
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING AGENT LEARNING VIA EXPERIENCE
SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

While reinforcement learning (RL) can empower large language model (LLM)
agents by enabling self-improvement through interaction, its practical adoption
remains challenging due to costly rollouts, limited task diversity, unreliable reward
signals, and infrastructure complexity, all of which obstruct the collection of scal-
able experience data. To address these challenges, we introduce DREAMGYM, the
first unified framework designed to synthesize diverse experiences with scalability
in mind to enable effective online RL training for autonomous agents. Rather
than relying on expensive real-environment rollouts, DREAMGYM distills environ-
ment dynamics into a reasoning-based experience model that derives consistent
state transitions and feedback signals through step-by-step reasoning, enabling
scalable agent rollout collection for RL. To improve the stability and quality of
transitions, DREAMGYM leverages an experience replay buffer initialized with
offline real-world data and continuously enriched with fresh interactions to actively
support agent training. To improve knowledge acquisition, DREAMGYM adaptively
generates new tasks that challenge the current agent policy, enabling more effective
online curriculum learning. Experiments across diverse environments and agent
backbones demonstrate that DREAMGYM substantially improves RL training, both
in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready
tasks like WebArena, DREAMGYM outperforms all baselines by over 150%. And
in RL-ready but costly settings, it matches GRPO and PPO performance using
only synthetic interactions. When transferring a policy trained purely on synthetic
experiences to real-environment RL, DREAMGYM achieves an additional 64.5%
performance gain while using no more than 10% of real-world interactions.

1 INTRODUCTION

Autonomous agents based on large language models (LLMs) are being widely adopted across a broad
range of tasks given their comprehensive pre-trained semantic knowledge. These agents have already
shown promise in applications such as web navigation (Zhou et al.), embodied control (Shridhar et al.),
and multi-turn tool use (Yao et al., 2024). However, while these agents can leverage strong language
priors to reason and plan, their performance in downstream interactive settings remains limited (Wang
et al., 2024). As we step into the era of experience (Silver & Sutton, 2025), a promising direction
for building more robust and adaptive language agents is reinforcement learning (RL), where agents
improve by interacting with environments and bootstrapping from their own experiences (Schulman
et al., 2017), as illustrated in Fig. 1 (a).

Despite its potential, training LLM agents via RL remains highly challenging in practice. The most
fundamental barrier is the high costs and low sample efficiency of collecting large-scale, diverse, and
informative online interaction data (Wei et al., 2025; Jiang et al., 2025). Real environments often
involve long interaction sequences, high computational cost per step, and sparse reward feedback,
making it prohibitively expensive to gather sufficient amount of data for modern RL algorithms (Patil
et al.; Shao et al., 2024). Beyond computational cost, there is also a lack of diverse, scalable tasks,
where most existing environments provide only a limited, static set of instructions, while RL training
requires a broad range of tasks for effective exploration (Eysenbach et al., 2018). However, scaling
task instructions is inherently difficult, as validating their feasibility often demands costly human
expertise (Xue et al., 2025), leaving current environments insufficient for goal-conditioned RL.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Agent
Real

EnvironmentTasks

Agent Experience
Model

Tasks

action

raw observation not scalable

sparse & unstable
reward signal

scarce & costly

actions

(a) Traditional Agent Learning Paradigm

(b) Scalable Agent Learning via Experience Synthesis

abstract stateschallenging
task variations

reward signals vectorized
& unified

useful & cheap abundant &
adaptable

Figure 1: Compared to the traditional agent learning
paradigm, DREAMGYM provides the first scalable and
effective RL framework with unified infrastructure.

The third major barrier is the instability
of reward signals. Many interactive set-
tings, such as web pages and GUIs, are
highly dynamic and lack consistent behav-
iors, resulting in noisy, sparse, or even false
feedback that hinders stable learning (Deng
et al., 2023). Safety concerns further com-
pound these challenges, as certain actions
are irreversible (e.g., deleting an item on a
real website), and most environments lack
reliable reset mechanisms (Zhou et al.). Fi-
nally, the infrastructure difficulty of con-
structing RL-ready environments also re-
main challenging. Existing systems are het-
erogeneous and often rely on heavyweight
backends like Docker (Jimenez et al.) or
virtual machines (Xie et al., 2024), making
large-batch rollout sampling engineering-intensive and costly. These limitations make building
general-purpose and scalable systems for training agents with RL an open and pressing challenge.
To tackle these challenges, we propose DREAMGYM, a unified and scalable RL framework that
synthesizes diverse experience data in an online manner to enable efficient and effective training
of LLM agents. At the core of DREAMGYM lies a scalable reasoning-based experience model that
abstracts environment dynamics into a discrete textual space. By interacting with the agent over
multiple turns, it produces consistent transitions and feedback that reflect the consequences of the
agent’s actions through explicit reasoning. Unlike prior approaches that attempt to reproduce external
systems (Chen et al., 2025; Assran et al., 2025), the design of the experience model is grounded in a
key insight that agent training does not require perfectly realistic environments, but rather interaction
data that is sufficiently diverse, informative, and retrospective to acquire knowledge for the target
task. Therefore, powered by strong reasoning, the experience model overcomes the key limitations
outlined above and deliver useful experience data for RL training.
To ensure that synthetic experiences are diverse and informative, DREAMGYM equips the experience
model with an experience replay buffer, from which it retrieves similar yet diverse trajectories to guide
its current state prediction. This buffer is seeded with offline knowledge for essential context and is
continuously enriched with trajectories generated on-the-fly, co-evolving the experience model with
the agent to ensure the produced rollouts aligned with the agent’s updated policy for stable training. In
parallel, the experience model serves as a task generator, identifying valuable tasks with high reward
entropy and producing progressively more challenging variations. This design yields an effective
curriculum, where agents are consistently exposed to harder problems as their capability improves.
By unifying interaction, memory, and adaptive online task generation, DREAMGYM addresses the
persistent challenges that have limited RL for LLM agents training: prohibitive cost, scarcity of
diverse tasks, unstable reward signals, and heavy infrastructure demands. It reframes training around
an environment purpose-built for RL, enabling efficient synthetic training and effective sim-to-real
transfer, improving generalization while minimizing reliance on costly real-world interactions.
Comprehensive experiments are conducted to evaluate DREAMGYM across diverse environments
and LLM agent backbones. For use cases lacking RL training support (e.g. WebArena (Zhou et al.)),
DREAMGYM provides the only viable approach for RL-based agent training, delivering 176.6%
improvement over all baselines and SOTA methods. In settings where RL is supported but costly,
DREAMGYM achieves performance on par with GRPO (Shao et al., 2024) and PPO (Schulman
et al., 2017), while training entirely within DREAMGYM without external interactions. Moreover,
we introduce DREAMGYM-S2R (sim-to-real), which first trains agents with diverse and curriculum-
driven experiences in DREAMGYM before transferring to external environments. This stage builds a
strong foundation through diverse, curriculum-driven interactions, yielding a 64.5% performance
improvement over training solely in RL-ready environments, using less than 10% of external data.

2 RELATED WORKS
2.1 LLM AGENTS REINFORCEMENT LEARNING

RL offers a path to transform large LLM agents from static generators into adaptive decision makers.
Classical RL algorithms such as policy gradients and actor–critic methods (Williams, 1992; Schulman

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Task Instructions

Exper-
ience

Replay
Buffer

Agent“Find out how much I spent
on food shopping from mid
Jan to the end Jan 2023.” Reasoning Exp-

erience Model

actions

Curriculum
Task Generator

Done:
True

Success:
False

[227] link:‘My Account’ link to user …
[1238] menuitem:'Grocery & Food …
[1474] table:Orders table show the…
[1606] link:Pagination link to page 2…
[1610] link:Pagination link to page 3…

Informative States
…

CoT reasoning

Reward Signal

Scalable LLM Serving Infra

Policy-Aligned
Task Generation Task Value Estimation

T3

Task
ID

Reward
Entropy

T7

T15
…

challenging
task variations

retrieve

update

agent loop
terminated

Figure 2: Overview of the proposed DREAMGYM agent training framework. Given a set of seed tasks,
a reasoning-based experience model interacts with the agent to synthesize informative, diverse tasks
and trajectories for RL training. At each step, the agent takes actions based on its current state and
receives next states and reward signals derived by the experience model through CoT reasoning based
on both interaction history and top-k similar experiences from an active replay buffer. To expose the
agent to increasingly informative scenarios, tasks with high reward entropy are proliferated by the
curriculum task generator for future training. With this unified design, DREAMGYM addresses both
task and reward sparsity while enabling scalable RL with diverse and curriculum-driven environments.

et al., 2017) have achieved strong results in robotics, games, and control (Silver et al., 2016; Hafner
et al., 2020). Extending these approaches to interactive language environments, however, introduces
new barriers. Tasks such as web navigation (Yao et al., 2022; Zhou et al.), operating systems (Xie
et al., 2024), and multi-tool reasoning (Yao et al., 2024) violate core RL assumptions: operations
cannot be reset cheaply or queried at high frequency, rollouts are long, as well as other side effects
that raise both engineering and financial risks.

Model-based RL provides one remedy by substituting costly real interactions with an internal model.
Early work such as Dyna (Sutton, 1991) and Dreamer (Hafner et al., 2020) showed how learned
models can accelerate policy learning. Inspired by this, recent LLM-driven environment models
have been developed for web and tool use (Gu et al., 2025). However, these simulators often aim for
environment-specific fidelity or physics-level realism, which constrains their scalability and makes
them ill-suited for broad curriculum-driven training. DREAMGYM departs from this fidelity-first
perspective by focusing on discrete, language-based environment modeling that directly targets policy
improvement. This approach better aligns with the challenges by emphasizing efficiency, diversity,
and adaptability over perfect realism.

2.2 TRAINING AGENTS WITH SYNTHETIC DATA

Synthetic data has long been used to overcome the scarcity of human demonstrations. Early methods
scripting expert trajectories or generating them from stronger teacher models often trained agents
simply by imitation (Yao et al., 2022; Pahuja et al., 2025; Deng et al., 2023). While effective for
bootstrapping, such static trajectories, once created, limit both diversity and adaptivity. Later research
shifted toward synthetic environments and self-play (Liu et al., 2025), such as AlphaGo (Silver et al.,
2016) and Dreamer-based imagination (Hafner et al., 2020), which enabled agents to generate unlim-
ited on-policy experiences. Recent work extends this idea to language and multimodal domains (Gu
et al., 2025). However, these efforts focus on narrow tasks or rely on hand-crafted task generation.

DREAMGYM builds on these lines of research but integrates environment modeling and data gen-
eration in synergy. Its environment model not only predicts transitions and rewards, but also
generates novel task instructions with high reward entropy, ensuring that the training distribution
evolves as the agent improves. This co-evolving design addresses key RL agent training challenges,
including scarcity of tasks, unstable rewards, and reliance on costly human verification, while en-
abling curriculum-like scaling across diverse tasks. As shown in the experiments, RL methods
such as GRPO (Shao et al., 2024) and PPO (Schulman et al., 2017) can be trained almost en-
tirely within DREAMGYM while matching or surpassing external-environment baselines, with an
order-of-magnitude reduction in required real data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

3.1 NOTATIONS

We formalize the agent learning problem as a Markov Decision Process (MDP) (Bellman, 1957),
defined by the tuple M = (S,A, T,R, γ, ρ0), where S denotes the state space and A denotes the
action space. The transition function T : S ×A → ∆(S) governs the environment dynamics, where
∆(S) denotes the probability simplex over S . The reward function R : S×A → R provides feedback
signals for the agent’s actions. γ ∈ [0, 1] is the discount factor, and ρ0 ∈ ∆(S) specifies the initial
state distribution that includes the task instruction τ0.

In LLM agent environments, τ0 is usually a desired task specified by the user in natural language, and
states s ∈ S encode the environment configuration visible to the agent, such as webpage content, tool
outputs, or textual environment descriptions. Actions a ∈ A represent discrete operations, including
clicking UI elements, invoking external tools, or generating textual responses. The agent maintains a
policy πθ : S → ∆(A), parameterized by θ, which maps states to distributions over actions.

3.2 AGENT LEARNING FROM EXPERIENCE

Given a set of online experiences where each experience ϵ = {τ0 | s0, a0, . . .} consists of a task τ0
and state-action rollout {s0, a0, . . . , st, at}, the goal of RL is to train an agent policy πθ to maximize
the expected cumulative reward, which typically optimized θ via policy gradient as follows:

∇J(θ) = E(st,at)∼πθ

[
∇ log πθ(at | st) · Â(st, at)

]
, (1)

where Â(st, at) is the advantage function, estimating how favorable an action is compared to others.

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is a popular policy gradient
method that improves stability by computing Â with Generalized Advantage Estimation (GAE):

ÂPPO
t =

K−1∑
l=0

(γλ)l [rt+l + γV (st+l+1)− V (st+l)] , (2)

where V (·) is a value function approximated by a LLM, and λ controls the bias-variance tradeoff.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) extends PPO by discarding
the value function and normalizing advantages within each group of responses G sampled for the
same task instruction. Instead of GAE, the group-relative advantage is defined as:

ÂGRPO
t = (rt − meani∈G(ri))/stdi∈G(ri) (3)

where rt is the reward for output ot, meani∈G(ri) and stdi∈G(ri) are mean and standard deviation
of rewards from group G. GRPO discards the value function and approximates the advantage using
relative normalized rewards, making policy updates more scalable but potentially less sample-efficient.
Notably, our proposed DREAMGYM is orthogonal to specific RL algorithms and focuses on scaling
the synthesis of diverse, informative experiences, thereby amplifying the effectiveness of RL training.

4 SCALING AGENT LEARNING VIA EXPERIENCE SYNTHESIS

To synthesize diverse agent experiences for RL training, DREAMGYM is built around three key
components: (1) a scalable reasoning experience model that encodes the meta-dynamics of the
target domain to efficiently generate informative trajectories; (2) an experience replay buffer that
integrates offline environment knowledge with online synthetic transitions, co-evolving with the agent
to stay aligned with its updated policy; (3) a curriculum task generator that produces progressively
challenging variations of high-value tasks selected via a reward-entropy heuristic. We elaborate each
component in the following sections.

4.1 BUILDING REASONING EXPERIENCE MODELS FOR AGENT LEARNING

For effective RL training, instead of relying on heterogeneous external environments that are costly to
interact with and difficult to control, DREAMGYM adopts a more adaptive and controllable approach
by building a LLM-based experience model that can efficiently interact with the agent over multiple
turns to generate diverse experiences with consistent outcomes and rich feedback signals for learning.

Unlike prior data-hungry and costly approaches that build world models to replicate the real world in
raw pixel spaces, we design an efficient reasoning experience model, denoted as Mexp, that operates

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

in an abstract, meta-representational textual space S . The key insight is that synthesizing transitions
in this abstract state space can reduce irrelevant dimensions and produce trajectories that are more
informative and token-efficient than those derived from raw observations. For example, in a web
shopping task, instead of processing raw HTML code, the experience model directly synthesizes
clean element listings while discarding irrelevant structural artifacts such as headers and tags. This
state-space design makes training the experience model highly sample-efficient, requiring only small
pubic trajectory datasets in our experiments, while also enhancing the effectiveness of agent learning.

4.1.1 INFERENCE FOR EXPERIENCE ROLLOUT COLLECTION

Notably, we find that beyond the current state-action pair, three additional contexts are important for
improving state quality: (1) interaction history {(si, ai)}Tt=0, which incorporates the past trajectory
in the context window to help maintain state consistency across multiple turns; (2) task instruction τ ,
which conditions the experience model on the current goal, enabling it to interpret actions w.r.t. task
objectives and thereby predict both state transitions and rewards more accurately; (3) past experiences,
which are top-k demonstrations {dj}kj=1 retrieved from the replay buffer based on semantic similarity
with the state-action pair, i.e., {dj}kj=1 = Topk(cos(ϕ(st, at), ϕ(si, ai))), where ϕ(·) denotes an
arbitrary semantic encoder. Leveraging knowledge this way reduces hallucinations and improves
factuality for knowledge-intensive state predictions. Therefore, given these inputs, the experience
model predicts the next state st+1 and reward rt+1 via chain-of-thought (CoT) (Wei et al., 2022):

(st+1, rt+1) = Mexp

(
Rt

∣∣{(si, ai)}ti=0, {dj}kj=1, τ
)
. (4)

where Rt is an explicit reasoning trace produced by the experience model that guides the state
transition. With such reasoning, it predicts the most consistent and informative transition and
feedback that reflects the consequence of the agent action. For example, if the action is invalid, it
transitions to a failure state and assigns a zero reward to signal the error, and vice versa. In our
experiments, following (Feng et al., 2025), we adopt an outcome-based reward scheme, assigning
r = 1 only at the final step when the task is successfully completed and r = 0 in all other cases.

4.1.2 TRAINING EXPERIENCE MODELS TO REASON

Benefiting from the abstract state-space design, training the experience model is highly sample-
efficient and requires only limited data from the real environment. In practice, abundant offline
trajectory datasets from public benchmarks such as the WebArena Leaderboard1 are sufficient for
training. Our experience model distills such offline knowledge and then serves as a bridge to interact
with the agent online for RL training.

Concretely, given a trajectory dataset D = {(st, at, st+1, rt+1)}, each transition is annotated with an
explicit reasoning trace R∗

t by LLM (prompt shown in Appendix C.2), which explains why the action
at taken in state st consequently leads to the next state st+1 and reward rt+1 given the available
contexts. To distill this knowledge, we train Mexp via SFT with a joint objective over reasoning
generation and next-state prediction:

LSFT = E(st,at,st+1,R∗
t)∼D

[
−logPθ(R

∗
t | st, at,Ht,Dk)−logPθ(st+1 | st, at, R∗

t ,Ht,Dk)
]
, (5)

where Ht denotes the interaction history, Dk denotes the retrieved top-k demonstrations, and θ
denotes the parameters of Mexp. This objective ensures that the model (i) learns to generate faithful
reasoning traces that explain the causal effect of an action, and (ii) leverages these traces to predict
consistent and informative next states. By doing so, the experience model not only imitates expert
trajectories but also acquires the ability to generalize reasoning for novel rollouts during RL training.

4.2 CURRICULUM-BASED TASK GENERATION

Diverse, curriculum-aligned task instructions are important for RL agents to acquire knowledge (Zhou
et al., 2025). However, scaling task collections is costly, as it requires significant human effort to
verify the feasibility of each task in the target environment. DREAMGYM inherently alleviates this
burden by adapting to arbitrary new tasks within the target domain through synthetic multi-turn

1https://webarena.dev/

5

https://webarena.dev/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

transitions. Building on this capability, we propose curriculum-based task generation, where the
same experience model actively generates new tasks as variations of a set of m seed tasks:

τt = Mtask({τ it−1}mi=1), (6)

where Mtask shares parameters with Mexp. Specifically, the seed tasks are chosen based on two
criteria: (1) they are sufficiently challenging for the current agent policy, thereby maximizing
information gain; (2) they are well-defined, such that unrealistic or malformed tasks can be discarded.

To satisfy both conditions, we introduce a group-based reward entropy as a criteria for selecting
high-quality and challenging tasks. Formally, for a task τ , we define its value

Vτ =
1

n

n∑
i=1

(
ri − r̄

)2
, where r̄ =

1

n

n∑
i=1

ri, (7)

where ri are the outcome rewards from n rollouts of task τ within the group G. For GRPO, G
can simply be the training group, while for PPO, tasks can be first clustered using a semantic
embedder, and each cluster essentially forms a group G from which task variations can be generated.
Notably, a non-zero variance in G indicates that the agent observes both successes and failures
on the task, signaling that the task is feasible yet challenging. A task reaches maximum entropy
when successes and failures are evenly balanced in G, providing the greatest information gain for
credit assignment (Sutton et al., 1998). By feeding such high-entropy tasks into Mtask, we generate
progressively more challenging variations to enhance agent exploration and knowledge acquisition.

To ensure training stability, we introduce a hyperparameter λ that caps the proportion of synthetic tasks
being sampled each iteration, preserving coverage of the original task distribution while adaptively
directing exploration to improving weaknesses of the current policy.

4.3 LEARNING FROM SYNTHETIC EXPERIENCES

Policy training in synthetic environments. As shown in Fig. 2, DREAMGYM begins with a seed
task set and generates multi-turn rollouts for each task by alternating between the agent policy,
which selects actions from states, and the experience model, which predicts next states conditioned
on the agent action, history, and task context (as in §4.1.1). The collected rollouts are used with
standard RL algorithms (as in §3.2) to update the policy. After each iteration, the experience model
augments the task set by generating variations of challenging tasks with high reward entropy (as
in §4.2). This cycle of interaction, training, and curriculum expansion continues until convergence
or a predefined training budget is reached. Furthermore, we provide an analytical lower bound of
the policy improvement in real environments when training with purely synthetic experiences from
DREAMGYM under trust-region assumptions, as detailed in Appendix C.1.

Sim-to-real policy transfer. We further extend DREAMGYM to a sim-to-real (S2R) setting, where the
agent policy is first trained with synthetic experiences and then transferred to RL in real environments.
Pretraining in synthetic environments expands exploration coverage across diverse tasks and allows
the agent to acquire broad knowledge at low cost, providing a strong initialization that makes
subsequent real-environment learning more sample-efficient (Da et al., 2025). To enable seamless
transfer, we ensure consistency of the state space between synthetic and real environments by applying
the same rule-based mapping function or a lightweight fine-tuned model (Lee et al.).

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We evaluate DREAMGYM on a diverse suite of agentic benchmarks and LLM backbones of varying
sizes and model families to assess its generalizability and effectiveness in reducing costly interactions.

Evaluation environments. We consider three challenging agent benchmarks that span diverse
domains, complexities, and levels of RL readiness: (1) WebShop (Yao et al., 2022), which requires
reasoning to refine search queries and accurately identify products to complete e-commerce tasks;
(2) ALFWorld (Shridhar et al.), which involves multi-turn tool-based embodied control to navigate
3D environments; (3) WebArena (Zhou et al.), which offers realistic web interaction tasks but is
not RL-ready, as it inherently lacks batch data collection and reset mechanisms and incurs high
computational costs. This mixture of environments allows us to evaluate DREAMGYM both in
settings where RL is feasible but computational expensive, and where RL training is not yet tractable.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of DREAMGYM with various agent training algorithms. We evaluate four
groups: (i) offline imitation learning algorithms: SFT, DPO; (ii) online RL algorithms in real-world
environments: GRPO, PPO; and (iii) DREAMGYM, where agents are trained via the same RL
algorithms but with purely synthetic experiences; (iv) DREAMGYM-S2R, where agents are first
trained with synthetic experiences and then transfer to RL in real environments. Real data indicates
the number of individual transition steps (a traj often has ∼10 steps). The best performance is bolded.

Algorithm Real
Data

WebShop ALFWorld WebArena

L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B

Offline Imitation Learning

SFT 20K 32.0 35.1 32.9 61.7 68.0 71.8 8.7 11.3 13.0
DPO 40K 35.9 31.0 34.8 63.3 63.9 61.1 8.9 10.3 11.3

GRPO

Traditional 80K 62.1 65.0 66.1 65.3 70.9 79.8 12.7 10.0 16.0
DREAMGYM 0 59.3 63.9 68.3 62.1 66.3 71.0 35.1 43.0 45.1
DREAMGYM-S2R 5K 70.5 75.0 72.1 65.0 75.9 82.4 38.0 37.1 47.3

PPO

Traditional 80K 59.9 64.2 68.1 47.0 72.9 75.4 13.9 15.7 19.2
DREAMGYM 0 60.5 58.1 65.0 40.5 70.8 72.7 32.0 45.0 37.8
DREAMGYM-S2R 5K 66.0 63.9 73.7 49.1 73.3 79.9 30.3 48.3 41.0

Agent backbones. We instantiate agents from different model families and sizes: Llama-3.2-3B-
Instruct, Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen-2.5-7B-Instruct (Team, 2024).

Baselines. We consider two types of traditional training strategies for agents. (1) Offline imitation
learning: supervised fine-tuning (SFT), direct preference optimization (DPO) (Rafailov et al., 2023);
(2) Online RL in real environments: GRPO (Shao et al., 2024), PPO (Schulman et al., 2017).

Implementation details. All main results are reported with the experience model trained from
Llama-3.1-8B-Instruct (see §4.1). To demonstrate that DREAMGYM can be applied to different
RL algorithms, we evaluate both GRPO and PPO entirely within DREAMGYM, without any real
interactions. We further evaluate a hybrid scenario, DREAMGYM-S2R, where synthetic training is
followed by a small number of real-environment RL rollouts, demonstrating the effectiveness of
using DREAMGYM as a mid-training stage to improve sample efficiency and performance upper
bound after transfer. Detailed parameter settings for each scenario are provided in Appendix B.

5.2 MAIN RESULTS

Non-RL-ready environment. WebArena (Zhou et al.) highlights DREAMGYM’s most significant
advantage. Unlike existing attempts that fail to make RL effective due to environment limitations,
agents trained purely in DREAMGYM achieve success rates exceeding 30% across all backbones
(Table 1), which represents more than a threefold improvement over both imitation learning and real-
environment RL baselines. The result demonstrates that DREAMGYM is not merely an approximation
of costly rollouts but an enabler of RL training in domains where it was previously infeasible.

RL-ready environments. On WebShop (Yao et al., 2022) and ALFWorld (Shridhar et al.), DREAM-
GYM-trained agents perform on par with GRPO and PPO agents trained on 80K real interactions,
despite using only synthetic rollouts. The ability to match strong RL baselines in RL-ready environ-
ments without external interactions underscores that DREAMGYM produces transitions and rewards
that are not only coherent but also sufficient for stable policy improvement. Importantly, when a
modest number (5k) of real rollouts are introduced, DREAMGYM-S2R consistently outperforms
both GRPO and PPO baselines, validating the hypothesis that synthetic training establishes a strong
foundation which real-world fine-tuning can later refine more efficiently.

Sample efficiency and training cost. Training efficiency is further illustrated in Fig. 3 Left, where
DREAMGYM achieves substantial performance gains on WebArena (Zhou et al.) while reducing
training effort to roughly one-third or even one-fifth of real-environment baselines. This efficiency
arises because synthetic rollouts provide denser feedback and avoid costly resets or infrastructure
bottlenecks, which suggests that DREAMGYM is not only a practical replacement for expensive
environments but also a scalable alternative.

6 PERFORMANCE ANALYSIS AND ABLATION STUDIES

6.1 TRAINING CURVE ANALYSIS

Fig. 3 Right compares training curves across Webshop (Yao et al., 2022) under different setups.
Specifically, the success rate improves much more rapidly within the first 40k steps, showing that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DreamGym DreamGym-S2RTraditional
Llama-3.1-8B Llama-3.2-3B Qwen-2.5-7B

0 20 40 60 80 100 120 140
Number of Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

(%
)

Traditional
DreamGym w/o Task
DreamGym
DreamGym-S2R

Figure 3: (1) Left: Comparing the agent performance (success rate %) on WebArena w.r.t. training
time across different training strategies and backbones. (2) Right: Comparing the agent performance
on WebShop w.r.t. number of training steps across different training strategies.

synthesized trajectories offer more informative gradients than sparse real rollouts. This further
highlights the role of synthetic experiences in shaping a strong initialization that real rollouts cannot.
Another observation is the reduced variance in learning dynamics. Baseline curves exhibit larger
oscillations caused by sparse or unstable rewards, while DREAMGYM curves remain smoother across
runs, which suggests that synthesized trajectories provide not only denser but also more consistent
feedback, mitigating the training instabilities commonly reported in WebShop (Yao et al., 2022) and
ALFWorld (Shridhar et al.).

6.2 ABLATION ON TASK GENERATOR Table 2: Average success rates (%) on the
different components of DREAMGYM.

Method WebShop WebArena

DREAMGYM 63.9 43.0

w/o Exp. Replay 59.2 38.1
w/o Exp. Reasoning 55.8 33.9
w/o Task Generation 57.3 31.7

The curriculum-based task generator plays an impor-
tant role in learning progress. As shown in Fig. 3
Right, removing this component causes agents to
make some initial progress but then plateau more
quickly in the WebShop (Yao et al., 2022) scenario.
Similarly, Table 2 shows that removing the task gen-
erator leads to a 6.6% and 11.3% drop in success rate
compared with the full DREAMGYM configuration
in WebShop (Yao et al., 2022) and WebArena (Zhou et al.), respectively.

These findings support our discussion in §4.2: without adaptive task generation, the replay buffer
may saturate with low-entropy, repetitive trajectories, which limits the diversity of experiences and
stalls exploration. In contrast, the task generator continually produces progressively challenging,
high-value tasks that push the agent beyond its current capability. This ongoing curriculum keeps the
replay buffer informative and encourages exploration, ultimately yielding higher final success rates
and better sample efficiency.

6.3 ABLATION ON EXPERIENCE MODEL

Consistency Diversity Informativeness Hallucination0.5

1.0

1.5

2.0

Ju
dg

e
Sc

or
e

Traditional DreamGym w/o History w/o Reasoning

Figure 4: Evaluation of the experience model
across key criteria using GPT-4o as the judge. We
randomly sample 100 trajectories and prompt the
model to assign discrete scores in {0, 1, 2} across
four criteria, as detailed in Appendix C.5.

Fig. 4 demonstrates a detailed comparison of
experiences generated by four variants of the
experience models: a traditional real environ-
ment model, DREAMGYM, DREAMGYM with-
out access to past trajectory history (w/o His-
tory), and DREAMGYM without reasoning (w/o
Reasoning). We evaluate each variant along four
criteria: consistency, diversity, informativeness,
and hallucination, using GPT-4o (Hurst et al.,
2024) as a judge. As detailed in Appendix C.5,
the judge assigns discrete scores in {0, 1, 2} for
each criteria, where higher values indicate better
performance. For the first three metrics, larger scores mean more consistent, diverse, and informative;
for hallucination, a score of 2 means no hallucination, while 0 indicates more factual errors.

The results highlight the role of each component. Removing trajectory history (w/o History) signifi-
cantly reduces consistency: without awareness of prior turns, the model often drifts off-topic and
breaks causal coherence in multi-step interactions. Removing reasoning (w/o Reasoning) mainly
hurts informativeness and increases hallucination: without reasoning capabilities, the generated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

[472] card:“Change Log” summary tile.
[463] statbadge:“Total Commits” — 1,980.
[458] pillnav:Tabs {Overview, Change Log}.
[512] button:“Open Change Log”.
[539] content:Latest commit by Jack
Thompson (“Apr 02, 2023 11:30pm UTC”).
…

What is the message Jack provided
in the first commit of Apr 2023?

Click(
463)

[847] list:List grouping commit history …
[1144] listitem:Commit on Apr 2, 2023, by …
[1144] listitem:Commit on Apr 3, 2023, by …
[1163] listitem:Commit on Apr 7, 2023, by …
[1241] listitem:Commit on Apr 7, 2023, by …
[1259] listitem:Commit on Apr 8, 2023, by …

Click(
1144)

…

<think>
The agent clicks the "Total Commits" button
on the overview page, which is the intended
action. I should transit to a successful state
that displays a list of commits grouped by
date, including entries from April 2023, which
will let the agent further inspect and …
</think>

generate initial state

[1500] pane:Commit details view for Apr 2, 2023
[1501] header:Commit by Jack Thompson
[1502] time:"Apr 02, 2023 11:30pm UTC"
[1503] message:"Add API migration notes"
[1504] meta:SHA a1c2e3f, branch main, 3 files
changed (12 insertions, 2 deletions)
[1505] nav:Buttons {Back to list, Copy SHA, …}

<think>
The agent clicks [1144], the first April commit
entry (Apr 2, 2023) to open its details. I
should transit to a commit-detail state that
exposes the author, timestamp, and commit
message so the agent can extract the answer.
</think>

…

Reasoning Experience Model AgentTask

State 0

State 1 State 2

Figure 6: A case study of a trajectory sampled with DREAMGYM in WebArena. Starting from a
synthetic instruction, the experience model reasons over the agent’s action to produce future states.

experiences tend to become shallow and less factually grounded. In contrast, the full DREAMGYM
achieves the best or near-best performance across all metrics, confirming that history and reasoning
provide complementary benefits. More specifically, history preserves temporal and causal structure,
while reasoning enhances depth and factual reliability. This validates that the experience model must
operate in a structured, reasoning-driven manner to maintain both diversity and fidelity of trajectories.

6.4 ABLATION ON EXPERIENCE MODEL BACKBONES AND OFFLINE TRAINING DATA

2k 10k 20k 40k
Offline Samples (Steps)

10

20

30

40

50

60

70
Su

cc
es

s R
at

e
(%

)

(a) WebShop

2k 10k 20k 40k
Offline Samples (Steps)

(b) WebArena

Llama-3.1-8B Llama-3.2-3B WebDreamer

Figure 5: Evaluation of the experience model
across different number of offline training
data size (transition step) and backbone.

Fig. 5 investigates how the success rate of the expe-
rience model varies with both the amount of offline
training data and the choice of model backbone, eval-
uated on (a) WebShop (Yao et al., 2022) and (b) We-
bArena (Zhou et al.). We first observe that the experi-
ence model is highly data-efficient. Even with a very
limited number of offline samples (2k-10k), it already
reaches competitive performance. On WebShop (Yao
et al., 2022), for example, the Llama-3.1-8B exceeds
50% success rate with only 10k samples, indicat-
ing that large-scale offline datasets are not strictly
necessary for effective experience synthesis. Next,
we find that smaller backbones remain viable. Al-
though Llama-3.2-3B underperforms the 8B model,
it improves steadily as more data becomes available,
reaching about 55% success on WebShop with 20k samples, which suggests that lightweight models
can still serve as practical experience generators when computational resources are constrained.
Finally, in the extreme low-data regime, pretrained world knowledge becomes particularly valuable.
On WebArena with only 2k samples, WebDreamer (Gu et al., 2025) (a fine-tuned web world model)
achieves roughly 19% success, significantly outperforming both Llama-based variants.

6.5 CASE STUDY OF DREAMGYM TRAJECTORIES

Fig. 6 illustrates how the reasoning experience model generates a synthetic task and progressively
predicts states based on the agent’s actions. Specifically, it predicts each state through explicit chain-
of-thought reasoning that incorporates the agent’s action, task instruction, and interaction history,
producing next states that consistently ground the action and accurately reflect its consequences.

7 CONCLUSION

We introduced DREAMGYM, a framework that reduces the high cost of real-environment rollouts in
RL for language agents by generating scalable, reasoning-driven synthetic experiences. DREAMGYM
compresses environment dynamics into a reasoning-based environment model that produces state
transitions and adaptive curricula, creating challenging yet solvable tasks tailored to the agent’s
evolving policy. Experiments across diverse environments and model backbones show consistent
gains in both synthetic and sim-to-real settings, driven by the synergy of reasoning-based modeling,
replay-buffer grounding, and curriculum generation. More broadly, our results suggest that the key
bottleneck in RL for LLM agents lies in the quality and structure of interaction data. By treating
environments as generators of structured, reasoning-rich experiences rather than mere simulators,
DREAMGYM enables more scalable, sample-efficient, and generalizable RL for autonomous agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

USAGE OF LARGE LANGUAGE MODELS

The language in this paper was at times polished with the assistance of an LLM. The model was not
used for research ideation, experimental design, or data analysis.

REFERENCES

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Ammar
Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video models
enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp.
679–684, 1957.

Delong Chen, Theo Moutakanni, Willy Chung, Yejin Bang, Ziwei Ji, Allen Bolourchi, and
Pascale Fung. Planning with reasoning using vision language world model. arXiv preprint
arXiv:2509.02722, 2025.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Longchao Da, Justin Turnau, Thirulogasankar Pranav Kutralingam, Alvaro Velasquez, Paulo Shakar-
ian, and Hua Wei. A survey of sim-to-real methods in rl: Progress, prospects and challenges with
foundation models. arXiv preprint arXiv:2502.13187, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your llm secretly a world model of the
internet? model-based planning for web agents. arXiv preprint arXiv:2411.06559, 2025.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, et al. Verltool: Towards holistic agentic reinforcement learning with tool use. arXiv
preprint arXiv:2509.01055, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations.

Dongjun Lee, Juyong Lee, Kyuyoung Kim, Jihoon Tack, Jinwoo Shin, Yee Whye Teh, and Kimin
Lee. Learning to contextualize web pages for enhanced decision making by llm agents. In The
Thirteenth International Conference on Learning Representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston
Tan, Weiyan Shi, Min Lin, et al. Spiral: Self-play on zero-sum games incentivizes reasoning via
multi-agent multi-turn reinforcement learning. arXiv preprint arXiv:2506.24119, 2025.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
foundation agents. arXiv preprint arXiv:2408.06327, 2024.

Sami Marreed, Alon Oved, Avi Yaeli, Segev Shlomov, Ido Levy, Offer Akrabi, Aviad Sela, Asaf
Adi, and Nir Mashkif. Towards enterprise-ready computer using generalist agent. arXiv preprint
arXiv:2503.01861, 2025.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents. In Findings of ACL, 2025.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum
reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Junhong Shen, Atishay Jain, Zedian Xiao, Ishan Amlekar, Mouad Hadji, Aaron Podolny, and Ameet
Talwalkar. Scribeagent: Towards specialized web agents using production-scale workflow data.
arXiv preprint arXiv:2411.15004, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 2016.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang
Xu, Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn
reinforcement learning. arXiv preprint arXiv:2505.16421, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
An illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382,
2025.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and Huzefa
Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv preprint
arXiv:2410.13825, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In The Twelfth International Conference on Learning Representations.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents. arXiv preprint arXiv:2506.01716, 2025.

12

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

B DETAILED EXPERIMENT SETTINGS

In this section, we provide implementation details for each environment.

B.1 WEBSHOP

WebShop (Yao et al., 2022) is a large-scale agent benchmark designed to study language grounding in
interactive environments. It simulates a realistic e-commerce website with 1.18M real-world products
and 12,087 crowd-sourced natural language instructions, where agents must search, customize,
and purchase items. The environment poses challenges such as interpreting compositional product
requirements, reformulating queries, handling noisy webpage text, and strategically exploring diverse
page types.

RL Baseline Setup. We follow the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones in our experiments.

DREAMGYM Settings. To train the reasoning experience model, we construct a dataset by combining
1,600 human demonstration trajectories from the official WebShop repository with an additional 2,000
trajectories collected using an oracle agent and random exploration. Each transition is augmented
with a reasoning trace generated by a powerful LLM, forming the dataset used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

B.2 ALFWORLD

ALFWorld (Shridhar et al.) is a text-and-embodied benchmark with hand-crafted task instructions
designed for studying language grounding and cross-modal transfer. It pairs abstract text interactions
from TextWorld with photo-realistic, physics-based execution in ALFRED/AI2-THOR, spanning
six household task families (e.g., Pick & Place, Clean & Place, Heat/Cool & Place) with 3,553
training tasks and seen/unseen splits across 120 rooms. Agents issue high-level textual actions (goto,
open, take, clean/heat/cool, put) that must be realized as low-level visuomotor controllers, facing
challenges such as partial observability, object search and manipulation, mapping language to action
preconditions and affordances, and bridging the gap between abstract plans and physical feasibility.

RL Baseline Setup. We adopt the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones.

DREAMGYM Settings. We follow the default ALFWorld split (Shridhar et al.) with the
TextWorld setup (Côté et al., 2018) under the Verl-Agent framework. From the training split, we
extract 3,200 expert demonstration trajectories paired with task instructions, and additionally sample
2,000 offline trajectories using both oracle and random policies. These datasets form the basis for
training the reasoning experience model. Each transition is further augmented with a reasoning trace
generated by a powerful LLM, which is used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

B.3 WEBARENA

WebArena (Zhou et al.) is a self-hosted, realistic web environment for training and evaluating
autonomous agents across fully functional sites—e-commerce, social forums, collaborative software
development (GitLab), and content management—augmented with tools (map, calculator, scratchpad)
and knowledge bases (e.g., offline Wikipedia, manuals). It provides 812 long-horizon tasks expressed
as high-level natural language intents and evaluates agents by functional correctness rather than
matching action traces, supporting multi-tab browsing and a rich action space (click, type, navigate,
tab operations).

Training Set Split. Since the full evaluation set in WebArena is large and contains many
similar tasks, we follow prior work (Qi et al., 2024; Wei et al., 2025) and evaluate agents on
WebArena-Lite (Liu et al., 2024), a more balanced subset of 165 high-quality, challenging tasks
selected from the original 812. The remaining 647 tasks, excluding those in the evaluation set, are
used for training.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

RL Baseline Setup. As no reliable open-source RL infrastructure exists for WebArena (Qi et al.,
2024), we build on the pipeline from Verl-Agent (Feng et al., 2025), implementing action data
collection using browsergym (Zhou et al.) while hosting the WebArena websites on AWS servers.
This setup supports both PPO and GRPO. Due to the high computational cost of deployment, we
run only four AWS servers, limiting action sampling to four sessions in parallel, which constrains
training throughput.

DREAMGYM Settings. To obtain offline trajectories for training the reasoning experience model,
we extract successful demonstrations from the highest-performing agents on the public WebArena
leaderboard. Specifically, we use agents that incorporate accessibility tree information in their
observations, including IBM CUGA (Marreed et al., 2025), ScribeAgent (Shen et al., 2024), Learn-
by-Interact (Su et al., 2025), and AgentOccam (Yang et al., 2024). After filtering out unsuccessful
runs, we collect 2,780 trajectories. Each transition is then augmented with a reasoning trace generated
by a powerful LLM, forming the dataset for fine-tuning the reasoning experience model.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

C THEORETICAL ANALYSIS

In this section, we analyze how policies trained in the synthetic environments of DREAMGYM
can provably improve performance in real environments. We show that, under mild assumptions,
performance guarantees can be established by optimizing learning-centric signals of the experience
model, such as reward accuracy and domain consistency, rather than strict fidelity metrics like state
reconstruction error.

C.1 PROVABLY POLICY IMPROVEMENT IN REAL ENVIRONMENTS TRAINED WITH SYNTHETIC
EXPERIENCES

DREAMGYM trains LLM agents using a reasoning-based experience model Mexp, which interacts
with the agent and induces a synthetic MDP M̂. For brevity, we use M̂ to denote any such synthetic
environment, including Mexp, which is defined in the abstract textual state space, as stated in §4.1.
The learned policy is then evaluated in the real environment M, projected into the same abstract
space for comparison. We show that, under standard trust-region policy update assumptions, a policy
optimized in M̂ is guaranteed to also achieve policy improvement in the real environment M.
Theorem 1 (Policy Improvement J in Real Environment via Synthetic Experiences). Let the real
MDP be M = (S,A, P,R, γ), the synthetic MDP induced by Mexp be M̂ = (S,A, P̂ , R̂, γ),
discount be γ ∈ (0, 1), and let rewards be bounded R, R̂ ∈ [0, Rmax] with Vmax := Rmax/(1− γ).
Assume one-step experience-model errors

εR := sup
s,a

∣∣R(s, a)− R̂(s, a)
∣∣, εP := sup

s,a
TV

(
P (·|s, a), P̂ (·|s, a)

)
, (8)

and a trust-region update π → π′ obtained by optimizing in M̂ with per-state KL radius
sups DKL(π

′(·|s) ∥π(·|s)) ≤ δ, as enforced by the soft KL penalty in PPO and GRPO. Hence

JM(π′)− JM(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]

︸ ︷︷ ︸
synthetic surrogate gain in Mexp

− 4γ

(1− γ)2
Vmax δ︸ ︷︷ ︸

trust-region penalty

− 2

(
εR

1− γ
+

2γRmax

(1− γ)2
εP

)
︸ ︷︷ ︸

experience model error

(9)
In particular, if the synthetic surrogate gain exceeds the two penalties, then JM(π′)≥JM(π).

Specifically, (1) the synthetic surrogate gain denotes the agent’s performance improvement when
trained and evaluated within the synthetic environment provided by the experience model Mexp. (2)
The trust-region penalty corresponds to the KL radius δ constraint, which is softly enforced by PPO
or GRPO. (3) The experience-model error measures how well Mexp preserves learning-relevant
signals of the original environment for agent knowledge acquisition including two key components:
(a) the faithfulness of feedback (εR), i.e., how accurately reward signals reflect real outcomes, and
(b) the domain consistency of state transitions (εP), i.e., how well state space distributions align
with the dynamics from the original environment.

Notably, these two error terms align with our design insights in §4.1: the synthetic environment
need only provide domain-consistent transitions and correct, retrospective learning signals,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

without having to clone the original environment at the raw state level. In practice, both εR and
εP can be made very small even when Mexp is trained with minimal trajectory data annotated with
explicit reasoning traces.

Proof of Theorem 1. We first decompose the policy improvement in the real environment through
the synthetic environment:
JM(π′)− JM(π) =

(
JM̂(π′)− JM̂(π)

)
+

(
JM(π′)− JM̂(π′)

)
−
(
JM(π)− JM̂(π)

)
. (10)

By Lemma 1, each of the two policy discrepancy terms
∣∣JM(·)− JM̂(·)

∣∣ is at most ∆model, hence

JM(π′)− JM(π) ≥
(
JM̂(π′)− JM̂(π)

)
− 2∆model. (11)

It remains to lower bound improvement inside the synthetic environment. Using the standard trust-
region bound (Schulman et al., 2015), which is enforced in practice by PPO and GRPO via a per-state
KL radius δ, we have

JM̂(π′)− JM̂(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]
− 4γ

(1− γ)2
Vmax δ. (12)

Combining these two terms yields the inequality in Theorem 1, which completes the proof.

Lemma 1 (Multi-turn experience synthesis error bound). For any policy π, if

εR = sup
s,a

|R(s, a)− R̂(s, a)|, εP = sup
s,a

TV
(
P (·|s, a), P̂ (·|s, a)

)
, (13)

then ∣∣JM(π)− JM̂(π)
∣∣ ≤ ∆model :=

εR
1− γ

+
2γRmax

(1− γ)2
εP . (14)

Proof. We first compare the Bellman operators of the real and synthetic environments. For any
bounded value function V ,

(TπV)(s) = Ea∼π(·|s)
[
R(s, a) + γ Es′∼P (·|s,a)V (s′)

]
, (15)

and let T̂π be the same expression with (R,P) replaced by (R̂, P̂). Thus for any bounded value
function V , the operator difference is bounded as

∥TπV − T̂πV ∥∞ ≤ sup
s,a

|R(s, a)− R̂(s, a)|+ γ sup
s,a

∣∣∣Es′∼P (·|s,a)V (s′)− Es′∼P̂ (·|s,a)V (s′)
∣∣∣
(16)

≤ εR + 2γ∥V ∥∞εP , (17)
which is derived by simply using the definitions of εR, εP and the variational characterization of TV.

Now apply this bound to V = V π
M and add–subtract:

∥V π
M − V π

M̂∥∞ = ∥TπV
π
M − T̂πV

π
M̂∥∞ (18)

≤ ∥TπV
π
M − T̂πV

π
M∥∞ + ∥T̂πV

π
M − T̂πV

π
M̂∥∞ (19)

≤ εR + 2γVmaxεP + γ∥V π
M − V π

M̂∥∞. (20)
By rearranging the contraction term into the left side, we have

(1− γ)∥V π
M − V π

M̂∥∞ ≤ εR + 2γVmaxεP . (21)
Hence

∥V π
M − V π

M̂∥∞ ≤ 1
1−γ

(
εR + 2γVmaxεP

)
. (22)

Finally, since JE(π) = Es0∼µ[V
π
E (s0)], we obtain∣∣JM(π)− JM̂(π)

∣∣ = ∣∣∣Es0∼µ

[
V π
M(s0)− V π

M̂(s0)
]∣∣∣ (23)

≤ ∥V π
M − V π

M̂∥∞ (24)

≤ εR
1− γ

+
2γRmax

(1− γ)2
εP (25)

=: ∆model. (26)
This indicates that the gap of agent performance between real and synthetic environments depends
only on reward accuracy and domain consistency errors, rather than on strict fidelity metrics such as
state reconstruction error, etc.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 DREAMGYM PROMPTS FOR WEBSHOP

Experience model reasoning step annotation | WebShop

System Prompt: You are an expert in web navigation and e-commerce environments, spe-
cializing in providing actionable guidance for world model state transition
planning.

User Prompt: You are synthesizing environment state transition plans for training
world models in webshopping tasks. You are provided with a task
instruction, a flag indicating whether the trajectory is successful,
and a trajectory {(si, ai)}Ni=1 of the environment state and the
corresponding agent action at each step.
Task Context:
Task: {instruction} Success: {flag}
Trajectory Steps:
" ".join(["Step: {i}, Environment State: {si},
Action: {ai}"]N

i=1)
Your Task:
• Task Tutorial: A high-level guidance of how the environment should
transit step-by-step to interact with the agent under the given task
instruction. It should highlight the critical steps that the agent should
perform in order for the environment to transit to the final successful state.
• State Transition Plans: For each step, first analyze whether the agent’s
action is likely to success or fail based on the task tutorial (e.g. the search
query is too vague or too specific, or the agent clicks the wrong product),
and then provide a concise plan describing how the environment should
transition given the current state and action.
CRITICAL: You MUST generate exactly one transition plan for each
environment step provided and your state_transitions array must
contain exactly len(env_step_ids) entries, one for each step_id.
For product listing pages, the state transition plan should mention some
actionable details such as the number of products shown on this page,
whether this page should contain the target product given the agent’s action.
Focus on actionable guidance for world model training. Keep responses
concise and practical.

Response Format: json { "task_tutorial":
{"Overall Plan": "A one-sentence high-level guidance of how the environ-
ment should transit step-by-step to interact with the agent under the given
task instruction.",
"Success Mode": "Describe the critical steps that the agent should perform
to succeed in the task, where the environment should correspondingly tran-
sit to the successful state. Summarize in one sentence.",
"Failure Mode": "Describe the typical failure mode the agent should avoid,
where the environment should correspondingly transit to the failed state
once the agent performs the action. Summarize in one sentence." },
"state_transitions": [{
"step_id": 0,
"transition_plan": "Analyze whether the agent’s action is good or bad based
on the next state and overall task tutorial, and a corresponding plan for how
environment should respond to this action."}
...
] }

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Task variation dataset construction | WebShop

System Prompt: You are an expert in e-commerce task design and AI training data curation.

User prompt: You are an expert in e-commerce task design. I will give you an orig-
inal web shopping task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
the skills of shopping for the given product.
Original Task: {task instruction}
Product Information:

1. Category: {product_info[’category’]}
2. Product Name: {product_info[’name’]}
3. Available Attributes:

{’,’.join(product_info[’attributes’])
Candidate Variations:{candidates variations}
Criteria for selection:

• Challenging but Feasible: The task should be more specific or
complex than the original, but still achievable, so as to strengthen the
agent’s capabilities for shopping for the given product.

• High Quality: The instruction should be clear, grammatically
correct, and realistic.

• Meaningful Variation: The changes should make the task
meaningfully different (not just trivial changes).

• Realistic: The combination of attributes, options, and price should
make sense for the product category.
Please respond with:

1. The number of your selected variation 1- (len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Task variation dataset construction | ALFWorld

System Prompt: You are an expert in embodied task design and AI training data curation
for interactive embodied environments.

User prompt: You are an expert in embodied task design. I will give you a feasible
task instruction for an embodied agent and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable embodied reasoning skills.
Original Task: {task instruction}
Environment Context:

1. Room Type: {env_info[’room’]}
2. Objects Present: {’,’.join(env_info[’objects’])}
3. Containers/Surfaces:

{’,’.join(env_info[’locations’])}
Candidate Variations: {candidate variations}
Criteria for selection:

• Challenging but Feasible: The variation should add complexity
(e.g., more objects, constraints, or multi-step actions) without being
impossible.

• High Quality: Clear, grammatical, and realistic in the ALFWorld
context.

• Meaningful Variation: Should involve non-trivial differences in
action type, target object, or target location.

• Realistic: The variation must be consistent with ALFWorld’s
embodied environment dynamics (e.g., no placing a fridge on a lamp).
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Task variation generation | WebArena

System Prompt: You are an expert in designing realistic, diverse, and challenging web
interaction tasks for AI agents.

User prompt: I will provide you with several seed WebArena task
instructions. Your job is to generate new task variations
from each seed. The variations should keep the same general action
type (e.g., search, filter, upvote, navigate, purchase, delete) but differ in
target, constraints, or context, making them realistic, challenging, and
meaningfully different.
Seed Instructions: {list of seed instructions}
Requirements for variations:

• Action Consistency: Preserve the same type of action as the seed
task.

• Meaningful Differences: Change the entities, filters, domains, time
ranges, or constraints so the new task is distinct but natural.

• Challenging but Feasible: The variation should slightly increase
reasoning or constraint complexity, but remain solvable.

• High Quality: Grammatically correct, clear, and realistic web tasks.
Please respond with:
For each seed instruction, generate [K] new task variations. Format your
response as:
SEED: [original instruction]
VARIATIONS:

1. [variation 1]
2. [variation 2]

...
Example:
SEED: List products from living room furniture category by descending
price.
VARIATIONS:

1. List products from bedroom furniture category by ascending price.
2. Show me the most expensive three dining tables available online.
3. Find discounted sofas under $500 in the living room furniture

category.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Task variation dataset construction | WebArena

System Prompt: You are an expert in interactive web task design and AI training data
curation.

User prompt: You are an expert in web environment task design. I will give you
an original WebArena task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable skills in web interaction.
Original Task: {task instruction}
Candidate Variations: {candidate variations}
Criteria for selection:

• Challenging but Feasible: The variation should require slightly
more reasoning, precision, or constraints than the original, but still be
solvable by a web agent.

• High Quality: Clear, grammatical, and realistic within the web
environment.

• Meaningful Variation: Keep the same action type (e.g., search,
navigate, sort, submit, upvote, purchase) as the original, but change the
context, target, or condition.

• Realistic: The task should reflect plausible web interactions a user
might request.
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

Agent Prompt Template | WebShop

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to:
{task_description}.

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[{available_actions}].

Now it’s your turn to take one action for the current step. You should first reason step-by-step
about the current situation, then think carefully which admissible action best advances the
shopping goal. This reasoning process MUST be enclosed within <think> </think>
tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 DREAMGYM PROMPTS FOR ALFWORLD

Agent Prompt Template | ALFWorld

You are an expert agent operating in the ALFRED Embodied Environment.
Your task is to:
{task_description}

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}.
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[{admissible_actions}].

Now it’s your turn to take an action. You should first reason step-by-step about the current
situation. This reasoning process MUST be enclosed within <think> </think> tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

C.4 DREAMGYM PROMPTS FOR WEBARENA

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

AX-tree state mapping prompt | WebArena

System
Prompt:

You are an agent tasked with extracting and refine a subset of the webpage’s observations
based on the content of the page and user instructions. Perform the following tasks based
on the provided [Information source], including user instructions, interaction history, and
the AXTree observation at the current time step. First, provide high-level reasoning for
the next action by analyzing the provided information. Second, extract relevant webpage
elements based on your high-level reasoning.

User
prompt:

[General instructions]
You are currently on the {domain_info} website. Your task is to generate a Reasoning
and a Refined observation based on the provided inputs.
First, review the User instruction and History of interactions and, then, generate the
Reasoning. Analyze the progress made so far, and provide a rationale for the next steps
needed to efficiently accomplish the user instruction on the {domain_info} website.
Second, refine the Webpage observation at the current time step into a Refined
observation. Extract a subset of the webpage observation (e.g., chart, table, menu items)
that contains necessary information for completing the user instruction, and explain the
extracted elements. Ensure that the information on the elements (e.g., numeric element ID)
is correctly included.
Please follow the format in the [Reasoning & Refinement example] carefully.

[Information source]
User instruction: {user instruction}
History of interactions:{interaction history}
Webpage observation at the current time step:{AXTree observation}

[Reasoning & Refinement example]
Abstract example
Here is an abstract version of the answer, describing the content of each tag. Make sure
you follow this structure and format strictly, but replace the content with your own answer:
<reasoning>
Think step by step. Based on the User instruction, History of interaction, and AXTree
observation at the current time step:

• Provide a high-level description of the AXTree observation at the current time
step.

• Based on the User instruction and History of interaction track your progress and
provide your

reasoning on the next action needed to accomplish the User instruction

Ensure that: Structure your reasoning concisely and follow the following format strictly:
<content_description> High-level description of current page state (max 2 sen-
tences)</content_description> <agent_progress> What has been accom-
plished so far (max 1 sentence)</agent_progress> <next_action_analysis>
What should happen next and why (max 1 sentence)</next_action_analysis>
</reasoning>
<extraction>
Based on your reasoning, identify the elements (e.g., buttons, text fields, static text, table
row, chart) to focus on. Then, explain the semantics and functionalities of each extracted
element. Ensure that: You do not alter the structure of the AXTree observation. You extract
the element ID (id in []) accurately without any errors. When extracting chart or table, you
must extract the entire chart or table to avoid any confusion or loss of information. Unless
necessary, try not to extract url or non-semantic identifiers which is not informative for
the agent actions. All the elements you extract should be actionable and discard irrelevant
elements. Please follow the following format and do not provide any other text besides the
element list.
[ELEMENT_ID] TYPE:DESCRIPTION
[ELEMENT_ID] TYPE:DESCRIPTION
...
[ELEMENT_ID] TYPE:DESCRIPTION
(Extract 3-10 most relevant actionable elements only)
</extraction>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Agent Prompt Template | WebArena

System Prompt: You are an agent trying to solve a web task based on the content of the
page anda user instructions. You can interact with the page and explore.
Each time you submit an action it will be sent to the browser and you will
receive a new page.

User prompt: Instructions
Review the current state of the page and all other information to find the
best possible next action to accomplish your goal. Your answer will be
interpreted and executed by a program, make sure to follow the formatting
instructions.
User instruction: {user instruction}
History of interactions:{interaction history}
Refined observation of current step: Reasoning {plan}
Focused AXTree observation: {rep_observation}
Action space: 13 different types of actions are available.

• noop(wait_ms: float = 1000)
1. Description: Do nothing, and optionally wait for the given time (in
milliseconds).

2. Examples: noop(),noop(500)
• ...

To save space, please refer to C.4.1 for the full list of actions.

Remark: Only a single action can be provided at once. Exam-
ple:fill(’a12’, ’example with "quotes"’) Multiple
actions are meant to be executed sequentially without any feedback from
the page. Don’t execute multiple actions at once if you need feedback
from the page.

Abstract Example
Here is an abstract version of the answer with description of the content of
each tag. Make sure you follow this structure, but replace the content with
your answer:
<think>
Think step by step. If you need to make calculations such as coordinates,
write them here. Describe the effect that your previous action had on the
current content of the page.
</think>
<action>
One single action to be executed. You can only use one action at a time.
</action>

Concrete Example
Here is a concrete example of how to format your answer. Make sure to
follow the template with proper tags:
<think>
My memory says that I filled the first name and last name, but I can’t see
any content in the form. I need to explore different ways to fill the form.
Perhaps the form is not visible yet or some fields are disabled. I need to
replan. </think>
<action>
fill(’a12’, ’example with "quotes"’)
</action>

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.4.1 ACTION SPACE OF WEBARENA

• noop(wait_ms: float = 1000)
1. Description: Do nothing, and optionally wait for the given time (in milliseconds).
2. Examples: noop(); noop(500)

• send_msg_to_user(text: str)
1. Description: Send a message to the user. You should send a short answer as a message and do not

ask questions through message.
2. Examples: send_msg_to_user(’the city was built in 1751.’);

send_msg_to_user(’Yes’); send_msg_to_user(’No’);
send_msg_to_user(’31112’); send_msg_to_user(’Yoshua Bengio’)
• scroll(delta_x: float, delta_y: float)

1. Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or down
scrolling, negative for left or up scrolling. Dispatches a wheel event.

2. Examples: scroll(0, 200); scroll(-50.2, -100.5)
• fill(bid: str, value: str)

1. Description: Fill out a form field. It focuses the element and triggers an input event with the
entered text. It works for <input>, <textarea> and [contenteditable] elements.

2. Examples: fill(’237’, ’example value’); fill(’45’, ’multi-line
example’); fill(’a12’, ’example with "quotes"’)
• select_option(bid: str, options: str | list[str])

1. Description: Select one or multiple options in a <select> element. You can specify option
value or label to select. Multiple options can be selected.

2. Examples: select_option(’48’, ’blue’); select_option(’48’, [’red’,
’green’, ’blue’])
• click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] =
[])

1. Description: Click an element.
2. Examples: click(’51’); click(’b22’, button=’right’); click(’48’,

button=’middle’, modifiers=[’Shift’])
• dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] =
’left’, modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’,
’Shift’]] = [])

1. Description: Double click an element.
2. Examples: dblclick(’12’); dblclick(’ca42’, button=’right’);

dblclick(’178’, button=’middle’, modifiers=[’Shift’])
• hover(bid: str)

1. Description: Hover over an element.
2. Examples: hover(’b8’)

• press(bid: str, key_comb: str)
1. Description: Focus the matching element and press a combination of keys. It accepts the logical

key names that are emitted in the keyboardEvent.key property of the keyboard events:
Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape,
ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight,
ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc. You can alternatively
specify a single character you’d like to produce such as "a" or "#". Following modification shortcuts
are also supported: Shift, Control, Alt, Meta.

2. Examples: press(’88’, ’Backspace’); press(’a26’, ’Control+a’);
press(’a61’, ’Meta+Shift+t’)
• focus(bid: str)

1. Description: Focus the matching element.
2. Examples: focus(’b455’)

• clear(bid: str)
1. Description: Clear the input field.
2. Examples:clear(’996’)

• drag_and_drop (from_bid: str, to_bid: str)
1. Description: Perform a drag & drop. Hover the element that will be dragged. Press left mouse

button. Move mouse to the element that will receive the drop. Release left mouse button.
2. Examples: drag_and_drop(’56’, ’498’)

• upload_file(bid: str, file: str | list[str])
1. Description: Click an element and wait for a "filechooser" event, then select one or multiple input

files for upload. Relative file paths are resolved relative to the current working directory. An empty list
clears the selected files.

2. Examples: upload_file(’572’, ’my_receipt.pdf’); upload_file(’63’,
[’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip’])

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.5 EXPERIENCE MODEL JUDGE

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Environment Model Judge

You are an expert environment judge scoring the quality of a predicted state transition in a
WebShop-style simulator.
You are given:
- Current state (before the action)
- The agent action
- Predicted next state (after the action)

Your task:
1) Evaluate the predicted next state on four rubrics, each scored 0, 1, or 2.
2) Provide brief step-by-step reasoning for each rubric.
3) Output a valid JSON object with the rubric scores and the total (sum of the four rubrics). Do not
include extra fields.

General rules:
- Base your judgment only on the provided inputs; do not assume hidden context.
- Use integers only (0/1/2) for rubric scores.
- If an action is invalid or should not change the page, correct behavior may include a no-op with an
explicit failure/empty-result signal.
- Be concise but specific in your reasoning (1–3 sentences per rubric).

—
Rubrics (0/1/2) with anchors:
1) Causal State Consistency | Question: Is the predicted next state both logically consistent with the
prior state and causally grounded in the agent’s action semantics (e.g., click → detail page, pagination
→ new results, search → updated listings, back → prior view)?

- 2: Coherent and action-appropriate; all expected updates appear with no contradictions.
- 1: Mostly consistent, but has minor logical or semantic gaps.
- 0: Inconsistent or not causally linked to the action.

2) Diversity & State Variation | Question: Is there a meaningful, non-degenerate change from the
prior state (when change is expected)?

- 2: Substantive, coherent differences (new results, updated filters, changed details).
- 1: Minimal or superficial change.
- 0: No meaningful change, or incoherent jump.

3) Informativeness | Question: Is the predicted state rich, relevant, and internally coherent (e.g.,
listings with meaningful attributes; filters aligned with content)?

- 2: Detailed, relevant, and coherent information.
- 1: Some useful details, but sparse or partially incoherent.
- 0: Uninformative, irrelevant, or incoherent.

4) Hallucination & Failure Feedback | Question: When the action is invalid or yields no results, does
the state reflect an appropriate failure/empty-result signal instead of hallucinating success?

- 2: Correctly signals failure or success as appropriate, no hallucination.
- 1: Partial/ambiguous handling of failure.
- 0: Hallucinates success or ignores failure.

—
Step-by-step Evaluation (use this structure):
1. Causal State Consistency: <your reasoning> Score: 0/1/2
2. Diversity & State Variation: <your reasoning> Score: 0/1/2
3. Informativeness: <your reasoning> Score: 0/1/2
4. Hallucination & Failure Feedback: <your reasoning> Score: 0/1/2
—
Final JSON Output:
Output a single valid JSON object. Replace angle brackets with integers only.

{"rubric_scores": {
"causal_consistency": <0|1|2>, "diversity": <0|1|2>,
"informativeness": <0|1|2>, "hallucination": <0|1|2> }}

26

	Introduction
	Related Works
	LLM Agents Reinforcement Learning
	Training Agents with Synthetic Data

	Preliminaries
	Notations
	Agent Learning from Experience

	Scaling Agent Learning via Experience Synthesis
	Building Reasoning Experience Models for Agent Learning
	Inference for Experience Rollout Collection
	Training Experience Models to Reason

	Curriculum-based Task Generation
	Learning from Synthetic Experiences

	Experiment
	Experimental Setup
	Main Results

	Performance Analysis and Ablation Studies
	Training Curve Analysis
	Ablation on Task Generator
	Ablation on Experience Model
	Ablation on Experience Model Backbones and Offline Training Data
	Case Study of DreamGym Trajectories

	Conclusion
	Appendix
	Detailed Experiment Settings
	WebShop
	ALFWorld
	WebArena

	Theoretical Analysis
	Provably Policy Improvement in Real Environments Trained with Synthetic Experiences
	DreamGym Prompts for WebShop
	DreamGym Prompts for ALFWorld
	DreamGym Prompts for WebArena
	Action Space of WebArena

	Experience Model Judge

