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ABSTRACT

While reinforcement learning (RL) can empower large language model (LLM)
agents by enabling self-improvement through interaction, its practical adoption
remains challenging due to costly rollouts, limited task diversity, unreliable reward
signals, and infrastructure complexity, all of which obstruct the collection of scal-
able experience data. To address these challenges, we introduce DREAMGYM, the
first unified framework designed to synthesize diverse experiences with scalability
in mind to enable effective online RL training for autonomous agents. Rather
than relying on expensive real-environment rollouts, DREAMGYM distills environ-
ment dynamics into a reasoning-based experience model that derives consistent
state transitions and feedback signals through step-by-step reasoning, enabling
scalable agent rollout collection for RL. To improve the stability and quality of
transitions, DREAMGYM leverages an experience replay buffer initialized with
offline real-world data and continuously enriched with fresh interactions to actively
support agent training. To improve knowledge acquisition, DREAMGYM adaptively
generates new tasks that challenge the current agent policy, enabling more effective
online curriculum learning. Experiments across diverse environments and agent
backbones demonstrate that DREAMGYM substantially improves RL training, both
in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready
tasks like WebArena, DREAMGYM outperforms all baselines by over 150%. And
in RL-ready but costly settings, it matches GRPO and PPO performance using
only synthetic interactions. When transferring a policy trained purely on synthetic
experiences to real-environment RL, DREAMGYM achieves an additional 64.5%
performance gain while using no more than 10% of real-world interactions.

1 INTRODUCTION

Autonomous agents based on large language models (LLMs) are being widely adopted across a broad
range of tasks given their comprehensive pre-trained semantic knowledge. These agents have already
shown promise in applications such as web navigation (Zhou et al.), embodied control (Shridhar et al.),
and multi-turn tool use (Yao et al., 2024). However, while these agents can leverage strong language
priors to reason and plan, their performance in downstream interactive settings remains limited (Wang
et al., 2024). As we step into the era of experience (Silver & Sutton, 2025), a promising direction
for building more robust and adaptive language agents is reinforcement learning (RL), where agents
improve by interacting with environments and bootstrapping from their own experiences (Schulman
et al., 2017), as illustrated in figure 1 (a).

Despite its potential, training LLM agents via RL remains highly challenging in practice. The most
fundamental barrier is the high cost and low sample efficiency of collecting large-scale, diverse, and
informative online interaction data (Wei et al., 2025; Jiang et al., 2025). Real environments often
involve long interaction sequences, high computational cost per step, and sparse reward feedback,
making it prohibitively expensive to gather sufficient amount of data for modern RL algorithms (Patil
et al.; Shao et al., 2024). Beyond computational cost, there is also a lack of diverse, scalable tasks,
where most existing environments provide only a limited, static set of instructions, while RL training
requires a broad range of tasks for effective exploration (Eysenbach et al., 2018). However, scaling
task instructions is inherently difficult, as validating their feasibility often demands costly human
expertise (Xue et al., 2025), leaving current environments insufficient for goal-conditioned RL.
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Figure 1: Compared to the traditional agent learning
paradigm, DREAMGYM provides the first scalable and
effective RL framework with unified infrastructure.

The third major barrier is the instability of
reward signals. Many interactive settings,
such as web pages and GUIs, are highly
dynamic and lack consistent behaviors, re-
sulting in noisy, sparse, or even false feed-
back that hinders stable learning (Deng et al.,
2023). Safety concerns further compound
these challenges, as certain actions are ir-
reversible (e.g., deleting an item on a real
website), and most environments lack re-
liable reset mechanisms (Zhou et al.). Fi-
nally, the infrastructure difficulty of con-
structing RL-ready environments also re-
main challenging. Existing systems are het-
erogeneous and often rely on heavyweight
backends like Docker (Jimenez et al.) or
virtual machines (Xie et al., 2024b), making
large-batch rollout sampling engineering-intensive and costly. These limitations make building
general-purpose and scalable systems for training agents with RL an open and pressing challenge.
To address these challenges, we propose DREAMGYM, a unified and scalable RL framework that
synthesizes diverse experience data in an online manner to enable efficient and effective training
of LLM agents. At the core of DREAMGYM lies a scalable reasoning-based experience model that
abstracts environment dynamics into a discrete textual space. By interacting with the agent over
multiple turns, it produces consistent transitions and feedback that reflect the consequences of the
agent’s actions through explicit reasoning. Unlike prior approaches that attempt to reproduce external
systems (Chen et al., 2025; Assran et al., 2025), the design of the experience model is grounded
in a key insight that agent training does not require perfectly realistic environments, but rather
interaction data that is sufficiently diverse, informative, and causally grounded to acquire knowledge
for the target task. Therefore, powered by strong reasoning, the experience model overcomes the key
limitations outlined above and delivers useful experience data for RL training.
To ensure that synthetic experiences are diverse and informative, DREAMGYM equips the experience
model with an experience replay buffer, from which it retrieves similar yet diverse trajectories to guide
its current state prediction. This buffer is seeded with offline knowledge for essential context and is
continuously enriched with trajectories generated on-the-fly, co-evolving the experience model with
the agent to ensure the produced rollouts aligned with the agent’s updated policy for stable training. In
parallel, the experience model serves as a task generator, identifying valuable tasks with high reward
entropy and producing progressively more challenging variations. This design yields an effective
curriculum, where agents are consistently exposed to harder problems as their capability improves.
By unifying interaction, memory, and adaptive online task generation, DREAMGYM addresses the
persistent challenges that have limited RL for LLM agents training: prohibitive cost, scarcity of
diverse tasks, unstable reward signals, and heavy infrastructure demands. It reframes training around
an environment purpose-built for RL, enabling efficient synthetic training and effective sim-to-real
transfer, improving generalization while minimizing reliance on costly real-world interactions.
Comprehensive experiments are conducted to evaluate DREAMGYM across diverse environments
and LLM agent backbones. For use cases lacking RL training support (e.g., WebArena (Zhou et al.)),
DREAMGYM provides the only viable approach for RL-based agent training, delivering over 150%
improvement over all baselines and SOTA methods. In settings where RL is supported but costly,
DREAMGYM achieves performance on par with GRPO (Shao et al., 2024) and PPO (Schulman
et al., 2017), while training entirely within DREAMGYM without external interactions. Moreover, we
introduce DREAMGYM-S2R (sim-to-real), which first trains agents in DREAMGYM using diverse,
curriculum-driven synthetic experiences before transferring them to external environments. This
approach yields a 64.5% gain compared to training from scratch in real environments while using
less than 10% of the external data, providing a scalable warm-start strategy for general-purpose RL.

2 RELATED WORK
2.1 LLM AGENTS REINFORCEMENT LEARNING

RL offers a path to transform LLM agents from static generators into adaptive decision makers.
Classical RL algorithms such as policy gradients and actor–critic methods (Williams, 1992; Schulman
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et al., 2017) have achieved strong results in robotics, games, and control (Silver et al., 2016). More
recently, a range of RL paradigms has been proposed to enhance language modeling: RLHF (Bai
et al., 2022) and DPO (Rafailov et al., 2023) focus on post-training alignment with human values,
while GRPO (Shao et al., 2024) and PPO (Schulman et al., 2017) have been applied for verifiable RL
training to improve performance on math and coding tasks. This line of work has further inspired
follow-up algorithms such as DAPO (Yu et al., 2025) and Dr. GRPO (Liu et al., 2025), which aim to
improve the efficiency and stability of GRPO-style post-training for LLMs.
However, these RL algorithms primarily focus on single-turn language modeling, and extending them
to interactive, multi-step agent tasks introduces substantial challenges (Zhang et al., 2025). Long-
horizon tasks such as web navigation (Yao et al., 2022; Zhou et al.), operating-system control (Xie
et al., 2024b), and multi-tool orchestration (Yao et al., 2024; Xie et al., 2024a) offer limited task
sets (Zhou et al., 2025) and sparse rewards (Qi et al., 2024), making exploration inefficient and
policy improvement highly unstable. Moreover, real-world dynamics are heterogeneous, noisy, and
can easily trigger irreversible unsafe actions (Xue et al., 2025). Although sandboxed environments
like WebArena (Zhou et al.) attempt to mitigate these issues with Docker-based isolation, they still
lack reliable reset mechanisms and cannot support scalable, parallel data collection for RL. While
certain web-specific RL frameworks such as WebAgent-R1 (Wei et al., 2025) and WebRL (Qi et al.,
2024) aim to address these limitations through extensive engineering, they remain constrained by the
inherent challenges of the underlying real-world environments and thus exhibit low sample efficiency
and frequent training collapse. Therefore, a scalable, unified RL framework capable of transferring
across real environments without overwhelming engineering effort is urgently needed.

2.2 TRAINING AGENTS WITH SYNTHETIC DATA
Synthetic data has long been used to address the scarcity of expert demonstrations (Zhang et al., 2025).
Early approaches relied on scripting oracle trajectories or generating them from stronger teacher
models, training agents primarily through imitation learning (Yao et al., 2022; Pahuja et al., 2025;
Deng et al., 2023). While effective for distillation, these static trajectories require substantial human
labeling and lack diversity and adaptivity. To reduce manual effort, subsequent work (Xu et al.; Ou
et al., 2024) leveraged indirect sources of expertise (e.g., online tutorials) to guide trajectory synthesis,
while another line of work, including AgentSynth (Xie et al., 2025) and SCA (Zhou et al., 2025),
focuses on synthesizing diverse tasks to expand the space of RL exploration. However, these methods
still depend on data collection in real environments, which inherently suffer from the scalability issue
and are subject to the limitations outlined earlier.
Later research shifted toward building synthetic environments, such as AlphaGo (Silver et al., 2016)
and Dreamer (Hafner et al., 2020; Ha & Schmidhuber, 2018), which interact with agents to generate
unlimited on-policy experiences. More recently, WebDreamer (Gu et al., 2024) and WebEvolver (Fang
et al., 2025) constructed world models to produce environment feedback for agent planning and
training. Closest to our setting, UI-Simulator (Wang et al., 2025) also leverages LLMs as a step-wise
simulator, but it directly synthesizes raw DOM observations, which is expensive and challenging, and
is limited to producing trajectory variations for supervised policy fine-tuning. Similarly, Simia-RL (Li
et al., 2025) generates online step-wise interactions using closed-source models with strong reasoning
capability (e.g., OpenAI o4-mini), leading to data that are often out-of-domain, extremely costly, and
usable only for the current training run. In contrast, DREAMGYM is significantly cheaper and more
scalable: it uses a low-cost open-source model for annotation, trains an experience model once to
synthesize transitions in a token-efficient meta-representation space, and then reuses that model to
generate unlimited, stable online interaction data for training any agents via RL.

3 PRELIMINARIES

3.1 NOTATIONS
We formalize the agent learning problem as a Markov Decision Process (MDP) (Bellman, 1957),
defined by the tupleM = (S,A, T,R, γ, ρ0), where S denotes the state space and A denotes the
action space. The transition function T : S ×A → ∆(S) governs the environment dynamics, where
∆(S) denotes the probability simplex over S . The reward function R : S×A → R provides feedback
signals for the agent’s actions. γ ∈ [0, 1] is the discount factor, and ρ0 ∈ ∆(S) specifies the initial
state distribution that includes the task instruction τ0.
In LLM agent environments, τ0 is usually a desired task specified by the user in natural language, and
states s ∈ S encode the environment configuration visible to the agent, such as webpage content, tool
outputs, or textual environment descriptions. Actions a ∈ A represent discrete operations, including
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Figure 2: Overview of the proposed DREAMGYM agent training framework. Given a set of seed tasks,
a reasoning-based experience model interacts with the agent to generate informative, diverse tasks and
trajectories for RL training. At each step, the agent takes actions based on its current state and receives
next states and reward signals derived by the experience model through CoT reasoning based on both
interaction history and top-k similar experiences from an active replay buffer. To expose the agent to
increasingly informative scenarios, tasks with high reward entropy are proposed by the curriculum
task generator for future training. With this unified design, DREAMGYM addresses both task and
reward sparsity while enabling scalable RL with diverse and curriculum-driven environments.
clicking UI elements, invoking external tools, or generating textual responses. The agent maintains a
policy πθ : S → ∆(A), parameterized by θ, which maps states to distributions over actions.

3.2 AGENT LEARNING FROM EXPERIENCE

Given a set of online experiences where each experience ϵ = {τ0 | s0, a0, . . .} consists of a task τ0
and state-action rollout {s0, a0, . . . , st, at}, the goal of RL is to train an agent policy πθ to maximize
the expected cumulative reward, which typically optimized θ via policy gradient as follows:

∇J(θ) = E(st,at)∼πθ

[
∇ log πθ(at | st) · Â(st, at)

]
, (1)

where Â(st, at) is the advantage function, estimating how favorable an action is compared to others.

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is a popular policy gradient
method that improves stability by computing Â with Generalized Advantage Estimation (GAE):

ÂPPO
t =

K−1∑
l=0

(γλ)l [rt+l + γV (st+l+1)− V (st+l)] , (2)

where V (·) is a value function approximated by a LLM, and λ controls the bias-variance tradeoff.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) extends PPO by discarding
the value function and normalizing advantages within each group of responses G sampled for the
same task instruction. Instead of GAE, the group-relative advantage is defined as:

ÂGRPO
t = (rt −meani∈G(ri))/stdi∈G(ri) (3)

where rt is the reward for output ot, meani∈G(ri) and stdi∈G(ri) are mean and standard deviation
of rewards from group G. GRPO discards the value function and approximates the advantage using
relative normalized rewards, making policy updates more scalable but potentially less sample-efficient.
Notably, our proposed DREAMGYM is orthogonal to specific RL algorithms and focuses on scaling
the synthesis of diverse, informative experiences, thereby amplifying the effectiveness of RL training.

4 SCALING AGENT LEARNING VIA EXPERIENCE SYNTHESIS
To synthesize diverse agent experiences for RL training, DREAMGYM is built around three key
components: (1) a scalable reasoning experience model that encodes the meta-dynamics of the
target domain to efficiently generate informative trajectories; (2) an experience replay buffer that
integrates offline environment knowledge with online synthetic transitions, co-evolving with the agent
to stay aligned with its updated policy; (3) a curriculum task generator that produces progressively
challenging variations of high-value tasks selected via a reward-entropy heuristic. We provide a
detailed pseudocode illustrating the synthesis and training pipeline in Algorithm 1 in Appendix B.2.
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4.1 BUILDING REASONING EXPERIENCE MODELS FOR AGENT LEARNING

For effective RL training, instead of relying on heterogeneous external environments that are costly to
interact with and difficult to control, DREAMGYM adopts a more adaptive and controllable approach
by building a LLM-based experience model that can efficiently interact with the agent over multiple
turns to generate diverse experiences with consistent outcomes and rich feedback signals for learning.
Unlike prior data-hungry and costly approaches that build world models to replicate the real world in
raw pixel spaces, we design an efficient reasoning experience model, denoted asMexp, that operates
in an abstract, meta-representational textual space S . The key insight is that synthesizing transitions
in this abstract state space can reduce irrelevant dimensions and produce trajectories that are more
informative and token-efficient than those derived from raw observations. For example, in a web
shopping task, instead of processing raw HTML code, the experience model directly synthesizes
clean element listings while discarding irrelevant structural artifacts such as headers and tags. This
state-space design makes training the experience model highly sample-efficient, requiring only small
pubic trajectory datasets in our experiments, while also enhancing the effectiveness of agent learning.

4.1.1 INFERENCE FOR EXPERIENCE ROLLOUT COLLECTION

Notably, we find that beyond the current state-action pair, three additional contexts are important for
improving state quality: (1) interaction history {(si, ai)}Tt=0, which incorporates the past trajectory
in the context window to help maintain state consistency across multiple turns; (2) task instruction τ ,
which conditions the experience model on the current goal, enabling it to interpret actions w.r.t. task
objectives and thereby predict both state transitions and rewards more accurately; (3) past experiences,
which are top-k demonstrations {dj}kj=1 retrieved from the replay buffer based on semantic similarity
with the state-action pair, i.e., {dj}kj=1 = Topk(cos(ϕ(st, at), ϕ(si, ai))), where ϕ(·) denotes an
arbitrary semantic encoder. Leveraging knowledge this way reduces hallucinations and improves
factuality for knowledge-intensive state predictions. Therefore, given these inputs, the experience
model predicts the next state st+1 and reward rt+1 via chain-of-thought (CoT) (Wei et al., 2022):

(st+1, rt+1) =Mexp

(
Rt

∣∣{(si, ai)}ti=0, {dj}kj=1, τ
)
. (4)

where Rt is an explicit reasoning trace produced by the experience model that guides the state
transition. With such reasoning, it predicts the most consistent and informative transition and
feedback that reflects the consequence of the agent action. For example, if the action is invalid, it
transitions to a failure state and assigns a zero reward to signal the error, and vice versa. In our
experiments, following (Feng et al., 2025), we adopt an outcome-based reward scheme, assigning
r = 1 only at the final step when the task is successfully completed and r = 0 in all other cases.

4.1.2 TRAINING EXPERIENCE MODELS TO REASON

Benefiting from the abstract state-space design, training the experience model is highly sample-
efficient and requires only limited data from the real environment. In practice, abundant offline
trajectory datasets from public benchmarks such as the WebArena Leaderboard are sufficient for
training. Our experience model distills such offline knowledge and then serves as a bridge to interact
with the agent online for RL training.

Concretely, given a trajectory dataset D = {(st, at, st+1, rt+1)}, each transition is annotated with an
explicit reasoning trace R∗

t by LLM (prompt shown in Appendix E.1), which explains why the action
at taken in state st consequently leads to the next state st+1 and reward rt+1 given the available
contexts. To distill this knowledge, we trainMexp via SFT with a joint objective over reasoning
generation and next-state prediction:

LSFT = E(st,at,st+1,R∗
t )∼D

[
−logPθ(R

∗
t | st, at,Ht,Dk)−logPθ(st+1 | st, at, R∗

t ,Ht,Dk)
]
, (5)

where Ht denotes the interaction history, Dk denotes the retrieved top-k demonstrations, and θ
denotes the parameters ofMexp. This objective ensures that the model (i) learns to generate faithful
reasoning traces that explain the causal effect of an action, and (ii) leverages these traces to predict
consistent and informative next states. By doing so, the experience model not only imitates expert
trajectories but also acquires the ability to generalize reasoning for novel rollouts during RL training.

4.2 CURRICULUM-BASED TASK GENERATION
Diverse, curriculum-aligned task instructions are important for RL agents to acquire knowledge (Zhou
et al., 2025). However, scaling task collections is costly, as it requires significant human effort to
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verify the feasibility of each task in the target environment. DREAMGYM inherently alleviates this
burden by adapting to arbitrary new tasks within the target domain through synthetic multi-turn
transitions. Building on this capability, we propose curriculum-based task generation, where the
same experience model actively generates new tasks as variations of a set of m seed tasks:

τt =Mtask({τ it−1}mi=1), (6)
whereMtask shares parameters withMexp. Specifically, the seed tasks are chosen based on two
criteria: (1) they are sufficiently challenging for the current agent policy, thereby maximizing
information gain; (2) they are well-defined, such that unrealistic or malformed tasks can be discarded.

To satisfy both conditions, we introduce a group-based reward entropy as a criteria for selecting
high-quality and challenging tasks. Formally, for a task τ , we define its value

Vτ =
1

n

n∑
i=1

(
ri − r̄

)2
, where r̄ =

1

n

n∑
i=1

ri, (7)

where ri are the outcome rewards from n rollouts of task τ within the group G. For GRPO, G can
simply be the training group, while for PPO, tasks can be first clustered using a semantic embedder,
and each cluster essentially forms a group G from which task variations can be generated. Notably,
a non-zero variance in G indicates that the agent observes both successes and failures on the task,
signaling that the task is feasible yet challenging. A task reaches maximum entropy when successes
and failures are evenly balanced in G, providing the greatest information gain for credit assignment.
This observation is consistent with recent findings that LLMs learn most effectively from tasks of
intermediate difficulty (Gao et al., 2025). Thus, by feeding such high-entropy tasks intoMtask, we
generate progressively more challenging variations to enhance agent exploration and learning.
To stabilize training, we introduce a hyperparameter λ that bounds the proportion of synthetic
tasks sampled per iteration. This preserves sufficient coverage of the original task distribution while
directing exploration toward the current policy’s weakness regions for curriculum-based improvement.

4.3 LEARNING FROM SYNTHETIC EXPERIENCES

Policy training in synthetic environments. As shown in figure 2, DREAMGYM begins with a seed
task set and generates multi-turn rollouts for each task by alternating between the agent policy, which
selects actions from states, and the experience model, which predicts next states conditioned on the
agent action, history, and task context (as in section 4.1.1). The collected rollouts are used with
standard RL algorithms (as in section 3.2) to update the policy. After each iteration, the experience
model augments the task set by generating variations of challenging tasks with high reward entropy
(as in section 4.2). This cycle of interaction, training, and curriculum expansion continues until
convergence or a predefined training budget is reached. Furthermore, we provide an analytical
lower bound of the policy improvement in real environments when training with purely synthetic
experiences from DREAMGYM under trust-region assumptions, as detailed in Appendix D.1.
Sim-to-real policy transfer. We further extend DREAMGYM to a sim-to-real (S2R) setting, where the
agent policy is first trained with synthetic experiences and then transferred to RL in real environments.
Pretraining in synthetic environments expands exploration coverage across diverse tasks and allows
the agent to acquire broad knowledge at low cost, providing a strong initialization that makes
subsequent real-environment learning more sample-efficient (Da et al., 2025). To enable seamless
transfer, we ensure consistency of the state space between synthetic and real environments by applying
the same rule-based mapping function or a lightweight fine-tuned model (Lee et al.).

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUP

We evaluate DREAMGYM on a diverse suite of agentic benchmarks and LLM backbones of varying
sizes and model families to assess its generalizability and effectiveness in supporting RL for generic
agent tasks while reducing costly interactions.
Evaluation environments. We consider three challenging agent benchmarks that span diverse
domains, complexities, and levels of RL readiness: (1) WebShop (Yao et al., 2022), which requires
reasoning to refine search queries and accurately identify products to complete e-commerce tasks; (2)
ALFWorld (Shridhar et al.), which involves multi-turn tool-based embodied control to navigate 3D
environments; (3) WebArena-Lite (Zhou et al.), which offers realistic web interaction interfaces but is
not RL-ready, as it inherently lacks scalable data collection and environment reset mechanisms while
incurring high computational costs. This mixture of environments allows us to evaluate DREAMGYM
both in settings where RL is feasible but expensive, and where RL training is not yet tractable.
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Table 1: Comparison of DREAMGYM with various agent training algorithms. We evaluate four
groups: (i) offline imitation learning algorithms: SFT, DPO; (ii) online RL algorithms in real-world
environments: GRPO, PPO; and (iii) DREAMGYM, where agents are trained via the same RL
algorithms but with purely synthetic experiences; (iv) DREAMGYM-S2R, where agents are first
trained with synthetic experiences and then transfer to RL in real environments. Real data indicates
the number of individual transitions (a trajectory often has ∼10 steps). Best performance is bolded.

Algorithm Real
Data

WebShop ALFWorld WebArena

L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B L3.2-3B L3.1-8B Q2.5-7B

Offline Imitation Learning

SFT 20K 32.0 35.1 32.9 61.7 68.0 71.8 8.7 11.3 13.0
DPO 40K 35.9 31.0 34.8 63.3 63.9 61.1 8.9 10.3 11.3

GRPO

Traditional 80K 62.1 65.0 66.1 65.3 70.9 79.8 12.7 10.0 16.0
DREAMGYM 0 59.3 63.9 68.3 62.1 66.3 71.0 35.1 43.0 45.1
DREAMGYM-S2R 5K 70.5 75.0 72.1 65.0 75.9 82.4 38.0 37.1 47.3

PPO

Traditional 80K 59.9 64.2 68.1 47.0 72.9 81.1 13.9 15.7 19.2
DREAMGYM 0 60.5 58.1 65.0 40.5 70.8 72.7 32.0 45.0 37.8
DREAMGYM-S2R 5K 66.0 63.9 73.7 49.1 73.3 79.9 30.3 48.3 41.0

Agent backbones. We instantiate agents from different model families and sizes: Llama-3.2-3B-
Instruct, Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen-2.5-7B-Instruct (Team, 2024).
Baselines. We consider two traditional training strategies for agents. (1) Offline imitation learning:
supervised fine-tuning (SFT), direct preference optimization (DPO) (Rafailov et al., 2023); (2) Online
RL in real environments (traditional): GRPO (Shao et al., 2024), PPO (Schulman et al., 2017).

Implementation details. All main results are reported with the experience model trained from
Llama-3.1-8B-Instruct (see section 4.1). To demonstrate that DREAMGYM can be applied to different
RL algorithms, we first evaluate both GRPO and PPO entirely within DREAMGYM, without any real
interactions. We further evaluate a hybrid scenario, DREAMGYM-S2R, where synthetic training is
followed by a small-scale RL phase that requires only a limited number of rollouts in the original
environments, demonstrating the effectiveness of using DREAMGYM as a mid-training stage to
improve both sample efficiency and the attainable performance after transfer. Detailed parameter
settings for each scenario are provided in Appendix A.

5.2 MAIN RESULTS

Non-RL-ready environment. DREAMGYM demonstrates the most significant advantage in en-
vironments where large-scale RL infrastructure is not available such as WebArena (Zhou et al.).
Unlike existing attempts that fail to make RL effective due to environment limitations, agents trained
purely in DREAMGYM achieve success rates exceeding 30% across all backbones (Table 1), whereas
zero-shot RL baselines suffer from limited exploration diversity and sparse reward signals in the
original environments. These results demonstrate that DREAMGYM is not merely a surrogate for
costly rollouts, but a mechanism that makes RL training feasible in domains that were previously
intractable due to inherent task and engineering constraints.

RL-ready environments. On WebShop (Yao et al., 2022) and ALFWorld (Shridhar et al.), DREAM-
GYM-trained agents perform on par with GRPO and PPO agents trained on 80K real interactions,
despite using only synthetic rollouts. The ability to match strong RL baselines in RL-ready en-
vironments without external interactions underscores that DREAMGYM produces transitions and
rewards that are not only coherent and meaningful, but also sufficient for stable policy improvement.
Furthermore, when a small-scale RL phase with an affordable number of real rollouts (5k) is applied
to the policy mid-trained in the synthetic environment, DREAMGYM-S2R consistently outperforms
both GRPO and PPO baselines trained from scratch in the real environments. This validates the
hypothesis that synthetic training can serve as an efficient warm-start strategy that establishes a strong
foundation for more sample-efficient RL in the real environment.

Sample efficiency and training cost. Training efficiency is further illustrated in figure 3 Left, where
DREAMGYM achieves substantial performance gains on WebArena (Zhou et al.) while reducing
training effort (including both rollouts sampling time and GPU hours) to roughly one-third or even
one-fifth of RL baselines in the real environment. The efficiency gain arises from both the dense
feedback offered by curriculum-based rollout synthesis and the lightweight abstract state transitions
produced by unified experience models hosted by scalable LLM services, which substantially reduce
sampling cost and avoid heterogeneous environment bottlenecks, suggesting that DREAMGYM is
not only a practical solution for RL training in complex and expensive environments, but also as a
scalable way to generate low-cost data for stable policy improvement.
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Figure 3: (1) Left: Comparing the agent performance (success rate %) on WebArena (Zhou et al.)
w.r.t. total training time across different training strategies and backbones. (2) Middle: Evaluating
the cross-domain transferability of the agent policy trained via DREAMGYM with seed tasks from a
different environment. (3) Right: Comparing the agent performance on WebShop (Yao et al., 2022)
w.r.t. number of training steps across different training strategies.

6 PERFORMANCE ANALYSIS AND ABLATION STUDIES
6.1 TRAINING CURVE ANALYSIS

figure 3 Right compares training curves across Webshop (Yao et al., 2022) under different setups.
Specifically, the success rate improves much more rapidly within the first 40 steps, showing that
synthesized trajectories offer more informative gradients than sparse real rollouts. This further
highlights the role of synthetic experiences in shaping a strong initialization that real rollouts cannot.
Another observation is the reduced variance in learning dynamics. Baseline curves exhibit larger
oscillations caused by sparse or unstable rewards, while DREAMGYM curves remain smoother across
runs, which suggests that synthesized trajectories provide not only denser but also more consistent
feedback, mitigating the training instabilities commonly reported in WebShop (Yao et al., 2022) and
ALFWorld (Shridhar et al.).
6.2 ABLATION ON TASK GENERATOR Table 2: Average success rates (%) on the

different components of DREAMGYM.
Method WebShop WebArena

DREAMGYM 63.9 43.0

w/o Exp. Replay 59.2 38.1
w/o Exp. Reasoning 55.8 33.9
w/o Task Generation 57.3 31.7

The curriculum-based task generator plays an im-
portant role in learning progress. As shown in fig-
ure 3 Right, removing this component causes agents
to make some initial progress but then plateau more
quickly in the WebShop (Yao et al., 2022) scenario.
Similarly, Table 2 shows that removing the task gen-
erator leads to a 6.6% and 6.0% drop in success
rate compared with the full DREAMGYM configuration in WebShop (Yao et al., 2022) and We-
bArena (Zhou et al.), respectively.

These findings support our discussion in section 4.2: without adaptive task generation, the replay
buffer may saturate with low-entropy, repetitive trajectories, which limits the diversity of experiences
and stalls exploration. In contrast, the task generator continually produces progressively challenging,
high-value tasks that push the agent beyond its current capability. This ongoing curriculum keeps the
replay buffer informative and encourages exploration, ultimately yielding higher final success rates
and better sample efficiency.

6.3 ABLATION ON EXPERIENCE MODEL

Consistency Diversity Informativeness Hallucination0.5

1.0

1.5

2.0

Ju
dg

e 
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e

Traditional DreamGym w/o History w/o Reasoning

Figure 4: Evaluation of the experience model
across key criteria using GPT-4o as the judge. We
randomly sample 100 trajectories and prompt the
model to assign discrete scores in {0, 1, 2} across
four criteria, as detailed in Appendix E.4.

figure 4 demonstrates a detailed comparison of
experiences generated by four variants of the
experience models: a traditional real environ-
ment model, DREAMGYM, DREAMGYM with-
out access to past trajectory history (w/o His-
tory), and DREAMGYM without reasoning (w/o
Reasoning). We evaluate each variant along four
criteria: consistency, diversity, informativeness,
and hallucination, using GPT-4o (Hurst et al.,
2024) as a judge. As detailed in Appendix E.4,
the judge assigns discrete scores in {0, 1, 2} for
each criteria, where higher values indicate better
performance. For the first three metrics, larger scores mean more consistent, diverse, and informative;
for hallucination, a score of 2 means no hallucination, while 0 indicates more factual errors.
The results highlight the role of each component. Removing trajectory history (w/o History) signifi-
cantly reduces consistency: without awareness of prior turns, the model often drifts off-topic and
breaks causal coherence in multi-step interactions. Removing reasoning (w/o Reasoning) mainly
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[472] card:“Change Log” summary tile. 
[463] statbadge:“Total Commits” — 1,980. 
[458] pillnav:Tabs {Overview, Change Log}. 
[512] button:“Open Change Log”. 
[539] content:Latest commit by Jack 
Thompson (“Apr 02, 2023 11:30pm UTC”).
…

What is the message Jack provided 
in the first commit of Apr 2023?

Click(
463)

[847] list:List grouping commit history …
[1144] listitem:Commit on Apr 2, 2023, by  … 
[1144] listitem:Commit on Apr 3, 2023, by … 
[1163] listitem:Commit on Apr 7, 2023, by …
[1241] listitem:Commit on Apr 7, 2023, by …
[1259] listitem:Commit on Apr 8, 2023, by …

Click(
1144)

…

<think>
The agent clicks the "Total Commits" button 
on the overview page, which is the intended 
action. I should transit to a successful state 
that displays a list of commits grouped by 
date, including entries from April 2023, which 
will let the agent further inspect and …
</think>

generate initial state

[1500] pane:Commit details view for Apr 2, 2023 
[1501] header:Commit by Jack Thompson 
[1502] time:"Apr 02, 2023 11:30pm UTC" 
[1503] message:"Add API migration notes" 
[1504] meta:SHA a1c2e3f, branch main, 3 files 
changed (12 insertions, 2 deletions) 
[1505] nav:Buttons {Back to list, Copy SHA, …}

<think>
The agent clicks [1144], the first April commit 
entry (Apr 2, 2023) to open its details. I 
should transit to a commit-detail state that 
exposes the author, timestamp, and commit 
message so the agent can extract the answer.
</think>

…

Reasoning Experience Model AgentTask

State 0

State 1 State 2
Figure 6: A case study of a trajectory sampled with DREAMGYM in WebArena. Starting from a
synthetic instruction, the experience model reasons over the agent’s action to produce future states.
hurts informativeness of the states and increases hallucination: without reasoning capabilities, the
generated experiences tend to become shallow and less factually grounded. Notably, removing
experience reasoning also leads to a substantial drop in overall performance, as shown in Table 2.
In contrast, the full DREAMGYM achieves the best or near-best performance across all metrics,
confirming that history and reasoning provide complementary benefits. More specifically, history
preserves temporal and causal structure, while reasoning enhances depth and factual reliability. This
validates that the experience model must operate in a structured, reasoning-driven manner to maintain
both diversity and fidelity of trajectories.

6.4 ABLATION ON EXPERIENCE MODEL BACKBONES AND OFFLINE TRAINING DATA
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Figure 5: Evaluation of the experience model
across different number of offline training
data size (transition step) and backbone.

figure 5 investigates how the success rate of the ex-
perience model varies with both the amount of of-
fline training data and the choice of model backbone,
evaluated on (a) WebShop and (b) WebArena. We
first observe that the experience model is highly data-
efficient. Even with a very limited number of offline
samples (2k-10k), it already reaches competitive per-
formance. On WebShop, for example, the Llama-
3.1-8B exceeds 50% success rate with only 10k sam-
ples, indicating that large-scale offline datasets are
not strictly necessary for effective experience syn-
thesis. Next, we find that smaller backbones remain
viable. Although Llama-3.2-3B underperforms the
8B model, it improves steadily as more data becomes
available, reaching about 55% success on WebShop
with 20k samples, which suggests that lightweight
models can still serve as practical experience generators when computational resources are con-
strained. Finally, in the extreme low-data regime, pretrained world knowledge becomes particularly
valuable. On WebArena, WebDreamer (Gu et al., 2024) (a fine-tuned web world model) achieves
around 19% success, initially outperforming the Llama-3.1-8B model at smaller data scales but
eventually converging as the number of offline samples increases.
6.5 CASE STUDY OF SYNTHETIC EXPERIENCES FROM DREAMGYM

figure 6 illustrates how the reasoning experience model generates a synthetic task and progressively
predicts states based on the agent’s actions. Specifically, it predicts each state through explicit chain-
of-thought reasoning that incorporates the agent’s action, task instruction, and interaction history,
producing next states that consistently ground the action and accurately reflect its consequences.
Additional experiment results, ablations, and analysis can be found in Appendix C.
7 CONCLUSION
We introduced DREAMGYM, a framework that reduces the high cost of real-environment rollouts in
RL for language agents by generating scalable, reasoning-driven synthetic experiences. DREAMGYM
compresses environment dynamics into a reasoning-based experience model that produces state
transitions and adaptive curricula, creating challenging yet solvable tasks tailored to the agent’s
evolving policy. Experiments across diverse environments and model backbones show consistent
gains in both synthetic and sim-to-real settings, driven by the synergy of reasoning-based modeling,
replay-buffer grounding, and curriculum generation. More broadly, our results suggest that the key
bottleneck in RL for LLM agents lies in the quality and structure of interaction data. By treating
environments as generators of structured, reasoning-rich experiences rather than mere simulators,
DREAMGYM enables more scalable, sample-efficient, and generalizable RL for agents.
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USAGE OF LARGE LANGUAGE MODELS

The language in this paper was at times polished with the assistance of an LLM. The model was not
used for research ideation, experimental design, or data analysis.
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A DETAILED EXPERIMENT SETTINGS

In this section, we provide implementation details for each environment.

A.1 WEBSHOP

WebShop (Yao et al., 2022) is a large-scale agent benchmark designed to study language grounding in
interactive environments. It simulates a realistic e-commerce website with 1.18M real-world products
and 12,087 crowd-sourced natural language instructions, where agents must search, customize,
and purchase items. The environment poses challenges such as interpreting compositional product
requirements, reformulating queries, handling noisy webpage text, and strategically exploring diverse
page types.

RL Baseline Setup. We follow the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones in our experiments.

DREAMGYM Settings. To train the reasoning experience model, we construct a dataset by combining
1,600 human demonstration trajectories from the official WebShop repository with an additional
2,000 trajectories collected using an oracle agent and random exploration. We fix the test set to ensure
evaluation stability and collect training trajectories only from the remaining tasks to avoid test-set
contamination. Each transition is further augmented with a reasoning trace generated by a strong
teacher LLM, resulting in the dataset used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

A.2 ALFWORLD

ALFWorld (Shridhar et al.) is a text-and-embodied benchmark with hand-crafted task instructions
designed for studying language grounding and cross-modal transfer. It pairs abstract text interactions
from TextWorld with photo-realistic, physics-based execution in ALFRED/AI2-THOR, spanning
six household task families (e.g., Pick & Place, Clean & Place, Heat/Cool & Place) with 3,553
training tasks and seen/unseen splits across 120 rooms. Agents issue high-level textual actions (goto,
open, take, clean/heat/cool, put) that must be realized as low-level visuomotor controllers, facing
challenges such as partial observability, object search and manipulation, mapping language to action
preconditions and affordances, and bridging the gap between abstract plans and physical feasibility.

RL Baseline Setup. We adopt the standard setup and hyperparameter settings from Verl-Agent (Feng
et al., 2025) and perform full-parameter fine-tuning for all three agent backbones.

DREAMGYM Settings. We follow the default ALFWorld split (Shridhar et al.) with the
TextWorld setup (Côté et al., 2018) under the Verl-Agent framework. From the training split, we
extract 3,200 expert demonstration trajectories paired with task instructions, and additionally sample
2,000 offline trajectories using both oracle and random policies. These datasets form the basis for
training the reasoning experience model. Each transition is further augmented with a reasoning trace
generated by a powerful LLM, which is used for fine-tuning.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.

A.3 WEBARENA

WebArena (Zhou et al.) is a self-hosted, realistic web environment for training and evaluating
autonomous agents across fully functional sites such as e-commerce, social forums, collaborative
software development (GitLab), and content management, which are augmented with tools (map,
calculator, scratchpad) and knowledge bases (e.g., offline Wikipedia, manuals). It provides 812
long-horizon tasks expressed as high-level natural language intents and evaluates agents by functional
correctness rather than matching action traces, supporting multi-tab browsing and a rich action space
(click, type, navigate, tab operations).

Training Set Split. Since the full evaluation set in WebArena is large and contains many
similar tasks, we follow prior work (Qi et al., 2024; Wei et al., 2025) and evaluate agents on
WebArena-Lite (Liu et al., 2024), a more balanced subset of 165 high-quality, challenging tasks
selected from the original 812. The remaining 647 tasks, excluding those in the evaluation set, are
used for training.
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RL Baseline Setup. Since no reliable open-source RL infrastructure exists for WebArena (Qi et al.,
2024), we follow the standard workflow in Verl-Agent (Feng et al., 2025) and implement a vanilla
RL pipeline for WebArena. The baseline collects action trajectories via browsergym (Zhou et al.)
while hosting the WebArena websites on AWS servers, supporting both PPO and GRPO. Despite
extensive engineering effort, we are able to operate only four AWS servers, enabling at most four
parallel interaction sessions, which in turn imposes a significant bottleneck on training throughput.

During RL sampling, we sequentially sweep through the task set and manually restart the servers and
reset the environments once all tasks have been visited once, in order to avoid cross-task interference.
Nevertheless, we observe that some trajectories fail to execute properly and that certain tasks are
incorrectly judged by WebArena’s original evaluation function, a known issue also reported in prior
work (Qi et al., 2024; Chae et al., 2025). For fairness, we retain all collected trajectories and use them
as-is for RL training.

DREAMGYM Settings. To obtain offline trajectories for training the reasoning experience model,
we extract successful demonstrations from the highest-performing agents on the public WebArena
leaderboard. Specifically, we use agents that incorporate accessibility tree information in their
observations, including IBM CUGA (Marreed et al., 2025), ScribeAgent (Shen et al., 2024), Learn-
by-Interact (Su et al., 2025), and AgentOccam (Yang et al., 2024). To mitigate distribution imbalance,
we additionally collect trajectories generated by a high-performing agent and by a random policy.
In total, we obtain 4,800 offline trajectories for training. Each transition is then augmented with
a reasoning trace generated by a powerful LLM, forming the dataset for fine-tuning the reasoning
experience model.

Computation Resources. All experiments, including both baselines and ours, are conducted on 8
nodes with A100 GPUs and 4 nodes with H100 GPUs.
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B ADDITIONAL DETAILS OF DREAMGYM

B.1 HYPERPARAMETER CONFIGURATIONS

The hyperparameters for training and serving the experience model are reported in Table 3. The
hyperparameters for training agents via RL are reported Table 4.

Table 3: Hyperparameter settings for experience model.

Parameters Value
Annotation model Llama-3.3-70B-Instruct
Random seed 42
Top-k examples 2
Synthetic Task ratio λ 0.4
Temperature 0.2
Outcome-based reward True

Table 4: Hyperparameter of training agents via RL.

Parameters Value
Random seed 42
Mini batch size 64
Micro batch size 8
Training batch size for WebShop 16
Training batch size for AlfWorld 16
Training batch size for WebArena 8
KL loss coef 0.01
Learning rate 1e− 6

B.2 TRAINING PIPELINE OF DREAMGYM

We provide detailed pseudocode in Algorithm 1 to formalize the data synthesis procedure and
RL training pipeline in DREAMGYM, covering all critical steps, including: (i) initialization of all
components, including the agent policy (initialized from a base model), the replay buffer (seeded with
offline trajectories), and the task pool (initialized with a set of seed tasks); (ii) synthesizing multi-turn
rollouts by iteratively querying the reasoning-based experience model using the current state–action
pair, task instruction, interaction history, and top-k retrieved experiences; (iii) updating the agent
policy with an RL optimizer using the collected synthetic experience data; and (iv) computing
group-based reward entropy to drive curriculum task generation and updating both the task pool and
replay buffer throughout training.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Data Synthesis and Training Pipeline of DREAMGYM

Require: Experience modelMexp, agent policy πθ, replay buffer B, active task pool T , seed task
set Tseed, max episode length H , synthetic-task ratio λ, RL optimizer (e.g., GRPO, PPO)

1: Initialize policy πθ ▷ Initialize agent policy from a base LLM
2: Initialize replay buffer B ← Doff ▷ Offline trajectories from public benchmarks
3: T ← Tseed ▷ Initialize task pool with seed task instructions
4: while not converged or exceeded maximum epochs do
5: R ← ∅ ▷ Batch of synthetic rollouts
6: for each training group G do ▷ GRPO group or PPO task cluster
7: Sample tasks {τi}mi=1 ∼ T ▷ Mix real and synthetic tasks by ratio λ
8: for each task τ in {τi} do
9: s0 ← INITSTATE(τ) ▷ Initial state in abstract space S

10: ζτ ← ∅
11: for t = 0 to H − 1 do ▷ Experience synthesis loop
12: at ∼ πθ(· | st, τ) ▷ Agent action conditioned on task
13: Dk ← RETRIEVETOPK(B, st, at) ▷ Similar past experiences
14: Ht ← {(si, ai)}ti=0 ▷ Interaction history
15: (st+1, rt+1) ∼Mexp(· | Ht,Dk, τ) ▷ Reasoning-based transition, Eq. (4)
16: ζτ ← ζτ ∪ {(st, at, rt+1)}
17: B ← B ∪ {(st, at, st+1, rt+1)} ▷ Co-evolving replay buffer
18: if TERMINAL(st+1) then
19: break
20: end if
21: st ← st+1

22: end for
23: R ← R∪ {ζτ} ▷ Collect trajectory for RL update
24: end for
25: Compute outcome rewards {ri}ni=1 in group G
26: Compute value Vτ for each task τ in G ▷ Group-based reward entropy, Eq. (7)
27: end for
28: θ ← θ − ηπ∇θLRL(πθ;R) ▷ Policy gradient on synthetic rollouts, Eq. (1)
29: Thigh ← {τ ∈ T : Vτ in top p%} ▷ Feasible yet challenging tasks
30: Tnew ←Mtask(Thigh) ▷ Curriculum-based task generation, Eq. (6)
31: T ← UPDATETASKS(T , Tnew) ▷ Bound synthetic task proportion by λ
32: end while

B.3 TRAINING DATA FILTERING PIPELINE

DREAMGYM involves two major stages for training RL agents: (1) training a reasoning-based
experience model in the target environment to synthesize next states and rewards via explicit reasoning,
and (2) interacting with this experience model to collect abundant, diverse online experience for
agent RL training. Since stage (2) follows standard procedures shared by most RL frameworks and
is agnostic to the downstream RL algorithm, we focus here on elaborating on the data filtering and
quality-control procedures used in stage (1).

For each environment, our data filtering pipeline consists of the following three steps:

(i) Collecting offline trajectories from multiple sources. For example, in WebArena, we gather
trajectories from various publicly available sources, such as the top-10 agent trace submissions on the
official WebArena leaderboard, as well as the oracle trajectories in the WebArena-Lite repository,
which yield more than 10K raw trajectories. Notably, we retain both successful and failed trajectories,
as both encode the environment dynamics and are valuable for distilling the transition structure into
the experience model. In this step, we also carefully remove all tasks and trajectories corresponding
to the test set to avoid any form of test contamination.

(ii) Balancing trajectories across available training tasks as well as success and failure modes. To
reduce bias during experience-model training, we first balance the trajectories collected in step (i)
to ensure relatively even coverage across all training tasks. We then further filter and rebalance
the remaining trajectories so that each task contains a more uniform mix of successful and failed
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trajectories. This mitigates overfitting to dominant failure patterns (e.g., predicting success even
when actions previously failed) and enables the experience model to learn more reliable and robust
environment transitions.

(iii) Ensuring diverse coverage of the action space. Based on the trajectories from the previous
step, we then apply a clustering-based selection procedure to maintain coverage over diverse action
sequences. This avoids overfitting the experience model to a narrow subset of actions and encourages
it to learn transitions for a broad range of behaviors and accurately predict their consequences.

After applying these three stages, we obtain 3600, 5200, and 2780 high-quality trajectories for
WebShop, ALFWorld, and WebArena, respectively. We then use Llama-3.3-70B as the annotator to
generate a reasoning trace for each state transition in the filtered dataset, which serves as the training
corpus for fine-tuning the experience model.

Overall, this simple yet effective data filtering pipeline allows us to efficiently collect large-scale
offline trajectories from various sources and transform them into a diverse, balanced, and clean dataset
well-suited for training a stable and reliable experience model, which can subsequently generate
high-quality interaction data for RL agent training.
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C ADDITIONAL RESULTS AND ANALYSIS

C.1 COMPARISON WITH GENERIC RL ALGORITHMS

We compare DREAMGYM against a broader set of representative generic RL baselines, including
DAPO Yu et al. (2025) and Dr. GRPO Liu et al. (2025), which are developed based on GRPO
to improve its efficiency and training stability, representing the most widely used RL paradigms
for LLM agent post-training. As shown in Table 5, both algorithms struggle in long-horizon, real-
environment settings due to infrastructure bottlenecks and low sample efficiency, which is consistent
with our findings in Table 5 from the main paper. In contrast, DREAMGYM achieves substantially
higher success rates on WebArena than both DAPO and Dr. GRPO. Specifically, this improvement
is achieved without any real online interactions, as DREAMGYM conducts the majority of training
in its synthetic environment. On AlfWorld, DREAMGYM similarly maintains strong performance,
highlighting its ability to scale to multi-step embodied environments.

These results demonstrate that DREAMGYM can serve as a more scalable and effective RL training
paradigm even when compared to strong general-purpose RL algorithms.

Table 5: Comparison of DREAMGYM against RL algorithms including (1) generic RL baselines (e.g.
DAPO (Yu et al., 2025) and Dr. GRPO (Liu et al., 2025)) and (2) domain-engineered RL frameworks
(e.g. WebAgent-R1 (Wei et al., 2025), WebRL (Qi et al., 2024), DigiRL (Bai et al., 2024)) on
WebArena and AlfWorld. Metrics include averaged success rate (%), estimated time cost (hours),
and the total number of real trajectories for training.

Method WebArena AlfWorld
Success Rate (%) Time (h) # Real Traj Success Rate Time (h) # Real Traj

DAPO 10.0 120 1200 online 66.1 50 4800 online
Dr. GRPO 12.7 120 1200 online 70.8 50 4800 online
WebAgent-R1 44.8 70 2400 online + 9460 offline NA NA NA
WebRL 42.4 80 4000 online + 12200 offline NA NA NA
DigiRL 30.3 80 4000 online + 12200 offline NA NA NA
DreamGym 45.0 15 4800 offline 70.8 30 5200 offline
DreamGym-S2R 48.3 55 800 online + 4800 offline 73.3 42 1600 online + 5200 offline

We also evaluate DREAMGYM against domain-engineered RL frameworks, i.e., WebAgent-R1 Wei
et al. (2025), WebRL Qi et al. (2024), and DigiRL Bai et al. (2024), which incorporate substantial task-
specific engineering (e.g., custom intrinsic rewards, handcrafted wrappers, and reset mechanisms)
designed specifically for WebArena. However, these frameworks are not transferable to other
environments such as AlfWorld.

From the results shown in Table 5, we can draw the following conclusions:

(1) DREAMGYM performs comparably to these domain-engineered SOTA systems while using no real
online trajectories, whereas WebAgent-R1 and WebRL each require thousands of online interactions
with the real environment to achieve similar performance, despite their intrinsic reward designs and
substantial engineering effort, making them expensive and difficult to scale. (2) DREAMGYM-S2R,
after a modest amount of continued training in real environments, outperforms WebAgent-R1 in
success rate, despite requiring far fewer real interactions and incurring dramatically lower engineering
complexity. (3) Since domain-specific methods are tightly coupled to WebArena infrastructure, they
cannot run on AlfWorld, while DREAMGYM generalizes seamlessly.

These findings highlight that DREAMGYM achieves SOTA-level performance without heavy domain
specialization, offering far broader applicability across environments.

C.2 COMPARISON WITH SYNTHETIC TRAINING ALGORITHMS

To further highlight DREAMGYM’s design advantages, we also compare it against two concur-
rent frameworks that train agents in synthetic environments, Simia-RL Li et al. (2025) and UI-
Simulator Wang et al. (2025), both released after our initial submission. From the results shown
in Table 6, we can draw the following observations:

(1) Compared to UI-Simulator, which directly synthesizes raw DOM trees using a strong reasoning
LLM, DREAMGYM achieves much higher success rates and lower time costs by synthesizing
transitions in an explicit, concise, token-efficient abstract state space. This significantly reduces
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inference overhead and improves the coherence of environment dynamics. (2) Compared to Simia-
RL, which relies on closed-source models such as OpenAI o4-mini to generate step-wise state
predictions, DREAMGYM reduces monetary cost by over 30× while achieving higher success rates.
This advantage arises because DREAMGYM ’s experience model is fine-tuned on domain-specific
offline trajectories, enabling it to produce more consistent, in-distribution transitions that directly
support effective policy improvement.

Table 6: Comparison of DREAMGYM against concurrent synthetic training frameworks on the
WebArena environment. Metrics include averaged success rate (%), estimated time cost (hours),
number of real-world trajectories used for training, and the monetary expense of environment service
(USD) such as AWS server hosts and API key costs.

Method Success Rate (%) Time (h) # Real Traj Expense (US Dollar)
Traditional 15.7 120 1200 online 272
Simia-RL 37.0 16 4800 offline 460.8
UI-Simulator 19.7 22 4800 offline 72
DreamGym 45.0 15 4800 offline 14.4

C.3 DETAILED STATISTICS OF THE ANNOTATION COSTS

During training, the primary additional cost beyond standard RL pipelines comes from annotating
the reasoning traces and task-variation sets using a teacher model. Table 7 below summarizes
the annotation costs for WebShop, ALFWorld, and WebArena, including both reasoning-trace and
task-variation annotations. We first clarify that all reasoning-trace annotations in DREAMGYM are
generated using Llama-3.3-70B-Instruct, an open-source model that can be served on a single A100
GPU; for a straightforward quantitative estimate, we convert its usage into an equivalent market price
of 1 USD per 1M tokens. In particular, we do not rely on expensive closed-source LLMs such as
OpenAI o4-mini, which concurrent approaches like Simia-RL (Li et al., 2025) heavily depend on for
generating online interactions.

To annotate the reasoning trace for each trajectory, we provide the LLM with the full trajectory and
prompt it to generate a reasoning explanation for each transition step (averaging∼100 tokens per step;
see Appendix E for the prompt template). Consequently, the annotation cost scales with the trajectory
length (e.g., ALFWorld incurs slightly higher cost due to its 10–20 step average sequence length).
Regardless, as shown in Table 7, the overall annotation cost for DREAMGYM remains low across
all environments, requiring less than $10 in total to annotate all data needed to train the experience
models.

Table 7: Detailed annotation statistics. We report the number of trajectories, reasoning-trace annota-
tion cost (USD), and task-variation annotation cost (USD) for WebShop, ALFWorld, and WebArena.
Although Llama-3.3-70B-Instruct was served locally, we estimate cost using a market rate of $1 per
1M tokens for comparability.

Method WebShop AlfWorld WebArena
#Trajectory 3600 5200 4800
Reasoning Annotation Costs 3.6 7.8 7.2
Task Variation Annotation Costs 0.5 0.5 0.5

In contrast, concurrent approaches such as Simia-RL (Li et al., 2025) incur substantial ongoing costs,
since they rely on SOTA models like OpenAI o4-mini to interact with the agent online throughout
training, where this process must be repeated every time a new agent is trained. As shown in Table 6
above, even a modest training configuration (e.g., 150 epochs with batch size 16) results in significant
inference expenses, amounting to over 30× the cost of DREAMGYM. On the contrary, DREAMGYM
avoids this repeated cost by design: annotation is performed once-and-for-all in an offline setting,
and the resulting fine-tuned experience model can then be reused indefinitely to generate online
interactions for any agent without incurring additional inference expenses.

We also conduct an ablation comparing Llama-3.3-70B with GPT-4.1 as the annotating model, as
shown in Table 8. GPT-4.1 provides only a small performance improvement over Llama-3.3-70B
while costing 5× more, indicating a relatively low marginal gain. This suggests that the reasoning-
trace annotation stage does not require LLMs with extremely strong reasoning capability and a
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powerful open-source model like Llama-3.3-70B is sufficient for the task. Accordingly, we use
Llama-3.3-70B to annotate all datasets in our experiments.

Table 8: Comparison of annotation costs (USD) and averaged success rate when using Llama-3.3-70B
vs. GPT-4.1 as the reasoning-trace annotator.

Method Llama-3.3-70B GPT-4.1
Annotation Costs 7.2 36
Success Rate 45.0 45.6

C.4 DETAILED STATISTICS OF THE COSTS DURING RL DATA COLLECTION

We provide detailed statistics of the costs incurred during the agent inference stage (i.e., RL data
collection). Table 9 reports the average wall-clock time during the experience model generation per
trajectory, the average number of tokens produced by the experience model per trajectory, and the
total wall-clock training time across WebShop, ALFWorld, and WebArena. In addition, we include
a head-to-head comparison between training agents in DREAMGYM and training in the real-world
environment on WebArena, covering several verifiable metrics, including the average time during
experience model generation per step, average time during experience model generation per trajectory,
environment reset cost, and total training time, as summarized in Table 10 below.

Table 9: Detailed statistics of costs during agent RL data collection across WebShop, AlfWorld, and
WebArena environments, including wall-clock training time (hours), average tokens generated by
the experience model per trajectory, and wall-clock time during experience model generation per
trajectory (seconds).

Metric WebShop AlfWorld WebArena
Wall-clock training time (h) 12 19 15
Avg. tokens per trajectory 2k 5k 8k
Wall-clock time per trajectory (s) 0.3 0.5 0.9

Per-step inference. To accommodate fast environment inference, we serve the 8B experience model
using an efficient vLLM inference stack on 2×A100 GPUs. As shown in both Table 9 and Table 10,
this results in very low inference latency in practice: DREAMGYM requires only 0.08 seconds
on average to generate the reasoning trace and next-state transition for a single step. Importantly,
DREAMGYM consumes less than one second in total to generate all environment states for an
entire trajectory, which is negligible compared to overall GPU training time. It also consumes fewer
than 10K tokens per trajectory (approximately 300–600 tokens per step), since the environment
is synthesized in a token-efficient and sufficiently expressive abstract state space. In contrast, the
real WebArena environment, even when following the official guidelines and hosting 8 concurrent
instances on AWS to minimize the engineering gap, still takes 3.4 seconds per step due to substantial
overhead such as HTTP requests, page rendering, and resource fetching. This does not include
the additional human intervention often required to resolve issues such as pages getting stuck on
login screens or unstable server responses, all of which further degrade the speed and reliability of
real-environment execution.

Environment reset. Moreover, as recommended by WebArena’s official documentation, we manually
reset all environment Dockers after every 50 tasks to avoid cross-task interference, where each reset
takes 300 seconds on average. Although automated scripts are possible, we found them unstable and
less operational in practice. On the contrary, DREAMGYM does not incur any comparable overhead,
and resetting the environment simply involves resetting the prompt, which is instantaneous.

Sampling failures. In addition, we also report the failure rate during trajectory sampling, which is
the proportion of trajectories where at least one state transition fails. Such failures frequently occur
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in WebArena due to infrastructure instability, e.g., network timeouts, page breakdowns, and cross-
task interference, an open issue also explicitly acknowledged in their repository. In contrast, while
DREAMGYM also incurs certain failures (e.g., occasional repetition patterns in model outputs), they
occur far less frequently as model-based transitions are more reliable and controllable. Importantly,
unlike the real environment where a single failed transition invalidates the entire trajectory (requiring
resampling from the beginning), DREAMGYM can simply resample from the failed state, significantly
improving efficiency and fault tolerance.

Table 10: Detailed breakdown of time costs on WebArena, including average time per step (seconds),
average time per trajectory (seconds), environment reset time (seconds), total training time (hours),
and trajectory sampling failure rate.

Method Avg Time per Step (s) Avg Time per Traj (s) Reset Time (s) Total Training Time (h) Sampling Failure Rate (%)
DreamGym 0.08 0.9 0 15 1.7
Real Environment 3.4 54.4 300 120 19.0

Eventually, these factors accumulate into large differences in overall training time. As shown in Ta-
ble 10, DREAMGYM completes a full training run in 15 hours, with the majority of time spent on GPU
training rather than environment inference. In contrast, training with the real WebArena environment
requires over 120 hours, where environment interaction dominates the total cost. Moreover, simply
hosting the WebArena instances on AWS incurs a non-negligible monetary expense (approximately
$272 for 120 hours), as reported in Table 6.

C.5 ABLATION EXPERIMENTS ON REPLAY BUFFER

We conducted an ablation study evaluating the effect of the synthetic-data ratio β of the replay
buffer on both end-to-end agent performance and synthetic state quality. Consistent with the set-
tings in figure 4, state quality is assessed using GPT-4o as a judge, including key criteria such as
hallucination, consistency, diversity, and informativeness, where a higher score indicates the state is
more consistent, diverse, and factual with respect to the real counterpart. We present the evaluation
results on WebArena in Table 11 below. When β = 0.3, the agent achieves the highest success rate
while maintaining the same state-quality score as β = 0 (only real data, where no error accumulation
during self-training is guaranteed), suggesting that introducing up to 30% synthetic data does not
cause additional hallucination or observable error accumulation. Even at β = 0.5, the state quality
score remains high and does not significantly affect the agent’s end-to-end learning effectiveness.

These findings demonstrate that our buffer update and retrieval mechanisms effectively maintain the
quality of the synthetic transitions in the replay buffer, while still allowing them to be challenging
and co-evolve with the agent’s improving policy.
Table 11: Ablation on the ratio of synthetic data β in the replay buffer. We report end-to-end success
rate on WebArena and the average state-quality score evaluated by GPT-4o as judge.

Method Success Rate State Judge Score
β = 0 42.0 1.6
β = 0.1 43.7 1.6
β = 0.3 45.0 1.6
β = 0.5 42.9 1.5

C.6 GENERALIZATION AND LEARNING TRANSFERABILITY.

The results in figure 3 Middle highlight the strong generalization and cross-domain transferability of
the policy trained in DREAMGYM. Notably, (1) when trained on WebShop (Yao et al., 2022), the
policy generalizes to WebArena (Zhou et al.) and surpasses SFT models directly trained there, and
(2) when trained on WebArena, it similarly transfers back to WebShop with superior performance
than the SFT as well. This generalization suggests that DREAMGYM learns within an abstract
meta-representation space, enabling the agent to learn domain-agnostic behavioral priors rather than
memorizing task-specific patterns. However, (3) when the domain gap becomes too large, such as
transferring from web-based environments (WebShop/WebArena) to ALFWorld (Shridhar et al.), the
performance drops significantly, indicating the limits of current meta-representations.
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D THEORETICAL ANALYSIS

In this section, we analyze how policies trained in the synthetic environments of DREAMGYM
can provably improve performance in real environments. We show that, under mild assumptions,
performance guarantees can be established by optimizing learning-centric signals of the experience
model, such as reward accuracy and domain consistency, rather than strict fidelity metrics like state
reconstruction error.

D.1 PROVABLY POLICY IMPROVEMENT IN REAL ENVIRONMENTS TRAINED WITH SYNTHETIC
EXPERIENCES

DREAMGYM trains LLM agents using a reasoning-based experience modelMexp, which interacts
with the agent and induces a synthetic MDP M̂. For brevity, we use M̂ to denote any such
synthetic environment, includingMexp, which is defined in the abstract textual state space, as stated
in section 4.1. The learned policy is then evaluated in the real environmentM, projected into the same
abstract space for comparison. We show that, under standard trust-region policy update assumptions,
a policy optimized in M̂ is guaranteed to also achieve policy improvement in the real environment
M.
Theorem 1 (Policy Improvement J in Real Environment via Synthetic Experiences). Let the real
MDP be M = (S,A, P,R, γ), the synthetic MDP induced by Mexp be M̂ = (S,A, P̂ , R̂, γ),
discount be γ ∈ (0, 1), and let rewards be bounded R, R̂ ∈ [0, Rmax] with Vmax := Rmax/(1− γ).
Assume one-step experience-model errors

εR := sup
s,a

∣∣R(s, a)− R̂(s, a)
∣∣, εP := sup

s,a
TV

(
P (·|s, a), P̂ (·|s, a)

)
, (8)

and a trust-region update π → π′ obtained by optimizing in M̂ with per-state KL radius
sups DKL(π

′(·|s) ∥π(·|s)) ≤ δ, as enforced by the soft KL penalty in PPO and GRPO. Hence

JM(π′)− JM(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]

︸ ︷︷ ︸
synthetic surrogate gain in Mexp

− 4γ

(1− γ)2
Vmax δ︸ ︷︷ ︸

trust-region penalty

− 2

(
εR

1− γ
+

2γRmax

(1− γ)2
εP

)
︸ ︷︷ ︸

experience model error

(9)
In particular, if the synthetic surrogate gain exceeds the two penalties, then JM(π′)≥JM(π).

Specifically, (1) the synthetic surrogate gain denotes the agent’s performance improvement when
trained and evaluated within the synthetic environment provided by the experience modelMexp. (2)
The trust-region penalty corresponds to the KL radius δ constraint, which is softly enforced by PPO
or GRPO. (3) The experience-model error measures how wellMexp preserves learning-relevant
signals of the original environment for agent knowledge acquisition including two key components:
(a) the faithfulness of feedback (εR), i.e., how accurately reward signals reflect real outcomes, and
(b) the domain consistency of state transitions (εP ), i.e., how well state space distributions align
with the dynamics from the original environment.

Notably, these two error terms align with our design insights in section 4.1: the synthetic envi-
ronment need only provide domain-consistent transitions and correct, retrospective learning
signals, without having to clone the original environment at the raw state level. In practice, both
εR and εP can be made very small even whenMexp is trained with minimal trajectory data annotated
with explicit reasoning traces.

Proof of Theorem 1. We first decompose the policy improvement in the real environment through
the synthetic environment:
JM(π′)− JM(π) =

(
JM̂(π′)− JM̂(π)

)
+

(
JM(π′)− JM̂(π′)

)
−
(
JM(π)− JM̂(π)

)
. (10)

By Lemma 1, each of the two policy discrepancy terms
∣∣JM(·)− JM̂(·)

∣∣ is at most ∆model, hence

JM(π′)− JM(π) ≥
(
JM̂(π′)− JM̂(π)

)
− 2∆model. (11)

It remains to lower bound improvement inside the synthetic environment. Using the standard trust-
region bound (Schulman et al., 2015), which is enforced in practice by PPO and GRPO via a per-state
KL radius δ, we have

JM̂(π′)− JM̂(π) ≥ 1

1− γ
Es∼dπ

M̂
, a∼π′(·|s)

[
Aπ

M̂(s, a)
]
− 4γ

(1− γ)2
Vmax δ. (12)
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Combining these two terms yields the inequality in Theorem 1, which completes the proof.

Lemma 1 (Multi-turn experience synthesis error bound). For any policy π, if

εR = sup
s,a
|R(s, a)− R̂(s, a)|, εP = sup

s,a
TV

(
P (·|s, a), P̂ (·|s, a)

)
, (13)

then ∣∣JM(π)− JM̂(π)
∣∣ ≤ ∆model :=

εR
1− γ

+
2γRmax

(1− γ)2
εP . (14)

Proof. We first compare the Bellman operators of the real and synthetic environments. For any
bounded value function V ,

(TπV )(s) = Ea∼π(·|s)
[
R(s, a) + γ Es′∼P (·|s,a)V (s′)

]
, (15)

and let T̂π be the same expression with (R,P ) replaced by (R̂, P̂ ). Thus for any bounded value
function V , the operator difference is bounded as

∥TπV − T̂πV ∥∞ ≤ sup
s,a
|R(s, a)− R̂(s, a)|+ γ sup

s,a

∣∣∣Es′∼P (·|s,a)V (s′)− Es′∼P̂ (·|s,a)V (s′)
∣∣∣
(16)

≤ εR + 2γ∥V ∥∞εP , (17)

which is derived by simply using the definitions of εR, εP and the variational characterization of TV.

Now apply this bound to V = V π
M and add–subtract:

∥V π
M − V π

M̂∥∞ = ∥TπV
π
M − T̂πV

π
M̂∥∞ (18)

≤ ∥TπV
π
M − T̂πV

π
M∥∞ + ∥T̂πV

π
M − T̂πV

π
M̂∥∞ (19)

≤ εR + 2γVmaxεP + γ∥V π
M − V π

M̂∥∞. (20)

By rearranging the contraction term into the left side, we have

(1− γ)∥V π
M − V π

M̂∥∞ ≤ εR + 2γVmaxεP . (21)

Hence

∥V π
M − V π

M̂∥∞ ≤
1

1−γ

(
εR + 2γVmaxεP

)
. (22)

Finally, since JE(π) = Es0∼µ[V
π
E (s0)], we obtain∣∣JM(π)− JM̂(π)

∣∣ = ∣∣∣Es0∼µ

[
V π
M(s0)− V π

M̂(s0)
]∣∣∣ (23)

≤ ∥V π
M − V π

M̂∥∞ (24)

≤ εR
1− γ

+
2γRmax

(1− γ)2
εP (25)

=: ∆model. (26)

This indicates that the gap of agent performance between real and synthetic environments depends
only on reward accuracy and domain consistency errors, rather than on strict fidelity metrics such as
state reconstruction error, etc.
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E DREAMGYM PROMPTS

E.1 WEBSHOP

Experience model reasoning step annotation | WebShop

System Prompt: You are an expert in web navigation and e-commerce environments, special-
izing in providing actionable guidance for state transitions of an experience
model that simulates the environment dynamics.

User Prompt: You are synthesizing environment state transition plans for training
world models in webshopping tasks. You are provided with a task
instruction, a flag indicating whether the trajectory is successful,
and a trajectory {(si, ai)}Ni=1 of the environment state and the
corresponding agent action at each step.
Task Context:
Task: {instruction} Success: {flag}
Trajectory Steps:
" ".join(["Step: {i}, Environment State: {si},
Action: {ai}"]N

i=1)
Your Task:
• Task Tutorial: A high-level guidance of how the environment should
transit step-by-step to interact with the agent under the given task
instruction. It should highlight the critical steps that the agent should
perform in order for the environment to transit to the final successful state.
• State Transition Plans: For each step, first analyze whether the agent’s
action is likely to success or fail based on the task tutorial (e.g. the search
query is too vague or too specific, or the agent clicks the wrong product),
and then provide a concise reasoning trace describing how the environment
should transition given the current state and action.
CRITICAL: You MUST generate exactly one transition plan for each
environment step provided and your state_transitions array must
contain exactly len(env_step_ids) entries, one for each step_id.
For product listing pages, the state transition plan should mention some
actionable details such as the number of products shown on this page,
whether this page should contain the target product given the agent’s action.
Focus on actionable guidance for training the experience model. Keep
responses concise and practical.

Response Format: json { "task_tutorial":
{"Overall Plan": "A one-sentence high-level guidance of how the environ-
ment should transit step-by-step to interact with the agent under the given
task instruction.",
"Success Mode": "Describe the critical steps that the agent should perform
to succeed in the task, where the environment should correspondingly tran-
sit to the successful state. Summarize in one sentence.",
"Failure Mode": "Describe the typical failure mode the agent should avoid,
where the environment should correspondingly transit to the failed state
once the agent performs the action. Summarize in one sentence." },
"state_transitions": [{
"step_id": 0,
"transition_plan": "Analyze whether the agent’s action is good or bad based
on the next state and overall task tutorial, and a corresponding plan for how
environment should respond to this action."}
...
] }
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Task variation dataset construction | WebShop

System Prompt: You are an expert in e-commerce task design and AI training data curation.

User prompt: You are an expert in e-commerce task design. I will give you an orig-
inal web shopping task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
the skills of shopping for the given product.
Original Task: {task instruction}
Product Information:

1. Category: {product_info[’category’]}
2. Product Name: {product_info[’name’]}
3. Available Attributes:

{’,’.join(product_info[’attributes’])
Candidate Variations:{candidates variations}
Criteria for selection:
• Challenging but Feasible: The task should be more specific or

complex than the original, but still achievable, so as to strengthen the
agent’s capabilities for shopping for the given product.
• High Quality: The instruction should be clear, grammatically

correct, and realistic.
•Meaningful Variation: The changes should make the task

meaningfully different (not just trivial changes).
• Realistic: The combination of attributes, options, and price should

make sense for the product category.
Please respond with:

1. The number of your selected variation 1- (len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

Agent Prompt Template | WebShop

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to:
{task_description}.

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[ {available_actions} ].

Now it’s your turn to take one action for the current step. You should first reason step-by-step
about the current situation, then think carefully which admissible action best advances the
shopping goal. This reasoning process MUST be enclosed within <think> </think>
tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.
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E.2 ALFWORLD

Task variation dataset construction | ALFWorld

System Prompt: You are an expert in embodied task design and AI training data curation
for interactive embodied environments.

User prompt: You are an expert in embodied task design. I will give you a feasible
task instruction for an embodied agent and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable embodied reasoning skills.
Original Task: {task instruction}
Environment Context:

1. Room Type: {env_info[’room’]}
2. Objects Present: {’,’.join(env_info[’objects’])}
3. Containers/Surfaces:

{’,’.join(env_info[’locations’])}
Candidate Variations: {candidate variations}
Criteria for selection:
• Challenging but Feasible: The variation should add complexity

(e.g., more objects, constraints, or multi-step actions) without being
impossible.
• High Quality: Clear, grammatical, and realistic in the ALFWorld

context.
•Meaningful Variation: Should involve non-trivial differences in

action type, target object, or target location.
• Realistic: The variation must be consistent with ALFWorld’s

embodied environment dynamics (e.g., no placing a fridge on a lamp).
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]

Agent Prompt Template | ALFWorld

You are an expert agent operating in the ALFRED Embodied Environment.
Your task is to:
{task_description}

Prior to this step, you have already taken {step_count} step(s). Below are the most
recent {history_length} observations and the corresponding actions you took:
{action_history}.
You are now at step {current_step} and your current observation is:
{current_observation}.
Your admissible actions of the current situation are:
[{admissible_actions}].

Now it’s your turn to take an action. You should first reason step-by-step about the current
situation. This reasoning process MUST be enclosed within <think> </think> tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.
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E.3 WEBARENA

Task variation dataset construction | WebArena

System Prompt: You are an expert in designing realistic, diverse, and challenging web
interaction tasks for AI agents.

User prompt: I will provide you with several seed WebArena task
instructions. Your job is to generate new task variations
from each seed. The variations should keep the same general action
type (e.g., search, filter, upvote, navigate, purchase, delete) but differ in
target, constraints, or context, making them realistic, challenging, and
meaningfully different.
Seed Instructions: {list of seed instructions}
Requirements for variations:
• Action Consistency: Preserve the same type of action as the seed

task.
•Meaningful Differences: Change the entities, filters, domains, time

ranges, or constraints so the new task is distinct but natural.
• Challenging but Feasible: The variation should slightly increase

reasoning or constraint complexity, but remain solvable.
• High Quality: Grammatically correct, clear, and realistic web tasks.

Please respond with:
For each seed instruction, generate [K] new task variations. Format your
response as:
SEED: [original instruction]
VARIATIONS:

1. [variation 1]
2. [variation 2]

...
Example:
SEED: List products from living room furniture category by descending
price.
VARIATIONS:

1. List products from bedroom furniture category by ascending price.
2. Show me the most expensive three dining tables available online.
3. Find discounted sofas under $500 in the living room furniture

category.
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High-quality task variation selection | WebArena

System Prompt: You are an expert in interactive web task design and AI training data
curation.

User prompt: You are an expert in web environment task design. I will give you
an original WebArena task instruction and several candidate
variations of this task. Your job is to select the most challenging
yet feasible variation that would be good to train an AI agent to acquire
generalizable skills in web interaction.
Original Task: {task instruction}
Candidate Variations: {candidate variations}
Criteria for selection:
• Challenging but Feasible: The variation should require slightly

more reasoning, precision, or constraints than the original, but still be
solvable by a web agent.
• High Quality: Clear, grammatical, and realistic within the web

environment.
•Meaningful Variation: Keep the same action type (e.g., search,

navigate, sort, submit, upvote, purchase) as the original, but change the
context, target, or condition.
• Realistic: The task should reflect plausible web interactions a user

might request.
Please respond with:

1. The number of your selected variation 1-(len({candidate
variations})).

2. A brief explanation (1-2 sentences) of why this variation is the
most challenging and high-quality.
Format your response as:
SELECTION: [number]
REASONING: [explanation]
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AX-tree state mapping prompt | WebArena

System
Prompt:

You are an agent tasked with extracting and refine a subset of the webpage’s observations
based on the content of the page and user instructions. Perform the following tasks based
on the provided [Information source], including user instructions, interaction history, and
the AXTree observation at the current time step. First, provide high-level reasoning for
the next action by analyzing the provided information. Second, extract relevant webpage
elements based on your high-level reasoning.

User
prompt:

[General instructions]
You are currently on the {domain_info} website. Your task is to generate a Reasoning
and a Refined observation based on the provided inputs.
First, review the User instruction and History of interactions and, then, generate the
Reasoning. Analyze the progress made so far, and provide a rationale for the next steps
needed to efficiently accomplish the user instruction on the {domain_info} website.
Second, refine the Webpage observation at the current time step into a Refined
observation. Extract a subset of the webpage observation (e.g., chart, table, menu items)
that contains necessary information for completing the user instruction, and explain the
extracted elements. Ensure that the information on the elements (e.g., numeric element ID)
is correctly included.
Please follow the format in the [Reasoning & Refinement example] carefully.

[Information source]
User instruction: {user instruction}
History of interactions:{interaction history}
Webpage observation at the current time step:{AXTree observation}

[Reasoning & Refinement example]
Abstract example
Here is an abstract version of the answer, describing the content of each tag. Make sure
you follow this structure and format strictly, but replace the content with your own answer:
<reasoning>
Think step by step. Based on the User instruction, History of interaction, and AXTree
observation at the current time step:

• Provide a high-level description of the AXTree observation at the current time
step.

• Based on the User instruction and History of interaction track your progress and
provide your

reasoning on the next action needed to accomplish the User instruction

Ensure that: Structure your reasoning concisely and follow the following format strictly:
<content_description> High-level description of current page state (max 2 sen-
tences)</content_description> <agent_progress> What has been accom-
plished so far (max 1 sentence)</agent_progress> <next_action_analysis>
What should happen next and why (max 1 sentence)</next_action_analysis>
</reasoning>
<extraction>
Based on your reasoning, identify the elements (e.g., buttons, text fields, static text, table
row, chart) to focus on. Then, explain the semantics and functionalities of each extracted
element. Ensure that: You do not alter the structure of the AXTree observation. You extract
the element ID (id in [ ]) accurately without any errors. When extracting chart or table, you
must extract the entire chart or table to avoid any confusion or loss of information. Unless
necessary, try not to extract url or non-semantic identifiers which is not informative for
the agent actions. All the elements you extract should be actionable and discard irrelevant
elements. Please follow the following format and do not provide any other text besides the
element list.
[ELEMENT_ID] TYPE:DESCRIPTION
[ELEMENT_ID] TYPE:DESCRIPTION
...
[ELEMENT_ID] TYPE:DESCRIPTION
(Extract 3-10 most relevant actionable elements only)
</extraction>
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Agent Prompt Template | WebArena

System Prompt: You are an agent trying to solve a web task based on the content of the
page anda user instructions. You can interact with the page and explore.
Each time you submit an action it will be sent to the browser and you will
receive a new page.

User prompt: Instructions
Review the current state of the page and all other information to find the
best possible next action to accomplish your goal. Your answer will be
interpreted and executed by a program, make sure to follow the formatting
instructions.
User instruction: {user instruction}
History of interactions:{interaction history}
Refined observation of current step: Reasoning {plan}
Focused AXTree observation: {rep_observation}
Action space: 13 different types of actions are available.
• noop(wait_ms: float = 1000)

1. Description: Do nothing, and optionally wait for the given time (in
milliseconds).

2. Examples: noop(),noop(500)
• ...

To save space, please refer to E.3.1 for the full list of actions.

Remark: Only a single action can be provided at once. Exam-
ple:fill(’a12’, ’example with "quotes"’) Multiple
actions are meant to be executed sequentially without any feedback from
the page. Don’t execute multiple actions at once if you need feedback
from the page.

Abstract Example
Here is an abstract version of the answer with description of the content of
each tag. Make sure you follow this structure, but replace the content with
your answer:
<think>
Think step by step. If you need to make calculations such as coordinates,
write them here. Describe the effect that your previous action had on the
current content of the page.
</think>
<action>
One single action to be executed. You can only use one action at a time.
</action>

Concrete Example
Here is a concrete example of how to format your answer. Make sure to
follow the template with proper tags:
<think>
My memory says that I filled the first name and last name, but I can’t see
any content in the form. I need to explore different ways to fill the form.
Perhaps the form is not visible yet or some fields are disabled. I need to
replan. </think>
<action>
fill(’a12’, ’example with "quotes"’)
</action>
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E.3.1 ACTION SPACE OF WEBARENA

• noop(wait_ms: float = 1000)
1. Description: Do nothing, and optionally wait for the given time (in milliseconds).
2. Examples: noop(); noop(500)

• send_msg_to_user(text: str)
1. Description: Send a message to the user. You should send a short answer as a message and do not

ask questions through message.
2. Examples: send_msg_to_user(’the city was built in 1751.’);

send_msg_to_user(’Yes’); send_msg_to_user(’No’);
send_msg_to_user(’31112’); send_msg_to_user(’Yoshua Bengio’)
• scroll(delta_x: float, delta_y: float)

1. Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or down
scrolling, negative for left or up scrolling. Dispatches a wheel event.

2. Examples: scroll(0, 200); scroll(-50.2, -100.5)
• fill(bid: str, value: str)

1. Description: Fill out a form field. It focuses the element and triggers an input event with the
entered text. It works for <input>, <textarea> and [contenteditable] elements.

2. Examples: fill(’237’, ’example value’); fill(’45’, ’multi-line
example’); fill(’a12’, ’example with "quotes"’)
• select_option(bid: str, options: str | list[str])

1. Description: Select one or multiple options in a <select> element. You can specify option
value or label to select. Multiple options can be selected.

2. Examples: select_option(’48’, ’blue’); select_option(’48’, [’red’,
’green’, ’blue’])
• click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] =
[])

1. Description: Click an element.
2. Examples: click(’51’); click(’b22’, button=’right’); click(’48’,

button=’middle’, modifiers=[’Shift’])
• dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] =
’left’, modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’,
’Shift’]] = [])

1. Description: Double click an element.
2. Examples: dblclick(’12’); dblclick(’ca42’, button=’right’);

dblclick(’178’, button=’middle’, modifiers=[’Shift’])
• hover(bid: str)

1. Description: Hover over an element.
2. Examples: hover(’b8’)

• press(bid: str, key_comb: str)
1. Description: Focus the matching element and press a combination of keys. It accepts the logical

key names that are emitted in the keyboardEvent.key property of the keyboard events:
Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape,
ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight,
ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc. You can alternatively
specify a single character you’d like to produce such as "a" or "#". Following modification shortcuts
are also supported: Shift, Control, Alt, Meta.

2. Examples: press(’88’, ’Backspace’); press(’a26’, ’Control+a’);
press(’a61’, ’Meta+Shift+t’)
• focus(bid: str)

1. Description: Focus the matching element.
2. Examples: focus(’b455’)

• clear(bid: str)
1. Description: Clear the input field.
2. Examples:clear(’996’)

• drag_and_drop (from_bid: str, to_bid: str)
1. Description: Perform a drag & drop. Hover the element that will be dragged. Press left mouse

button. Move mouse to the element that will receive the drop. Release left mouse button.
2. Examples: drag_and_drop(’56’, ’498’)

• upload_file(bid: str, file: str | list[str])
1. Description: Click an element and wait for a "filechooser" event, then select one or multiple input

files for upload. Relative file paths are resolved relative to the current working directory. An empty list
clears the selected files.

2. Examples: upload_file(’572’, ’my_receipt.pdf’); upload_file(’63’,
[’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip’])
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E.4 EXPERIENCE MODEL JUDGE

Judge Prompt for Evaluating Experience Models

You are an expert judge for scoring the quality of a predicted state transition in a WebShop environment
simulator.
You are given:
- Current state (before the action)
- The agent action
- Predicted next state (after the action)

Your task:
1) Evaluate the predicted next state on four rubrics, each scored 0, 1, or 2.
2) Provide brief step-by-step reasoning for each rubric.
3) Output a valid JSON object with the rubric scores and the total (sum of the four rubrics). Do not
include extra fields.

General rules:
- Base your judgment only on the provided inputs; do not assume hidden context.
- Use integers only (0/1/2) for rubric scores.
- If an action is invalid or should not change the page, correct behavior may include a no-op with an
explicit failure/empty-result signal.
- Be concise but specific in your reasoning (1–3 sentences per rubric). —
# # # Rubrics (0/1/2) with anchors:
1) Causal State Consistency | Question: Is the predicted next state both logically consistent with the
prior state and causally grounded in the agent’s action semantics (e.g., click → detail page, pagination
→ new results, search → updated listings, back → prior view)?

- 2: Coherent and action-appropriate; all expected updates appear with no contradictions.
- 1: Mostly consistent, but has minor logical or semantic gaps.
- 0: Inconsistent or not causally linked to the action.

2) Diversity & State Variation | Question: Is there a meaningful, non-degenerate change from the
prior state (when change is expected)?

- 2: Substantive, coherent differences (new results, updated filters, changed details).
- 1: Minimal or superficial change.
- 0: No meaningful change, or incoherent jump.

3) Informativeness | Question: Is the predicted state rich, relevant, and internally coherent (e.g.,
listings with meaningful attributes; filters aligned with content)?

- 2: Detailed, relevant, and coherent information.
- 1: Some useful details, but sparse or partially incoherent.
- 0: Uninformative, irrelevant, or incoherent.

4) Hallucination & Failure Feedback | Question: When the action is invalid or yields no results, does
the state reflect an appropriate failure/empty-result signal instead of hallucinating success?

- 2: Correctly signals failure or success as appropriate, no hallucination.
- 1: Partial/ambiguous handling of failure.
- 0: Hallucinates success or ignores failure.

—
### Step-by-step Evaluation (use this structure):
1. Causal State Consistency: <your reasoning> Score: 0/1/2
2. Diversity & State Variation: <your reasoning> Score: 0/1/2
3. Informativeness: <your reasoning> Score: 0/1/2
4. Hallucination & Failure Feedback: <your reasoning> Score: 0/1/2
—
# # # Final JSON Output:
Output a single valid JSON object. Replace angle brackets with integers only.

{"rubric_scores": {
"causal_consistency": <0|1|2>, "diversity": <0|1|2>,
"informativeness": <0|1|2>, "hallucination": <0|1|2> }}
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