediate reasoning steps, as we showed in Section 3.1 that even a single syntax requires CoT,
and argued in Section 4.5 that the length of CoT must adapt to the problem. This observation is
consistent with Gu et al. (2024b), who showed that direct-output fine-tuning on CruxEval was not
effective to improve the score on CruxEval. On the other hand, regarding GRPO, this failure cannot
be attributed to the lack of intermediate steps as the generation length increased during training. A
plausible explanation is that when the base model capability is insufficient, the reward based on
outputs becomes sparse and noisy, which is a well-known issue in RL (Lightman et al.).

Finally, we remark that the proportion of cases in which the execution traces generated by fine-tuned
models with ET-CoT match the traces produced by PyTracify are analyzed in Appendix E.

5.2 DID ET-COT MITIGATE THE LIMITATIONS IN BASIC OPERATIONS?

After confirming the effectiveness of ET-CoT on standard benchmarks, a finer-grained question is
whether ET-CoT actually mitigates the limitations observed in Section 3. Therefore, we applied the
same experimental setup as in Section 3 to models fine-tuned with ET-CoT.

Table 3: Comparison of the basic syntax
understanding before and after ET-CoT.

Model Original ET-CoT
Llama3.1-8B-Inst 34.5 67.4
Qwen2.5-7B-Inst 45.3 70.3
Qwen3-8B 84.8 73.4
OLMo2-7B-Inst 16.3 53.3

Basic syntax understanding. Table 3 presents the re-
sults. We observed substantial improvements on basic
syntax understanding through ET-CoT in three out of four
models. In contrast, the performance of Qwen3 decreased.
Regarding this, we found generations that skipped the
CoT, suggesting that the model judged that no reasoning
effort was required for this simple task even after the fine-
tuning. This suggests that training reasoning models as
interpreters is difficult, but starting from base models may
help avoid this issue.

Iterative code simulation. The results for Llama3.1-8B and Qwen2.5-7B with n = 5 are presented
in Figure 7. Full results are in Appendix H. Alongside the original models, we include a comparison
with SemCoder-S (Ding et al., 2024a), as a representative natural language–based fine-tuning method.

Here, while the original models were unable to solve any of the tasks, ET-CoT resulted in improved
accuracy for both models across all tasks. The improvement is significantly greater than that achieved
by SemCoder. Moreover, the initial instability, namely a failure in the early steps despite the ability
to stably conduct later repetitions, was generally mitigated, except in the case of Qwen2.5-7B on (c)
Interval scheduling. Therefore, we conclude that ET-CoT mitigates the problem of initial instability
in iterative code simulation.

5.3 ABLATION STUDIES

We conducted an ablation study to identify critical aspects of ET-CoT. Specifically, we focused on
the trace format and the dataset composition. We used Llama3.1-8B-Instruct for all experiments.
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Table 4: Token length statistics and accuracy of different execution trace formats.

Format Min Max Mean CruxEval-O LCB-Exec
Full Trace 163 36,274 923.56 67.75 88.52
No-Loop Internals Trace 152 24,610 694.22 60.50 (-7.25) 84.34 (-4.18)
Minimal Trace 152 20,133 648.94 50.88 (-9.62) 63.25 (-21.09)

Table 5: Effect of dropping different subsets of the Custom Dataset (pass@1)

Training Variant #Samples (Total) #Samples (Custom) CruxEval-O LCB-Exec
Full data 127,413 38,879 67.75 88.52
No Tokenizer Vocabulary 100,534 12,000 66.25 (-1.5) 88.41 (-0.09)
No String Functions 115,413 26,879 62.88 (-4.87) 87.27 (-1.25)
No Custom Dataset 88,534 0 57.49 (-10.26) 85.38 (-3.14)

5.3.1 EFFECT OF THE EXECUTION TRACE FORMAT

To isolate the effect of trace granularity, we compared three formats. (1) Full Trace, as used in the
above experiments; (2) No-Loop Internals Trace, which omits repeated internal entries generated
inside loops to avoid redundancy; (3) Minimal Trace, which omits explicitly checking operand
values through entries (e.g., BinOpLeft and CompareRight) during binary operations and
comparisons.

As shown in Table 4, the full trace yielded the highest scores on both datasets, and performance
deteriorates as traces are shortened. This suggests that accurate CER requires explicit unrolling of
iterations, and that small-sized LMs need multi-step CoT even when processing a single syntax. The
former observation is consistent with the discussion in Section 4.5, and the latter with Section 3.1.

5.3.2 DATASET ABLATION

In Section 4.3, we created Custom Dataset to address typical weakness of LMs. To quantify the
contribution of it, we tested four variants of the dataset: (1) Full Dataset— the complete dataset; (2)
No String Functions, which deletes 12,000 string function examples from the custom subset; (3) No
Tokenizer Vocabulary, which omits the Llama-token vocabulary subset from the custom subset; (4)
No Custom Dataset, which removes all custom subsets (string functions and tokenizer vocabulary).

Table 5 shows that the full dataset yields the highest accuracy, supporting the usefulness of the two
custom subsets. A more fine-grained view reveals that removing string functions has a larger impact
than removing the tokenizer vocabulary. However, removing both simultaneously results in more
than double the degradation caused by removing string functions alone. This trend suggests that the
effects of the tokenizer vocabulary and string functions are not independent.

6 CONCLUSION

This work emphasized the effectiveness of systematically accumulating fine-grained reasoning steps
for code execution reasoning (CER). We investigated ET-CoT, which generates execution traces using
our custom code interpreter and uses them as CoT rationales. ET-CoT improved various 8B-class
LMs, establishes new baselines for the class, and mitigates failures in the basic components of CER.

Finally, we note limitations of this work arising from its specialization to CER. First, we relied on
CruxEval and LiveCodeBench as evaluation datasets, but we were unable to identify other widely
accepted benchmarks for CER. Second, in practice, CER only becomes meaningful when integrated
with other coding-related capabilities such as code generation, whereas this work specialized the
models as interpreters. Nevertheless, we believe that deepening understanding on a single aspect of
coding abilities and setting baselines that outperform a code model trained on black-box data from
the same base model provide a useful stepping stone toward building strong coding models.
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REPRODUCIBILITY STATEMENT

We provide source code and configuration files as part of the supplementary materials, where
instructions for running the code and constructing the dataset are also included. The dataset used
for training and evaluation is shared via an anonymous Google Drive link. Information on data
preprocessing, model hyperparameters (learning rate, batch size, random seed), and library versions
can be found in the scripts and instruction text within the supplementary materials. Our main
experiments were conducted on 8 NVIDIA H100 GPUs, each equipped with 80 GB of memory.

THE USE OF LARGE LANGUAGE MODELS

The authors used an LLM to correct grammatical mistakes and polish the text into more natural
expressions during the preparation of this paper. Therefore, the use of the LLM was limited to
line-level generation.
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A REMARK ON ARMENGOL-ESTAPÉ ET AL. (2025)

This paper was originally presented at the ICML 2025 Programmatic Representations for Agent
Learning workshop. After that, we found that there was independent work which also leverages
execution traces, namely Armengol-Estapé et al. (2025). In their study, 1.5M execution traces were
generated using sys.settrace, and Llama3.1-8B-Instruct (Dubey et al., 2024b) was fine-tuned.
They reported 79.7% accuracy on CruxEval (Gu et al., 2024b) and further described the successful
simulation of 14k execution steps for a specific function (a 4-bit binary counter), which is indeed
impressive.

Nevertheless, for the following reasons, a fair comparison between their results and ours cannot be
established. Their paper states only that the 1.5M data points originate from “unrestricted Python
code,” without any details regarding the nature of the data (e.g., source and length distribution).
Moreover, the method for generating training data from execution traces is not made explicit. In
particular, the reported 79.7% result on CruxEval is achieved with the Compact Scratchpad method,
but their explanation consists solely of the following sentence: “Inspired by Ni et al. (2024)’s trace
representation, we also consider a diff-based scratchpad, in which the model only needs to predict
the variables that change with respect to the previous state. This should help at long executions by
decreasing the token count. Note, though, that in Ni et al. (2024) this representation was not used as a
scratchpad, but to annotate code.” We also note that the baseline they report for Llama3.1-8B-Instruct
on CruxEval differ from ours, but we reported pass@1 results using the CoT prompt used in CruxEval
(Listing 21 of Gu et al. (2024b)).

Apart from the shared emphasis on execution traces, the directions of the two studies diverge. They
trained a language model on 1.5M execution trace-based examples, a scale that goes beyond typical
fine-tuning datasets, with an intention to enable long-horizon simulations. By contrast, the present
work concentrates on enabling language models to solve short code executions, as exemplified by
CruxEval (Gu et al., 2024b) and LiveCodeBench (Execution) (Jain et al., 2024). Specifically,
we started from the investigation of the bottlenecks of 8B-class models, revealing limitations in
syntax-level prediction ability (Section 3.1) and identifying fluctuations in CoT reasoning that hinder
precise operation execution (Section 3.2). These findings underscore the necessity of achieving
fine-grained and fluctuation-free CoT, and the use of execution traces is positioned as a means to
address this challenge.

B INTERPRETER DIFFERENCES BETWEEN CPYTHON AND PYTRACIFY

While CPython and PyTracify share the same surface syntax, they differ in how variable names inside
nested functions are bound on assignment. In particular:

• Reads (name lookup). PyTracify follows the same LEGB rule as CPython—Local →
Enclosing → Global → Built-in. Thus, free-variable reads in an inner function can see
bindings from an enclosing function scope.

• Writes (assignment binding). Unlike CPython, where an assignment in an inner function
creates a new local binding unless the name is explicitly declared nonlocal or global,
PyTracify uses default-nonlocal semantics: if a name exists in the nearest enclosing
function scope, an inner assignment updates that enclosing binding by default. If there is
no such enclosing binding, the assignment creates/uses a local as usual. The behavior of
global matches Python.

Intuitively, PyTracify behaves as if nonlocal were implicitly in effect for names that already exist
in the nearest enclosing function scope. This choice simplifies the interpreter/tracer while leaving
idiomatic programs unaffected.

Listing 6 Identical behavior under CPython and PyTracify

def outer():
x = "enclosing"
def inner():

print(x) # CPython: "enclosing" | PyTracify: "enclosing"
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inner()
outer()

In Listing 6, both CPython and PyTracify resolve x in inner() via the Enclosing scope.

Listing 7 Writes in an inner function: CPython vs. PyTracify

x = "global"

def outer():
x = "enclosing"
def inner():

x = "local"
print(x) # CPython: "local" | PyTracify: "local"

inner()
print(x) # CPython: "enclosing"

# PyTracify: "local" (inner updated the enclosing x
)

outer()
print(x) # CPython: "global" | PyTracify: "global"

As shown in Listing 7, CPython treats x assigned in inner() as a new local binding (unless
nonlocal x is declared), so outer() prints "enclosing". PyTracify instead rebinds the
enclosing x by default, so outer() prints "local".

Additionally, to make character-level semantics more transparent to the model, PyTracify overrides
Python’s built-in function len as shown below.

Listing 8 Pedagogical override of len to expose character-level iteration

def len(target: object) -> int:
cnt = 0
for element in target:

cnt += 1
return cnt

With the override in Listing 8, calling len("hello") produces the execution trace in Listing 9.

Listing 9 Execution trace produced by len("hello") under the override

0 Statement
1 Expr len("hello")
2 Call len("hello")
2 CallArg0 "hello"
3 Constant 'hello'
2 Statement
3 Assign cnt = 0
4 Constant 0
3 Assign cnt = 0
2 Statement
3 For for element in target: # type:
4 Name target = hello
3 Statement
4 AugAssign cnt += 1
5 Constant 1
4 AugAssign cnt = 1
3 Statement
4 AugAssign cnt += 1
5 Constant 1
4 AugAssign cnt = 2
3 Statement
4 AugAssign cnt += 1
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5 Constant 1
4 AugAssign cnt = 3
3 Statement
4 AugAssign cnt += 1
5 Constant 1
4 AugAssign cnt = 4
3 Statement
4 AugAssign cnt += 1
5 Constant 1
4 AugAssign cnt = 5
2 Statement
3 Return return cnt
4 Name cnt = 5
2 Call len('hello') = 5

Because LLMs typically process strings as sequences of subword tokens rather than individual
characters, they can be brittle on strictly character-level reasoning. By overriding len to surface the
per-character iteration in the execution trace, PyTracify makes the character-level semantics explicit
and easier for the model to learn.

C TRAINING AND INFERENCE PROMPT FOR ET-COT

Listing 10 Training prompt format for the ET-CoT training dataset

System:
You are a highly capable assistant. Your task is to estimate the output

of the given Python code.
The reasoning process and output are enclosed within <think> </think>

and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think><answer> output here </

answer>
User:
<code>code</code> <input>input</input>.
Assistant:
<think>trace</think><answer>output</answer>

Listing 10 is the training and inference prompt format for the ET-CoT trainig dataset. The user
supplies the Python code for execution and any required standard input values. The assistant
then provides the execution trace (generated using PyTracify), encapsulated within <think> tags,
followed by the code’s final output, encapsulated within <answer> tags.

At inference time, we provide only the code and input (the“User” portion of the training format;
the model generates both the reasoning and the final <answer>. For ET-CoT models, we prefix the
prompt with the token sequence 0\n Statement to trigger the ET-CoT procedure. Correctness is
evaluated by matching the model’s generated answer to the ground-truth output—this is the same
evaluation protocol used in CruxEval and LiveCodeBench. Because there is no need to introduce
diversity in the outputs, we use a temperature of 0 and top-k sampling with k = 1.

D CUSTOM DATASET EXAMPLE

Listing 11 Example of String Functions Dataset

<code>
# removeprefix: Remove the specified prefix from the start of the

string if present.
# Example: \"unhappy\".r emoveprefix(\"un\") -> \"happy\"
print('koalawatermelonslow'.removeprefix('koa'))
</code>
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Listing 11 is an example from the String Functions Dataset described in Section 4.3. It shows
the case of the removeprefix function, where the behavior of removeprefix is explained
in comments inside the <code></code> block, along with an example of applying the function
to a random string. The same structure—commented explanation of the function’s behavior plus
an example of string manipulation—is used for other functions such as len, slice, replace,
rpartition, find, join, and rstrip.

E MATCH RATE BETWEEN ET-COT AND PYTRACIFY

Table 12: ET-CoT Llama3.1-8B performance and trace-matching statistics. The table reports the
pass@1 accuracy on CruxEval-O, the overall agreement between ET-CoT and PyTracify traces, and
the proportions of correct and incorrect predictions among the trace-matched subset.

Metric Value (%)
CruxEval-O Accuracy (ET-CoT Llama3.1-8B) 67.75
ET-CoT / PyTracify Trace Agreement 52.63
Correct & Trace-Matched 52.38
Incorrect & Trace-Matched 0.25

Table 12 shows the proportion of cases in which the execution traces generated by Llama 3.1-8B with
ET-CoT match the traces produced by PyTracify. From the table, we can see that the ET-CoT–fine-
tuned Llama 3.1-8B achieves a pass@1 accuracy of 67.75%. Overall, 52.63% of outputs had traces
that matched PyTracify’s. Among these trace-matched cases, 52.38% were correct predictions, while
0.25% were incorrect despite the traces matching. The 0.25% of cases where the trace matched
perfectly but the prediction was incorrect correspond to just two samples: one where the correct
answer consisted of seven consecutive spaces but the model predicted an empty string, and another
where the expected answer was ’ 4 2 ’ (with leading and trailing spaces) but the model predicted
’4 2’ without those spaces.

F PROOF OF PROPOSITION 1

There are several theoretical works on the computational power of Transformers with and without
CoT. Li et al. (2024) proved that CoT corresponds to the size of boolean circuits which can be solved
by the Transformer with that CoT length. On the other hand, without CoT, its computational power is
bounded above by uniform TC0, according to Merrill & Sabharwal (2024). Here TC0 is the class
of problems efficiently solvable by basic (constant-depth and polynomial-size Boolean) circuits.
Also, according to Merrill & Sabharwal (2023), without CoT of sufficient length, the expressivity of
Transformers collapses to low-level circuit classes. These results highlight the crucial role of CoT
design if we want LMs to “think like a computer” (to run programs of certain complexities).

Here, by borrowing the result of Merrill & Sabharwal (2024), we emphasize that CoT of adaptive
length is necessary even to simulate simple programs. Specifically, we discuss the problem class
of NL, which is the class decidable in logarithmic space nondeterministically. NL-hard denotes the
set of problems to which every problem in NL reduces within log space. Example of such problems
include reachability in directed graphs, 2-SAT, and NFA simulations (Sipser, 1996). On the other
hand, L is the class of problems decidable deterministically in logarithmic space, simpler than NL. It
is generally believed that L ̸= NL.

Proposition 1. Assume that L ̸= NL. Then, solving an NL-hard problem with a log-precision
(O(logm) precision for m decoding steps) decoder-only transformer with strict causal masking (each
position attends only to earlier tokens), saturated attention (idealized hard attention), and projected
pre-norm (apply linear projection before layer normalization for each sublayer) requires ω(log n)
intermediate decoding steps as a function of the input length n.

Proof. Suppose that there exists an NL-hard problem A that can be solved by such a Transformer
with O(log n) intermediate decoding steps. Every problem B in NL reduces to A via a log-space
reduction by the definition of NL-hardness, and from Theorem 4 of Merrill & Sabharwal (2024)
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with t(n) = O(log n), composing this reduction with an L algorithm for A keeps us in L, so B ∈ L.
Hence we obtain that NL ⊆ L.

Since by definition L ⊆ NL, we would have L = NL, contradicting the standing assumption L ̸= NL.
Therefore, NL-hard problems cannot be solved with only O(log n) intermediate decoding steps.

This proposition suggests that to solve NL problems we need to adapt the number of CoT steps, and
we cannot abbreviate the intermediate reasoning steps into a constant number of steps. Due to an
residual factors in Merrill & Sabharwal (2024) which cannot be ignored for the NL class, we could
only state the growth speed of ω(log n). Thus it is a future work to state stronger claims, while keep
focusing on a simple class of problems realistic to be included in actual CER benchmarks.

G DETAILS OF THE EXPERIMENT IN SECTION 3.1

Here, we describe the data generation and evaluation pipeline in detail. Specifically, the complete
intermediate process to transform CruxEval data into problems such as that in Figure 3, including
the prompts used, as well as examples of the generations, can be found at the end of this section in
“Example of the data generation and evaluation pipeline.” The experiments were conducted using
models available on OpenRouter (https://openrouter.ai/), except for OLMo-2-1124-7B-
Instruct (OLMo 2 team, 2025), which we ran locally with vLLM (Kwon et al., 2023).

G.1 DATA GENERATION PIPELINE

The original CruxEval dataset (Gu et al., 2024b) consists of functions with 3–13 lines and corre-
sponding input–output examples. From this, we constructed functions to evaluate line-level execution
simulation. First, using Gemini 2.5 Pro (Comanici et al., 2025), we extracted the line deemed most
essential from each original function. Next, we created a minimal function containing only that line
(with minimal scaffolding if strictly necessary). For each such function, we generated input–output
pairs, ensuring that the new function’s behavior matched the execution of the extracted line in the
original function.

From the 800 original samples, we thus produced new functions and input–output pairs. Among
them, about ten were either non-executable or had mismatched pairs; we applied minimal manual
fixes to these cases, resulting in 800 executable functions with correct input–output pairs.

G.2 EVALUATION

On this dataset, we have evaluated OLMo-2-1124-7B-Instruct (OLMo 2 team, 2025), Llama-3.1-
8B-Instruct (Dubey et al., 2024a), Llama-3.1-70B-Instruct (Dubey et al., 2024a), Qwen2.5-7B-
Instruct (Qwen team, 2025), Qwen2.5-72B-Instruct (Qwen team, 2025), Qwen3-8B (Yang et al.
(2025), think mode for CoT and explanation, non-think mode for direct prediction), Ministral-8B,
Gemini-2.0-Flash, and GPT-4.1. In our design, the models are divided into three groups. The
first group is a collection of recent models of 7–8B scale, corresponding to OLMo-2-1124-7B-
Instruct, Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B, and Ministral-8B. The second
group comprises larger models from the same series as those in the first group, namely Llama-
3.1-70B-Instruct and Qwen2.5-72B-Instruct. Finally, we selected as popular commercial models
Gemini-2.0-Flash, and GPT-4.1. Our choice to focus on non-thinking models is motivated by the fact
that closed-source thinking models cannot be forced to provide direct answers (without reasoning),
which would lead to missing data.

We add a note on natural language descriptions. This experiment is based on the hypothesis that
a known failure mode of LMs—being able to explain a concept but failing to apply it to concrete
instances (Mancoridis et al., 2025)—also occurs in code understanding. There are several possible
ways to assess the correctness of code descriptions generated by LMs, but we regard the strictest
criterion as whether such descriptions alone allow simulation of code execution to produce the correct
output. To this end, after having each LM describe the code, we asked GPT-4.1, which demonstrated
strong code execution simulation ability, to generate output predictions by simulating execution solely
based on the descriptions (without seeing the function itself). We then compared these predictions
against the ground-truth outputs for evaluation.
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During GPT-4.1’s execution simulation, occasional errors occurred, which we believe caused some
downward bias in accuracy. On the other hand, the chance of obtaining the correct output from an
incorrect description is very low, making upward bias unlikely. Therefore, for the purpose of showing
that the accuracy of natural language descriptions exceeds that of direct execution simulation, the
inherent error in this evaluation method does not become a problem.

Listing 13 Example of the data generation and evaluation pipeline

Original problem from CruxEval:
Function:
def f(s, o):

if s.startswith(o):
return s

return o + f(s, o[-2::-1])

Input:
s = 'abba'
o = 'bab'

Output:
'bababba'

Prompt for Gemini 2.5-Pro when transforming the code:
System prompt:
You are a dataset transformation assistant.

You will work with problems from Cruxeval, a code execution dataset:
- Each problem is (code, input, output).
- Given code and input, the original task is to predict the execution

output.

Before transforming, simulate the original code step by step to locate
the first moment when the single most essential line is executed and
to capture the exact variable state at that moment.

Transformation rules:
1) Choose exactly one "most essential" line.
2) Write a minimal function that contains only that line (plus minimal

scaffolding if strictly necessary).
3) Creating the Input: use the exact variable state when that line

first executes as the new inputs.
Write them in the same comma-separated style shown in the examples.
Keep it minimal but sufficient to execute the line once.

4) Creating the Output: the return value produced by the new simplified
function after executing the essential line exactly once.

You may output reasoning before the transformed data, but always end
with the following format:

code:
<transformed code>

input:
<transformed input>

output:
<transformed output>

---

### Example 1

Original:
code:
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def f(text, value):
text_list = list(text)
text_list.append(value)
return ''.join(text_list)

input:
'bcksrut', 'q'

output:
'bcksrutq'

Transformed:
code:
def f(text_list, value):

text_list.append(value)
return text_list

input:
text_list = ["b", "c", "k", "s", "r", "u", "t"]
value = "q"

output:
["b", "c", "k", "s", "r", "u", "t", "q"]

---

### Example 2

Original:
code:
def f(names):

numberOfNames = 0
for i in names:

if i.isalpha():
print(i, numberOfNames)
numberOfNames += 1

return numberOfNames

input:
['sharron', 'Savannah', 'Mike Cherokee']

output:
2

Transformed:
code:
def f(name):

if name.isalpha():
return 1

else:
return 0

input:
name = 'sharron'

output:
1

User prompt:
Transform the following Cruxeval problem according to the System

instructions.

code:
def f(s, o):
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if s.startswith(o):
return s

return o + f(s, o[-2::-1])

input:
'abba', 'bab'

output:
'bababba'

Trace of Gemini 2.5-Pro when transforming the code:
`f` is a recursive function. Let's trace its execution with the given

inputs.

1. **`f(s='abba', o='bab')`**:
* The condition `s.startswith(o)` (`'abba'.startswith('bab')`) is

`False`.
* The `else` block is executed. It must compute `o + f(s, o

[-2::-1])`.
* This is the first time the most essential part of the logic is

reached. The crucial operation here is the calculation of the
new value for `o` for the recursive call.

* The expression `o[-2::-1]` is evaluated. `o` is `'bab'`. The
slice starts at the second-to-last character ('a') and goes
backward to the beginning. The result is `'ab'`.

* The execution continues with a recursive call: `f('abba', 'ab')
`.

2. **`f(s='abba', o='ab')`**:
* The condition `s.startswith(o)` (`'abba'.startswith('ab')`) is

`True`.
* The function returns `s`, which is `'abba'`.

3. **Returning to the first call**:
* The expression from step 1 is now resolved: `'bab' + 'abba'`.
* The final return value is `'bababba'`.

The most essential line is `return o + f(s, o[-2::-1])`. The single
most critical operation within that line, executed at the first
opportunity, is the slice `o[-2::-1]`, which generates the argument
for the subsequent recursive call and drives the algorithm forward.
We will isolate this operation.

- **Essential line chosen:** The slice operation `o[-2::-1]` from the
line `return o + f(s, o[-2::-1])`.

- **State at first execution:** The variables available when this
slice is first computed are `s = 'abba'` and `o = 'bab'`. Only `o`
is needed for the slice.

- **Minimal function:** A function that takes `o` and returns the
result of the slice.

- **Input:** The value of `o` at that moment: `'bab'`.
- **Output:** The result of `'bab'[-2::-1]`, which is `'ab'`.

code:
def f(o):

return o[-2::-1]

input:
o = 'bab'

output:
'ab'

Transformed problem:
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Function:
def f(o):

return o[-2::-1]

Input:
o = 'bab'

Output:
'ab'

Prompt for prediction:
System prompt:
You are a highly capable assistant. Your task is to predict the exact

value that the final function call evaluates to in the given Python
code. Please describe your thought process briefly but clearly
enough so that someone can verify your thought process, enclosed in
<reason>...</reason>, and put the prediction of the code output in <
answer>...</answer>.

Strictly follow the format:
<reason>
(thought process here)
</reason>
<answer>
(only the final output here)
</answer>

User prompt:
Predict the return value of the final function call of the code,

according to the system instructions.

code:
def f(o):

return o[-2::-1]

o = 'bab'

f(o)

Generated predictions:
[GPT-4.1] (incorrect)
Answer:
'ba'

Reasoning:
The function f(o) takes a sequence o and returns o[-2::-1]. In Python

slice notation, [start:stop:step], so o[-2::-1] starts at the second
-to-last element and goes backwards to the beginning. For o = 'bab',
o[-2] is 'a', so the slice is from index 1 to before the beginning,
stepping by -1: o[1::-1], which is 'ab' reversed, i.e., 'ba'.

[Gemini 2.0 Flash] (correct)
Answer:
'ab'

Reasoning:
The function `f` takes a string `o` as input.
It returns a slice of the string `o`. The slice `o[-2::-1]` starts from

the second to last element (index -2), goes to the beginning of the
string, and reverses the string.

In this case, o = 'bab'. So the slice starts from index -2 which is 'a
', and goes to the beginning with a step of -1. So the reversed
slice is 'ab'.

[Llama3.1-8B] (incorrect)
Answer:
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'abab'

Reasoning:
Upon executing the function call f(o) with the input string 'bab', we

first need to reverse the entire string except for the last two
characters. Since the indexing in Python is 0-based, '-2::-1' means
start from the second last character ('b') and move backwards,
stepping by -1 each time. However, since we're looking to exclude
the last character and only remove the second last digit then
overwrite the first 3rd digit of the 'o' list with the rest, a
simpler method would be to get the first 1 character and put it last
here while the first 2 characters then get reversed leading to

reverse offirst three digits of string except last two, return the
rest: ('a','b',''), and appending them at the start afteroverwriting
'' leaving ('a','b','b') excluding the first & second part of the

repeating ('b') block that were moved away substituting for their
normal counterparts of index location {0, }, return the reversed
list resulting sting: 'abab'.

[Llama3.1-70B] (incorrect)
Answer:
'aba'

Reasoning:
The function f(o) takes a string o as input and returns the substring

from the second last character to the beginning of the string in
reverse order. The slicing operation o[-2::-1] starts from the
second last character (index -2), moves backwards to the beginning
of the string (step -1), and includes all characters in between.

In this case, the input string o is 'bab'. Applying the slicing
operation, we start from the second last character 'a', move
backwards to the beginning of the string, and include all characters
in between. This results in the substring 'aba'.

However, since the slicing operation moves backwards, the resulting
substring is in reverse order, so the actual return value of the
function is 'aba' spelled backwards, which is 'aba' itself since it
is a palindrome.

[Qwen2.5-7B] (incorrect)
Answer:
'b'

Reasoning:
The function `f(o)` operates on the string `o` which is 'bab'.
1. In the function, the slice `o[-2::-1]` is used. This starts from the

second last character (i.e., the index -2, which is 'b') and goes
backwards to the start of the string (index -3, which would be out
of range, so it starts from 'b') step by -1.

2. So, it reverses the string from the second last character to the
start, which results in 'b'.

[Qwen2.5-72B] (correct)
Answer:
'ab'

Reasoning:
The function `f` takes a single argument `o` which is expected to be a

string. It returns a slice of the string starting from the second
last character to the beginning of the string, in reverse order.

Given the input `o = 'bab'`:
- `o[-2]` is 'a' (the second last character).
- `o[-3]` is 'b' (the first character, accessed in reverse order).

So, the slice `o[-2::-1]` will return the substring 'ab'.
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Prompt for generating explanations:
System prompt:
You will be given a Python function along with input and output

examples. Explain what the function does, briefly but clearly enough
so that someone could write the same code after reading it. Your

response should consist only of the explanation.

---

### Example 1

function:
def f(text_list, value):

text_list.append(value)
return text_list

example input:
text_list = ["b", "c", "k", "s", "r", "u", "t"]
value = "q"

example output:
["b", "c", "k", "s", "r", "u", "t", "q"]

explanation:
This function takes as input a list of single-character strings called

text_list and a single-character string called value, and it outputs
a list of single-character strings. The output is text_list with

value appended to the end.

### Example 2

function:
def f(name):

if name.isalpha():
return 1

else:
return 0

example input:
name = "sharron"

example output:
1

explanation:
This function takes as input a string called name and outputs an

integer. The output is 1 if the string name consists only of
alphabetic characters (a-z, A-Z) and is non-empty; otherwise, the
output is 0.

User prompt:
Generate an explanation from the following, according to the system

instructions.

function:
def f(o):

return o[-2::-1]

example input:
o = 'bab'

example output:
f(o)
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Generated explanations:
[GPT-4.1] (correct)
This function takes as input a string called o and outputs a string.

The output is the substring of o starting from the second-to-last
character and moving backward to the beginning of the string,
effectively reversing all characters of o except for the last one.

[Gemini 2.0 Flash] (correct)
This function takes as input a string called o and returns a new string

consisting of all characters in o except for the last one, in
reverse order.

[Llama3.1-8B] (correct)
This function takes as input a string o and returns a substring

consisting of all characters of o except the last one, in reverse
order.

[Llama3.1-70B] (correct)
This function takes as input a string o and outputs a string. The

output is the substring of o starting from the second-to-last
character and moving backwards to the beginning of the string.

[Qwen2.5-7B] (correct)
This function takes as input a string o and outputs a string. The

output is the substring of o containing all characters except the
last one, taken in reverse order.

[Qwen2.5-72B] (correct)
This function takes as input a string o and outputs a string. The

output is the substring of o starting from the second-to-last
character (inclusive) to the beginning of the string, in reverse
order.

H DETAILS OF THE EXPERIMENT IN SECTION 3.2

H.1 PREPARATION OF THE EXAMPLE CODES

Selection of the algorithms. We first selected four iterative algorithms to be used as examples. In
doing so, we considered several factors. (i) Since our goal is to measure the iterative code simulation
capability of small-sized LMs, each step should be sufficiently simple to be solvable even by such
models. (ii) To ensure that the step count is meaningful, the complexity of each step should be
approximately uniform. These correspond to conditions (i) and (ii) in Section 3.2. Furthermore, while
some prior works (La Malfa et al., 2024; Shojaee et al., 2025) intentionally employed algorithms
with superlinear complexity to inputs in order to elicit failures in LMs, we focus here exclusively on
algorithms with linear complexity in the input size.

First, we adopted addition, which has been widely used as a case study for LLMs (Zhong et al.,
2023; Yu & Ananiadou, 2024). Next, from popular algorithms, we selected dynamic programming
algorithms, greedy algorithms, and graph algorithms. After writing out their code and ensuring
conciseness, we chose jump game DP, interval scheduling of sorted jobs, and BFS, one for each
group. The explanations of these algorithms are provided below.

Extraction and simplification of iterative parts. Since our goal is to measure the step-wise error
rate, we need to eliminate preprocessing and postprocessing so that the step count is meaningful. For
example, in interval scheduling, we directly provide a list of jobs already sorted by their finishing
times for this reason.

We also took into account the difficulty of each operation for LMs and adjusted the implementation
and input/output formats to maximize their likelihood of success at each step. For instance, as
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in Section 4.3, where we introduced additional training on string manipulations, LLMs generally
struggle with string operations. Therefore, in the implementation of addition, we pass digits as lists
rather than as plain numbers. Similarly, because LMs often struggle with extracting elements from
specified positions in a list, in the addition task we remove the used element from the list at each digit
step. Further details are provided in the respective algorithm paragraphs.

(a) Digit-wise addition (Listing 14). Digit-wise addition takes two numbers as input and compute
their sum. In implementing this task, we considered the following points.

• LMs generally struggle to extract a specific digit from a number, which causes the difficulty
to increase as the computation proceeds step by step. To address this, we decompose the
numbers into lists of digits and remove each digit once it has been processed, thereby
constructing an equivalent algorithm that is easier for LMs to handle.

• Although a = A[-1] and A = A[1:] can be written more compactly as a =
A.pop(), we keep them separated for clarity. We also avoided to use .append and
used [c] + C instead.

• At every step we print the intermediate result as well as the lists for original numbers A
and B, which ensures that the necessary information remains close to the output even as the
computation progresses further away from the input.

• To ensure that the function body consists only of a while loop, we include not only the
input numbers A and B to be added, but also the output C and the carry used in the algorithm
as part of the inputs.

The inputs are generated by randomly sampling n-digit numbers, where n is specified as a complexity
of the problem. For completeness of the algorithm, we include an exception handler for the final
carry immediately before the output. However, even if a carry occurs in the last digit, we do not
count it as a failure. In n-digit plus n-digit addition, we evaluate steps only up to n, since not every
case produces a final carry and including it would make the calculation of the maximum failure rate
complicated.

Listing 14 Python program for (a) digit-wise addition
def add_equal_length_numbers(A: list[int], B: list[int], C: list[int],

carry: int) -> list[int]:
while A and B:

a = A[-1]
b = B[-1]
c = a + b + carry
carry = c // 10
c = c % 10
A = A[:-1]
B = B[:-1]
C = [c] + C
print(A, B, C, carry)

if carry:
C = [carry] + C

return C

(b) Dynamic Programming for the jump game (Listing 15). We first describe the jump game.
Given a list of integers heights, starting from the leftmost element one repeatedly ”jumps” either
one or two positions forward until reaching the right end. At each step, the cost is defined as the
absolute difference between the numbers, and the goal is to find a path that minimizes the total cost.
This problem can be solved using a standard one-dimensional dynamic programming, where we
iteratively update the minimum cost to each position from the left in DP.

In implementing this task, we considered the following points.

• To avoid exception handling around the start and end positions, we pre-filled the DP list at
positions 0 and 1. This eliminated the need for special cases within the function and ensured
that the workload at each step remained uniform. Therefore, a heights list of length n+2
corresponds to n steps.
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• To eliminate the need for the LM to retrieve values from the middle of the sequence, we
removed each element from the heights list once it was accessed, since the element was
no longer needed thereafter.

The inputs are generated by randomly sampling from {0, . . . , 9}n+2, where n is specified as a
complexity of the problem. This function receives heights as well as an empty list DP, and fill and
output this DP.

Listing 15 Python program for (b) dynamic programming for the jump game
def jump_DP_easy(heights: list[int], DP: list[int]) -> list[int]:

while len(heights) >= 3:
one_step = DP[-1] + abs(heights[2] - heights[1])
two_steps = DP[-2] + abs(heights[2] - heights[0])
d = min(one_step, two_steps)
DP = DP + [d]
heights = heights[1:]
print(heights, DP, one_step, two_steps, d)

return DP

(c) Interval scheduling of sorted jobs (Listing 16). Given a list of intervals (jobs) specified by
start and end times, the task is to find the maximum number of non-overlapping intervals. This
can be solved by first sorting the intervals by their finishing times and then greedily selecting them in
order of earliest finishing time. However, since sorting requires O(n log n) time, it is not suitable for
our setting. Therefore, we isolate only the selection step and use it as the subject of code execution.
Here, the output is a bool list, indicating whether each interval is selected or not.

In implementing this task, as before, we removed each job once it was examined so that the LM did
not need to access the middle of the list.

Based on the specified complexity n, we generate n jobs. For each job, the start time is sampled from
[0, 2n− 4], and the duration (end time minus start time) is sampled from [1, 4]. After obtaining the
list of intervals, we sort it based on the end time. last end is initialized as −1, and is selected
is initialized as an empty list.

Listing 16 Python program for (c) interval scheduling of sorted jobs
def interval_scheduling_of_sorted_jobs(jobs: list[tuple[int, int]],

last_end: int, is_selected: list[bool]) -> list[bool]:
while jobs:

start, end = jobs[0]
jobs = jobs[1:]
if start >= last_end:

last_end = end
is_selected = is_selected + [True]

else:
is_selected = is_selected + [False]

print(jobs, is_selected)
return is_selected

(d) Breadth First Search (Listing 17). This task is to perform a breadth-first search from a
specified vertex in a connected unweighted graph. In implementing this task, we considered the
following points.

• Instead of representing the graph as a list of edges, we constructed and stored an adjacency
list in advance. This eliminates the need for the LM to search for edges at each step.

• The output is defined as the distance from start node to each vertex, which is stored in
the form of a dictionary so that correspondence between each vertex and distance is clear.
All values of this dict Distance are initialized as −1.

• To ensure that the function body consists only of a while loop, we initialize the queue
outside the function. Specifically, we set Queue = [start node].
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For a given complexity parameter n, the input is an undirected graph with n+1 vertices and 2(n+1)
edges. We first uniformly sample a minimum spanning tree and then add random edges, thereby
ensuring that the graph is connected.

This function takes Graph, Distance, and Queue as inputs, fills Distance, and returns it.
We define a step as the process from discovering one vertex to discovering the next. Since the
start node is already discovered, the total number of steps is one less than the number of vertices.
This is the reason why, for complexity n, we consider a graph with n+ 1 vertices.

Listing 17 Python program for (d) breadth first search
def breadth_first_search(

Graph: dict[int, list[int]],
Distance: dict[int, int],
Queue: list[int]

) -> dict[int, int]:
while Queue:

current_node = Queue[0]
Queue = Queue[1:]
print(Queue, current_node)
for neighbor in Graph[current_node]:

if Distance[neighbor] == -1:
Distance[neighbor] = Distance[current_node] + 1
Queue = Queue + [neighbor]

print(Distance, Queue, current_node, neighbor)
return Distance

H.2 EVALUATION

Listing 18 shows the prompts used and an example of inference by Llama3.1-8B-Instruct. These
prompts were used for all models except those with ET-CoT and SemCoder (Ding et al., 2024a).
For SemCoder, we strictly followed the prompt templates provided at https://github.com/
ARiSE-Lab/SemCoder.

Listing 18 Example of the prediction pipeline

Prompt for predictions:
System prompt:
You are an assistant capable of simulating the execution of Python code

. The user will provide Python code that has print statement(s), and
your task is to:

1. First, reason through the behavior of the code step by step to
understand how the internal variables are updated. Enclose this
reasoning between <reason> and </reason> tags.

2. Then, show the complete simulated output of the code, which consists
of all printed lines and the returned value. Between <trace> and </

trace> tags, write the output from each print call in the order they
are executed, placing each one on its own line. Between <answer>

and </answer> tags, write the returned value separately, as it would
appear in the terminal after running the code.

Use the following format:

<reason>

[your reasoning here]</reason><trace>

[print output here]</trace><answer>

[only the returned value here]</answer>

User prompt:
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def add_equal_length_numbers(A: list[int], B: list[int], C: list[int],
carry: int) -> list[int]:
while A and B:

a = A[-1]
b = B[-1]
c = a + b + carry
carry = c // 10
c = c % 10
A = A[:-1]
B = B[:-1]
C = [c] + C
print(A, B, C, carry)

if carry:
C = [carry] + C

return C

A = [2, 1, 5]
B = [8, 6, 0]
C = []
carry = 0

f(A, B, C, carry)

Generated predictions (Llama3.1-8B-Instruct):
<reason>

The function `add_equal_length_numbers` performs addition of two
numbers represented as lists of digits, using a carry variable to
handle cases where the sum of two digits is greater than 9. Here's a
step-by-step breakdown of how it works:

1. The function takes four parameters: `A` and `B` which are the lists
of digits to be added, `C` which is the list to store the result,
and `carry` which is the carry from the previous addition step.

2. The function enters a while loop that continues as long as both `A`
and `B` are non-empty.

3. In each iteration of the loop, the last elements of `A` and `B` are
extracted using `A[-1]` and `B[-1]`. These elements are added
together along with the current `carry` to get the sum `c`.

4. The carry for the next addition step is calculated as `c // 10`.
This is done by performing integer division of `c` by 10, which
gives the quotient and keeps the remainder.

5. The last digit of the sum `c` is calculated as `c % 10`, which gives
the remainder of dividing `c` by 10. This is the new digit to be

added to the result list.
6. The last elements of `A` and `B` are removed using `A = A[:-1]` and

`B = B[:-1]`.
7. The new digit is appended to the result list `C` using `C = [c] + C

`.
8. If there is a carry after the addition, it is set as the new carry

for the next step.

The function continues this process until either `A` or `B` is empty.
If there is a carry left after the last addition, it is used to add
a new digit to the result.

Finally, the function returns the result list `C` after all additions
have been performed.

</reason><trace>

[2, 1, 5] [8, 6, 0] [5, 7, 5] 0
[1, 5] [6, 0] [7, 5, 5] 0
[5] [0] [5, 5, 5] 0
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[] [] [5, 5, 5] 0
[] [] [5, 5, 5]

</trace><answer>

[5, 5, 5]

</answer>
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H.3 FULL RESULTS

Here we provide the full results for Figures 5 and 7. Figure 8 corresponds to Figure 5, and Figure 9
corresponds to Figure 7, respectively.
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(e) Jump DP (n = 3)
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(i) Int. sched. (n = 3)
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Figure 8: Step-wise cumulative error rate for iterative code simulations (full results).

We now provide an overview of the results in Figure 8. First, Llama3.1-8B and Qwen2.5-7B
fail on all tasks for n = 3, 5 with high probablity. In contrast, for Llama3.1-70B, Qwen2.5-72B,
Gemini2.0-Flash, and GPT-4.1, the following tendency can be observed, especially for n ≥ 5. In
(d) BFS, the cumulative error rate increases gradually, whereas in (a) addition, (b) jump game DP,
and (c) interval scheduling, the step-wise failure rate is higher in the early steps. One hypothesis for
this task-specific difference is that BFS is graph-based, unlike addition, jump game DP, and interval
scheduling. Although we did not complete the experiments with the minimum spanning tree due
to eventually adopting BFS, partial results exhibited a similar pattern to BFS, with the error rate
increasing gradually. However, this contrast between the two modes is intriguing, and rather than
drawing general conclusions from only five algorithms, further dedicated exploration would be more
valuable.

Finally, as for Figure 9, the improvements from ET-CoT over the base models are substantial across
all tasks and all complexities for both Llama3.1-8B and Qwen2.5-7B, and they are also more stable
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(c) Jump DP (n = 3)
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(f) Int. sched. (n = 3)
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(i) BFS (n = 3)

0 1 2 3 4 5
Steps

0.0
0.2
0.4
0.6
0.8
1.0

(j) BFS (n = 5)

0 2 4 6 8 10
Steps

0.0
0.2
0.4
0.6
0.8
1.0

(k) BFS (n = 10)
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Figure 9: ET-CoT mitigates the initial instability of iterative code simulation (full results).

than SemCoder. Furthermore, in particular, Llama3.1-8B+ET-CoT completely suppresses the initial
instability.
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