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ABSTRACT

While reinforcement learning (RL) can empower large language model (LLM)
agents by enabling self-improvement through interaction, its practical adoption
remains challenging due to costly rollouts, limited task diversity, unreliable reward
signals, and infrastructure complexity, all of which obstruct the collection of scal-
able experience data. To address these challenges, we introduce DREAMGYM, the
first unified framework designed to synthesize diverse experiences with scalability
in mind to enable effective online RL training for autonomous agents. Rather
than relying on expensive real-environment rollouts, DREAMGYM distills environ-
ment dynamics into a reasoning-based experience model that derives consistent
state transitions and feedback signals through step-by-step reasoning, enabling
scalable agent rollout collection for RL. To improve the stability and quality of
transitions, DREAMGYM leverages an experience replay buffer initialized with
offline real-world data and continuously enriched with fresh interactions to actively
support agent training. To improve knowledge acquisition, DREAMGYM adaptively
generates new tasks that challenge the current agent policy, enabling more effective
online curriculum learning. Experiments across diverse environments and agent
backbones demonstrate that DREAMGYM substantially improves RL training, both
in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready
tasks like WebArena, DREAMGYM outperforms all baselines by over 150%. And
in RL-ready but costly settings, it matches GRPO and PPO performance using
only synthetic interactions. When transferring a policy trained purely on synthetic
experiences to real-environment RL, DREAMGYM achieves an additional 64.5%
performance gain while using no more than 10% of real-world interactions.

1 INTRODUCTION

Autonomous agents based on large language models (LLMs) are being widely adopted across a broad
range of tasks given their comprehensive pre-trained semantic knowledge. These agents have already
shown promise in applications such as web navigation (Zhou et al.), embodied control (Shridhar et al.),
and multi-turn tool use (Yao et al., 2024). However, while these agents can leverage strong language
priors to reason and plan, their performance in downstream interactive settings remains limited (Wang
et al., 2024). As we step into the era of experience (Silver & Sutton, 2025), a promising direction
for building more robust and adaptive language agents is reinforcement learning (RL), where agents
improve by interacting with environments and bootstrapping from their own experiences (Schulman
et al., 2017), as illustrated in Fig. 1 (a).

Despite its potential, training LLM agents via RL remains highly challenging in practice. The most
fundamental barrier is the high costs and low sample efficiency of collecting large-scale, diverse, and
informative online interaction data (Wei et al., 2025; Jiang et al., 2025). Real environments often
involve long interaction sequences, high computational cost per step, and sparse reward feedback,
making it prohibitively expensive to gather sufficient amount of data for modern RL algorithms (Patil
et al.; Shao et al., 2024). Beyond computational cost, there is also a lack of diverse, scalable tasks,
where most existing environments provide only a limited, static set of instructions, while RL training
requires a broad range of tasks for effective exploration (Eysenbach et al., 2018). However, scaling
task instructions is inherently difficult, as validating their feasibility often demands costly human
expertise (Xue et al., 2025), leaving current environments insufficient for goal-conditioned RL.
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Figure 1: Compared to the traditional agent learning
paradigm, DREAMGYM provides the first scalable and
effective RL framework with unified infrastructure.

The third major barrier is the instability
of reward signals. Many interactive set-
tings, such as web pages and GUIs, are
highly dynamic and lack consistent behav-
iors, resulting in noisy, sparse, or even false
feedback that hinders stable learning (Deng
et al., 2023). Safety concerns further com-
pound these challenges, as certain actions
are irreversible (e.g., deleting an item on a
real website), and most environments lack
reliable reset mechanisms (Zhou et al.). Fi-
nally, the infrastructure difficulty of con-
structing RL-ready environments also re-
main challenging. Existing systems are het-
erogeneous and often rely on heavyweight
backends like Docker (Jimenez et al.) or
virtual machines (Xie et al., 2024), making
large-batch rollout sampling engineering-intensive and costly. These limitations make building
general-purpose and scalable systems for training agents with RL an open and pressing challenge.
To tackle these challenges, we propose DREAMGYM, a unified and scalable RL framework that
synthesizes diverse experience data in an online manner to enable efficient and effective training
of LLM agents. At the core of DREAMGYM lies a scalable reasoning-based experience model that
abstracts environment dynamics into a discrete textual space. By interacting with the agent over
multiple turns, it produces consistent transitions and feedback that reflect the consequences of the
agent’s actions through explicit reasoning. Unlike prior approaches that attempt to reproduce external
systems (Chen et al., 2025; Assran et al., 2025), the design of the experience model is grounded in a
key insight that agent training does not require perfectly realistic environments, but rather interaction
data that is sufficiently diverse, informative, and retrospective to acquire knowledge for the target
task. Therefore, powered by strong reasoning, the experience model overcomes the key limitations
outlined above and deliver useful experience data for RL training.
To ensure that synthetic experiences are diverse and informative, DREAMGYM equips the experience
model with an experience replay buffer, from which it retrieves similar yet diverse trajectories to guide
its current state prediction. This buffer is seeded with offline knowledge for essential context and is
continuously enriched with trajectories generated on-the-fly, co-evolving the experience model with
the agent to ensure the produced rollouts aligned with the agent’s updated policy for stable training. In
parallel, the experience model serves as a task generator, identifying valuable tasks with high reward
entropy and producing progressively more challenging variations. This design yields an effective
curriculum, where agents are consistently exposed to harder problems as their capability improves.
By unifying interaction, memory, and adaptive online task generation, DREAMGYM addresses the
persistent challenges that have limited RL for LLM agents training: prohibitive cost, scarcity of
diverse tasks, unstable reward signals, and heavy infrastructure demands. It reframes training around
an environment purpose-built for RL, enabling efficient synthetic training and effective sim-to-real
transfer, improving generalization while minimizing reliance on costly real-world interactions.
Comprehensive experiments are conducted to evaluate DREAMGYM across diverse environments
and LLM agent backbones. For use cases lacking RL training support (e.g. WebArena (Zhou et al.)),
DREAMGYM provides the only viable approach for RL-based agent training, delivering 176.6%
improvement over all baselines and SOTA methods. In settings where RL is supported but costly,
DREAMGYM achieves performance on par with GRPO (Shao et al., 2024) and PPO (Schulman
et al., 2017), while training entirely within DREAMGYM without external interactions. Moreover,
we introduce DREAMGYM-S2R (sim-to-real), which first trains agents with diverse and curriculum-
driven experiences in DREAMGYM before transferring to external environments. This stage builds a
strong foundation through diverse, curriculum-driven interactions, yielding a 64.5% performance
improvement over training solely in RL-ready environments, using less than 10% of external data.

2 RELATED WORKS
2.1 LLM AGENTS REINFORCEMENT LEARNING

RL offers a path to transform large LLM agents from static generators into adaptive decision makers.
Classical RL algorithms such as policy gradients and actor–critic methods (Williams, 1992; Schulman
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Figure 2: Overview of the proposed DREAMGYM agent training framework. Given a set of seed tasks,
a reasoning-based experience model interacts with the agent to synthesize informative, diverse tasks
and trajectories for RL training. At each step, the agent takes actions based on its current state and
receives next states and reward signals derived by the experience model through CoT reasoning based
on both interaction history and top-k similar experiences from an active replay buffer. To expose the
agent to increasingly informative scenarios, tasks with high reward entropy are proliferated by the
curriculum task generator for future training. With this unified design, DREAMGYM addresses both
task and reward sparsity while enabling scalable RL with diverse and curriculum-driven environments.

et al., 2017) have achieved strong results in robotics, games, and control (Silver et al., 2016; Hafner
et al., 2020). Extending these approaches to interactive language environments, however, introduces
new barriers. Tasks such as web navigation (Yao et al., 2022; Zhou et al.), operating systems (Xie
et al., 2024), and multi-tool reasoning (Yao et al., 2024) violate core RL assumptions: operations
cannot be reset cheaply or queried at high frequency, rollouts are long, as well as other side effects
that raise both engineering and financial risks.

Model-based RL provides one remedy by substituting costly real interactions with an internal model.
Early work such as Dyna (Sutton, 1991) and Dreamer (Hafner et al., 2020) showed how learned
models can accelerate policy learning. Inspired by this, recent LLM-driven environment models
have been developed for web and tool use (Gu et al., 2025). However, these simulators often aim for
environment-specific fidelity or physics-level realism, which constrains their scalability and makes
them ill-suited for broad curriculum-driven training. DREAMGYM departs from this fidelity-first
perspective by focusing on discrete, language-based environment modeling that directly targets policy
improvement. This approach better aligns with the challenges by emphasizing efficiency, diversity,
and adaptability over perfect realism.

2.2 TRAINING AGENTS WITH SYNTHETIC DATA

Synthetic data has long been used to overcome the scarcity of human demonstrations. Early methods
scripting expert trajectories or generating them from stronger teacher models often trained agents
simply by imitation (Yao et al., 2022; Pahuja et al., 2025; Deng et al., 2023). While effective for
bootstrapping, such static trajectories, once created, limit both diversity and adaptivity. Later research
shifted toward synthetic environments and self-play (Liu et al., 2025), such as AlphaGo (Silver et al.,
2016) and Dreamer-based imagination (Hafner et al., 2020), which enabled agents to generate unlim-
ited on-policy experiences. Recent work extends this idea to language and multimodal domains (Gu
et al., 2025). However, these efforts focus on narrow tasks or rely on hand-crafted task generation.

DREAMGYM builds on these lines of research but integrates environment modeling and data gen-
eration in synergy. Its environment model not only predicts transitions and rewards, but also
generates novel task instructions with high reward entropy, ensuring that the training distribution
evolves as the agent improves. This co-evolving design addresses key RL agent training challenges,
including scarcity of tasks, unstable rewards, and reliance on costly human verification, while en-
abling curriculum-like scaling across diverse tasks. As shown in the experiments, RL methods
such as GRPO (Shao et al., 2024) and PPO (Schulman et al., 2017) can be trained almost en-
tirely within DREAMGYM while matching or surpassing external-environment baselines, with an
order-of-magnitude reduction in required real data.
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3 PRELIMINARIES

3.1 NOTATIONS

We formalize the agent learning problem as a Markov Decision Process (MDP) (Bellman, 1957),
defined by the tuple M = (S,A, T,R, γ, ρ0), where S denotes the state space and A denotes the
action space. The transition function T : S ×A → ∆(S) governs the environment dynamics, where
∆(S) denotes the probability simplex over S . The reward function R : S×A → R provides feedback
signals for the agent’s actions. γ ∈ [0, 1] is the discount factor, and ρ0 ∈ ∆(S) specifies the initial
state distribution that includes the task instruction τ0.

In LLM agent environments, τ0 is usually a desired task specified by the user in natural language, and
states s ∈ S encode the environment configuration visible to the agent, such as webpage content, tool
outputs, or textual environment descriptions. Actions a ∈ A represent discrete operations, including
clicking UI elements, invoking external tools, or generating textual responses. The agent maintains a
policy πθ : S → ∆(A), parameterized by θ, which maps states to distributions over actions.

3.2 AGENT LEARNING FROM EXPERIENCE

Given a set of online experiences where each experience ϵ = {τ0 | s0, a0, . . .} consists of a task τ0
and state-action rollout {s0, a0, . . . , st, at}, the goal of RL is to train an agent policy πθ to maximize
the expected cumulative reward, which typically optimized θ via policy gradient as follows:

∇J(θ) = E(st,at)∼πθ

[
∇ log πθ(at | st) · Â(st, at)

]
, (1)

where Â(st, at) is the advantage function, estimating how favorable an action is compared to others.

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is a popular policy gradient
method that improves stability by computing Â with Generalized Advantage Estimation (GAE):

ÂPPO
t =

K−1∑
l=0

(γλ)l [rt+l + γV (st+l+1)− V (st+l)] , (2)

where V (·) is a value function approximated by a LLM, and λ controls the bias-variance tradeoff.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) extends PPO by discarding
the value function and normalizing advantages within each group of responses G sampled for the
same task instruction. Instead of GAE, the group-relative advantage is defined as:

ÂGRPO
t = (rt − meani∈G(ri))/stdi∈G(ri) (3)

where rt is the reward for output ot, meani∈G(ri) and stdi∈G(ri) are mean and standard deviation
of rewards from group G. GRPO discards the value function and approximates the advantage using
relative normalized rewards, making policy updates more scalable but potentially less sample-efficient.
Notably, our proposed DREAMGYM is orthogonal to specific RL algorithms and focuses on scaling
the synthesis of diverse, informative experiences, thereby amplifying the effectiveness of RL training.

4 SCALING AGENT LEARNING VIA EXPERIENCE SYNTHESIS

To synthesize diverse agent experiences for RL training, DREAMGYM is built around three key
components: (1) a scalable reasoning experience model that encodes the meta-dynamics of the
target domain to efficiently generate informative trajectories; (2) an experience replay buffer that
integrates offline environment knowledge with online synthetic transitions, co-evolving with the agent
to stay aligned with its updated policy; (3) a curriculum task generator that produces progressively
challenging variations of high-value tasks selected via a reward-entropy heuristic. We elaborate each
component in the following sections.

4.1 BUILDING REASONING EXPERIENCE MODELS FOR AGENT LEARNING

For effective RL training, instead of relying on heterogeneous external environments that are costly to
interact with and difficult to control, DREAMGYM adopts a more adaptive and controllable approach
by building a LLM-based experience model that can efficiently interact with the agent over multiple
turns to generate diverse experiences with consistent outcomes and rich feedback signals for learning.

Unlike prior data-hungry and costly approaches that build world models to replicate the real world in
raw pixel spaces, we design an efficient reasoning experience model, denoted as Mexp, that operates

4
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in an abstract, meta-representational textual space S . The key insight is that synthesizing transitions
in this abstract state space can reduce irrelevant dimensions and produce trajectories that are more
informative and token-efficient than those derived from raw observations. For example, in a web
shopping task, instead of processing raw HTML code, the experience model directly synthesizes
clean element listings while discarding irrelevant structural artifacts such as headers and tags. This
state-space design makes training the experience model highly sample-efficient, requiring only small
pubic trajectory datasets in our experiments, while also enhancing the effectiveness of agent learning.

4.1.1 INFERENCE FOR EXPERIENCE ROLLOUT COLLECTION

Notably, we find that beyond the current state-action pair, three additional contexts are important for
improving state quality: (1) interaction history {(si, ai)}Tt=0, which incorporates the past trajectory
in the context window to help maintain state consistency across multiple turns; (2) task instruction τ ,
which conditions the experience model on the current goal, enabling it to interpret actions w.r.t. task
objectives and thereby predict both state transitions and rewards more accurately; (3) past experiences,
which are top-k demonstrations {dj}kj=1 retrieved from the replay buffer based on semantic similarity
with the state-action pair, i.e., {dj}kj=1 = Topk(cos(ϕ(st, at), ϕ(si, ai))), where ϕ(·) denotes an
arbitrary semantic encoder. Leveraging knowledge this way reduces hallucinations and improves
factuality for knowledge-intensive state predictions. Therefore, given these inputs, the experience
model predicts the next state st+1 and reward rt+1 via chain-of-thought (CoT) (Wei et al., 2022):

(st+1, rt+1) = Mexp

(
Rt

∣∣{(si, ai)}ti=0, {dj}kj=1, τ
)
. (4)

where Rt is an explicit reasoning trace produced by the experience model that guides the state
transition. With such reasoning, it predicts the most consistent and informative transition and
feedback that reflects the consequence of the agent action. For example, if the action is invalid, it
transitions to a failure state and assigns a zero reward to signal the error, and vice versa. In our
experiments, following (Feng et al., 2025), we adopt an outcome-based reward scheme, assigning
r = 1 only at the final step when the task is successfully completed and r = 0 in all other cases.

4.1.2 TRAINING EXPERIENCE MODELS TO REASON

Benefiting from the abstract state-space design, training the experience model is highly sample-
efficient and requires only limited data from the real environment. In practice, abundant offline
trajectory datasets from public benchmarks such as the WebArena Leaderboard1 are sufficient for
training. Our experience model distills such offline knowledge and then serves as a bridge to interact
with the agent online for RL training.

Concretely, given a trajectory dataset D = {(st, at, st+1, rt+1)}, each transition is annotated with an
explicit reasoning trace R∗

t by LLM (prompt shown in Appendix C.2), which explains why the action
at taken in state st consequently leads to the next state st+1 and reward rt+1 given the available
contexts. To distill this knowledge, we train Mexp via SFT with a joint objective over reasoning
generation and next-state prediction:

LSFT = E(st,at,st+1,R∗
t )∼D

[
−logPθ(R

∗
t | st, at,Ht,Dk)−logPθ(st+1 | st, at, R∗

t ,Ht,Dk)
]
, (5)

where Ht denotes the interaction history, Dk denotes the retrieved top-k demonstrations, and θ
denotes the parameters of Mexp. This objective ensures that the model (i) learns to generate faithful
reasoning traces that explain the causal effect of an action, and (ii) leverages these traces to predict
consistent and informative next states. By doing so, the experience model not only imitates expert
trajectories but also acquires the ability to generalize reasoning for novel rollouts during RL training.

4.2 CURRICULUM-BASED TASK GENERATION

Diverse, curriculum-aligned task instructions are important for RL agents to acquire knowledge (Zhou
et al., 2025). However, scaling task collections is costly, as it requires significant human effort to
verify the feasibility of each task in the target environment. DREAMGYM inherently alleviates this
burden by adapting to arbitrary new tasks within the target domain through synthetic multi-turn

1https://webarena.dev/
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transitions. Building on this capability, we propose curriculum-based task generation, where the
same experience model actively generates new tasks as variations of a set of m seed tasks:

τt = Mtask({τ it−1}mi=1), (6)

where Mtask shares parameters with Mexp. Specifically, the seed tasks are chosen based on two
criteria: (1) they are sufficiently challenging for the current agent policy, thereby maximizing
information gain; (2) they are well-defined, such that unrealistic or malformed tasks can be discarded.

To satisfy both conditions, we introduce a group-based reward entropy as a criteria for selecting
high-quality and challenging tasks. Formally, for a task τ , we define its value

Vτ =
1

n

n∑
i=1

(
ri − r̄

)2
, where r̄ =

1

n

n∑
i=1

ri, (7)

where ri are the outcome rewards from n rollouts of task τ within the group G. For GRPO, G
can simply be the training group, while for PPO, tasks can be first clustered using a semantic
embedder, and each cluster essentially forms a group G from which task variations can be generated.
Notably, a non-zero variance in G indicates that the agent observes both successes and failures
on the task, signaling that the task is feasible yet challenging. A task reaches maximum entropy
when successes and failures are evenly balanced in G, providing the greatest information gain for
credit assignment (Sutton et al., 1998). By feeding such high-entropy tasks into Mtask, we generate
progressively more challenging variations to enhance agent exploration and knowledge acquisition.

To ensure training stability, we introduce a hyperparameter λ that caps the proportion of synthetic tasks
being sampled each iteration, preserving coverage of the original task distribution while adaptively
directing exploration to improving weaknesses of the current policy.

4.3 LEARNING FROM SYNTHETIC EXPERIENCES

Policy training in synthetic environments. As shown in Fig. 2, DREAMGYM begins with a seed
task set and generates multi-turn rollouts for each task by alternating between the agent policy,
which selects actions from states, and the experience model, which predicts next states conditioned
on the agent action, history, and task context (as in §4.1.1). The collected rollouts are used with
standard RL algorithms (as in §3.2) to update the policy. After each iteration, the experience model
augments the task set by generating variations of challenging tasks with high reward entropy (as
in §4.2). This cycle of interaction, training, and curriculum expansion continues until convergence
or a predefined training budget is reached. Furthermore, we provide an analytical lower bound of
the policy improvement in real environments when training with purely synthetic experiences from
DREAMGYM under trust-region assumptions, as detailed in Appendix C.1.

Sim-to-real policy transfer. We further extend DREAMGYM to a sim-to-real (S2R) setting, where the
agent policy is first trained with synthetic experiences and then transferred to RL in real environments.
Pretraining in synthetic environments expands exploration coverage across diverse tasks and allows
the agent to acquire broad knowledge at low cost, providing a strong initialization that makes
subsequent real-environment learning more sample-efficient (Da et al., 2025). To enable seamless
transfer, we ensure consistency of the state space between synthetic and real environments by applying
the same rule-based mapping function or a lightweight fine-tuned model (Lee et al.).

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We evaluate DREAMGYM on a diverse suite of agentic benchmarks and LLM backbones of varying
sizes and model families to assess its generalizability and effectiveness in reducing costly interactions.

Evaluation environments. We consider three challenging agent benchmarks that span diverse
domains, complexities, and levels of RL readiness: (1) WebShop (Yao et al., 2022), which requires
reasoning to refine search queries and accurately identify products to complete e-commerce tasks;
(2) ALFWorld (Shridhar et al.), which involves multi-turn tool-based embodied control to navigate
3D environments; (3) WebArena (Zhou et al.), which offers realistic web interaction tasks but is
not RL-ready, as it inherently lacks batch data collection and reset mechanisms and incurs high
computational costs. This mixture of environments allows us to evaluate DREAMGYM both in
settings where RL is feasible but computational expensive, and where RL training is not yet tractable.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of DREAMGYM with various agent training algorithms. We evaluate four
groups: (i) offline imitation learning algorithms: SFT, DPO; (ii) online RL algorithms in real-world
environments: GRPO, PPO; and (iii) DREAMGYM, where agents are trained via the same RL
algorithms but with purely synthetic experiences; (iv) DREAMGYM-S2R, where agents are first
trained with synthetic experiences and then transfer to RL in real environments. Real data indicates
the number of individual transition steps (a traj often has ∼10 steps). The best performance is bolded.

Algorithm Real
Data

WebShop ALFWorld WebArena

L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B

Offline Imitation Learning

SFT 20K 32.0 35.1 32.9 61.7 68.0 71.8 8.7 11.3 13.0
DPO 40K 35.9 31.0 34.8 63.3 63.9 61.1 8.9 10.3 11.3

GRPO

Traditional 80K 62.1 65.0 66.1 65.3 70.9 79.8 12.7 10.0 16.0
DREAMGYM 0 59.3 63.9 68.3 62.1 66.3 71.0 35.1 43.0 45.1
DREAMGYM-S2R 5K 70.5 75.0 72.1 65.0 75.9 82.4 38.0 37.1 47.3

PPO

Traditional 80K 59.9 64.2 68.1 47.0 72.9 75.4 13.9 15.7 19.2
DREAMGYM 0 60.5 58.1 65.0 40.5 70.8 72.7 32.0 45.0 37.8
DREAMGYM-S2R 5K 66.0 63.9 73.7 49.1 73.3 79.9 30.3 48.3 41.0

Agent backbones. We instantiate agents from different model families and sizes: Llama-3.2-3B-
Instruct, Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen-2.5-7B-Instruct (Team, 2024).

Baselines. We consider two types of traditional training strategies for agents. (1) Offline imitation
learning: supervised fine-tuning (SFT), direct preference optimization (DPO) (Rafailov et al., 2023);
(2) Online RL in real environments: GRPO (Shao et al., 2024), PPO (Schulman et al., 2017).

Implementation details. All main results are reported with the experience model trained from
Llama-3.1-8B-Instruct (see §4.1). To demonstrate that DREAMGYM can be applied to different
RL algorithms, we evaluate both GRPO and PPO entirely within DREAMGYM, without any real
interactions. We further evaluate a hybrid scenario, DREAMGYM-S2R, where synthetic training is
followed by a small number of real-environment RL rollouts, demonstrating the effectiveness of
using DREAMGYM as a mid-training stage to improve sample efficiency and performance upper
bound after transfer. Detailed parameter settings for each scenario are provided in Appendix B.

5.2 MAIN RESULTS

Non-RL-ready environment. WebArena (Zhou et al.) highlights DREAMGYM’s most significant
advantage. Unlike existing attempts that fail to make RL effective due to environment limitations,
agents trained purely in DREAMGYM achieve success rates exceeding 30% across all backbones
(Table 1), which represents more than a threefold improvement over both imitation learning and real-
environment RL baselines. The result demonstrates that DREAMGYM is not merely an approximation
of costly rollouts but an enabler of RL training in domains where it was previously infeasible.

RL-ready environments. On WebShop (Yao et al., 2022) and ALFWorld (Shridhar et al.), DREAM-
GYM-trained agents perform on par with GRPO and PPO agents trained on 80K real interactions,
despite using only synthetic rollouts. The ability to match strong RL baselines in RL-ready environ-
ments without external interactions underscores that DREAMGYM produces transitions and rewards
that are not only coherent but also sufficient for stable policy improvement. Importantly, when a
modest number (5k) of real rollouts are introduced, DREAMGYM-S2R consistently outperforms
both GRPO and PPO baselines, validating the hypothesis that synthetic training establishes a strong
foundation which real-world fine-tuning can later refine more efficiently.

Sample efficiency and training cost. Training efficiency is further illustrated in Fig. 3 Left, where
DREAMGYM achieves substantial performance gains on WebArena (Zhou et al.) while reducing
training effort to roughly one-third or even one-fifth of real-environment baselines. This efficiency
arises because synthetic rollouts provide denser feedback and avoid costly resets or infrastructure
bottlenecks, which suggests that DREAMGYM is not only a practical replacement for expensive
environments but also a scalable alternative.

6 PERFORMANCE ANALYSIS AND ABLATION STUDIES

6.1 TRAINING CURVE ANALYSIS

Fig. 3 Right compares training curves across Webshop (Yao et al., 2022) under different setups.
Specifically, the success rate improves much more rapidly within the first 40k steps, showing that
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Figure 3: (1) Left: Comparing the agent performance (success rate %) on WebArena w.r.t. training
time across different training strategies and backbones. (2) Right: Comparing the agent performance
on WebShop w.r.t. number of training steps across different training strategies.

synthesized trajectories offer more informative gradients than sparse real rollouts. This further
highlights the role of synthetic experiences in shaping a strong initialization that real rollouts cannot.
Another observation is the reduced variance in learning dynamics. Baseline curves exhibit larger
oscillations caused by sparse or unstable rewards, while DREAMGYM curves remain smoother across
runs, which suggests that synthesized trajectories provide not only denser but also more consistent
feedback, mitigating the training instabilities commonly reported in WebShop (Yao et al., 2022) and
ALFWorld (Shridhar et al.).

6.2 ABLATION ON TASK GENERATOR Table 2: Average success rates (%) on the
different components of DREAMGYM.

Method WebShop WebArena

DREAMGYM 63.9 43.0

w/o Exp. Replay 59.2 38.1
w/o Exp. Reasoning 55.8 33.9
w/o Task Generation 57.3 31.7

The curriculum-based task generator plays an impor-
tant role in learning progress. As shown in Fig. 3
Right, removing this component causes agents to
make some initial progress but then plateau more
quickly in the WebShop (Yao et al., 2022) scenario.
Similarly, Table 2 shows that removing the task gen-
erator leads to a 6.6% and 11.3% drop in success rate
compared with the full DREAMGYM configuration
in WebShop (Yao et al., 2022) and WebArena (Zhou et al.), respectively.

These findings support our discussion in §4.2: without adaptive task generation, the replay buffer
may saturate with low-entropy, repetitive trajectories, which limits the diversity of experiences and
stalls exploration. In contrast, the task generator continually produces progressively challenging,
high-value tasks that push the agent beyond its current capability. This ongoing curriculum keeps the
replay buffer informative and encourages exploration, ultimately yielding higher final success rates
and better sample efficiency.

6.3 ABLATION ON EXPERIENCE MODEL

Consistency Diversity Informativeness Hallucination0.5

1.0

1.5

2.0

Ju
dg

e 
Sc

or
e

Traditional DreamGym w/o History w/o Reasoning

Figure 4: Evaluation of the experience model
across key criteria using GPT-4o as the judge. We
randomly sample 100 trajectories and prompt the
model to assign discrete scores in {0, 1, 2} across
four criteria, as detailed in Appendix C.5.

Fig. 4 demonstrates a detailed comparison of
experiences generated by four variants of the
experience models: a traditional real environ-
ment model, DREAMGYM, DREAMGYM with-
out access to past trajectory history (w/o His-
tory), and DREAMGYM without reasoning (w/o
Reasoning). We evaluate each variant along four
criteria: consistency, diversity, informativeness,
and hallucination, using GPT-4o (Hurst et al.,
2024) as a judge. As detailed in Appendix C.5,
the judge assigns discrete scores in {0, 1, 2} for
each criteria, where higher values indicate better
performance. For the first three metrics, larger scores mean more consistent, diverse, and informative;
for hallucination, a score of 2 means no hallucination, while 0 indicates more factual errors.

The results highlight the role of each component. Removing trajectory history (w/o History) signifi-
cantly reduces consistency: without awareness of prior turns, the model often drifts off-topic and
breaks causal coherence in multi-step interactions. Removing reasoning (w/o Reasoning) mainly
hurts informativeness and increases hallucination: without reasoning capabilities, the generated
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[472] card:“Change Log” summary tile. 
[463] statbadge:“Total Commits” — 1,980. 
[458] pillnav:Tabs {Overview, Change Log}. 
[512] button:“Open Change Log”. 
[539] content:Latest commit by Jack 
Thompson (“Apr 02, 2023 11:30pm UTC”).
…

What is the message Jack provided 
in the first commit of Apr 2023?

Click(
463)

[847] list:List grouping commit history …
[1144] listitem:Commit on Apr 2, 2023, by  … 
[1144] listitem:Commit on Apr 3, 2023, by … 
[1163] listitem:Commit on Apr 7, 2023, by …
[1241] listitem:Commit on Apr 7, 2023, by …
[1259] listitem:Commit on Apr 8, 2023, by …

Click(
1144)

…

<think>
The agent clicks the "Total Commits" button 
on the overview page, which is the intended 
action. I should transit to a successful state 
that displays a list of commits grouped by 
date, including entries from April 2023, which 
will let the agent further inspect and …
</think>

generate initial state

[1500] pane:Commit details view for Apr 2, 2023 
[1501] header:Commit by Jack Thompson 
[1502] time:"Apr 02, 2023 11:30pm UTC" 
[1503] message:"Add API migration notes" 
[1504] meta:SHA a1c2e3f, branch main, 3 files 
changed (12 insertions, 2 deletions) 
[1505] nav:Buttons {Back to list, Copy SHA, …}

<think>
The agent clicks [1144], the first April commit 
entry (Apr 2, 2023) to open its details. I 
should transit to a commit-detail state that 
exposes the author, timestamp, and commit 
message so the agent can extract the answer.
</think>

…

Reasoning Experience Model AgentTask

State 0

State 1 State 2

Figure 6: A case study of a trajectory sampled with DREAMGYM in WebArena. Starting from a
synthetic instruction, the experience model reasons over the agent’s action to produce future states.

experiences tend to become shallow and less factually grounded. In contrast, the full DREAMGYM
achieves the best or near-best performance across all metrics, confirming that history and reasoning
provide complementary benefits. More specifically, history preserves temporal and causal structure,
while reasoning enhances depth and factual reliability. This validates that the experience model must
operate in a structured, reasoning-driven manner to maintain both diversity and fidelity of trajectories.

6.4 ABLATION ON EXPERIENCE MODEL BACKBONES AND OFFLINE TRAINING DATA

2k 10k 20k 40k
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(a) WebShop

2k 10k 20k 40k
# Offline Samples (Steps)

(b) WebArena

Llama-3.1-8B Llama-3.2-3B WebDreamer

Figure 5: Evaluation of the experience model
across different number of offline training
data size (transition step) and backbone.

Fig. 5 investigates how the success rate of the expe-
rience model varies with both the amount of offline
training data and the choice of model backbone, eval-
uated on (a) WebShop (Yao et al., 2022) and (b) We-
bArena (Zhou et al.). We first observe that the experi-
ence model is highly data-efficient. Even with a very
limited number of offline samples (2k-10k), it already
reaches competitive performance. On WebShop (Yao
et al., 2022), for example, the Llama-3.1-8B exceeds
50% success rate with only 10k samples, indicat-
ing that large-scale offline datasets are not strictly
necessary for effective experience synthesis. Next,
we find that smaller backbones remain viable. Al-
though Llama-3.2-3B underperforms the 8B model,
it improves steadily as more data becomes available,
reaching about 55% success on WebShop with 20k samples, which suggests that lightweight models
can still serve as practical experience generators when computational resources are constrained.
Finally, in the extreme low-data regime, pretrained world knowledge becomes particularly valuable.
On WebArena with only 2k samples, WebDreamer (Gu et al., 2025) (a fine-tuned web world model)
achieves roughly 19% success, significantly outperforming both Llama-based variants.

6.5 CASE STUDY OF DREAMGYM TRAJECTORIES

Fig. 6 illustrates how the reasoning experience model generates a synthetic task and progressively
predicts states based on the agent’s actions. Specifically, it predicts each state through explicit chain-
of-thought reasoning that incorporates the agent’s action, task instruction, and interaction history,
producing next states that consistently ground the action and accurately reflect its consequences.

7 CONCLUSION

We introduced DREAMGYM, a framework that reduces the high cost of real-environment rollouts in
RL for language agents by generating scalable, reasoning-driven synthetic experiences. DREAMGYM
compresses environment dynamics into a reasoning-based environment model that produces state
transitions and adaptive curricula, creating challenging yet solvable tasks tailored to the agent’s
evolving policy. Experiments across diverse environments and model backbones show consistent
gains in both synthetic and sim-to-real settings, driven by the synergy of reasoning-based modeling,
replay-buffer grounding, and curriculum generation. More broadly, our results suggest that the key
bottleneck in RL for LLM agents lies in the quality and structure of interaction data. By treating
environments as generators of structured, reasoning-rich experiences rather than mere simulators,
DREAMGYM enables more scalable, sample-efficient, and generalizable RL for autonomous agents.
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USAGE OF LARGE LANGUAGE MODELS

The language in this paper was at times polished with the assistance of an LLM. The model was not
used for research ideation, experimental design, or data analysis.
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A APPENDIX

B DETAILED EXPERIMENT SETTINGS

In this section, we provide implementation details for each environment.

B.1 WEBSHOP

WebShop (Yao et al., 2022) is a large-scale agent benchmark designed to study language grounding in
interactive environments. It simulates a realistic e-commerce website with 1.18M real-world products
and 12,087 crowd-sourced natural language instructions, where agents must search, customize,
and purchase items. The environment poses challenges such as interpreting compositional product
requirements, reformulating queries, handling noisy webpage text, and strategically exploring diverse
page types.

RL Baseline Setup. We follow the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones in our experiments.

DREAMGYM Settings. To train the reasoning experience model, we construct a dataset by combining
1,600 human demonstration trajectories from the official WebShop repository with an additional 2,000
trajectories collected using an oracle agent and random exploration. Each transition is augmented
with a reasoning trace generated by a powerful LLM, forming the dataset used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

B.2 ALFWORLD

ALFWorld (Shridhar et al.) is a text-and-embodied benchmark with hand-crafted task instructions
designed for studying language grounding and cross-modal transfer. It pairs abstract text interactions
from TextWorld with photo-realistic, physics-based execution in ALFRED/AI2-THOR, spanning
six household task families (e.g., Pick & Place, Clean & Place, Heat/Cool & Place) with 3,553
training tasks and seen/unseen splits across 120 rooms. Agents issue high-level textual actions (goto,
open, take, clean/heat/cool, put) that must be realized as low-level visuomotor controllers, facing
challenges such as partial observability, object search and manipulation, mapping language to action
preconditions and affordances, and bridging the gap between abstract plans and physical feasibility.

RL Baseline Setup. We adopt the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones.

DREAMGYM Settings. We follow the default ALFWorld split (Shridhar et al.) with the
TextWorld setup (Côté et al., 2018) under the Verl-Agent framework. From the training split, we
extract 3,200 expert demonstration trajectories paired with task instructions, and additionally sample
2,000 offline trajectories using both oracle and random policies. These datasets form the basis for
training the reasoning experience model. Each transition is further augmented with a reasoning trace
generated by a powerful LLM, which is used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

B.3 WEBARENA

WebArena (Zhou et al.) is a self-hosted, realistic web environment for training and evaluating
autonomous agents across fully functional sites—e-commerce, social forums, collaborative software
development (GitLab), and content management—augmented with tools (map, calculator, scratchpad)
and knowledge bases (e.g., offline Wikipedia, manuals). It provides 812 long-horizon tasks expressed
as high-level natural language intents and evaluates agents by functional correctness rather than
matching action traces, supporting multi-tab browsing and a rich action space (click, type, navigate,
tab operations).

Training Set Split. Since the full evaluation set in WebArena is large and contains many
similar tasks, we follow prior work (Qi et al., 2024; Wei et al., 2025) and evaluate agents on
WebArena-Lite (Liu et al., 2024), a more balanced subset of 165 high-quality, challenging tasks
selected from the original 812. The remaining 647 tasks, excluding those in the evaluation set, are
used for training.
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RL Baseline Setup. As no reliable open-source RL infrastructure exists for WebArena (Qi et al.,
2024), we build on the pipeline from Verl-Agent (Feng et al., 2025), implementing action data
collection using browsergym (Zhou et al.) while hosting the WebArena websites on AWS servers.
This setup supports both PPO and GRPO. Due to the high computational cost of deployment, we
run only four AWS servers, limiting action sampling to four sessions in parallel, which constrains
training throughput.

DREAMGYM Settings. To obtain offline trajectories for training the reasoning experience model,
we extract successful demonstrations from the highest-performing agents on the public WebArena
leaderboard. Specifically, we use agents that incorporate accessibility tree information in their
observations, including IBM CUGA (Marreed et al., 2025), ScribeAgent (Shen et al., 2024), Learn-
by-Interact (Su et al., 2025), and AgentOccam (Yang et al., 2024). After filtering out unsuccessful
runs, we collect 2,780 trajectories. Each transition is then augmented with a reasoning trace generated
by a powerful LLM, forming the dataset for fine-tuning the reasoning experience model.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

C THEORETICAL ANALYSIS

In this section, we analyze how policies trained in the synthetic environments of DREAMGYM
can provably improve performance in real environments. We show that, under mild assumptions,
performance guarantees can be established by optimizing learning-centric signals of the experience
model, such as reward accuracy and domain consistency, rather than strict fidelity metrics like state
reconstruction error.

C.1 PROVABLY POLICY IMPROVEMENT IN REAL ENVIRONMENTS TRAINED WITH SYNTHETIC
EXPERIENCES

DREAMGYM trains LLM agents using a reasoning-based experience model Mexp, which interacts
with the agent and induces a synthetic MDP M̂. For brevity, we use M̂ to denote any such synthetic
environment, including Mexp, which is defined in the abstract textual state space, as stated in §4.1.
The learned policy is then evaluated in the real environment M, projected into the same abstract
space for comparison. We show that, under standard trust-region policy update assumptions, a policy
optimized in M̂ is guaranteed to also achieve policy improvement in the real environment M.
Theorem 1 (Policy Improvement J in Real Environment via Synthetic Experiences). Let the real
MDP be M = (S,A, P,R, γ), the synthetic MDP induced by Mexp be M̂ = (S,A, P̂ , R̂, γ),
discount be γ ∈ (0, 1), and let rewards be bounded R, R̂ ∈ [0, Rmax] with Vmax := Rmax/(1− γ).
Assume one-step experience-model errors

εR := sup
s,a

∣∣R(s, a)− R̂(s, a)
∣∣, εP := sup

s,a
TV

(
P (·|s, a), P̂ (·|s, a)

)
, (8)

and a trust-region update π → π′ obtained by optimizing in M̂ with per-state KL radius
sups DKL(π

′(·|s) ∥π(·|s)) ≤ δ, as enforced by the soft KL penalty in PPO and GRPO. Hence

JM(π′)− JM(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]

︸ ︷︷ ︸
synthetic surrogate gain in Mexp

− 4γ

(1− γ)2
Vmax δ︸ ︷︷ ︸

trust-region penalty

− 2

(
εR

1− γ
+

2γRmax

(1− γ)2
εP

)
︸ ︷︷ ︸

experience model error

(9)
In particular, if the synthetic surrogate gain exceeds the two penalties, then JM(π′)≥JM(π).

Specifically, (1) the synthetic surrogate gain denotes the agent’s performance improvement when
trained and evaluated within the synthetic environment provided by the experience model Mexp. (2)
The trust-region penalty corresponds to the KL radius δ constraint, which is softly enforced by PPO
or GRPO. (3) The experience-model error measures how well Mexp preserves learning-relevant
signals of the original environment for agent knowledge acquisition including two key components:
(a) the faithfulness of feedback (εR), i.e., how accurately reward signals reflect real outcomes, and
(b) the domain consistency of state transitions (εP ), i.e., how well state space distributions align
with the dynamics from the original environment.

Notably, these two error terms align with our design insights in §4.1: the synthetic environment
need only provide domain-consistent transitions and correct, retrospective learning signals,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

without having to clone the original environment at the raw state level. In practice, both εR and
εP can be made very small even when Mexp is trained with minimal trajectory data annotated with
explicit reasoning traces.

Proof of Theorem 1. We first decompose the policy improvement in the real environment through
the synthetic environment:
JM(π′)− JM(π) =

(
JM̂(π′)− JM̂(π)

)
+

(
JM(π′)− JM̂(π′)

)
−
(
JM(π)− JM̂(π)

)
. (10)

By Lemma 1, each of the two policy discrepancy terms
∣∣JM(·)− JM̂(·)

∣∣ is at most ∆model, hence

JM(π′)− JM(π) ≥
(
JM̂(π′)− JM̂(π)

)
− 2∆model. (11)

It remains to lower bound improvement inside the synthetic environment. Using the standard trust-
region bound (Schulman et al., 2015), which is enforced in practice by PPO and GRPO via a per-state
KL radius δ, we have

JM̂(π′)− JM̂(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]
− 4γ

(1− γ)2
Vmax δ. (12)

Combining these two terms yields the inequality in Theorem 1, which completes the proof.

Lemma 1 (Multi-turn experience synthesis error bound). For any policy π, if

εR = sup
s,a

|R(s, a)− R̂(s, a)|, εP = sup
s,a

TV
(
P (·|s, a), P̂ (·|s, a)

)
, (13)

then ∣∣JM(π)− JM̂(π)
∣∣ ≤ ∆model :=

εR
1− γ

+
2γRmax

(1− γ)2
εP . (14)

Proof. We first compare the Bellman operators of the real and synthetic environments. For any
bounded value function V ,

(TπV )(s) = Ea∼π(·|s)
[
R(s, a) + γ Es′∼P (·|s,a)V (s′)

]
, (15)

and let T̂π be the same expression with (R,P ) replaced by (R̂, P̂ ). Thus for any bounded value
function V , the operator difference is bounded as

∥TπV − T̂πV ∥∞ ≤ sup
s,a

|R(s, a)− R̂(s, a)|+ γ sup
s,a

∣∣∣Es′∼P (·|s,a)V (s′)− Es′∼P̂ (·|s,a)V (s′)
∣∣∣
(16)

≤ εR + 2γ∥V ∥∞εP , (17)
which is derived by simply using the definitions of εR, εP and the variational characterization of TV.

Now apply this bound to V = V π
M and add–subtract:

∥V π
M − V π

M̂∥∞ = ∥TπV
π
M − T̂πV

π
M̂∥∞ (18)

≤ ∥TπV
π
M − T̂πV

π
M∥∞ + ∥T̂πV

π
M − T̂πV

π
M̂∥∞ (19)

≤ εR + 2γVmaxεP + γ∥V π
M − V π

M̂∥∞. (20)
By rearranging the contraction term into the left side, we have

(1− γ)∥V π
M − V π

M̂∥∞ ≤ εR + 2γVmaxεP . (21)
Hence

∥V π
M − V π

M̂∥∞ ≤ 1
1−γ

(
εR + 2γVmaxεP

)
. (22)

Finally, since JE(π) = Es0∼µ[V
π
E (s0)], we obtain∣∣JM(π)− JM̂(π)

∣∣ = ∣∣∣Es0∼µ

[
V π
M(s0)− V π

M̂(s0)
]∣∣∣ (23)

≤ ∥V π
M − V π

M̂∥∞ (24)

≤ εR
1− γ

+
2γRmax

(1− γ)2
εP (25)

=: ∆model. (26)
This indicates that the gap of agent performance between real and synthetic environments depends
only on reward accuracy and domain consistency errors, rather than on strict fidelity metrics such as
state reconstruction error, etc.
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C.2 DREAMGYM PROMPTS FOR WEBSHOP

Experience model reasoning step annotation | WebShop

System Prompt: You are an expert in web navigation and e-commerce environments, spe-
cializing in providing actionable guidance for world model state transition
planning.

User Prompt: You are synthesizing environment state transition plans for training
world models in webshopping tasks. You are provided with a task
instruction, a flag indicating whether the trajectory is successful,
and a trajectory {(si, ai)}Ni=1 of the environment state and the
corresponding agent action at each step.
Task Context:
Task: {instruction} Success: {flag}
Trajectory Steps:
" ".join(["Step: {i}, Environment State: {si},
Action: {ai}"]N

i=1)
Your Task:
• Task Tutorial: A high-level guidance of how the environment should
transit step-by-step to interact with the agent under the given task
instruction. It should highlight the critical steps that the agent should
perform in order for the environment to transit to the final successful state.
• State Transition Plans: For each step, first analyze whether the agent’s
action is likely to success or fail based on the task tutorial (e.g. the search
query is too vague or too specific, or the agent clicks the wrong product),
and then provide a concise plan describing how the environment should
transition given the current state and action.
CRITICAL: You MUST generate exactly one transition plan for each
environment step provided and your state_transitions array must
contain exactly len(env_step_ids) entries, one for each step_id.
For product listing pages, the state transition plan should mention some
actionable details such as the number of products shown on this page,
whether this page should contain the target product given the agent’s action.
Focus on actionable guidance for world model training. Keep responses
concise and practical.

Response Format: json { "task_tutorial":
{"Overall Plan": "A one-sentence high-level guidance of how the environ-
ment should transit step-by-step to interact with the agent under the given
task instruction.",
"Success Mode": "Describe the critical steps that the agent should perform
to succeed in the task, where the environment should correspondingly tran-
sit to the successful state. Summarize in one sentence.",
"Failure Mode": "Describe the typical failure mode the agent should avoid,
where the environment should correspondingly transit to the failed state
once the agent performs the action. Summarize in one sentence." },
"state_transitions": [{
"step_id": 0,
"transition_plan": "Analyze whether the agent’s action is good or bad based
on the next state and overall task tutorial, and a corresponding plan for how
environment should respond to this action."}
...
] }
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Task variation dataset construction | WebShop

System Prompt: You are an expert in e-commerce task design and AI training data curation.

User prompt: You are an expert in e-commerce task design. I will give you an orig-
inal web shopping task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
the skills of shopping for the given product.
Original Task: {task instruction}
Product Information:

1. Category: {product_info[’category’]}
2. Product Name: {product_info[’name’]}
3. Available Attributes:

{’,’.join(product_info[’attributes’])
Candidate Variations:{candidates variations}
Criteria for selection:

• Challenging but Feasible: The task should be more specific or
complex than the original, but still achievable, so as to strengthen the
agent’s capabilities for shopping for the given product.

• High Quality: The instruction should be clear, grammatically
correct, and realistic.

• Meaningful Variation: The changes should make the task
meaningfully different (not just trivial changes).

• Realistic: The combination of attributes, options, and price should
make sense for the product category.
Please respond with:

1. The number of your selected variation 1- (len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]
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Task variation dataset construction | ALFWorld

System Prompt: You are an expert in embodied task design and AI training data curation
for interactive embodied environments.

User prompt: You are an expert in embodied task design. I will give you a feasible
task instruction for an embodied agent and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable embodied reasoning skills.
Original Task: {task instruction}
Environment Context:

1. Room Type: {env_info[’room’]}
2. Objects Present: {’,’.join(env_info[’objects’])}
3. Containers/Surfaces:

{’,’.join(env_info[’locations’])}
Candidate Variations: {candidate variations}
Criteria for selection:

• Challenging but Feasible: The variation should add complexity
(e.g., more objects, constraints, or multi-step actions) without being
impossible.

• High Quality: Clear, grammatical, and realistic in the ALFWorld
context.

• Meaningful Variation: Should involve non-trivial differences in
action type, target object, or target location.

• Realistic: The variation must be consistent with ALFWorld’s
embodied environment dynamics (e.g., no placing a fridge on a lamp).
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]
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Task variation generation | WebArena

System Prompt: You are an expert in designing realistic, diverse, and challenging web
interaction tasks for AI agents.

User prompt: I will provide you with several seed WebArena task
instructions. Your job is to generate new task variations
from each seed. The variations should keep the same general action
type (e.g., search, filter, upvote, navigate, purchase, delete) but differ in
target, constraints, or context, making them realistic, challenging, and
meaningfully different.
Seed Instructions: {list of seed instructions}
Requirements for variations:

• Action Consistency: Preserve the same type of action as the seed
task.

• Meaningful Differences: Change the entities, filters, domains, time
ranges, or constraints so the new task is distinct but natural.

• Challenging but Feasible: The variation should slightly increase
reasoning or constraint complexity, but remain solvable.

• High Quality: Grammatically correct, clear, and realistic web tasks.
Please respond with:
For each seed instruction, generate [K] new task variations. Format your
response as:
SEED: [original instruction]
VARIATIONS:

1. [variation 1]
2. [variation 2]

...
Example:
SEED: List products from living room furniture category by descending
price.
VARIATIONS:

1. List products from bedroom furniture category by ascending price.
2. Show me the most expensive three dining tables available online.
3. Find discounted sofas under $500 in the living room furniture

category.
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Task variation dataset construction | WebArena

System Prompt: You are an expert in interactive web task design and AI training data
curation.

User prompt: You are an expert in web environment task design. I will give you
an original WebArena task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable skills in web interaction.
Original Task: {task instruction}
Candidate Variations: {candidate variations}
Criteria for selection:

• Challenging but Feasible: The variation should require slightly
more reasoning, precision, or constraints than the original, but still be
solvable by a web agent.

• High Quality: Clear, grammatical, and realistic within the web
environment.

• Meaningful Variation: Keep the same action type (e.g., search,
navigate, sort, submit, upvote, purchase) as the original, but change the
context, target, or condition.

• Realistic: The task should reflect plausible web interactions a user
might request.
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

Agent Prompt Template | WebShop

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to:
{task_description}.

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[ {available_actions} ].

Now it’s your turn to take one action for the current step. You should first reason step-by-step
about the current situation, then think carefully which admissible action best advances the
shopping goal. This reasoning process MUST be enclosed within <think> </think>
tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 DREAMGYM PROMPTS FOR ALFWORLD

Agent Prompt Template | ALFWorld

You are an expert agent operating in the ALFRED Embodied Environment.
Your task is to:
{task_description}

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}.
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[{admissible_actions}].

Now it’s your turn to take an action. You should first reason step-by-step about the current
situation. This reasoning process MUST be enclosed within <think> </think> tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

C.4 DREAMGYM PROMPTS FOR WEBARENA
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AX-tree state mapping prompt | WebArena

System
Prompt:

You are an agent tasked with extracting and refine a subset of the webpage’s observations
based on the content of the page and user instructions. Perform the following tasks based
on the provided [Information source], including user instructions, interaction history, and
the AXTree observation at the current time step. First, provide high-level reasoning for
the next action by analyzing the provided information. Second, extract relevant webpage
elements based on your high-level reasoning.

User
prompt:

[General instructions]
You are currently on the {domain_info} website. Your task is to generate a Reasoning
and a Refined observation based on the provided inputs.
First, review the User instruction and History of interactions and, then, generate the
Reasoning. Analyze the progress made so far, and provide a rationale for the next steps
needed to efficiently accomplish the user instruction on the {domain_info} website.
Second, refine the Webpage observation at the current time step into a Refined
observation. Extract a subset of the webpage observation (e.g., chart, table, menu items)
that contains necessary information for completing the user instruction, and explain the
extracted elements. Ensure that the information on the elements (e.g., numeric element ID)
is correctly included.
Please follow the format in the [Reasoning & Refinement example] carefully.

[Information source]
User instruction: {user instruction}
History of interactions:{interaction history}
Webpage observation at the current time step:{AXTree observation}

[Reasoning & Refinement example]
Abstract example
Here is an abstract version of the answer, describing the content of each tag. Make sure
you follow this structure and format strictly, but replace the content with your own answer:
<reasoning>
Think step by step. Based on the User instruction, History of interaction, and AXTree
observation at the current time step:

• Provide a high-level description of the AXTree observation at the current time
step.

• Based on the User instruction and History of interaction track your progress and
provide your

reasoning on the next action needed to accomplish the User instruction

Ensure that: Structure your reasoning concisely and follow the following format strictly:
<content_description> High-level description of current page state (max 2 sen-
tences)</content_description> <agent_progress> What has been accom-
plished so far (max 1 sentence)</agent_progress> <next_action_analysis>
What should happen next and why (max 1 sentence)</next_action_analysis>
</reasoning>
<extraction>
Based on your reasoning, identify the elements (e.g., buttons, text fields, static text, table
row, chart) to focus on. Then, explain the semantics and functionalities of each extracted
element. Ensure that: You do not alter the structure of the AXTree observation. You extract
the element ID (id in [ ]) accurately without any errors. When extracting chart or table, you
must extract the entire chart or table to avoid any confusion or loss of information. Unless
necessary, try not to extract url or non-semantic identifiers which is not informative for
the agent actions. All the elements you extract should be actionable and discard irrelevant
elements. Please follow the following format and do not provide any other text besides the
element list.
[ELEMENT_ID] TYPE:DESCRIPTION
[ELEMENT_ID] TYPE:DESCRIPTION
...
[ELEMENT_ID] TYPE:DESCRIPTION
(Extract 3-10 most relevant actionable elements only)
</extraction>

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Agent Prompt Template | WebArena

System Prompt: You are an agent trying to solve a web task based on the content of the
page anda user instructions. You can interact with the page and explore.
Each time you submit an action it will be sent to the browser and you will
receive a new page.

User prompt: Instructions
Review the current state of the page and all other information to find the
best possible next action to accomplish your goal. Your answer will be
interpreted and executed by a program, make sure to follow the formatting
instructions.
User instruction: {user instruction}
History of interactions:{interaction history}
Refined observation of current step: Reasoning {plan}
Focused AXTree observation: {rep_observation}
Action space: 13 different types of actions are available.

• noop(wait_ms: float = 1000)
1. Description: Do nothing, and optionally wait for the given time (in
milliseconds).

2. Examples: noop(),noop(500)
• ...

To save space, please refer to C.4.1 for the full list of actions.

Remark: Only a single action can be provided at once. Exam-
ple:fill(’a12’, ’example with "quotes"’) Multiple
actions are meant to be executed sequentially without any feedback from
the page. Don’t execute multiple actions at once if you need feedback
from the page.

Abstract Example
Here is an abstract version of the answer with description of the content of
each tag. Make sure you follow this structure, but replace the content with
your answer:
<think>
Think step by step. If you need to make calculations such as coordinates,
write them here. Describe the effect that your previous action had on the
current content of the page.
</think>
<action>
One single action to be executed. You can only use one action at a time.
</action>

Concrete Example
Here is a concrete example of how to format your answer. Make sure to
follow the template with proper tags:
<think>
My memory says that I filled the first name and last name, but I can’t see
any content in the form. I need to explore different ways to fill the form.
Perhaps the form is not visible yet or some fields are disabled. I need to
replan. </think>
<action>
fill(’a12’, ’example with "quotes"’)
</action>
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C.4.1 ACTION SPACE OF WEBARENA

• noop(wait_ms: float = 1000)
1. Description: Do nothing, and optionally wait for the given time (in milliseconds).
2. Examples: noop(); noop(500)

• send_msg_to_user(text: str)
1. Description: Send a message to the user. You should send a short answer as a message and do not

ask questions through message.
2. Examples: send_msg_to_user(’the city was built in 1751.’);

send_msg_to_user(’Yes’); send_msg_to_user(’No’);
send_msg_to_user(’31112’); send_msg_to_user(’Yoshua Bengio’)
• scroll(delta_x: float, delta_y: float)

1. Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or down
scrolling, negative for left or up scrolling. Dispatches a wheel event.

2. Examples: scroll(0, 200); scroll(-50.2, -100.5)
• fill(bid: str, value: str)

1. Description: Fill out a form field. It focuses the element and triggers an input event with the
entered text. It works for <input>, <textarea> and [contenteditable] elements.

2. Examples: fill(’237’, ’example value’); fill(’45’, ’multi-line
example’); fill(’a12’, ’example with "quotes"’)
• select_option(bid: str, options: str | list[str])

1. Description: Select one or multiple options in a <select> element. You can specify option
value or label to select. Multiple options can be selected.

2. Examples: select_option(’48’, ’blue’); select_option(’48’, [’red’,
’green’, ’blue’])
• click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] =
[])

1. Description: Click an element.
2. Examples: click(’51’); click(’b22’, button=’right’); click(’48’,

button=’middle’, modifiers=[’Shift’])
• dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] =
’left’, modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’,
’Shift’]] = [])

1. Description: Double click an element.
2. Examples: dblclick(’12’); dblclick(’ca42’, button=’right’);

dblclick(’178’, button=’middle’, modifiers=[’Shift’])
• hover(bid: str)

1. Description: Hover over an element.
2. Examples: hover(’b8’)

• press(bid: str, key_comb: str)
1. Description: Focus the matching element and press a combination of keys. It accepts the logical

key names that are emitted in the keyboardEvent.key property of the keyboard events:
Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape,
ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight,
ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc. You can alternatively
specify a single character you’d like to produce such as "a" or "#". Following modification shortcuts
are also supported: Shift, Control, Alt, Meta.

2. Examples: press(’88’, ’Backspace’); press(’a26’, ’Control+a’);
press(’a61’, ’Meta+Shift+t’)
• focus(bid: str)

1. Description: Focus the matching element.
2. Examples: focus(’b455’)

• clear(bid: str)
1. Description: Clear the input field.
2. Examples:clear(’996’)

• drag_and_drop (from_bid: str, to_bid: str)
1. Description: Perform a drag & drop. Hover the element that will be dragged. Press left mouse

button. Move mouse to the element that will receive the drop. Release left mouse button.
2. Examples: drag_and_drop(’56’, ’498’)

• upload_file(bid: str, file: str | list[str])
1. Description: Click an element and wait for a "filechooser" event, then select one or multiple input

files for upload. Relative file paths are resolved relative to the current working directory. An empty list
clears the selected files.

2. Examples: upload_file(’572’, ’my_receipt.pdf’); upload_file(’63’,
[’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip’])
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C.5 EXPERIENCE MODEL JUDGE
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Environment Model Judge

You are an expert environment judge scoring the quality of a predicted state transition in a
WebShop-style simulator.
You are given:
- Current state (before the action)
- The agent action
- Predicted next state (after the action)

Your task:
1) Evaluate the predicted next state on four rubrics, each scored 0, 1, or 2.
2) Provide brief step-by-step reasoning for each rubric.
3) Output a valid JSON object with the rubric scores and the total (sum of the four rubrics). Do not
include extra fields.

General rules:
- Base your judgment only on the provided inputs; do not assume hidden context.
- Use integers only (0/1/2) for rubric scores.
- If an action is invalid or should not change the page, correct behavior may include a no-op with an
explicit failure/empty-result signal.
- Be concise but specific in your reasoning (1–3 sentences per rubric).

—
# # # Rubrics (0/1/2) with anchors:
1) Causal State Consistency | Question: Is the predicted next state both logically consistent with the
prior state and causally grounded in the agent’s action semantics (e.g., click → detail page, pagination
→ new results, search → updated listings, back → prior view)?

- 2: Coherent and action-appropriate; all expected updates appear with no contradictions.
- 1: Mostly consistent, but has minor logical or semantic gaps.
- 0: Inconsistent or not causally linked to the action.

2) Diversity & State Variation | Question: Is there a meaningful, non-degenerate change from the
prior state (when change is expected)?

- 2: Substantive, coherent differences (new results, updated filters, changed details).
- 1: Minimal or superficial change.
- 0: No meaningful change, or incoherent jump.

3) Informativeness | Question: Is the predicted state rich, relevant, and internally coherent (e.g.,
listings with meaningful attributes; filters aligned with content)?

- 2: Detailed, relevant, and coherent information.
- 1: Some useful details, but sparse or partially incoherent.
- 0: Uninformative, irrelevant, or incoherent.

4) Hallucination & Failure Feedback | Question: When the action is invalid or yields no results, does
the state reflect an appropriate failure/empty-result signal instead of hallucinating success?

- 2: Correctly signals failure or success as appropriate, no hallucination.
- 1: Partial/ambiguous handling of failure.
- 0: Hallucinates success or ignores failure.

—
### Step-by-step Evaluation (use this structure):
1. Causal State Consistency: <your reasoning> Score: 0/1/2
2. Diversity & State Variation: <your reasoning> Score: 0/1/2
3. Informativeness: <your reasoning> Score: 0/1/2
4. Hallucination & Failure Feedback: <your reasoning> Score: 0/1/2
—
# # # Final JSON Output:
Output a single valid JSON object. Replace angle brackets with integers only.

{"rubric_scores": {
"causal_consistency": <0|1|2>, "diversity": <0|1|2>,
"informativeness": <0|1|2>, "hallucination": <0|1|2> }}
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