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ABSTRACT

The auto-regressive decoding of Large Language Models (LLMs) results in signifi-
cant overheads in their hardware performance. While recent research has investi-
gated various speculative decoding techniques for multi-token generation, these
efforts have primarily focused on improving processing speed such as throughput.
Crucially, they often neglect other metrics essential for real-life deployments, such
as memory consumption and training cost. To overcome these limitations, we
propose a novel parallel prompt decoding that requires only 0.0002% trainable pa-
rameters, enabling efficient training on a single A100-40GB GPU in just 16 hours.
Inspired by the human natural language generation process, PPD approximates
outputs generated at future timesteps in parallel by using multiple prompt tokens.
This approach partially recovers the missing conditional dependency information
necessary for multi-token generation, resulting in up to a 28% higher acceptance
rate for long-range predictions. Furthermore, we present a hardware-aware two-
stage tree pruning algorithm that adaptively optimizes this decoding scheme to
fully leverage the computational capacities on different GPUs. Through extensive
experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide
range of benchmarks, our approach demonstrates up to 2.49× speedup and main-
tains a minimal runtime memory overhead of just 0.0004%. More importantly, our
parallel prompt decoding can serve as an orthogonal optimization for synergistic
integration with existing speculative decoding, showing up to 1.22× further speed
improvement. Our code will be open-sourced upon acceptance of the paper.

1 INTRODUCTION

0.0004% memory overhead 
16-hour GPU training

2.24X speedup 

Figure 1: Comparison of memory, speedup,
and training cost on MT-Bench with Vicuna-
7B. Circle diameter shows training GPU hours.

The recent advances in large language models
(LLMs) are increasingly shaping and influencing
a wide range of AI applications. However, au-
toregressive generation, the de facto approach em-
ployed in LLM inference, suffers from inadequate
hardware performance due to its inherent sequen-
tial nature (Stern et al., 2018). Speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023; Kim
et al., 2024), an emerging acceleration technique,
employs a guess-and-verify framework for LLM in-
ference, where a smaller draft model first predicts
multiple tokens sequentially and then the original
LLM verifies them in parallel. Despite its potential, the effectiveness of speculative decoding is
limited by the complexity and cost of training a draft model capable of consistently achieving high
acceptance rates across diverse base models and datasets. Additionally, the extra runtime memory
overhead for executing draft models poses a significant barrier to the broader adoption of speculative
decoding, particularly in edge and mobile environments where memory capacity is limited. Consider-
ing the growing need for user privacy and personalization, deploying LLMs on devices urges a more
memory- and cost-efficient solution for accelerating LLM inference. Recent efforts have explored
the possibility of generating multiple tokens in parallel without relying on a separate transformer
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Figure 2: Overview of PPD. The left section shows the location of trainable parameters and the
middle section displays the combined guess-and-verify process during inference. The “prompt
token” denotes the special token with separately trained embeddings to perform parallel prediction.

draft model (Santilli et al., 2023). Approaches such as inserting additional decoding heads (Cai et al.,
2024) and retrieving frequently used tokens (He et al., 2023) are employed to enhance performance.
However, these methods either aggressively assume conditional independence among the tokens
generated in a single step (Cai et al., 2024; He et al., 2023), or use placeholder tokens (e.g., [PAD]
token) that do not convey enough contextual information (Santilli et al., 2023). Therefore, they
often suffer from low acceptance rates or degradation in output quality due to the lack of sufficient
conditional information during inference.

To alleviate the complexity and overhead associated with the use of draft models while maintaining a
high acceptance rate, we propose Parallel Prompt Decoding (PPD), a novel architecture-agnostic
and memory-efficient framework that adopts prompt tuning for non-autoregressive LLM inference.
Inspired by the human natural language generation process where continuous words like common
expressions and phrases are produced simultaneously, PPD introduces the use of prompt tokens,
the meticulously trained embeddings, for multi-token prediction. Specifically, these trained prompt
tokens are appended to the original input sequence in parallel, enabling the concurrent generation
of multiple output tokens in a single forward pass. The key intuition of PPD lies in the observation
that if trained properly, prompt tokens appended to the input can approximate tokens generated
at future timesteps, thereby partially recovering the missing conditional dependency information
for multi-token generation. By strategically positioning trained prompt tokens, PPD achieves up
to a 28% higher acceptance rate when predicting long-range tokens. To further increase the token
acceptance rate, we generate multiple candidate continuations with each prompt token and use them
in combination with a customized tree attention mask to minimize the computation and memory
overhead. The capability of PPD to use low-cost prompt tokens for accurate multi-token prediction
forms the foundation for accelerating LLM inference. As shown in Figure 1, PPD achieves a
comparable speedup to the state-of-the-art speculative decoding approaches with negligible memory
overhead and reduced training cost. Moreover, to facilitate the optimized implementation of PPD
across different hardware platforms, we propose a hardware-aware two-stage tree pruning technique
that adaptively refines the prompt structure during runtime based on the computational resources
available on the specific hardware.

To demonstrate the effectiveness of our approach, we evaluate PPD on MobileLLaMA (Chu
et al., 2023), Vicuna-7b and Vicuna-13b (Chiang et al., 2023). Running on a single GPU using
the A100-40GB and RTX 4090, our method achieves a speedup ratio for inference from 2.12× to
2.49× across a diverse range of popular datasets including MT-Bench, HumanEval, and GSM8K.
Our experiments demonstrate that PPD not only achieves comparable throughput to the state-of-
the-art speculative decoding method, but it also manages this with significantly fewer trainable
parameters—specifically, 0.0002% of trainable parameters—and incurs only a minimal memory
overhead (0.0004%), showcasing that PPD is remarkably cost- and memory-efficient. The training
of prompt tokens can be completed in 16 hours using one A100 GPU, 8 hours using four GeForce
RTX 3090 GPUs, compared to the 1-2 days on four A100 GPUs required for Eagle (Li et al., 2024a).
Furthermore, since PPD does not require the modification of the original LLM or the addition of
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extra networks, it is highly adaptable and orthogonal to other decoding techniques. For instance, it
can be effectively combined with a draft model to further reduce inference latency.

Our contributions are summarized as follows:

• A novel Parallel Prompt Decoding (PPD) that adopts cost-effective prompt tokens for
non-autoregressive LLM inference, achieving a high acceptance rate for long-distance token
prediction with preserved output quality.

• A hardware-aware two-stage tree pruning technique that adaptively optimizes the prompt
structure of PPD at runtime based on the available compute and memory resources, facilitat-
ing its efficient deployment on various hardware platforms.

• An open-source implementation of PPD, accompanied by comprehensive evaluations on
various models and benchmarks. Our experiments demonstrate that PPD achieves significant
speed improvements with negligible memory overhead and reduced training cost.

2 BACKGROUND AND RELATED WORK

To enhance the inference speed of LLM, various approaches adopt an iterative guess-and-verify
strategy to enable multi-token generation. In the guessing phase, potential future tokens are proposed
at a faster speed than in traditional autoregressive implementations. Subsequently, a parallelized
verification process assesses which guessed tokens should be accepted. Depending on how tokens
are generated during the guess stage, these approaches can generally be categorized as i) speculative
decoding and ii) parallel decoding.

2.1 SPECULATIVE DECODING

The guessing phase of speculative decoding adopts a lightweight draft model to generate multiple
tokens at an increased speed (Kim et al., 2024). During the verification stage, the original LLM
subsequently determines the acceptance of the guessed tokens. It is worth noting that both draft
and original models still follow the auto-regressive inference scheme. The speedup comes from two
factors: i) the draft model runs much faster than the original model and more tokens can be generated
within the same time unit; and ii) token verification is executed concurrently, either by batching or by
incorporating multiple candidates into a single input using customized sparse attention masks (Miao
et al., 2024). Therefore, the overall speedup depends on the acceptance rate and the inference latency
of draft models.

Building on the speculative decoding scheme, various studies have been conducted to further optimize
its inference speed. To improve the accuracy of the draft model, Eagle (Li et al., 2024a) incorporates
the hidden features into the draft model’s forward pass. Recently, Eagle-2 (Li et al., 2024b) enhances
their approach using a context-aware dynamic tree construction. However, both Eagle and Eagle-2
utilize a separate draft model for multi-token generation, diverging fundamentally from our prompt
decoding approach. Moreover, their dynamic tree construction scheme is an orthogonal technique
to our two-stage tree pruning method. SpecInfer (Miao et al., 2024) adopts a tree-based speculative
inference and verification scheme, improving the diversity of speculation candidates. Sequoia (Chen
et al., 2024) optimizes the sparse tree structure of speculative decoding by considering the capability
of the underlying hardware platforms. Our tree pruning algorithm differs from Sequoia by accounting
for two types of tokens in the tree: prompt tokens and guess tokens, whereas Sequoia only considers
guess tokens. Furthermore, their methods require the storage and maintenance of a separate draft
model, and there is extra complexity in designing an efficient draft model.

2.2 PARALLEL DECODING

To overcome the inherent limitations of autoregressive inference and the memory overhead associated
with using a separate draft model, several attempts have been made to integrate both guessing and
verification using one unified model. Medusa1 (Cai et al., 2024) introduces language model (LM)
heads at the final layer of the original LLM, facilitating the generation of multiple tokens in a single

1We categorize Medusa as parallel decoding because it only adopts LM heads instead of separate models.
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forward pass. It also utilizes tree attention masks in its verification process to increase speed even
further. To enhance token drafting with retrieval-augmented generation (Karpukhin et al., 2020),
Rest (He et al., 2023) introduce retrieval-based decoding tailored for specific scenarios. Inspired
by Jacobi decoding (Santilli et al., 2023) that adopts multiple special tokens to accelerate machine
translation, Lookahead Decoding (Fu et al., 2024) improves upon this method by generating parallel
n-grams and employing a caching memory pool. To capture more information while using multiple
special tokens at distinct positions, PaSS (Monea et al., 2023) trains additional tokens with embedding
layers for parallel decoding. Hierarchical parallel decoding (Liu et al., 2024) introduces the use of
[Fork] and [Join] tokens, enabling parallel execution of multiple structural subroutines.

Our approach can be categorized as parallel decoding, with two novel features to distinguish it from
other approaches: 1) PPD trains the embeddings of parameterized ensemble prompt tokens, 2) it
utilizes a hardware-aware two-stage tree pruning algorithm for designing a sparse tree tailored to
each hardware platform.

3 PARALLEL PROMPT DECODING (PPD)

The primary advantage of PPD lies in training embeddings for prompt tokens rather than developing
a separate model. Our method integrates three substeps into a single decoding step, following the
guess-and-verify strategy: (1) candidate generation, where multiple candidate continuations2

are predicted by strategically inserting the prompt tokens into the input sequence. We adopt tree
attention (Miao et al., 2024) to merge the processing of multiple candidates into a single forward pass;
(2) candidate verification, where two verification schemes, exact matching (Fu et al., 2024) and
typical acceptance (Cai et al., 2024), are implemented; (3) candidate acceptance, where validated
candidates are integrated into the input and KV cache is updated accordingly. Figure 2 presents the
inference scheme of combining generation and verification steps in a single forward pass.

3.1 PROMPT TOKENS

The prompt tokens are the key component of PPD to realize multi-token generation. Initially
introduced by Lester et al. (2021) to adapt LLMs for specific tasks, prompt tokens are typically
prepended to the input, with outputs generated in an autoregressive manner. In this work, we propose
a novel approach of utilizing prompt tokens by strategically positioning them at locations where
tokens are anticipated to be generated in parallel.

In the standard decoding process, the probability of predicting the next token is expressed as the
conditional probability p(yi+1|x, y1:i), where x is the input prompt, y1:i are the i tokens generated so
far, and yi+1 is the next token to be predicted. For conventional parallel decoding techniques (Stern
et al., 2018; Cai et al., 2024) that presume complete conditional independence among tokens decoded
in a single step, the exact conditional probability is approximated by

p(yi+k+1|x, y1:i+k) = pθ(yi+k+1|x, y1:i)

where k > 0 indicates the token distance.3 However, we observe that as k increases, the gap
between the actual probability and its approximation expands, primarily due to the absence of relevant
conditional dependencies. We argue that prompt tokens can bridge this gap by more accurately
modeling the conditional probability as

p(yi+k+1|x, y1:i+k) = pθ(yi+k+1|x, y1:i, ti+1:i+k)

where ti is the prompt token with token distance i. Through this forward pass in the decoder
layers, these causally linked prompt tokens facilitate the flow of information along the sequence of
speculative tokens, thus restoring the conditional probability. We demonstrate the effectiveness of
this approach in Section 5.2.

2A candidate token, also referred to as a ”guess token”, is a draft token generated from a prompt token.
3The token distance is the number of tokens between the last accepted token and the predicted token.
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3.2 ENSEMBLE PROMPT TOKENS

Inspired by prompt ensembling (Lester et al., 2021), which uses multiple prompts to generate diverse
responses and aggregates these to derive a single answer, we introduce the concept of ensemble
prompt token (EPT). This additional abstraction allows us to decouple each prompt token from the
fixed embedding dimension. For every prompt token, there exist multiple corresponding EPTs, each
with its distinct embedding. We modify the attention mask to ensure that each nth EPT only depends
on the corresponding nth EPTs from preceding prompt tokens. This selective visibility is maintained
for both training and inference, where the guess token for each prompt token is determined by
averaging the logits of its EPTs. The use of EPTs not only enables direct and flexible control over
the trainable parameters, but also leads to an increase in prediction accuracy. The probability is
approximated as 1

n

∑n
j=1 pθ(yi+k+1|x, y1:i, vji+1:i+k), where vji+m denotes the jth EPT at a token

distance of m. Further details about EPTs can be found in Appendix D.

3.3 TRAINING

During training, only the embeddings of prompt tokens are changed, with the parameters of the
original LLM remaining frozen. We adopt the following two training techniques:

Random Insertion of Prompt Tokens: Randomly inserting prompt tokens throughout the input
sequence reduces contextual bias from appending them only at the end. This approach broadens the
predictive capacity of prompt tokens beyond a limited vocabulary such as <eos> and punctuation.

Knowledge Distillation: To align the predictive behavior of prompt tokens with the original LLM,
we employ knowledge distillation. Instead of using hard labels, prompt tokens are trained against
the logits produced by the original LLM. Following Medusa (Cai et al., 2024), the loss function is
formulated as:

LPD =
1

N

N∑
i=1

DKL(Pi ∥ Qi) · αi−1, (1)

where DKL is the KL divergence, Pi is the predicted distribution of the ith prompt token, Qi is the
corresponding distribution from the original LLM, and α is the decay ratio.

4 SPARSE TREE PRUNING

4.1 CUSTOMIZED SPARSE TREE ATTENTION

Tree attention, introduced by SpecInfer (Miao et al., 2024), increases the expected acceptance rate by
considering the top-k candidates from a single decoding step. In their approach, the input is structured
as a tree, where each level of the tree corresponds to a specific output position. An attention mask
is applied to the tree-structured input, allowing the model to process multiple candidates efficiently
without increasing the batch size.

To improve the efficiency and performance of LLM inference, this paper proposes a novel sparse
tree customized for PPD, which prioritizes candidates in the tree structure with higher prediction
accuracy. A key difference from previous works (Cai et al., 2024; Chen et al., 2024) is the appending
of a sequence of prompt tokens to each guess token. The length of the prompt token sequence decides
the maximum depth of the speculative tree at the next decoding step. To further hide the latency
introduced by the extra prompt tokens, we propose a novel tree pruning algorithm (Section 4.2) that
optimizes the number of prompt tokens at each guess token.

4.2 TWO-STAGE TREE PRUNING ALGORITHM

As depicted in Figure 3, our tree pruning algorithm consists of two stages: an offline static tree
pruning phase and an online hardware-aware tree optimization phase. These two stages are applied
subsequently to reduce the amount of computation involved in PPD multi-token generation.

5
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Figure 3: Illustration of Tree Pruning Pipeline. The tree structure is optimized as a result of pruning.

4.2.1 STATIC TREE PRUNING

The first stage, static tree pruning, is applied offline prior to runtime deployment. The goal is to
reduce the number of prompt tokens in the tree to achieve the desired tree size. As shown on the left
side of Figure 3, the tree pruning process consists of three key steps:

1. Candidate Trees Construction: Building trees using only candidate tokens at varying
depths, employing the algorithm from Medusa (Cai et al., 2024) and Sequoia (Chen et al.,
2024) to maximize f(Tk).

2. Prompt Tokens Appending : Attaching the maximum allowable prompt tokens to each
candidate token from the first step.

3. Greedy Prompt Token Removal: Removing a prompt token greedily to maximize expected
amortized acceptance lengths, continuing until the desired prompt token budget is reached.

Each guess token in the tree is appended with a sequence of prompt tokens, with each prompt
token corresponding to a unique output position. The length of this sequence determines the tree’s
maximum depth at the next decoding step. Thus, removing a prompt token at a guess token reduces
the maximum tree depth at the next decoding step if this guess token is accepted in the current step.
Let pc represent the acceptance probability of guess token c, and fd denote the expected acceptance
length with d prompt tokens before removal. The decrease in expected acceptance length, ∆F , due
to removing a prompt token at c is given by ∆F = pc · (fd − fd−1). More details are discussed in
Appendix A.

4.2.2 HARDWARE-AWARENESS TREE OPTIMIZATION

Given that hardware platforms differ in terms of memory, computational resources, and runtime
capabilities, we propose a hardware-aware tree optimization to maximize the overall performance of
PPD. As shown on the right of Figure 3, this optimization adjusts the tree size budget based on the
performance characteristics of the target hardware.

To achieve this, we define two key functions:

1. Acceptance length τ(n) (hardware-independent) and
2. Forward pass latency Lfp(n) (hardware-dependent).

The speedup ratio, Speedup(n) = τ(n)
Lfp(n)

, is estimated using a validation dataset, with τ(n) evaluated
once and Lfp(n) tested on different hardware platforms. We then choose the tree size budget that
maximizes Speedup(n) based on the measured runtime latency on the specific hardware platform. To
eliminate runtime overhead, hardware latency profiling is conducted during idle periods.

5 EXPERIMENTS

Models and testbeds. We conducted all the experiments using MobileLLaMA-1.4B (Chu et al.,
2023), Vicuna-7B and Vicuna-13B (Chiang et al., 2023). We used 3 prompt tokens and 1 EPT per

6
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prompt token for all inference experiments. The inference throughputs of the models are evaluated
on a single NVIDIA A100 GPU with 40GB of memory and a GeForce RTX 4090 using a batch size
of 1 and FP16 precision. Further details about the experimental setup can be found in Appendix F.

Training. We froze all trainable parameters of the original LLM. Prompt token embeddings were
trained using distillation logits generated from the ShareGPT dataset (ShareGPT, 2023), with a
maximum context length of 1024, a cosine learning rate scheduler starting at 0.01, and no warmup.
Prompt token embeddings are initialized with normal text token embeddings. For each model, the
same set of prompt tokens is used across experiments to demonstrate its generalizability.

Datasets. We assess the throughput performance of PPD across various tasks and datasets. Specifi-
cally, we evaluated PPD using the MT-Bench dataset (Zheng et al., 2023), which contains multi-turn
questions with a range of topics, in both non-greedy (temperature follows the default configuration)
and greedy settings (temperature=0). We used the GSM8K (Cobbe et al., 2021) and HumanEval (Chen
et al., 2021) datasets only in the greedy setting. The GSM8K dataset consists of grade school math
problems and we used the first 500 questions of the test split for our evaluations. HumanEval includes
coding tasks, for which we set a maximum new token limit of 512 to control the length of the
generated sequences. We used the Alpaca (Li et al., 2023) dataset as the validation dataset to produce
the latencies and acceptance lengths used for sparse tree pruning.

5.1 SPEEDUP COMPARISON WITH PARALLEL DECODING METHODS
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Figure 4: Comparative evaluation of latency
speedup between PPD and other parallel de-
coding methods. The experiments were con-
ducted using the MT-Bench dataset, with the
temperature set to MT-Bench’s default config-
uration for Medusa and PPD.

We compare the speedup ratios of PPD with state-
of-the-art parallel decoding methods on MT-Bench
in non-greedy settings in Figure 4. PPD achieves
speedups up to 13.8% higher than Medusa and be-
tween 2 times and 3 times higher than other parallel
decoding methods. We examine the factors con-
tributing to the enhanced speedup ratios and other
performance metrics, as presented in Table 1. The
reasons for the increase in speedup ratios are two-
fold. Firstly, PPD produces candidate tokens with
a higher acceptance rate than Medusa when utiliz-
ing a sparse tree of the same size. Notably, PPD
continues to achieve a comparable or slightly bet-
ter acceptance rate even when employing a much
smaller sparse tree – ranging from one-third to half
the size. Secondly, PPD benefits from lower forward
pass latency due to its ability to use smaller sparse
tree sizes and hence shorter input lengths. PPD also
eliminates the computational overhead associated
with separate decoding heads. PPD maintains the
same output quality, achieving about the same score on MT-Bench while using significantly fewer
trainable parameters.

Figure 5 displays the throughput of PPD on MT-Bench, HumanEval, and GSM8K with temperature
equal to 0. PPD achieves consistent walltime speedup ratios from 2.12× to 2.49× on different GPUs,
which demonstrates that prompt tokens generalize well on different tasks. In general, PPD performs
better in coding and math reasoning tasks, achieving speedups between 2.21× and 2.49×. This can
be attributed to the fact that both code and math equations often contain fixed patterns and repetitive
symbols, which narrows the range of plausible candidates and simplifies the prediction. We also
found that with typical acceptance, the speedup increases with temperature. Another notable trend
is that smaller models, such as Vicuna-7B, generally achieve more significant speedup ratios as
compared to larger models, like Vicuna-13B. PPD aims to generate more tokens per step, which
comes with increased computational demands. For larger models that already require substantial
computational resources, it is necessary to limit the size of the sparse tree to avoid exceeding the
GPU’s utilization cap and causing increased latency. As a result, the number of tokens accepted
per step is reduced, leading to lower speedups. However, this can be amortized when using more
powerful GPUs than the NVIDIA A100 and the RTX 4090, such as NVIDIA H100.
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Model Method T τ Lfp (s) Quality Ptr (%) Str Sinput

M Vanilla 50.2 1.00 0.020 - NA NA 1
PPD 108.7 2.43 0.022 Same 4.50e−4 (10,84,89) (40,285,285)

V-7B
Vanilla 39.2 1.00 0.026 5.99 NA NA 1
Medusa 82.0 2.51 0.0307 5.98 8.07 63 63

PPD 88.0 2.54 0.029 5.93 1.82e−4 (10,33,34) (40,105,105)

V-13B
Vanilla 30.4 1.00 0.0330 6.38 NA NA 1
Medusa 63.4 2.59 0.0408 - 5.52 63 63

PPD 66.1 2.44 0.0379 6.32 7.87e−5 (10,20,20) (40,60,60)

Table 1: Comparative performance metrics of MobileLLaMA (M) for greedy setting, Vicuna-7B
(V-7B) and Vicuna-13B (V-13B) for non-greedy setting using different decoding methods. The
table details throughput (T in tokens/s), average accept lengths (τ in tokens), forward pass latency
(Lfp in seconds), quality scores on MT-benchmark, percentages of additional trainable parameters
(Ptr) and input lengths (Sinput) after the prefilling phase. The sparse tree size (Str) of PPD varies at
different time steps as a consequence of different numbers of prompt tokens at each guess token,
hence represented as tuples. Same means the output matches with that of the original LLM.
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Figure 5: Throughput of PPD and vanilla models across different tasks (multi-turn dialogue, coding,
and math). The temperature for experiments is set to 0 and the generated output of PPD exactly
matches that of the original LLM. We do not show the results of Vicuna-13B on RTX 4090 as it does
not fit into the GPU memory.

5.2 LONG-RANGE TOKEN PREDICTION

For a specific sparse tree, the accumulative accuracy provides a theoretical upper bound for the
number of generated tokens per step and the maximum possible speedup ratio. Hence, maximizing
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Figure 6: Accumulative accuracy comparisons across different model configurations and prediction
distances. ‘V7’ for Vicuna-7B, and ‘V13’ for Vicuna-13B. The notation ‘@i’ refers to a token
distance of i. ‘100 EPT’ represents 100 EPTs per prompt token. Accumulative accuracy is defined as
top-k accuracy (e.g., a prediction is correct if the top-k candidates contain the ground truth). These
measurements were obtained from the Alpaca Eval dataset with a maximum of 20 steps.
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accumulative accuracy is crucial for the effectiveness of PPD. Figure 6 demonstrates the accumulative
accuracy of the tokens predicted at various positions. We summarize the following three key insights
from the results.

PPD excels at predicting more distant tokens. As depicted in Figure 6a, PPD consistently
outperforms Medusa in accuracy across all token positions. The accuracy gap between PPD and
Medusa widens with the increased token distance (e.g., the top-10 accuracy difference is 0.03 for the
‘next next’ word versus 0.12 for the ‘next next next next’ word). This improvement can be attributed
to PPD’s ability to partially recover conditional dependency information through causally connected
prompt tokens.

PPD performs well at generating a broader array of plausible token candidates. For example, in
predicting the token at a token distance of 3, the top-10 candidates exhibit an accuracy improvement of
0.1 over Medusa, compared to only 0.02 for the top-1 candidate. This demonstrates the value of using
tree attention and the largest viable tree size during inference, as multiple candidate continuations
further boost accuracy improvement.

Multiple EPTs per prompt token and larger model sizes yield modest improvements in predic-
tion accuracy. Figure 6b shows that using 100 EPTs per prompt token leads to accuracy improvement,
ranging from 0.018 to 0.045. Figure 6c displays that PPD with Vicuna-13B outperforms Vicuna-7B
with an accuracy gain of 0.011∼0.038. This increase is due to Vicuna-13B’s greater embedding
dimensions and deeper layers, which enhance the expressive power of prompt tokens. However, these
gains are modest and can be offset by the increased computational burden of larger models.
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Figure 7: (a) Memory usage of PPD and other baseline methods including Vanilla, Medusa, and
Eagle; (b) Throughput comparison of PPD with other parallel decoding approaches. We control the
use of tree attention in some approaches for ablation analysis.

5.3 MEMORY AND TRAINING EFFICIENCY

Memory efficiency. As shown in Figure 7a, we compare the memory overhead of PPD with the
leading parallel decoding (Medusa) and speculative decoding approaches (Eagle). The memory
overhead of PPD is just 0.004% of Medusa’s and 0.007% of Eagle’s. This efficiency stems from the
efficient use of embeddings in PPD, which are significantly smaller than decoding heads and draft
models, both of which scale with vocabulary size.

Method Training Time
PPD (Ours) 0.52 hours

Medusa 1.24 hours
Eagle 1-2 days

Table 2: Training time of PPD, Medusa, and
Eagle, on 4 A100 GPUs. PPD takes less than
half of the time compared to Medusa.

Training efficiency. Table 2 compares the training
times of PPD with parallel and speculative decoding
methods. PPD is trained until its evaluation accu-
racy of top-10 candidates surpasses that of Medusa
on Alpaca Eval. Notably, PPD surpasses Medusa in
evaluation accuracy while training in less than half
the time, demonstrating its great potential to reduce
training cost.
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5.4 ABLATION STUDY

Tree Attention. As illustrated in Figure 7b, tree attention boosts the speedup ratio of PPD by an
additional 32%, indicating that PPD generates accurate top-k predictions. Even without the use of
tree attention, PPD still outperforms all other parallel decoding methods, achieving up to a 14%
higher speedup ratio, demonstrating the effectiveness of our approach.

Sparse Tree Pruning Algorithm. Figure 8a shows that the pruned sparse trees consistently achieve
longer acceptance lengths compared to naive and random ones across varying sizes. The acceptance
length for pruned sparse trees shows a steady increase as the tree size extends, suggesting its good
scalability. The convergence of pruned and naive sparse trees at larger sizes suggests a structural
similarity emerging from constraints in tree depth and tree node count.

Hardware-aware Tree Size. Figure 8b presents the theoretical speedup across different GPUs.
Figure 8c validates that the optimal sparse tree size, derived from theoretical speedup models, indeed
results in the greatest actual speedup observed.

PPD + Speculative Decoding. As an orthogonal optimization in accelerating LLMs, PPD can be
easily integrated with speculative decoding (Kim et al., 2024). To demonstrate this, we applied PPD
to Vicuna-68M (Yang et al., 2024) and used it as the draft model for Vicuna-7B. This combination
resulted in a speedup of up to 1.22× for speculative decoding on Vicuna-7B compared to using
speculative decoding alone.
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Figure 8: Evaluation of Sparse Tree Pruning Algorithm. The naive sparse tree in (a) applies the
same number of prompt tokens to each guess token, while the pruned sparse tree follows our pruning
algorithm. The random sparse tree allocates prompt token budget randomly. The theoretical speedup
in (b) is calculated as the ratio of acceptance lengths (hardware-independent) to latency overhead
(hardware-dependent). The optimal tree size is obtained from the peak value of the theoretical
speedup. The latencies in (b) are obtained from inference on the same prompt for 512 forward passes.
(c) shows the actual speedup obtained by running inference on different GPUs with different tree
lengths on Alpaca Eval dataset.

6 CONCLUSION

We introduced PPD, a memory-efficient, cost-effective, and powerful parallel decoding method
that incorporates a hardware-aware online tree optimization. Utilizing specially trained prompt
tokens to predict long-range tokens accurately, PPD achieves a speedup of up to 2.49× in inference
while employing only 0.0002% additional trainable parameters without incorporating new models or
architectural components. We showcased that PPD offers a novel perspective on the capabilities of
parallel decoding. Importantly, it could be synergized with other speculative or parallel decoding
techniques to expedite inference even further. We hope that by open-sourcing the code base (upon
acceptance of the paper), PPD can help the community further advance the performance of real-world
deployment of the current and future decoder-based LLM models.
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A DETAILED TREE CONSTRUCTION ALGORITHM

We follow the same optimal sparse tree construction approach as in Medusa (Cai et al., 2024).
Definition A.1. Let m be the maximal number of prompt tokens per tree node. The sparse tree T can
exist in m states, each represented by Tk corresponding to state sk, where 1 ≤ k ≤ m. Let C(Tk)
denote the subtree of Tk composed solely of candidate tokens. The maximum depth of C(Tk) is k.
Proposition A.1. For a sparse tree state Tk, where each candidate token v follows a path Path(v)
from the root, and the acceptance probability pk at each path position k, the expected number of
tokens f(Tk) generated is given by f(Tk) =

∑
v∈C(Tk)

∏
i∈Path(v) pi, where

∏
i∈Path(v) pi represents

the contribution of a token v to the expected number of tokens.

We then propose an approximation of the amortized number of tokens generated, by considering the
tokens generated at the current and the next decoding step.
Proposition A.2. The expected total number of tokens F (Tk) generated for the sparse tree state
F (Tk) at the current and the next decoding step is given by F (Tk) = f(Tk) +

∑m
i=1 p(si|sk)f(Ti),

where p(si|sk) represents the state transition probability from state sk to state si.

We are now ready to introduce Proposition A.3, which we use in the pruning algorithm.
Proposition A.3. For a sparse tree state Tk with candidate subtree ck = C(Tk), the change in
expected total tokens F (Tk) due to the removal of a prompt token at candidate token c is given by
∆F = p(c) · (f(Ti)− f(Ti−1)), where p(c) is the acceptance probability of candidate c, i denotes
the number of prompt tokens prior to removal. We assume that i > 1.

We now introduce the formulation of the real amortized number of tokens generated.
Proposition A.4. The amortized number of tokens R(Tk) generated for the sparse tree state F (Tk)
is given by R(T ) =

∑m
i=1 p(si)f(Ti), where p(si) is the steady-state probability of state si, and f is

the function defined in Proposition A.1.

The sparse tree construction algorithm can now be formulated as finding the sparse tree T with nc

candidate tokens and np prompt tokens to maximize R(T ):

c(nc, np) = max
T,|C(T )|=nc,|T |=nc+np

R(T ).

For a fixed tree size n, we explore all combinations of nc and np where n = nc + np, to identify the
sparse tree that maximizes R(Tk).

B TRAINING LOSS

We study the training loss of PPD with different EPTs. Figure 9a shows that, with 3 prompt tokens
and 1 EPT, the initial loss is quite high, starting above 5. There is a sharp decrease in loss within
the first epoch, dropping below 2. After this initial drop, the loss stabilizes and oscillates around a
value slightly below 2 for the remainder of the training epochs (up to epoch 12). The loss oscillations
remain within a narrow range, indicating consistent performance. The fluctuation can be attributed
to the insertion of prompt tokens at random positions. On the other hand, Figure 9b, with 3 prompt
tokens and 100 EPTs, shows the initial loss starting below 3, significantly lower than PPD with 1
EPT. Similarly, there is a sharp decrease within the first epoch, with the loss dropping to around 2.5.
However, unlike PPD with 1 EPT, the loss continues to decrease gradually over the epochs, showing
a downward trend. This suggests that increasing the number of EPTs improves the model’s learning
capacity and reduce training loss more effectively over time.

C GENERALIZABILITY OF PROMPT TOKENS TO DIFFERENT TASKS

While original prompt tuning tailors LLMs for specific downstream tasks, our prompt tokens are
task-agnostic. To demonstrate their generalizability, Figure 10 shows the prediction accuracy of a
single set of prompt tokens across three different datasets. Trained on the ShareGPT dataset, these
tokens generalize effectively to unseen tasks. We also report the prediction accuracy for using 5
prompt tokens.
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Figure 10: Evaluation accuracy of the same set of prompt tokens on (a) GSM8K dataset, (b)
HumanEval dataset, (c) MT-Bench dataset, and (d) prediction accuracy of 5 prompt tokens.

D EXTENDED ABLATION STUDY

D.1 EFFECT OF EPTS ON PREDICTION ACCURACY

Table 3 presents the prediction accuracy of PPD using different EPTs. The results indicate that
increasing the number of EPTs generally enhances the prediction accuracy of PPD, particularly for
long-range token predictions. Higher EPT numbers (e.g., 100 and 50) consistently produce better
prediction accuracy compared to lower EPT numbers.

D.2 IMPACT OF KNOWLEDGE DISTILLATION (KD), EPOCHS, AND BATCH SIZE ON
PREDICTION ACCURACY

Table 4 summarizes our results with different settings. We analyze the effect of each factor on the
prediction accuracy in the following discussion.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

EPT @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

100 0.506 0.794 0.276 0.602
50 0.502 0.791 0.281 0.604
20 0.501 0.791 0.276 0.607
10 0.494 0.786 0.273 0.600
5 0.499 0.787 0.265 0.596
2 0.486 0.777 0.259 0.583
1 0.472 0.771 0.248 0.576

Table 3: Prediction Accuracy of PPD with different EPTs. ’@i’ denotes a token distance of i. ’Top-k’
denotes the top-k prediction accuracy. The results are obtained on Alpaca dataset with 20 steps.

EPT KD Epoch Batch @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

100 Yes 1 4 0.504 0.793 0.273 0.598
100 Yes 2 4 0.512 0.797 0.288 0.611
100 Yes 6 4 0.520 0.802 0.302 0.620
100 Yes 8 4 0.524 0.804 0.307 0.619
100 Yes 10 4 0.523 0.804 0.305 0.623
100 Yes 12 4 0.525 0.805 0.308 0.625
100 No 12 4 0.506 0.794 0.276 0.602
100 Yes 12 1 0.530 0.809 0.309 0.626
1 Yes 12 1 0.484 0.775 0.259 0.581
1 Yes 2 4 0.474 0.773 0.247 0.574
1 Yes 6 4 0.480 0.773 0.250 0.580
1 Yes 8 4 0.484 0.778 0.257 0.583
1 Yes 10 4 0.482 0.777 0.257 0.584
1 Yes 12 4 0.485 0.779 0.261 0.586
1 No 12 4 0.472 0.771 0.248 0.576

Table 4: Prediction Accuracy for PPD with and without knowledge distillation (KD) for different
EPTs, epochs, and batch sizes.

D.2.1 TRAINING EPOCHS

We first investigate the effect of the number of training epochs on prediction accuracy. For models
using 100 EPTs with KD enabled and a batch size of 4, we observe a steady improvement in prediction
accuracy as the number of epochs increases. Specifically, the Top-1 accuracy at a 1-token distance
increases from 0.504 at 1 epoch to 0.525 at 12 epochs, while the Top-5 accuracy at a 1-token distance
improves from 0.793 to 0.805. Similarly, Top-1 accuracy at a 2-token distance increases from 0.273
to 0.308, and Top-5 accuracy at a 2-token distance improves from 0.598 to 0.625 over the same range
of epochs. This trend demonstrates the positive impact of prolonged training on the performance of
PPD when KD is applied.

D.2.2 KNOWLEDGE DISTILLATION

When KD is not applied, as shown for 100 EPTs at 12 epochs with a batch size of 4, the performance
metrics are generally lower. The improvement in prediction accuracy with KD is up to 12%. This
suggests that KD contributes significantly to prediction accuracy for PPD.

D.2.3 EFFECT OF BATCH SIZE

We also examine the impact of batch size on the prediction accuracy. For the model trained with 100
EPTs, KD enabled, and 12 epochs, reducing the batch size from 4 to 1 results in a slight improvement
in prediction accuracy up to 1%.
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D.3 PREFIX TUNING + PROMPT TOKEN

Prefix tuning (Li & Liang, 2021), similar to prompt tuning, provides a parameter-efficient approach
to fine-tune a pre-trained model. Unlike prompt tuning, it modifies the KV cache of every attention
layer by prepending trained vectors. We hypothesize that the combination of prefix tuning and prompt
tokens can lead to greater learning capacity and higher prediction accuracy. This hypothesis is based
on the intuition that prompt tokens should see a different context than the input tokens when predicting
long-range tokens. For example, if the input sequence is ”Once upon a time”, then enhancing the
input with a prompt template might provide more suitable semantic context for long-range prediction.
An enhanced input like ”Predict the next-next token. Once upon a time” might empower the prompt
token to predict the correct next-next token. Prefix tuning serves as the prompt template to enhance
the hidden states visible to the prompt tokens.

Figure 11: ’P1’ is the prefix token for the prompt token ’S1’ and ’P2’ for ’S2’. ’C’ is the input
token. The green tick means visibility during attention calculation. For instance, ’S1’ can see ’P1’
but cannot see ’P2’. ’C’ does not see any prefix tokens so the generated output corresponding to ’C’
is not altered by the use of prefix tuning.

To retain the original model’s distribution, we modify the attention mask so that prefix tokens are
only visible to prompt tokens. This ensures that we can generate outputs that preserve the original
model’s distribution. We posit that prompt tokens at different positions should see different contexts
so we allow a prompt token at a specific position to see a distinct set of prefix tokens, as shown in
Figure 11.

Prefix Tuning @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

No 0.485 0.779 0.261 0.586
Yes 0.412 0.738 0.204 0.541

Table 5: Prediction Accuracy of PPD with and without prefix tuning. 1 EPT is used for all models
and 1 prefix token is used for prefix tuning.

Table 5 compares the prediction accuracy of PPD with and without the use of prefix tuning. The
results show that the models without prefix tuning outperform those with prefix tuning up to 28%,
which suggests that, in this setup, prefix tuning does not enhance the prediction accuracy of PPD.
Instead, it appears to degrade performance, potentially due to the complexity introduced by modifying
the KV cache of attention layers with the prefix token. Unlike prompt tokens, prefix tokens do
not interact with input tokens, meaning they do not change dynamically through the transformer
layers based on the input context. This lack of interaction and dynamic adjustment could be a factor
contributing to the decreased prediction accuracy observed with prefix tuning.

D.4 CUSTOM DECODING HEADS + PROMPT TOKEN

It has been demonstrated that a fine-tuned decoding head alone can effectively predict long-range
tokens (Stern et al., 2018; Cai et al., 2024). Thus, we hypothesize that combining a separately
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fine-tuned decoding head with prompt tokens might further enhance the potential of PPD. As shown
in Figure 12, we trained a separate decoding head to transform only the hidden states of prompt tokens
into logits. A key distinction from Medusa is that this decoding head is responsible for generating
tokens at multiple positions, rather than just one.

Figure 12: Custom decoding head with PPD. The feature extractor refers to the LLMs without the
decoding heads. ’H1’ is the generated hidden state for the input token ’C’. ’H2’ is the hidden state
for the prompt token ’S1’ and ’H3’ for ’S2’. ’LM1’ is the original LLM’s decoding head and it takes
in the hidden states of input tokens. ’LM2’ is the custom decoding heads for PPD and only takes in
the hidden states of prompt tokens.

We propose two training methods. In the first method, the custom decoding head and prompt tokens
are trained together from scratch in a single stage. In the second method, the prompt tokens are
initially trained for 2 epochs, followed by training both the prompt tokens and the decoding head
with a smaller learning rate in a two-stage process.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

PPD without custom decoding head 0.485 0.779 0.261 0.586
PPD with custom decoding head (1-stage) 0.385 0.614 0.229 0.482
PPD with custom decoding head (2-stage) 0.506 0.795 0.276 0.602

Table 6: Prediction Accuracy of PPD with and without custom decoding head. 1 EPT is used for all
models. 1-stage and 2-stage refer to the training strategies of custom decoding head.

Table 6 presents the prediction accuracy of PPD with and without a custom decoding head. When
trained using the single-stage method, PPD with the custom decoding head shows a 12%-21%
decrease in prediction accuracy compared to the baseline PPD without the custom decoding head.
This suggests that the single-stage approach does not result in stable or effective training.

In contrast, the two-stage training method results in a limited improvement of 2.1%-4.3% in prediction
accuracy compared to the baseline. This suggests that adding a custom decoding head may not be
necessary, given the additional trainable parameters and the limited improvement in prediction
accuracy.

D.5 ATTENTION MASKING FOR EPTS

In this paper, we proposed a specialized attention mask for EPTs to achieve the effect of prompt
ensemble. However, there are alternative masking strategies available. Here, we describe and compare
three types of attention masks that we implemented and experimented with.

D.5.1 ENSEMBLE ATTENTION MASKING

The ensemble attention masking is the masking strategy we previously described. In this approach,
EPTs are divided into n disjoint groups, where n is the number of EPTs per prompt token. All kth
EPTs across prompt tokens are placed in the same group. An EPT v in group i can only attend to
EPTs that meet the following two criteria: 1) they must belong to group i, and 2) their position indices
must be smaller than the position index of v. Since this masking strategy effectively averages the
results of disjoint groups of EPTs, we refer to it as the ”ensemble attention masking”. Figure 13a
provides an example of the ensemble attention masking.
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(a) Ensemble Attention Mask (b) Decoder-like Attention Mask (c) Encoder-like Attention Mask

Figure 13: Different Mask Strategies for EPTs. ’C’ is an input token. ’V1’ and ’V2’ are the EPTs for
prompt tokens ’S1’ and ’V3’ and ’V4’ for ’S2’.

D.5.2 DECODER-LIKE ATTENTION MASKING

Decoder-like attention masking is a simple strategy where EPTs can only attend to EPTs with smaller
position indices. This results in a triangular-shaped attention mask, similar to the one used in decoder
layers, hence the name ”decoder-like attention masking”. Figure 13b provides an example of this
masking strategy.

D.5.3 ENCODER-LIKE ATTENTION MASKING

In encoder-like attention masking, an EPT corresponding to a prompt token P can attend to all EPTs
with smaller position indices as well as all EPTs associated with P . This allows EPTs to see both
preceding and succeeding EPTs, similar to the token visibility in an encoder layer, hence the name
”encoder-like attention masking”. Figure 13c illustrates this masking strategy.

D.5.4 RESULTS

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
PPD with ensemble attention mask 0.506 0.794 0.276 0.602
PPD with decoder attention mask 0.465 0.755 0.262 0.572
PPD with encoder attention mask 0.473 0.765 0.256 0.573

Table 7: Prediction Accuracy of PPD with different attention masking strategies for EPTs. 100 EPT
is used for all models.

The results in Table 7 indicate that the ensemble attention mask outperforms the other masking
strategies. In comparison, the PPD with decoder attention mask shows 4.9%-8.0% lower prediction
accuracy. The PPD with encoder attention mask also underperforms in prediction accuracy relative
to the ensemble attention mask by 3.7%-7.2%.

These results suggest that the ensemble attention mask is the most effective strategy among the three,
likely due to its ability to effectively average the votes of disjoint groups of EPTs, thereby improving
prediction accuracy. The decoder-like and encoder-like attention masks, while simpler, do not provide
the same level of performance, indicating that the structure and specificity of the ensemble attention
mask better facilitate accurate long-range token prediction. Additionally, ensemble attention masking
is more sparse, which offers greater potential for optimization.

D.6 AGGREGATION METHOD FOR EPTS

In addition to simply averaging the logits from EPTs, we explored more advanced aggregation
methods. For instance, we applied learned weights to aggregate the logits. The final logit p can be
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expressed as:

p =

n∑
i=1

wi · pi,

where n is the number of EPTs and wi is the learned scalar weight for the ith EPT.

Aggregation Method @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

Average 0.506 0.794 0.276 0.602
Learned Weight 0.503 0.779 0.250 0.576

Table 8: Prediction Accuracy of PPD with different aggregation methods for EPTs. 100 EPT is used
for all models.

The results in Table 8 show the prediction accuracy of PPD with two different aggregation methods
for EPTs: simple averaging and learned weights. When using learned weights to aggregate logits, the
model shows a slight decrease of 0.6%-9.4% in prediction accuracy.

These results suggest that while learned weights provide a more flexible aggregation method, they do
not necessarily lead to improved prediction accuracy in this context. The simplicity and stability of
the averaging method appear to offer better performance, possibly due to the additional complexity
and potential overfitting introduced by learning the weights.

D.7 MULTI-EXIT ENSEMBLE

While using EPTs for prompt ensemble improves prediction accuracy, it also increases input length,
resulting in higher computational overhead and forward pass latency. To address this, we propose the
use of a multi-exit ensemble method. In multi-exit ensemble, the hidden states of a prompt token
from the last k decoder layers are extracted and averaged to produce the final hidden state, which
is then decoded by the decoding head into a guess token, as illustrated in Figure 14. This approach
achieves prompt ensemble without the associated computational costs.

Figure 14: Mult-exit ensemble. ’D1’, ’D10’, ’D11’, and ’D12’ are the decoder layers in order. ’S1’
is a prompt token and ’H1’, ’H2’, ’H3’ are the corresponding hidden states from the last 3 decoder
layers. ’H4’ is obtained from averaging these 3 hidden states. The decoding head ’LM’ translates
’H4’ into a token ’E’.

The hypothesis is that taking the hidden states from the last few decoder layers for ensemble
might work because these layers capture increasingly abstract and high-level representations of the
input sequence. By averaging the hidden states from multiple layers, we can combine diverse but
complementary information, leading to a more robust and accurate final hidden state. Additionally,
since the final layers are closest to the output, they are more likely to contain refined and contextually
relevant information, making the ensemble more effective.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

PPD without multi-exit 0.485 0.779 0.261 0.586
PPD with 3 exits 0.422 0.723 0.214 0.517
PPD with 2 exits 0.420 0.723 0.213 0.518

Table 9: Prediction Accuracy of PPD with and without multi-exit ensemble. 1 EPT is used for all
models. k exits refer to the number of exits used.
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Table 9 shows the comparison of prediction accuracy of PPD with and without mult-exit ensemble.
The results indicate that the introduction of multi-exit ensemble with both 2 and 3 exits results in a
7%-18% decrease in prediction accuracy compared to the baseline model without multi-exit.

These findings suggest that the multi-exit ensemble approach, as implemented, does not enhance
prediction accuracy and instead leads to a notable decrease in performance. This may be due to the
averaging of hidden states from multiple layers introducing noise or reducing the specificity of the
representations needed for accurate prediction. Further refinement of the multi-exit ensemble may be
necessary to achieve the desired improvements in accuracy.

E EFFECT OF BATCH SIZE ON SPEEDUP

Batch Size 1 2 3 4
PPD Speedup Ratio (w/o Tree Attention) 1.71 1.65 1.63 1.64
PPD Speedup Ratio (with Tree Attention) 2.26 1.90 1.58 1.52

Table 10: Speedup ratio of PPD compared to baseline across different batch sizes.

As shown in Table 10, consistent speedup ratios are achieved across different batch sizes without tree
attention. However, with tree attention, the speedup ratio decreases as batch size increases, a pattern
similar to other parallel and speculative decoding methods.

F EXPERIMENT DETAILS

For the throughput experiments, each result is obtained by averaging three separate runs. The standard
deviations of these runs are reported as error bars in the bar charts. To ensure a fair comparison in our
comparative experiments, we maintained consistent hardware settings and software versions.

We selected 3 prompt tokens because adding more would not further increase the expected acceptance
length due to the tree size limit. The number of EPTs per prompt token was optimized to maximize
throughput.

In Fig. 2, the temperature settings for PPD, Eagle (Li et al., 2024a), and Medusa (Cai et al., 2024)
follow the default configuration, while the other models use a greedy setting (temperature=0).
This choice is based on findings that retrieval-based methods perform significantly worse in non-
greedy settings. Similarly, LOOKAHEAD DECODING (Fu et al., 2024), REST (He et al., 2023), and
PLD (Saxena, 2023) in Fig. 4 also use a temperature setting of 0 for the same reasons.

G LIMITATIONS

Despite its efficiency, we have identified the following limitations of PPD:

1. GPU compute resource constraint. Since PPD trades additional compute resources for
increased throughput, its effectiveness depends on the availability of idle GPU compute
resources. On a GPU with limited compute resources, the speedup ratios achieved by PPD
are expected to decrease.

2. Extended input length. The improvement in acceptance length with PPD is not as signif-
icant as the gain in prediction accuracy compared to Medusa. This is because PPD must
reserve a substantial portion of the input for prompt tokens, which limits the size of the
sparse tree that can be used.

H SOCIETAL IMPACT

In this paper, we proposed PPD to accelerate LLMs easily and cheaply. Since PPD reduces the time
required for handling a single inference request, it could bring down the cost of deploying LLMs
for both the companies and the public. This might lead to increased accessibility of LLM services.
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Moreover, latency-sensitive applications like chatbots will benefit greatly from the usage of PPD as it
reduces the inference latency greatly, thereby enhancing the user experience.

While PPD aims to make AI more accessible, there may still be a digital divide where certain
communities lack the necessary infrastructure, such as stable internet connections or modern hardware,
to fully benefit from these advancements. This could further widen the gap between technology-
privileged and underserved populations. On the other hand, PPD might be misused by malicious
parties to manipulate the output of the original LLM, resulting in the generation of unreliable
information and fake data.
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