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ABSTRACT

Non-monotonic reasoning (NMR) plays a crucial role in logical reasoning, allow-
ing inference to adjust as new information arises. This adaptability is key for large
language models (LLMs) to handle complex problems and adjust reasoning in dy-
namic environments, mimicking human-like flexibility in thought. Recent works
mainly explore using LLMs to address non-monotonic reasoning through textual
logic representation, as LLMs excel in understanding natural language. However,
textual logic representation often leads to ambiguity and complexity, especially in
complex situations, while symbolic logic representation is more clear and precise,
avoiding these issues. In this work, we introduce a framework called Multi-step
Generation for Symbolic and Textual NMR Samples (MG-SymTex) to generate
diverse non-monotonic samples automatically, and build a non-monotonic rea-
soning benchmark, called SymTex, which is used to evaluate the non-monotonic
reasoning capability of LLMs. SymTex comprises two types of description and
three types of predicate, facilitating two primary tasks: Tri-State Boolean Query-
ing and Answer Set Computation. Through our comprehensive evaluations, we
demonstrate that state-of-the-art LLMs such as gpt-4o, claude-3.5-sonnet, and o1-
mini encounter significant challenges when addressing our proposed benchmark,
highlighting the difficulty of non-monotonic reasoning in LLMs.

1 INTRODUCTION
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Figure 1: An example of non-monotonic reasoning in daily life.

Non-monotonic reasoning (NMR) is a complex and essential component of logical reasoning. Com-
pared with monotonic reasoning, it introduces the ability to invalidate previously established conclu-
sions when additional information is incorporated (Ginsberg, |1980; |Reiter, |1988)). Thus, it enables
a more adaptive and context-sensitive inference process. Enhancing non-monotonic reasoning abil-
ity allows LLMs to adapt their reasoning pathways when confronted with conflicting or ambiguous
information, ensuring that LLMs can maintain reasonable reasoning and judgment in the face of
evolving information. McDermott & Doyle| (1980) demonstrated that non-monotonic logics can in-
validate previously established theorems by introducing new axioms. Some key formalisms within
non-monotonic reasoning include Default Reasoning (Reiter} |1980), Abductive Inference (Joseph-
son & Josephsonl [1996)), and Belief Revision (Darwiche & Pearl, [1997).

In routine decision-making, non-monotonic reasoning closely mirrors human cognitive processes,
where initial decisions are often based on habitual or default assumptions, and later adjusted as new,
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Table 1: The difference between SymTex and others. ”Commonsense-driven” indicates the need
for commonsense knowledge in reasoning tasks. Abbreviations in the operations column represent
supported logical operations: SN (Strong Negation), DN (Default Negation), Disj (Disjunction),
and Cons (Constraint). Predicate style refers to the format of predicates: RandS (Random String),
RandW (Random Word), and RelW (Related Word). The Multi-ary predicate and Multi-objects
columns specify the maximum number of arguments and objects involved in tasks, with N/A indi-
cating no specification.

Dataset 11\,/{_21;11;22 Ol\é;lelgs ComDmr io:::nse» mlzfl;;-ery moll\*AI(())?o-nic Operations ~ Logic Style  Predicate Style
0-NLI (Rudinger et al.|[2020} Vv Vi Vv textual RelW
ProofWriter (Tafjord et al.|[2021) 2 2 X v X SN textual RandW
ruletaker (Clark et al.|2021) x v x SN textual RandW
LogicNMR (Xiu et al.|2022) 1 1 X Vv Vv SN,DN textual RandW
generics-exemplars (Allaway et al.||2023} Vv X X textual RelW
LogicBench (Parmar et al.}[2024) 2 2 x N v SN,DN textual RelW

w e v DR e R

context-specific information becomes available (McCarthyl [1986} Brewka et al.,[1997} [Gigerenzer &|
2017). Figure [T]shows a classical example of non-monotonic reasoning. In general, we
consider “the bird can fly”, but if given new information “the bird is injured”, the original conclusion
will be invalidated. Furthermore, if given another new information that “the injury is slight”, “the
bird can fly” will hold again. This example demonstrates how conclusions in reasoning can change
with the addition of new information, highlighting the nature of non-monotonic reasoning.

Recently, the question of whether LLMs process logical reasoning capability, as well as the extent
and nature of their reasoning ability, has received extensive attention, especially in non-monotonic
reasoning. created a pure non-monotonic reasoning dataset called LogicNMR, in-
corporating default rules. |Parmar et al.|(2024) introduced a benchmark, LogicBench, for evaluating
the logical reasoning ability of LLMs, including non-monotonic reasoning. These works, including
ours, focus on evaluating LLMs’ ability to perform symbolic non-monotonic reasoning, which is
the mainstream approach to non-monotonic reasoning (McCarthy] [T980} [Reiter] [T980). In contrast,
the studies in[Rudinger et al.| (2020) and [Allaway et al| (2023) explore non-monotonic reasoning in

natural language, driven by common-sense knowledge.

However, previous studies have overlooked several key factors: (/) They focus primarily on pred-
icates with a single variable, even in multi-subject scenarios, limiting reasoning to one subject.
(2) They have not thoroughly explored how the description of predicates affects LLMs’ reasoning
ability, which description of predicates is crucial for LLMs but not for traditional logic systems.
(3) Most experiments are conducted in textual logic representation, without analyzing LLM per-
formance in symbolic logic representation or comparing reasoning differences between symbolic
and textual formats. Yet, textual logic representation inherently suffers from several disadvantages,
such as ambiguities in natural language descriptions and challenges in conveying complex scenarios.
These limitations are largely absent in symbolic logic representation, which offers a more precise
and structured approach to representing information.

To fill these voids, we introduce a framework called Multi-step Generation for Symbolic and Textual
NMR Samples (MG-SymTex) designed to generate a non-monotonic dataset, referred to as SymTex.
The MG-SymTex framework follows a three-step process: generation, modification, and textualiza-
tion. The dataset, SymTex, is divided into 6 sub-datasets based on description types and predicate
types. The differences between SymTex and related datasets are shown in Table[]] To ensure a
fair evaluation between the symbolic and textual datasets, we structured the SymTex such that sym-
bolic and textual samples correspond one-to-one within each predicate type. There are two tasks
defined in SymTex: (/) Tri-State Boolean Querying, where LL.Ms need to assign a label to a query,
given facts and rules; (2) Answer Set Computation, where LLMs are required to predict all possible
conclusions, given the facts and rules.

We utilize SymTex to explore three questions regarding the non-monotonic reasoning ability of
LLMs:

(1) To what extent do LLMs perform effectively on non-monotonic reasoning?
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(2) What is the performance gap of LLMs in non-monotonic reasoning between symbolic and tex-
tual representations?

(3) To what extent do predicate descriptions influence the non-monotonic ability of LLMs?

Through extensive experiments, we find (/) The non-monotonic reasoning capability of LLMs is
limited, as they struggle with tasks requiring dynamic adjustments and revisions throughout the rea-
soning process; (2) In SymTex, the LLMs’ performance gaps between symbolic and textual logic
representations are -13.0% in average F1 on Tri-State Boolean Querying, and -2.8% in average
EM-F1 on Answer Set Computation; (3) The extent to which predicate types influence reasoning
capability varies across different LLMs. (4) Symbolic and textual samples can potentially comple-
ment each other in LLMs’ reasoning. A comprehensive discussion of these findings and additional
results is provided in Section 3}

‘We summarize the main contributions as follows:

* A novel framework, named MG-SymTex, is proposed to automatically generate diverse non-
monotonic samples by different parameters. MG-SymTex supports diverse sample styles and
logical operations.

* A benchmark, named SymTex, is generated using MG-SymTex, which encompasses two primary
tasks regarding non-monotonic reasoning, namely Tri-State Boolean Querying and Answer Set
Computation. Additionally, it includes a dedicated subset aimed at assessing the ability of LLMs
to correctly retract prior conclusions when presented with new critical information.

* An extensive experimental evaluation is conducted to assess the performance of LLMs, illustrating
their limitations in non-monotonic reasoning. All codes and datasets will be publicly available
when the paper is accepted.

2 RELATED WORK

2.1 NON-MONOTONIC REASONING

Non-monotonic reasoning (NMR) refers to a type of reasoning in which conclusions drawn from a
set of premises can be retracted when new information is introduced. McCarthy| (1980) presented
circumscription, limiting reasoning to known facts in non-monotonic scenarios. Reiter| (1980) de-
veloped a logic for default reasoning, applying default rules to draw conclusions with incomplete
information. [Pearl| (1988) explored non-monotonic reasoning with causal relations affecting be-
lief updates. |[Lascarides & Asher|(1993)) interpreted discourse relations using defeasible rules from
commonsense knowledge. [Chen et al.| (2010) demonstrated that, in the propositional case, non-
monotonic reasoning can be represented as an equivalent answer set program.

2.2 MONOTONIC LOGICAL REASONING WITH LLMS

Recently, LLMs have shown a powerful ability in various monotonic logical reasoning tasks, such as
Multi-Step Reasoning (Saha et al., [2023} |[Fu et al.| 2023) and Commonsense Reasoning (Tian et al.
2023} |Perak et al., [ 2024). However, LLMs also exhibit notable limitations in reasoning tasks. Wang
et al.| (2024b) showed that LLMs’ understanding of fundamental reasoning rules lags significantly
behind human capability. Similarly, |Srivatsa & Kochmar|(2024) explored the challenges LLMs face
in solving math word problems, while|L1 et al.|(2024)) demonstrated that LLMs perform considerably
worse than neural program induction systems in reasoning tasks. Wang et al.| (20244a)) illustrated
that LLMs struggle with understanding TBox NI transitivity rules. [Parmar et al.| (2024) showed
that LLMs do not perform well in logic reasoning, even though they are in single inference rule
scenarios. In this work, we identify a significant limitation of LLMs in their difficulty with non-
monotonic reasoning.

2.3 NON-MONOTONIC REASONING BENCHMARK FOR LLMS

To evaluate the non-monotonic reasoning of language models, Rudinger et al.| (2020) built a non-
monotonic inference dataset called §-NLI, which provides new information to influence the belief of
conclusions; Brahman et al.|(2021)) constructed a dataset based on §-NLI, providing the rationale for
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the impact of new information; (2022) introduced a dataset named LogicNMR, consisting
of textual non-monotonic reasoning samples; Leidinger et al. (2024} focused on whether LLMs can
maintain stable belief in generics at the addition of new information using the dataset from [Allaway|
(2023). Our work focuses on comprehensively evaluating the pure non-monotonic reasoning
ability of LLMs, including symbolic and textual logic representation.

2.4 LLMs AS LoGIC SOLVERS AND CODE EXECUTORS

Recently, code has been recognized as a powerful tool for LLMs (Yang et al 2024b) to access
and leverage external sources. Meanwhile, there has been growing interest in exploring the role
of LLMs as logic solvers and code executors. For example, [Feng et al| (2023) utilized LLMs as
Prolog logic solvers to address parsing errors in logic programs. Similarly, |(Chen et al.| (2024b)
explored how to guide LLMs in simulating logic solvers to execute Propositional Logic or Satisfi-
ability Modulo Theories (SMT) programs, using natural language, Z3Py (Moura & Bjgrner, [2008)),
or SMT-LIB (Barrett et al} 2010). Additionally,[Wang et al.| (2024c)) demonstrated that LLMs can
serve as executors when generated Z3 programs fail during execution, and[Lyu et al| (2024) explored
the feasibility of using LLMs as Python code executors. Our work focuses on leveraging LLMs as
ASP solvers.

3 NON-MONOTONIC REASONING

In this work, we employ the framework of Answer Set Programming (ASP) (Gelfond & Lifschitz,
because it is one of the most popular mechanisms for non-monotonic reasoning. An
ASP program is a set of rules of the following form:

w(x) « a1(X1), .+, Qn(Xm), N0t g1 (Xy 1) -0, NOL (X)) €))

where each «;(x;) is a literal of the form p(x;) (positive literal) or —p(x;) (negative literal), and each
x; consists of variables and constants. In ASP, “not” and “—” are called the default negation and the
classical negation (strong negation). An ASP program (rule) is ground if there are no variables. A
fact is a ground rule with n = 0. We often write an ASP problem as a pair (W, D) with W a set of
facts, and D a set of rules.

For example, assuming the bird is named Tweety, the three ASP programs P; = (W;, D),i =0,1,2,
where
Wy = {Bird(Tiveety)}; W1 = Wy U {Injured(Tweery) }; Wo = W1 U {SlightlyInjured(Tweery)}
D = {CanFly(A) + Bird(A), not Abnormal(A);
Abnormal(A) « Injured(A), not SlightlyInjured(A)}

represents the scenario depicted in Figure[I] Initially since Wy contains only “Bird(Tweety)”, P,
intuitively entails “CanFly(Tweety)”. The new information “Injured(Tweety)” in (W7, D) triggers
the second rule in D, entails “Abnormal(Zweety)”, and invalidates the first rule in D. Finally the fact
“SlightlyInjured(Teety)” in (W, D) invalidates “Abnormal(Tiveety)”, allowing “CanFly(Tweety)”
to be inferred once again.

The semantics of ASP are characterized by the notion of answer sets, also known as stable mod-
els|Gelfond & Lifschitz] (1988). An answer set S of (W, D) satisfies the following properties (Baral,

2003):

e W C S: All facts in W are included in the answer set S.

 For every rule (w + ai,...,0m,00t Qpyt,...,n0t ap) € D, if a1,...,q,, € S and
Qi 1y -y Oy € S, then w € S. This ensures that the rules in D are respected in S.

Following our running example, Py has a unique answer set WoU{CanFly(Tweery)}, P; has a unique
answer set W1 U Abnormal(Tiveety), and P» has a unique answer set Wo U {CanFly(Tweety)}.

In general, an ASP program may have 0, 1, or multiple answer sets. However, for the purpose of
this work, we only consider ASP programs that have a unique answer set. We left the more general
case to future work.
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The ASP paradigm has been implemented in several ASP solvers, e.g., DLV (Alviano et al., [2017)
and Clingo (Gebser et al.,[2012)). In this work, the use the latest version of DLV, dleﬂ to validate the
correctness of the symbolic samples in SymTex. For each symbolic sample, we represent the cor-
responding ASP program using the syntax supported by d/v2. Detailed examples of these programs
are provided in Appendix [A]

4 MG-SYMTEX

We propose a dataset generation framework called Multi-step Generation for Symbolic and Textual
NMR Samples (MG-SymTex), which consists of three key steps: generation, modification, and
textualization. Figure [2]illustrates the complete framework of MG-SymTex, along with examples
from each stage. The use of a synthetic dataset is to provide a controlled environment that allows
for direct evaluation of models’ non-monotonic reasoning abilities, while eliminating the influence
of semantics on the results.

25 ~
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Figure 2: Overall framework and examples of MG-SymTex. The red parts are the modifications
against the example in the previous stage.

4.1 GENERATION

In the generation phase, we aim to produce templates for use in the subsequent stages. These tem-
plates possess the following properties: (/) The description style of predicates and subjects is con-
sistent, with subjects labeled as “name_i” for subject i and predicates labeled as “w_i” for predicates
i. (2) The templates are free from cyclic deductions. (3) No special operations, such as negation,
disjunction, or constraints, are present in templates.

By first generating templates and then modifying them to create symbolic samples, the diversity
of the dataset can be increased while reducing redundancy and similarity. The templates offer a
consistent and structured foundation, ensuring well-defined logic and format.

The required parameters for the generation process are detailed in Table[2] To generate a template,
start by creating n ¢ facts using the parameters maz,, and maw,yy,. For each fact, randomly select
up to maw,, terms (with replacement) from the set {name_i | 0 < i < Mmawxsy} to serve as
arguments, and assign the predicate as w;. Next, generate n, rules by selecting up to maz,, terms
from the set {w_i | 0 < ¢ < ny + j} (including facts and the conclusions of previously created
rules) to form the conditions of each rule. For each rule, randomly select up to max,, arguments,
and assign the predicate w_(n,. + j) as the rule’s conclusion. To differentiate between rules and
facts, convert arguments name._¢ into letters (e.g., name_0 — A, name_1 — B) for rules. The top left
corner of Figure 2 shows examples for generating facts and rules.

'https://dlv.demacs.unical.it/
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4.2 MODIFICATION

4.2.1 PROGRAM

After generating templates, we refine them through a modification process to produce symbolic sam-
ples in SymTex. Specifically, we employ 2 types of modification operations: structural modification
and predicate modification.

As shown in the bottom of Figure [2] for structural modification, we introduce 6 different operations:

* Negation: Includes strong negation and default negation. The strong negation “-w” is true when
the corresponding proposition “w” is explicitly false, while the default negation “not w” (also
known as negation as failure) is true when there is no evidence to support the truth of “w”. For
example, “not w” can be true in two cases: either “-w” is explicitly asserted, or there is no available
information regarding “w”.

* Disjunction: Specifies a logical “or” operation, where at least one of the conclusions is true,
denoted as “|”.

* Deletion: Removes a fact or rule from the structure.

* Random Param: Adjusts the position of predicate parameters.

* Insertion: Adds a fact or rule to the structure. In this operation, a special logic construct called
“constraint” may be introduced, represented as “:- A, B”, which indicates that A and B cannot
hold true simultaneously.

Moreover, for predicate modification, we introduce 3 various operations:

» Related Word: Uses a text encodeﬂ to a build vector database by word along with its definition
for WordNet (Miller} [1995). Then, randomly selects a word and identifies the top-k words with
the highest cosine similarity to it as predicate descriptors. For subject descriptors, we utilize the
Python library Fakeﬂ to generate random names.

* Random Word: The process is similar to that of “Related Word”, but instead of choosing specific
words, randomly selects k words to use as predicate descriptors.

* Random String: Randomly generates k strings as predicate and object descriptors.

Where k means the number of predicates in the given sample.

In practice, we first perform structural modification on templates, followed by predicate modifi-
cation. During structural modification, each operation is assigned an independent probability of
execution for each applicable fact and rule. Different operations can be executed simultaneously,
depending on their respective probabilities. One template will be modified multiple times to build
various samples. After modification, samples will be fed in dlv2 for correctness verification.

4.2.2 ANSWER SET GENERATION

We conduct dIv2 to execute the modified samples and corresponding templates to acquire answer
sets Sys and ST, respectively. The labels of samples are built according to Sy, and Sp. For each

atoma € Sy
T, a € St
L,= { F, -acSr 2

M, otherwise
Where L, is the label of a, and the a € S}, is negation-free.

4.3 TEXTUALIZATION

To generate textual samples that align one-to-one with symbolic samples, we use a template-based
approach to create the corresponding textual datasets. A predefined linguistic template is utilized
to map symbolic facts and rules to human-readable text. Conditions are placed after the “[if]”

2We utilize the bge-m3 (Chen et al.,[2024a) as the text encoder, which is available atlhttps://github.
com/FlagOpen/FlagEmbedding.
’https://faker.readthedocs.io/en/master/
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Table 2: The parameters of the genera- Table 3: Proportions (%) of various logical

tion process. operations within the dataset samples.
Parameter  Description Predicate ~ Strong — Default . o raint
ny The number of facts. type  Negation Negation )
Ny The number of rules. random 100 48.8 4.1 12.4
- —— string

AT sup The maximum number of subjects

. random

in facts. word 100 50.6 4.1 12.4
MAL qr The maximum arity of rules.

ar ‘ oy & related 100 493 41 124

Maxay The maximum arity of predicates. word

Table 4: The statistic for each subdatasets in SymTex.
description type  predicate type ~ #samples #queries avg #labels T:F:M

symbolic random string 28,780 120,775 4.2 0.8:0.5:1.7
textual random string 28,780 120,775 4.2 0.8:0.5:1.7
symbolic random word 28,180 118,214 4.2 0.8:0.5:1.7
textual random word 28,180 118,214 42 0.8:0.5:1.7
symbolic related word 28,434 119,073 4.2 0.8:0.5:1.7

textual related word 28,434 119,073 42 0.8:0.5:1.7
sum - 170,788 716,124 - -

placeholder, and consequently follow the “[then]” placeholder. If default negation is present, it
appears after the “[unless]” placeholder.

For each predicate, specific templates are applied: For single-argument predicates, the argument
is placed before the “is” placeholder, and the predicate itself follows “is”. For multi-argument
predicates, the arguments are placed before the “are” placeholder. If negation is present, “not” is
added after “is” or “are”. For constraints, the conditions are framed between “It’s not permissible for
[ and “] to be true at the same time”. The top right corner Figure[2]and Appendix [B]show examples

for textualization.

4.4 SYMTEX

We employ the MG-SymTex framework to generate the SymTex dataset, as detailed in Figure 4]
The statistic of SymTex is shown in Table ] where SymTex comprises 6 sub-datasets, each with
varying description and predicate configurations. In total, the dataset includes 170,788 samples
and 716,124 queries. The proportions of various logical operations within SymTex are shown in
Table[3] The examples of SymTex are shown in Appendix [B] The differences between SymTex and
other related datasets are shown in Table[l} Details for comparison between Symtex with others are
shown in Appendix [C] and the rule cover of SymTex is shown in Appendix[D}

The SymTex is designed to support two primary tasks: Tri-State Boolean Querying and Answer Set
Computation.

* Tri-State Boolean Querying: Given a program (facts, rules) and a query g € Sp, the task is to
determine the label of ¢, denoted as L, € {T, F, M }.

* Answer Set Computation: Given a program, the task is to generate the answer set Sj; while
excluding the facts. The focus is on generating queries labeled as “T” or “F”.

5 EXPERIMENTS

5.1 EVALUATION SETUP

5.1.1 MODELS

To assess the zero-shot reasoning capability of LLMs using the SymTex dataset, we conducted
experiments on 8 LLMs: gwen2-7b (Yang et al., 2024a), mistral-7b (Jiang et al 2023)), llama3-
8b (Al 2024)), gptd4o-mini (OpenAl, 2024b), gpt-4o (OpenAll [20244a)), claude-3-haiku (Anthropic}
2024b), claude-3-5-sonnet (Anthropic, 2024a)), and ol-mini (OpenAll |2024c). For each task, we
use the same prompt across all LLMs. The detailed prompts used in experiments are shown in

Appendix [E]
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5.1.2 METRICS

For Tri-State Boolean Querying, we use the Marco-F1 (F1) score as the evaluation metric, while for
Answer Set Computation, we adopt the exact match F1 (EM-F1).

For Tri-State Boolean Querying, each sample is assigned a single prediction label, and a prediction
is considered correct only if it exactly matches the corresponding ground truth label. For Answer
Set Computation, each sample is associated with a set of predicted answers, and a predicted answer
is regarded as correct strictly when it matches an entry in the ground truth answer set without any
discrepancies, including those in formatting, such as whitespace or case sensitivity.

All experiments are conducted with three independent runs, and we report the averaged results.
Detailed findings and evaluations with additional metrics are provided in the Appendix [G.I}

5.1.3 IMPLEMENTATION DETAILS

To ensure the stability of the output as much as possible, we set the temperature to 0 for all LLMs.
To comprehensively evaluate various aspects of LLMs’ reasoning capability, we derive different
subsets from SymTex, with each subset generated through 3 independent runs, each comprising
1000 instanced’} We construct 3 subsets as follows:

(1) SymTexrp, aims to evaluate the overall reasoning ability of LLMs. It includes some samples
that may not directly use default negation in reasoning, used to compare with Subset 2 which fo-
cuses directly on non-monotonic reasoning. (2) SymTex%’lQ aims to evaluate whether LLMs can
change their prediction when facing information conflicting with default negation. (3) SymTex ,g¢
aims to evaluate the LLMs’ capability to solve ASP programs, which needs to generate all possible
conclusions. Details for subset construction are shown in Appendix [F}

5.2 MAIN RESULTS & ANALYSIS

We report the results of SymTex g, SymTex%I;AQ, and SymTex ,4¢ in Table Our main observations
are summarized as follows:

(1) To what extent do LL.Ms perform effectively on non-monotonic reasoning? The non-
monotonic reasoning capability of LLMs is limited.

In the Tri-State Boolean Querying task, although the powerful LLMs (gpt-4o, claude-3.5-sonnet,
and o/-mini) achieve a high average F1 of nearly 80% in the textual settings of SymTexg, (Table

, their performance in SymTexI%IgAQ dramatically decreases, especially in claude-3.5-sonnet whose
average F1 drop from 80.8% to 54.9%. This indicates that LLMs struggle with tasks that require
dynamic adjustments and revisions in reasoning processes.

In the Answer Set Computation task, from the results in TableEl, we observe that the smaller-scale
LLMs perform extremely poor in the Answer Set Computation task (range of avg F1 between 0.2%
and 1.9%), and similarly, the larger-scale LLMs also demonstrate relatively limited performance in
this task (range of avg F1 between 10.8% and 40.6%). Although larger-scale LLMs show some
improvement over smaller-scale LLMs, the enhancement is still inadequate given the Answer Set
Computation task. This indicates that merely increasing the size of LLMs does not lead to substan-
tial performance gains in Answer Set Computation, highlighting significant challenges that current
LLMs face in handling this task.

(2) What is the performance gap of LLMs in non-monotonic reasoning between symbolic
and textual representations? In the Tri-State Boolean Querying task, the LLMs’ performance
on the textual setting consistently outperforms that on the symbolic settings, where average F1 gains
+13.0% and +9.7% improvement in SymTexp, (Table | and SyrnTex¥I§/1Q (Table respectively.
In the Answer Set Computation task, the average EM-F1 1n the textual setting outperforms that on
symbolic, gaining +2.8% improvement (Table5).

While LLMs exhibit stronger performance in textual settings, further analysis shows that symbolic
and textual samples are complementary (Table[6). When used together for reasoning, LLMs have the

*For 01-mini, the temperature is set to 1, as this is the only supported configuration currently, and the sample
number of subsets is set to 100.
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potential to achieve more accurate answers, highlighting the importance of symbolic logic samples.

(3) To what extent do predicate descriptions influence the non-moneotonic ability of LLMs?
Both in the Tri-State Boolean Querying and Answer Set Computation tasks, LLMs averagely per-
form better in random string settings, suggesting that the semantic information of predicates will
impact the reasoning ability of LLMs.

In addition, Appendix (G| provides further experimental results, including the impact of Chain-of-
Thought (Appendix and various temperature settings (Appendix for LLMs’ capability of
non-monotonic reasoning, along with a fine-grained analysis (Appendix and an in-depth error

case study (Appendix[G.5).

Table 5:  Performance of LLMs on SymTexrg), SymTex%g/'Q and SymTex gc. claude-3-H and
claude-3.5-S are the abbrevation of claude-3-haik and claude-3.5-sonnet. Desc Types means de-
scription types. Sym and Tex mean symbolic and textual respectively. RandS, RandW and RelW
mean random string, random word and related word, respectively.

SymTexygq (F1) SymTexipo(F1) SymTex ysc(EM-F1)

Model Desc Types Predicate Types Desc Types Predicate Types Desc Types Predicate Types

Sym Tex RandS RandW RelW Sym Tex RandS RandW RelW Sym Tex RandS RandW RelW
qwen2-7b 332 38.6 41.3 312 352 29.6 39.0 372 32.1 33.7 1.9 1.9 1.7 L5 25
mistral-7b 294 289 28.8 29.0 29.8 26.5 269 258 273 272 0.2 1.5 0.6 0.8 1.2
llama3-8b 313 47.1 39.3 38.4 399 26.6 37.0 314 333 30.8 1.3 0.4 0.3 0.9 1.4
gpt-40-mini 36.5 57.6 49.0 46.0 46.2 245 41.9 34.2 33.6 319 11.8 12.7 13.3 10.7 12.8
claude-3-haiku 38.7 559 457 49.2 47.1 252 422 335 35.1 32.7 12.1 10.8 11.4 11.6 115
gpt-4o 51.6 73.7 63.5 62.0 62.5 39.5 63.5 537 50.7 50.2 209 26.2 24.8 228 23.1
claude-3.5-sonnet 73.0 80.8 755 78.7 76.5 549 539 52,6 574 534 30.0 256 311 244 28.0
ol-mini 58.0 81.5 74.5 67.8 67.0 51.3 51.2 583 47.8 477 19.4 40.6 31.6 30.0 28.5
average 44.0 58.0 522 50.3 50.5 348 44.5 40.8 39.6 38.4 122 15.0 14.3 12.8 13.6

5.3 VARIABLE IMPACT ANALYSIS ON RESULTS

To analyze the variables that significantly impact the results, we conduct experiments with varying
numbers of query arity, related facts and rules, as well as noisy facts and rules. Specifically, the
removal of related facts and rules alters the query label, whereas the removal of noisy facts and rules
has no effect on the label.

From the results in Figure[3] the number of query arity, related facts, related rules, and noisy facts
significantly impact the results. Increasing query arity, related facts, and related rules generally leads
to a decrease in the F1 score. For noisy facts, their impact is small when fewer than 5, but becomes
more significant with numbers greater than 5, resulting in a more noticeable decline in F1.

1 1 3 01 23 45678 910 01 2 3 4 5 6 7 8 9

2 3 1 5 z 3 1 2
#Arity of Query #Related Facts #Related Rules #Noisy Facts #Noisy Rules

Figure 3: Results of different variables on SymTexp,.

Textual Symbolic

False2True True2Maybe False2True True2Maybe

gpt-4o-mini
claude-3-haiku
gpt-4o0
claude-3.5-sonnet
ol-mini

False2Maybe 0:2.040:6. gyezraise FalsezMayb £ N0-2 0406 True2False

Maybe2True Maybe2False Maybe2True Maybe2False

Figure 4: The fine-grained statistic of error samples on SymTex%g’[Q. The values are calculated by

dividing the number of errors by the total number of true labels for each respective category. “X2Y”
means the true label is X but the prediction is Y.
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5.4 ERROR ANALYSIS

To investigate the specific sources of errors in

non-monotonic reasoning exhibited by LLM:s,

we categorize the error types, as illustrated in Table 6: The percentage of correct/incorrect pre-
Figure ] We observe that in the textual set- diction combinations for different models. “S”
ting, only a small number of errors result from and “T” mean in the symbolic and textual setting
the model misclassifying the label “T” as “F” respectively. “C” and “I” mean correct and incor-
or vice versa. The majority of errors are related rect respectively.

to the label “M”, occurring either when the true Models SCTC  SICT1 SITC  SITI
label is “M” or when the model incorrectly pre- claude-35-sonnet 645 108 184 64

. . . ept-do 444 102 30.1 153
dicts “M”. In the symbolic setting, although the claude-3-haiku 309 %6 250 346
performance of LLMs generally drops signifi- gpt-4o-mini 23 130 329 299

cantly, the majority of errors are still related to

the label “M”. This indicates that the inclusion of the label “M” significantly reduces the reason-
ing ability of LLMs, suggesting that LLMs struggle with handling ambiguous or complex cases
represented by “M”.

Additionally, as shown in Table [§] we compare how different models handle the same sample in
symbolic and textual formats, examining the correct and incorrect prediction combinations in each
format. The results show that the error rates in both formats are relatively low, suggesting that
symbolic and textual formats are complementary. Using both formats together for reasoning could
lead to more accurate answers, highlighting the importance of symbolic logic samples.

5.5 IMPACT OF NEW INFORMATION

To analyze the reaction when LLMs face new key information, we statistic the prediction shift
on SymTex%I;"Q. From the results in Figure 5} we observe that introducing new information alters
the predictions of the LLMs in 55.8% of the cases, and the accuracy of revised predictions is only
22.3%. Compared with different description types, the performance of LLMs in the symbolic setting
is generally much better than that in the textual setting. The findings suggest that while LLMs are
somewhat responsive to new information, they struggle to effectively incorporate it into correct
predictions.

Prediction Shifts

0.75 == Symbolic
= aom o m 23 Textual

= — —- N “ J ! [ a--F - r:nu:m string
o050 4 random word
5 = related word
3 / E ] i

£o2s5 B : e o W

al L i 117 | P L VR L L
9

0.00

ol-mini claude-3.5-sonnet gpt-40 claude-3-haiku pt-4o0-mini

Figure 5: Prediction shifts of LLMs when exposed to new informationon SymTexI;gIQ. The dark bars
represent the proportion of predictions that change upon encountering new information, while the
lighter bars represent the proportion of changes that lead to correct predictions. The red and blue
dashed lines indicate the average values for these two cases, respectively.

6 CONCLUSION

In this work, we present MG-SymTex and introduce SymTex, a benchmark designed to evaluate
LLMs’ non-monotonic reasoning ability. SymTex includes diverse descriptions, predicates, and
a rich set of logical operations. We define two key tasks: Tri-State Boolean Querying and An-
swer Set Computation, to rigorously assess LLM performance. Our experiments reveal significant
limitations in current LLMs’ ability to handle non-monotonic reasoning. Here are a few poten-
tial future research directions that could mitigate the aforementioned limitations: (/) Develop hy-
brid architectures that integrate symbolic logic representation with neural networks to leverage the
strengths of both approaches; (2) Propose new innovative methods specifically tailored to enhance
non-monotonic reasoning capability in LLMs; (3) Incorporate external modules, such as specialized
reasoning agents, to augment and support the LLMs’ inferential processes.

10
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7  REPRODUCIBILITY

The codes and datasets for this work, including the construction of SymTex and its subsets, as well as
the evaluation of LLMs, are provided in the Supplementary Material. To ensure reproducibility, we
fix the random seed during each dataset construction step. Upon acceptance, all codes and datasets
will be made publicly available.
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A AN EXAMPLE OF DLV2

The symbolic sample of the scenario in Figure[T]is as follows:

Bird ("Tweety") .

Injured("Tweety") .

SlightlyInjured ("Tweety") .

CanFly (A) :— Bird(A), not Abnormal (A).

Abnormal (A) :— Injured(A), not SlightlyInjured(A).

B EXAMPLES OF SYMTEX

Figure [6] [7] and [§]illustrate SymTex under the random string, random word, and related word
settings, respectively. Figure|9| presents examples of SymTexglng.

The examples for sample textualization are as follows:

e w2(A):-w.0(A), -w_1(A, B) — [if] Ais w_0; A, and B are not w_1, [then] A is w_2.

e -w_2(A,B) :- w.0(A), not w_1(A, B) — [if] A is w_0; A, [unless] A, and B are not w_1, [then] A,
and B are not w_2.

e - w_0(A), -w_1(A, B) — It’s not permissible for [ A is w_0; A, and B are not w_1 ] to be true at
the same time.

Random String Random String
Facts: Facts:
-rgKsgZXfFw("IxqsqwQscUv"). IxqsqwQscUv is not rgKsgZXfFw.
-rgKsgZX{Fw("vFQjZouGaBkZo"). vFQjZouGaBkZo is not rgKsgZXfFw.
rgKsgZXfFw("LdDmrsnawOBER"). LdDmrsnawOBER is rgKsgZXfFw.
rgKsgZXfFw("qWSySc"). qWSySc is rgKsgZXfFw.
Rules: Rules:
-BjWlwwuq(A) :- rgKsgZXfFw(A). [If] A is rgKsgZX{Fw, [then] A is not BjWlwwuq
sjJWHSK(A,A,A,A,A) :- ZzZhiFPBRyt(A), not -BjWlwwuq(A). [1f] A is ZzZhiFPBRyt, [unless] A is not BjWlwwugq, [then] A, A, A, A
aTXNaZZOjXuxR(A) :- -JglmSOaqbBZquh(A), not -rbUuFVA(A). and A are sjJWHSK

[If] A is not JglmSOaqbBZquh, [unless] A is not tbUuFVA, [then] A is
Queries: aTXNaZZOjXuxR
{"label": "M", "query": "BjWIlwwuq(\"IxqsqwQscUv\")"},
{"label": "M", "query": "BjWlwwuq(\"vFQjZouGaBkZo\")"}, Queries:
{"label": "F", "query": "BjWIlwwuq(\"LdDmrsnawOBER\")"}, {"label": "M", "query": "IxqsqwQscUv is BjWlwwuq"}
{"label": "F", "query": "BjWlwwuq(\"qWSySc\")"} {"label": "M", "query": "vFQjZouGaBkZo is BjWlwwuq"}

{"label": "F", "query": "LdDmrsnawOBER is BjWlwwuq"}

{"label": "F", "query": "qWSySc is BjWlwwuq"}

Figure 6: An example of SymTex in Random String setting.
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Random Word

Random Word

Facts:
see("Wendy_Perez","Joshua_Rodriguez","Daniel_Crane").
see("Joshua_Rodriguez","Victor_Olson","Amy_Golden").
-understand("Daniel_Crane").
cost("Wendy_Perez","Victor_Olson","Joshua_Rodriguez").
understand("Wendy_Perez").

Rules:

:- -part(B,A,A,D,D), not -part(B,A,A,D,D), good(E,D,A).
-good(D) :- understand(D), -see(E,A,B).

-top(A,A) :- understand(A).

Queries:

{"label": "M", "query": "good(\"Daniel_Crane")"}

{"label": "M", "query": "good(\"Wendy_Perez\")"}

{"label": "M", "query": "top(\"Daniel_Crane\",\"Daniel_Crane\")"}
{"label": "F", "query": "top(\"Wendy_Perez\",\"Wendy_Perez\")"}

Facts:

Wendy_Perez, Joshua Rodriguez and Daniel_Crane are see.
Joshua_Rodriguez, Victor_Olson and Amy_Golden are see.
Daniel_Crane is not understand.

Wendy_Perez, Victor_Olson and Joshua_Rodriguez are cost.
Wendy_Perez is understand.

Rules:

It's not permissible for [E, D and A are good; B, A, A, D and D are not
part; B, A, A, D and D are not part] to be true at the same time

[If] D is understand; E, A and B are not see, [then] D is not good

[If] A is understand, [then] A and A are not top

Queries:
{"label": "M", "query": "Daniel_Crane is good"}
"label": "M", "query": "Wendy Perez is good"
query y_ g
{"label": "M", "query": "Daniel_Crane and Daniel_Crane are top"}
"label": "F", "query": "Wendy Perez and Wendy Perez are top"
query y_ y_ P

Figure 7: An example of SymTex in Random Word setting.

Related Word

Related Word

Facts:
-moderatism("Danielle_Berry","Mark Benson").
moderatism("Todd_Bowen","Suzanne Higgins").
-moderatism("Danielle_Berry","Danielle_Berry").

Rules:

-Town(B) :- -aesthetics(A), -technologist(A,B), not -activism(A,B).
-onyxis(A) :- -aesthetics(A).

hawkishness(B) :- -moderatism(A,B).

:- Town(B)

Queries:

{"label": "T", "query": "hawkishness(\"Danielle_Berry\")"}
{"label": "T", "query": "hawkishness(\"Mark_Benson\")"}
{"label": "M", "query": "hawkishness(\"Suzanne Higgins\")"}

Facts:

Danielle_Berry and Mark_Benson are not moderatism.
Todd_Bowen and Suzanne Higgins are moderatism.
Danielle_Berry and Danielle_Berry are not moderatism.

Rules:

[1f] A and B are not technologist; A is not aesthetics, [unless] A and B
are not activism, [then] B is not Town

[If] A is not aesthetics, [then] A is not onyxis

[If] A and B are not moderatism, [then] B is hawkishness

It's not permissible for [B is Town] to be true at the same time

Queries:

{"label": "T", "query": "Danielle_Berry is hawkishness"}
{"label": "T", "query": "Mark_Benson is hawkishness"}
{"label": "M", "query": "Suzanne_Higgins" is hawkishness"}

Figure 8: An example of SymTex in Related Word setting.

Facts:
policy("James_Boyer").
policy("Mary_Harris").

Rules:

-catch(A) :- policy(A)

-ask(A) :- policy(A), not situation(A)

data(A) :- policy(A), -feeling(B)

situation(A) :- not -policy(A), data(A), catch(A)
right(A) :- catch(A), -situation(A)

garden(A) :- situation(A)

them(A)|-catch(A) :- -policy(A), -garden(A)

Query:
ask("James_Boyer")

Label:
False

Facts:
policy("James_Boyer").
policy("Mary_Harris").
situation(''James_Boyer')

\
Rules: contradict
-catch(A) :- policy(A) ¥
-ask(A) :- policy(A), not situation(A)
data(A) :- policy(A), -feeling(B)
situation(A) :- not -policy(A), data(A), catch(A)
right(A) :- catch(A), -situation(A)
garden(A) :- situation(A)
them(A)|-catch(A) :- -policy(A), -garden(A)

Query:
ask("James_Boyer")

Label:

Maybe < Invalidate——

Figure 9: Examples of SymTex%l;AQ.
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Table 7: Common constructs of ASP programs.

Construct Explanation Example SymTex
Atoms Basic facts or entities in the domain. | bird(sparrow) v
Literals An atom or its negation. fly(sparrow) or - fly(sparrow) vV
Rules Implications that define relation- | fly(X) :- bird(X), - penguin(X). v
ships between atoms (head :- body).
Facts Ground rules with no body, repre- | bird(sparrow). Vv
senting axioms.
Constraints Rules without heads, used to restrict | :- fly(X), penguin(X). Vv
valid solutions.
Choice Rules | Rules defining optional inclusion of | {fly(X)} :- bird(X).
atoms in answer sets.
Cardinality Bounds on the number of satisfied | 1 { fly(X) : bird(X) } 2.
Constraints literals.
Aggregates Functions (sum, count, min, max) | totalWeight(W) :- W = #sum {
applied to collections of literals. weight(X) : selected(X) }.
Negation as | True if a literal cannot be proven | safe(X) :- not unsafe(X). Vv
Failure true (negation by failure).
Strong Nega- | Classical negation, explicitly de- | -fly(X) :- penguin(X). v
tion noted by -.
Disjunctive Rules with multiple possible out- | fly(X) | swim(X) :- bird(X). Vv
Rules comes (disjunction in the head).
Optimization | Used to minimize or maximize an | #minimize { cost(X): selected(X) }.
Statements objective function.

C COMPARISON SYMTEX WITH OTHERS

The proposed dataset differs from existing ones in several ways, as summarized in Table[T]

Existing work such as §-NLI (Rudinger et al} [2020) does not focus on non-monotonic logic rea-
soning but rather on textual reasoning with non-monotonic situations; ProofWriter (Tafjord et al.|
[2021), ruletaker (Clark et al| [2021), and generics-exemplars [Allaway et al] (2023)) do not contain
non-monotonic reasoning scenarios. Generics-exemplars only provide generic rules and exceptions
(e.g., "Birds can fly, but penguins can’t fly””), without actual reasoning scenarios. LogicNMR
[2022) and LogicBench (Parmar et al [2024) involve non-monotonic reasoning, but their logi-
cal structures are relatively simple, supporting only Default Negation and Strong Negation + Default
Negation, respectively.

They also have limited predicate arguments (maximum of 1) and related objects (maximum of 2),
which are insufficient for evaluating a model’s reasoning abilities in more complex scenarios. The
dataset proposed in this paper introduces a data generation framework that can construct facts and
rules with arbitrary predicate arguments, supporting four types of logical operations: Strong Nega-
tion, Default Negation, Disjunction, and Constraints.

Moreover, other datasets typically use only one type of predicate description style (either Random
Word or Related Word) during construction. Given that non-monotonic logic reasoning is inde-
pendent of symbolic semantics, this dataset provides three predicate description styles—Random
String, Random Word, and Related Word—to evaluate the model’s sensitivity to different predicate
descriptions in reasoning tasks.

D RULE COVER OF SYMTEX IN ASP

We have summarized and listed the ASP’s constructs in Table Our dataset covers most of the
constructs of ASP programs and we support all the core features of ASP ("Negation as Failure”
and "Disjunctive Rules”). Note that the constructs we do not support all belong to ASP extension
extensions or syntax sugar.
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E PROMPTS FOR TASKS

The prompts for classification and generation tasks are shown in Figure [I0] and [IT] respectively.
Where the “{facts}” and “{rules}” are the corresponding component in the given sample; the
“{response_format}” is different will the various description type of samples.

[Facts]:
{facts}

[Rules]:
{rules}

[Query]:
{query}

[task]:
Given a query and a set of facts and rules, determine the outcome by
evaluating the conditions specified. The possible outcomes are:

True: The query can be derived from the facts and rules.

False: The negation of the query can be derived from the facts and rules.
Maybe: Neither the query nor its negation can be derived from the facts
and rules.

The final conclusion should must in the following format:
<answer>True/False/Maybe</answer>

Figure 10: The prompt of classification tasks.

Response format: Response format:
[Facts]: <true> <true>
{facts} A("B"); Ais B;
A("B","C"); A, B, and C are D;
[Rules]: </true> </true>
{rules}
<false> <false>
[task]: -A("B"); Alis not B;
Given a set of facts and rules, predicting all possible reasoning results for -A("B", "C"); A, B, and C are not D;
True and False. Note that reasoning results can not be the facts. </false> </false>
True: The query can be derived from the facts and rules. <summary> <summary>
False: The negation of the query can be derived from the facts and rules. A("B"); Ais B;
{response_format} A("B","C"); A, B, and C are D;
-A("B"); Ais not B;
[Response]: -A("B", "C"); A, B, and C are not D;
</summary> </summary>
Response format of symbolic sample Response format of textual sample

Figure 11: The prompt for generation tasks.

F DETAILS FOR SUBSET CONSTRUCTION

(1) To assess the logical reasoning ability of LLMs, including both monotonic and non-monotonic,
we introduce a subset called SymTexp,. This subset is created by extracting facts, rules, and a
query from SymTex samples. The motivation for evaluating the overall logical reasoning ability
of LLMs, rather than focusing solely on non-monotonic reasoning, is to provide a comparative
baseline. This contrast highlights the specific limitations of LLMs in non-monotonic reasoning,
distinguishing them from their broader logical reasoning capability. (2) To specifically evaluate the
non-monotonic reasoning capability of LLMs, we introduce a subset called SymTex%l;AQ. This subset
consists of paired samples, where each pair includes: (a) Facts, rules, and a query labeled as “T”
and “F”; (b) The same rules and query with a new fact to transfer the label from “T” or “F” to “M”.
An example for a paired sample is shown in Appendix [B] (3) Additionally, we create a subset called
SymTex g, designed to assess the LLMs’ ability to perform complex non-monotonic reasoning.
This subset is generated by randomly selecting samples from SymTex. Table[8] PJand P]show the
detailed results of Table
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G MORE EXPERIMENTAL RESULTS

G.1 DETAIL RESULTS AND MORE METRICS

For Tri-State Boolean Querying, we use the following metrics for evaluation: F1 represents Macro-
F1; wF1 is Weighted Macro-F1, with sample weight 1/|L;|; Acc refers to Accuracy; and wAcc is
Weighted Accuracy, with sample weight 1/|L;|, where | L;| represents the number of labels associ-
ated with the sample .

For Answer Set Computation, we use the following metrics for evaluation: E-F1 represents Macro-
F1 for exact matches; E-C is the proportion of exact matches that contain at least one correct answer;
F-F1 refers to Macro-F1 for fuzzy matches (with spaces removed and all characters in lowercase);
F-C is the proportion of fuzzy matches that contain at least one correct answer; and #p represents
the average number of predicted labels.

Table[8] P]and P]show the detailed results of Table[3]

Table 8: Performance of LLMs on SymTexpn. The values in the bottom right corner of each cell
indicate the standard deviation. The cells in blue and red mean the value below or above the median
respectively. claude-3-H and claude-3.5-S are the abbrevation of claude-3-haik and claude-3.5-

sonnet.

model random string random word related word avg

F1 wF1 ACC wACC \ F1 wF1 ACC wACC F1 wF1 ACC wACC \ wF1  wACC
symbolic
qwen2-7b 41204 4089 47807 43904 | 27.003 27215 358y, 35.1pg | 3149 3ldge 39415 37709 | 33.1 389
mistral-7b 29417 23751 51209 33616 | 29425 24009 51215 33930 | 29502 24.693 51.005 33795 | 24.1 337
llama3-8b 30.8;5 31.819 36409 36715 | 32.1p4 333pg 37503 3791; | 31.09; 32793 35707 37.p4 | 326 372
gpt-4o-mini  39.9)3 4430, 40793 46.1g,p | 342, 3748 35154 39456 | 35350 39557 36.01g 41.8;9 | 40.4 424
claude-3-H 38315 4611, 40215 51799 | 39415 47414 41217 5231y | 38409 46507 40.01, 509, | 46.7 51.6
gpt-40 54207 57609 57509 58999 | 48.6p5 52.2p7 51413 5377 | 52.019 56.119 55335 57319 | 553 56.6
claude-3.5-S  70.809 75.4;; 72305 75712 | 75004 78924 7.5 18934 | 73150 77026 76314 11226 | 77.1 71.3
ol-mini 66.705 72509 67997 733pg | 51.8p8 57.013 53.8p7 58713 | 55.699 62507 58059 63793 | 64.0 65.2
avg 46.4 49.0 51.8 525 422 44.7 47.9 48.7 433 46.3 49.0 49.9 - -
textual
qwen2-7b 41413 49510 42415 54610 | 3542, 4llps 37619 4523 | 39.00, 47804 39702 Sl.6ge | 46.1 50.5
mistral-7b 28.110 22998 49.617 32997 | 28507 23719 50206 33.60¢ | 30.006 24.693 53.1;; 34.610 | 23.7 33.7
Illama3-8b 47817 51.616 48817 52214 | 4473, 475,9 46933 48359 | 48706 52898 Sl.lgs 53.50¢ | 50.6 513
gpt-4o-mini  58.0;4 63.8;7 56.8;, 64017 | 5780 63.513 57.8p4 63517 | 57.118 63.617 568;, 63716 | 63.6 63.7
claude-3-H 53.006 61.703 52804 64717 | 58905 66799 59.004 68.1y; | 55739 64.639 55639 66.15 | 64.3 66.3
gpt-40 72813 78711 73.014 791y | 75304 81203 76295 81504 | 72996 79209 74205 19.4¢9 | 79.7 80.0
claude-3.5-S  80.1p; 81.693 81.604 81.3p4 | 82413 824y 84413 82050 | 79955 8039 8250 79830 | 81.4 81.0
ol-mini 82206 828p9 83.60¢ 82510 | 83.8;, 84133 85597 83.8;3 | 784;3 80.114 80.61; 7976 | 823 82.0
avg 579 61.6 61.1 63.9 584 61.3 62.2 63.3 57.7 61.6 61.7 63.6 - -

. NM
Table 9: Performance of LLMs on SymTexrg,.

model random string random word related word avg

Fl1 wF1 ACC wACC \ F1 wF1 ACC wACC \ F1 wF1 ACC wACC | wF1  wACC
symbolic
qwen2-7b 33703 31905 39806 34706 | 25.103 24793 32993 31797 | 30.119 29313 36202 34009 | 28.6 335
mistral-7b 25215 20414 46197 32199 | 26.609 22.21; 45793 32604 | 27.81; 24413 44619 33319 | 223 327
Illama3-8b 25414 25813 32419 32508 | 28415 29.y; 334p7 33993 | 26.1p8 263p6 32412 31.9pg | 27.1 32.8
gpt-do-mini 252y 26.6;9 25316 2610 | 25.008 27.1g9 24297 26799 | 2321, 25217 2241, 24999 | 263 259
claude-3-H 25304 28.603 27.019 30507 | 25913 29314 26716 30913 | 24406 27619 25404 28903 | 28.5 30.1
gpt-40 44407 43.613 48206 44703 | 36906 37405 37906 37605 | 37204 37206 38802 37405 | 394 39.9
claude-3.5-S  57.1p9 57.60¢ 60.0;0 57208 | 55717 55025 59510 5493 | 51.9;8 Sliy3 56509 5140 | 54.6 54.5
ol-mini 58351 59846 60345 59747 | 45939 47997 46.010; 47799 | 49.735 50.7,7 51735 51335 | 52.8 529
avg 36.8 36.8 42.4 39.7 337 34.1 383 37.0 33.8 34.0 385 36.6 - -
textual
qwen2-7b 40711 45919 42607 49806 | 39.1907 428p5 403¢s5 4530g | 37317 42.0,3 389;5 45.0p4 | 436 46.7
mistral-7b 26311 23.01p 42013 31313 | 27999 24319 453ps5 337p5 | 26.60p 23.1pn 44.1ps 327po | 235 32.6
Illama3-8b 37405 38903 38299 38794 | 38.1p¢ 39405 39397 40.0ps5 | 35507 37.009 36.603 36997 | 384 385
gpt-4o-mini  43.1;g 48119 422;7 48.05, | 42.1;4 46.6;7 41.2;5 468,57 | 405, 454, 39.619 4537 | 46.7 46.7
claude-3-H 41.699 49393 43405 54905 | 44219 Sllyy 44715 55290 | 40.9;; 486y9 41.8;; 53.1;4 | 497 54.4
gpt-40 62914 68.675 63.11; 70017 | 6459 69296 64499 70.1pg | 63.113 67417 63419 67616 | 684 69.2
claude-3.5-S  48.00¢ 47407 51.8p4 46995 | 59.0;2 58417 613pg 57515 | 54.8;9 53915 585;; 534;5 | 532 52.6
ol-mini 58231 57.634 61.035 57034 | 49.6p8 47534 56019 48450 | 45.7p3 44336 52019 44919 | 498 50.1
avg 44.8 47.4 48.0 49.6 45.6 474 49.1 49.6 43.1 45.2 46.9 47.4 - -
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Table 10: Performance of LLMs on SymTex 4. Avg F1 and C are the average values of both exact
and fuzzy modes.

model random string random word related word avg
E-F1 E-C F-F1 F-C #p \ E-F1 E-C F-F1 F-C #p \ E-F1 E-C F-F1 F-C #p F1 C
symbolic
qwen2-7b 2104 5509 23ps5 6.011 3902| 1.203 3504 1403 396 3800 | 2301 6803 2501 742 340 20 55
mistral-7b 02917 04p3 0292 0504 2701 0.1g; 0302 0.dp; 03092 3800 | 0302 0796 0392 0.8ps5 3901 02 05
llama3-8b 03p; 08p2 0490 08p1 2301 | 1201 2703 1201 2703 2600 | 2402 5806 2602 6.1g7 3.1g; 14 32
gpt-4o-mini  12.994 35815 15203 41717 5901 | 9.804 31.515 11.694 37.014 68y | 1279, 42616 153ps 50.01; 7.800 | 129 39.8
claude-3-H 11.4g3 34506 14005 41505 6.501 | 12.505 41.805 14.995 48.609 820; | 12505 43.419 14895 50.695 9.1o; 134 434
gpt-40 22704 45004 29610 57.010 430019204 43.116 26505 56750 4.801 |20.707 45209 27711 58729 S.lg; | 244 510
claude-3.5-S 33.8¢ 66.614 40914 77913 530 |24.334 52.077 35.047 703g7 5006 |31.814 65.1;g 40014 78253 5.50; | 343 684
ol-mini 19.231 29357 22.607 33.0p0 2.1g7 |21.1p0 3573, 24734 40335 2906 |17.934 32.030 22.0p7 37.7;5 24¢; | 213 347
avg 12.8 272 15.7 323 - 11.2 26.3 14.4 325 - 12.6 30.2 15.7 36.2 - - -
textual
qwen2-7b 130, 4808 2304 7612 5702| 1.803 6511 3.603 121y 5401 | 2603 9715 43p3 1527 560, 27 93
mistral-7b 1000 4206 1200 4706 5702| 1501 8710 2000 11815 8506 | 200 12405 2201 13707 9202 1.7 93
llama3-8b 0291 0.6p3 0.29; 0.603 3300 0.602 1605 0.60n 1605 3.1p;7 | 0491 1393 0491 1393 3.002 0.4 12
gpt-4o-mini  13.694 36.613 13.604 36.613 5000 |11.695 32.11; 11.605 32.17; 4900 | 12995 35816 12995 35816 5.301 127 348
claude-3-H 11304 39.709 11304 39.799 8900 |10.693 39.619 10.603 39.610 9401 | 10493 37814 10503 37814 9.00; 10.8  39.0
gpt-4o 26907 67.119 27.007 67219 6401 |26307 64219 26397 64219 6.00; |25404 63.619 25404 63.619 6401 | 262 650
claude-3.5-S 28419 79219 28419 79219 89 | 24401 76208 24401 76295 1030 |24.108 74807 24.1p3 74.807 10.00; | 25.6 76.7
ol-mini 4396 61747 44.056 62044 290 | 38806 57342 38836 57342 3502 [39.116 61.036 39.1;6 61.036 3.3p3 | 40.6 60.1
avg 15.8 36.7 16.0 372 - 14.5 35.8 14.7 36.9 - 14.6 37.1 14.9 37.9 - - -
N claude 3 5 sonnet [N gpt 40 MMM claude 3 haiku  [HEEE gpt 40 mini
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Figure 12: Confusion matrix for LLMs’ predictions on SymTextg,. The vertical axis represents
true labels, and the horizontal axis represents predicted labels.

G.2 FING-GRAINED ANALYSIS OF MAIN RESULTS

Figureh@ shows confusion matrix for LLMs’ predictions on SymTexpq. From the results, we ob-
serve that the superior performance of LLMs in the textual setting compared to the symbolic setting
can be attributed to two factors: (/) In the textual setting, LLMs rarely misclassify samples with
labels “T” or “F”, whereas in the symbolic setting, samples with the label “F” exhibit a relatively
high error rate; and (2) In the symbolic setting, the accuracy for samples with the label “M” is in-
creased. Additionally, the performance gap between gpr-4o and gpt-4o-mini is primarily driven by
discrepancies in the accuracy of the sample labeled “M”. A similar pattern can be observed in the
performance difference between claude-3.5-sonnet and claude-3-haiku. Figure [13| shows another
perspective of the confusion matrix.
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Figure(14|and Whow confusion matrix for LLMs’ predictions on SymTefoIg’[Q. Compared with the
results in Figure[12]and [I3] the number of erroneous samples with true labels “T” and “F” increases
significantly, as these are frequently misclassified as “M”. This highlights the inherent challenges
LLMs face when dealing with non-monotonic reasoning rules.
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Figure 13: Scatter plot for LLMs’ predictions on SymTextg,. The vertical axis represents true
labels, and the color of the scatters represents the predicted labels.
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Figure 14: Confusion matrix for LLMs’ predictions on SymTex%’IQ.

G.3 EFFECT OF CoT
Chain-of-Thought (CoT) 2022) is a straightforward yet effective technique to improve

LLMs’ performance in reasoning and problem-solving. We perform experiments to assess the im-
pact of CoT on SymTex. As the results shown in Table [T} in smaller-scale LLMs, the improvement
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Figure 15: Scatter plot for LLMs’ predictions on SymTexgq-
TBQ
Table 11: The performance gap of LLMs on SymTexp, when using CoT versus without CoT.
random string random word related word avg
model FI  wFl ACC wACC Fl wFI ACC wACC Fl wFl ACC wACC wFl wACC
symbolic
qwen2-7b -2.0 -2.7 -1.3 -2.8 12.4 8.7 15.3 5.1 10.7 73 14.8 4.9 4.4 24
mistral-7b 8.7 126 -4.1 4.7 8.1 11.8  -4.6 3.8 7.1 9.5 -2.5 35 11.3 4.0
1lama3-8b 0.3 0.6 -0.3 0.5 -0.6  -07 -04 -0.7 0.3 -0.2 1.1 -0.2 -0.1 -0.1
gpt-4o-mini 09 -1.3  -1.0 -1.2 0.6 0.9 0.8 12 0.5 0.1 0.5 -0.3 -0.1 -0.1
claude-3-haiku -1.7 -2.0 -1.3 -1.4 -1.0 -1.0 -1.2 -0.9 -1.4 -1.4 -1.1 -0.7 -1.5 -0.9
gpt-4o 1.9 1.8 2.3 1.5 2.0 2.1 2.1 1.8 1.0 0.5 1.4 0.5 1.5 1.3
claude-3.5-sonnet 0.7 0.6 0.7 0.6 -03  -0.1 -0.4 0.0 0.4 0.8 0.2 0.8 0.4 0.5
avg 1.0 1.4 -0.7 0.3 3.0 3.1 1.7 1.5 2.7 2.4 2.1 1.2 - -
textual
qwen2-7b 120 3.1 16.8 -1.4 15.1 6.6 21.8 4.0 155 5.6 222 2.3 5.1 1.6
mistral-7b 130 169 -03 84 1.1 146 -14 6.5 121 166  -2.1 7.7 16.0 7.5
1lama3-8b 3.7 1.2 5.7 0.4 3.6 2.1 5.2 1.7 1.6  -1.5 43 -1.9 0.6 0.1
gpt-4o-mini 1.1 1.2 1.3 1.2 0.4 0.4 0.5 0.5 -0.7  -02  -12 -0.1 0.5 0.5
claude-3-haiku -0.4 1.0 -0.1 3.0 -1 =07 -1.1 -0.2 0.4 0.9 0.3 1.4 0.4 1.4
gpt-40 3.0 22 33 2.0 2.5 1.7 2.7 1.6 1.7 1.2 1.8 1.1 1.7 1.6
claude-3.5-sonnet ~ -0.3 0.3 -0.5 0.2 0.3 1.6 0.2 1.7 0.1 1.6 -0.4 1.7 1.2 1.2
avg 4.6 37 37 2.0 4.6 3.8 4.0 23 4.4 35 3.6 1.7 - -

is significant on gwen2-7b (+4.8% on avg. wF1, +2.0% on avg. wAcc) and mistral-7b (+13.7% on
avg. wWFI1, +5.8% on avg. wAcc), while the impact of CoT for llama3-8b (+0.2% on avg. wFI,
+0.0% on avg. wAcc) is slight; in larger-scale LLMs, the impact of applying CoT or not is slight to
the performance., where gpt-4o-mini gains +0.2% on both avg. wF1 and wAcc, and claude-3-haiku
gains -0.5% and +0.2% on avg. wF1 and wAcc respectively.

Moreover, as shown in Table the use of CoT in smaller-scale LLMs is less effective on this
dataset compared to its performance on SymTexpp,. For certain models, such as gwen2-7b, CoT
not only fails to improve performance but significantly degrades it. For larger-scale LLMs, the
impact of applying CoT or not is still slight to the performance.

G.4 IMPACT OF TEMPERATURE

To explore the impact of temperature on the non-monotonic reasoning capability of LLMs. We
perform experiments across a range of temperature settings, specifically from 0.0 to 1.0, to com-
prehensively assess the variations in performance. During the experimental process, we construct
smaller datasets from SymTex g, and SymTefoIg[Q, extracting 30 samples for each subset type. The
smaller datasets are named Tiny-SymTexp, and Tiny—SymTex%g"Q. Each experimental group runs
3 times, and we report the average results.
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Table 12: The performance gap of LLMs on SymTex%l;AQ when using CoT versus without CoT.

random string random word related word avg
model FI wFl ACC wACC FI wFl ACC wACC FI wFl ACC wACC wFl wACC
symbolic
qwen2-7b 20 26 08 24 59 35 73 0.2 13 33 13 45 038 22
mistral-7b 4.6 6.6 -4.5 0.2 4.3 6.1 -4.9 -0.2 32 3.7 -2.5 -0.5 55 -0.1
1lama3-8b 3.5 2.9 1.2 -0.3 1.5 1.3 0.5 -0.1 3.6 3.0 3.3 1.9 2.4 0.5
gpt-do-mini 17 16 20 16 04 05 -04 04 06 13 03 5 03 02
claude-3-haiku 17 21 -1.8 24 06 05 -08 0.7 05 -06 -05 0.6 -1.1 -1.3
gpt-4o 1.4 1.2 2.0 1.2 22 1.7 2.7 1.7 1.6 1.4 2.0 1.4 1.4 1.4
claude-3.5-sonnet  -1.2 -0.9 -1.6 -1.0 1.6 2.0 1.0 1.9 2.0 22 1.6 2.1 1.1 1.0
avg 0.4 0.5 -1.1 -0.9 2.1 1.9 0.8 0.3 1.3 1.1 0.8 0.2 - -
textual
qwen2-7b -33 -10.4 1.0 -12.7 -5.0  -11.7 29 -10.8 -0.3 -7.6 6.2 -8.1 -9.9 -10.6
mistral-7b 10.4 12.9 0.9 6.2 10.6 13.4 -1.2 53 10.9 14.3 -1.8 55 13.6 5.7
1lama3-8b 2.7 1.2 4.4 1.5 -1.3 -2.6 0.2 -2.8 1.3 -0.2 2.6 0.0 -0.5 -0.4
gpt-40-mini 1.5 12 1.8 1.3 0.9 13 1.0 1.5 0.5 0.8 0.7 0.9 1.1 1.2
claude-3-haiku 0.3 0.6 1.1 2.1 -1.7 -1.7 -1.7 -1.9 -0.6 -0.5 -0.5 -0.2 -0.5 0.0
gpt-40 1.8 0.4 1.9 -0.8 3.6 2.6 3.7 2.0 1.3 1.0 1.3 0.8 1.3 0.7
claude-3.5-sonnet 0.6 0.6 0.8 0.6 0.6 0.6 0.7 0.6 0.9 0.8 1.1 0.7 0.7 0.6
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Figure 16: Results on various temperatures. (a) The results on Tiny-SymTexypq; (b) The results on

Tiny-SymTex%/lQ.

From the results displayed in Figure in Tiny-SymTex g, gpt-40-mini and claude-3-haiku tend
to exhibit improved performance with higher temperatures, while gpz-4o and claude-3.5-sonnet gen-
erally show a decline in performance under the same conditions. Furthermore, in Tiny-SymTexI}Ing,
LLMs appear to struggle to benefit from increased temperatures. This indicates that a higher tem-
perature, which is claimed to bring greater creativity for LLMs, provides only limited benefits and
may even impair the non-monotonic reasoning capability of LLMs.

G.5 ERROR CASE ANALYSIS

To explore the reason behind the erroneous predictions of LLMs, we perform case studies on several
examples, where both claude-3.5-sonnet and gpt-4o make incorrect label predictions. Figures [I7]
and@present detailed information about the samples, encompassing the facts, rules, queries, labels,
and LLM responses.

From the error case 1 (Figure |'1;7|), we observe that claude-3.5-sonnet and gpt-4o both misunderstand
the true meaning of the default negation. They view default negation as the same as strong negation
in this case, which leads to incorrect interpretations and conclusions in contexts where the absence
of evidence is not equivalent to the assertion of falsity.

From the error case 2 (Figure [I8), we observe that claude-3.5-sonnet misinterprets the condition
of default negation by treating it as a standard condition. Specifically, it incorrectly interprets the
rule “[If] A and B are give, [unless] B and A are not receive, [then] B and A are news” as “[If] A
and B are give; B and A are not receive, [then] B and A are news”. This misunderstanding leads
to an erroneous prediction, as the model fails to recognize the conditional dependency created by
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Table 13: The confusion matrixes between actual and predicted labels for the classification task
of S:I-T:C. The rows represent the actual labels (True Labels), while the columns represent the
predicted labels.

ept-4o | claude-3.5-S
Label  F T M |Lael F T M
F 0 603 136 F 0 116 114
T 172 0 137 T 61 0 119
M 1104 549 0 M 839 401 0

the default. Additionally, in this case, gpt-4o demonstrates a fundamental conceptual error in its
approach to logical inference. Specifically, in classical logic, given a rule & — (3, the presence of
=« does not logically entail —=3. However, gpt-4o incorrectly applies this reasoning, assigning the
label “F” to the sample based on the assumption that blocking the rule negates the conclusion. This
misinterpretation violates a core principle of logical reasoning and highlights a critical flaw in the
LLM’s handling of rule negation and implication.

Moreover, we statistic the results on gpt-4o and claude-3.5-Sonnet to analyze the gap between sym-
bolic and textual settings. As shown in Table [I3] The confusion matrixes reveal that both models
share a common pattern, with errors concentrated in the case where the “True label is M, but the
predication is F”. The fact that errors mostly happen when the true label is “Maybe” but the model
predicts “False” suggests that both models struggle with uncertainty or partial truths.
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Facts:

Kathleen_Frazier is seem
Brenda_Bernard is seem
Darlene_Jackson is not seem

Rules:

[If] A is seem, [then] A is kitchen

[If] A is not seem, [unless] A is not piece, [then] A is not power

[If] A is not seem; A is not kitchen, [then] A is election

[If] A is seem; A is kitchen; A is not family; A is not election, [then] A is result
[If] A is family; A is not result, [then] A is not responsibility

[If] A is election; A is not seem; A is not family, [then] A is piece

[If] A is not seem; A is not result, [then] A is which

[If] A is responsibility, [then] A is tend

[If] A'is tend; A is kitchen; A is not responsibility, [then] A is pattern

Query:
Darlene_Jackson is power

Label:
False

Response:

Claude-3.5-sonnet:

Let's evaluate this step by step: 1. From the facts, we know that Darlene_Jackson is not seem. 2. We can apply the rule: "[If] A is not
seem, [unless] A is not piece, [then] A is not power" However, we don't know if Darlene_Jackson is piece or not piece, so we can't
conclude anything about power yet. 3. We can apply the rule: "[If] A is not seem; A is not kitchen, [then] A is election" Since
Darlene_Jackson is not seem and not kitchen (as kitchen only applies to those who are seem), we can conclude that Darlene_Jackson is
election. 4. Now we can apply the rule: "[If] A is election; A is not seem; A is not family, [then] A is piece" We know Darlene_Jackson
is election and not seem, but we don't know about family. So we can't conclude if she is piece or not. 5. Since we can't determine if
Darlene_Jackson is piece or not, we can't use the rule about power from step 2. 6. No other rules can help us determine if
Darlene_Jackson is power or not power. Given this analysis, we cannot definitively say whether Darlene Jackson is power or not power
based on the given facts and rules. Therefore, the conclusion is: <answer>Maybe</answer>

Gpt-4o:

To determine if the query "Darlene_Jackson is power" is True, we need to evaluate the applicable rules and facts: 1. **Darlene_Jackson
is not seem.** (Given fact) 2. **If Darlene_Jackson is not seem, unless Darlene_Jackson is not piece, then Darlene_Jackson is not
power.** - To find if this rule applies, we need to assess if Darlene Jackson is not piece. 3. **If Darlene_Jackson is not seem;
Darlene_Jackson is not kitchen, then Darlene_Jackson is election.** - From the fact, Darlene_Jackson is not seem. We don't have a direct
fact about Darlene_Jackson not being kitchen. - No conclusion yet about this rule because we can’t confirm "not kitchen". 4. **If
Darlene_Jackson is election; Darlene_Jackson is not seem; Darlene Jackson is not family, then Darlene Jackson is piece.** - This
requires "Darlene_Jackson is election”, which is not confirmed yet. 5. **If Darlene_Jackson is not seem; Darlene_Jackson is not result,
then Darlene_Jackson is which.** - We can check if Darlene_Jackson is result or not. Since Darlene_Jackson is not seem, we only know
it can't directly determine power without resolving whether it's a piece. We don't have enough information to confirm all conditions that
determine "piece." Therefore, based on available facts and rules, we can't confirm "Darlene Jackson is power" or its negation
definitively. Thus, the outcome is: <answer>Maybe</answer>

Figure 17: Error case 1. The true label for the sample is “F”, whereas both claude-3.5-sonnet and
gpt-4o incorrectly predict it as “M”.
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Facts:

Ellen Buck and Jessica Morrison are give.
Ellen_Buck and Justin_Juarez are give.
Justin_Juarez and Ellen_Buck are not receive

Rules:

[If] A and B are give, [unless] B and A are not receive, [then] B and A are news
[If] B and A are news, [then] B and A are else

[If] A and A are receive; B and A are give, [then] B and A are field

[If] B is lawyer; B and A are field; B and A are not itself, [then] B is article

Query:
Justin_Juarez and Ellen_Buck are news

Label:
Maybe

Response:

Claude-3.5-sonnet:

Let's evaluate this step by step: 1. From the facts, we know: - Ellen_Buck and Jessica_Morrison are give - Ellen_Buck and Justin_Juarez
are give - "Justin_Juarez" and "Ellen_Buck" are not receive 2. Looking at the first rule: [If] A and B are give, [unless] B and A are not
receive, [then] B and A are news This rule applies to Justin_Juarez and Ellen_Buck because: - They are give (from the facts) - They are
not receive (from the facts) 3. Therefore, we can conclude that Justin_Juarez and Ellen_Buck are news. 4. This directly matches our
query: Justin_Juarez and Ellen_Buck are news Since we can derive this statement from the facts and rules, the query is true.
<answer>True</answer>

Gpt-4o:

To determine the outcome, let's evaluate the given facts and rules: **Facts:** 1. Ellen_Buck and Jessica_Morrison are give. 2.
Ellen_Buck and Justin_Juarez are give. 3. "Justin_Juarez" and "Ellen_Buck" are not receive. **Rules:** 1. If A and B are give, unless B
and A are not receive, then B and A are news. 2. If B and A are news, then B and A are else. 3. If A and A are receive; B and A are give,
then B and A are field. 4. If B is lawyer; B and A are field; B and A are not itself, then B is article. **Analyzing the Query:** - Query:
Justin_Juarez and Ellen_Buck are news **Evaluation:** - From Rule 1: "If A and B are give, unless B and A are not receive, then B and
A are news." - Ellen_Buck and Justin_Juarez are give (Fact 2). - Justin_Juarez and Ellen_Buck are not receive (Fact 3). Rule 1 applies
because the condition "unless B and A are not receive" is met. Therefore, the conclusion "B and A are news" is blocked by the "unless"
clause. Since Rule 1 is blocked and no condition in the facts or rules directly supports that Justin_Juarez and Ellen_Buck are news, the
query cannot be confirmed. **Conclusion:** <answer>False</answer>

Figure 18: Error case 2. The true label for the sample is “M”, whereas the predictions of claude-
3.5-sonnet and gpt-4o are “T” and “F”, respectively.
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