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ABSTRACT

Inductive logic programming (ILP) is a machine learning approach aiming to learn
explanatory rules from data. While existing ILP systems can successfully solve
small-scale tasks, large-scale applications with various language biases are rarely
explored. Besides, it is crucial for a large majority of current ILP systems to
require expert-defined language bias, which hampers the development of ILP to-
wards broader utilizations. In this paper, we introduce GeolLP, a large-scale syn-
thetic dataset of diverse ILP tasks involving numerous aspects of language bias.
These tasks are built from geometry problems, at the level from textbook exercise
to regional International Mathematical Olympiad (IMO), with the help of a de-
duction engine. These problems are elaborately selected to cover all challenging
language biases, such as recursion, predicate invention, and high arity. Experi-
mental results show that no existing method can solve GeolLP tasks. In addition,
along with classic symbolic-form data, we provide image-form data to boost the
development of the joint learning of neural perception and symbolic rule induc-
tion.

1 INTRODUCTION

Inductive logic programming (ILP), at the intersection of machine learning (ML) and symbolic ar-
tificial intelligence, learns hypotheses from background knowledge and examples (Muggleton &
De Raedt, |1994; Muggleton et al.,|2012; |Cropper et al., |2020a; |Cropper & Dumancicl 2022; Zhang
et al., 2023). ILP adopts logical formulae to represent knowledge, examples, and hypotheses uni-
formly. The most fascinating merit of ILP, differing from other ML approaches, is the ability to
learn highly interpretable hypotheses, which reveals a potential way toward human-comprehensible,
controllable, and trust-worthy artificial intelligence.

Classic symbolic ILP are based on discrete search, suffering from the combinatorially growing
search space and thus restricting to small-scale scenes. To alleviate this obstacle, symbolic meth-
ods require user-defined language bias to limit searching, which is markedly crucial for efficiency
(Cropper & Dumanci¢l 2022)). Such hand-crafted work is more or less the same as the feature engi-
neering (Khalid et al.|[2014) in other ML tasks, requiring certain expert knowledge and considerably
many troublesome trial and error. However, in the modern ML community, feature engineering is
usually superseded by automatic feature extractors, such as various neural networks, which achieve
amazing success in large-scale applications (e.g., GPT-4 (Achiam et al., 2023)). Consequently, we
argue that thoroughly turning hand-crafted determination of language bias into automatic language
bias discovery is a promising direction towards broader applications of ILP.

Modern neural-symbolic ILP relaxes the hypotheses space into a continuous space and leverage
gradient-based optimization techniques to induce solutions, from which interpretable rules can be
extracted. Despite not requiring an elaborated language bias, existing neural-symbolic methods are
limited to a relatively small hypotheses space, presuming low-arity predicates, function-free clauses,
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and few rule’s body atoms (Glanois et al.| 2022)). Scaling up to large-scale scenarios is also one of
the major challenges of this line of work.

However, large-scale ILP datasets are lacking in evaluating more powerful methods and guiding
enhancement. Existing datasets are small or lack reference hypotheses. Our goal is to construct a
large-scale ILP dataset, providing reference hypotheses to guide the resolution of present limitations
in ILP, which would lead ILP to an expert-free learning paradigm (like modern deep learning) and
exceedingly broader utilization. Furthermore, we aim to evaluate ILP systems without much expert
priors (like other modern ML paradigms), i.e., training & testing without excessive user-defined
bias.

Therefore, we construct GeoILPB a large-scale dataset synthesized from plane geometry rules that
help generate reference hypotheses involving various language biases. We first adopt a symbolic
deduction engine to obtain target examples from the rules and determine the background knowledge
and hypotheses by tracing back from the examples. We also consider the noisy and multi-task
settings, which are closer to real-world applications and actively studied in other ML tasks.

In summary, GeolLP contains 835 single-tasks and 207 multi-tasks. The predicate arity is up to 8
and the number of body atoms is up to 9. Overall, 85% single-tasks and 50% multi-tasks contain a
hypothesis with the number of rules ranging from at least 10 to 100, while the rest of the tasks involve
at least hundreds to thousands of rules (refer to section[5.3]for details). Besides, the language biases
also involve argument symmetry, constraints, different types of recursion, and predicate invention.
We conduct experiments on applicable methods, showing that GeoILP is completely unreachable.

In addition, GeolILP provides image-form background knowledge, which requires jointly training
a perception network, transforming the raw sensory input (image) into symbolic knowledge, and
an ILP system inducing the hypothesis. The breakthrough for such joint learning, which remains
less explored, would be a breakthrough for the whole artificial intelligence community (Cropper &
Dumancic, 2022).

2 RELATED WORK

2.1 ILP METHODS

Symbolic methods search in the hypotheses space defined by language biases. Among these,
notable methods include FOIL (Quinlan, |1990), Progol (Muggleton, |1995; Muggleton & Bryant,
2000), TILED (Blockeel & De Raedt, [1997)), ALEPH (SRINIVASAN] 2001), Metagol (Muggleton
et al., 2015), ILASP (Law et al., 2018 2020). These methods suffer from combinatorially growing
hypotheses, noisy data, and inefficient predicate invention. Popper (Cropper & Morell [2021a)) is a
modern symbolic ILP system, which is, to the best of our knowledge, the only symbolic system
capable of simultaneously learning recursive rules, inventing predicates (Cropper & Morel, 2021b)),
handling noise (Hocquette et al.| 2024)), and scaling better, though still very expensive to do these.

Neural-symbolic methods or differentiable methods, make continuous relaxation of the discrete
hypotheses space and induce solutions by minimizing loss function via gradient-based optimizer.
While the early-stage methods require user-defined language templates task-by-task to restrict hy-
potheses (Rocktédschel & Riedel, [2017; |Campero et al.,[2018)), the following works tend to automat-
ically deal with more general language biases (Evans & Grefenstette, [2018;; |Si et al.,[2019; (Glanois
et al.| [2022). As learning interpretable solutions is the outstanding property of ILP, the methods that
cannot produce human-readable rules are out of the scope of this paper (e.g., Dong et al.|(2019)).

2.2 ILP DATASETS

Real-world datasets Real-world datasets collect background knowledge and examples from real-
world observation. The application scenarios cover knowledge base completion (Bordes et al., 2013
Toutanova & Chen, 2015} [Yang et al.,|2017; Hudson & Manning, 2019)), drug design (Inoue et al.,
2013} Tamaddoni-Nezhad et al 2006), ecology (Bohan et al., 2017)), etc. The main demerit of

'Data is available at https://github.com/chensi99/GeoILP,


https://github.com/chensi99/GeoILP

Published as a conference paper at ICLR 2025

real-world datasets is lacking reference hypotheses. Consequently, an ILP system failing on these
datasets would have little idea about where to improve.

Synthetic datasets Synthetic datasets covering mathematical formal systems (Evans & Grefen-
stettel [2018)), grammar learning (Muggleton et al.| 2014} Law et al., 2019), games (Cropper et al.,
2020b), program analysis (Sivaraman et al.| 2019} Bartha & Cheney, 2020), etc. They can provide
reference hypotheses to guide resolving the limitations of ILP systems. However, current synthetic
datasets are small-scale, whose hypotheses typically contain less than 10 rules, and have already
been solved by existing ILP. Our work extends this line of work to much larger scenarios.

3 BACKGROUND

We first introduce necessary logic notions and then define inductive logic programming (ILP). Fur-
ther terminology is illustrated in the next section as well.

3.1 LOGIC PRELIMINARIES

Horn clause Every formula in first-order language can be transformed into its semantically equiv-
alent conjunctive normal form, a conjunction of clauses. A clause is a disjunction of literals. A
literal is an atom (positive literal) or its negation (negative literal). An atom is called ground if it
contains no variable. Horn clause is a widely used subset of clauses that allow at most one positive
literal. Horn clause involve facts, which are atoms, and rules that can be semantically equivalently
represented as (assumed function-free here)

H(X) < By(X) ABo(X) A -+ ABp(X)

where X denotes a vector of variables, the atom H(X) is the head atom of the rule, and the atoms
B1(X),Ba(X),...,Bi(X) are the body atoms of the rule. A program is a set of Horn clauses. We
define rule size as the number of atoms in a rule and program size as the sum of rule size.

Note that the variables in a clause are implicitly quantified by universal quantifiers that are supposed
to be placed at the beginning. The variables appearing only in the body but not the head are called
existentially quantified.

Forward chaining Forward chaining can be used to deduce all the true ground facts from given
rules and background facts. Formally, given a set of ground atoms .4 and a Horn rule set R, the
immediate consequence through one-step forward chaining is defined as the set

cong(A) =AU {a

k
a4 ai,...,q € ground(R), /\ a; € A}
i=1

where ground(R) consists of all the ground rules instantiated from R. Then, we recursively define
the consequence through ¢ steps Cr ¢ (.A)

Cro(A)=A, Criti(A)=cong (CR,t(A))

We say the fix point is reached at step 7" if T is the smallest natural number satisfying Cr r(A) =
Cr,74+1(A), and Cr 7 (A) is the set of all the consequences of the forward chaining.

3.2 INDUCTIVE LOGIC PROGRAMMING

We adopt the most popular ILP setting learning from entailment (LFE) (Cropper & Dumanciél
2022). The training data is a tuple (B, £, E7) of background knowledge B, positive examples of
the concept £T, and negative examples of the concept £E~. £T, £ are sets of ground atoms relevant
to the target predicate we want to learn. I3 is a set of clauses that act as background knowledge (BK),
typically a set of ground atoms irrelevant to the target predicate (rules can also be in BK). The goal
of ILP is to induce a hypothesis H, consisting also of clauses, satisfying the following conditions

Vec EY,HUBFe (completeness)
Vee E T , HUBFEe (consistency)
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The completeness condition states that the hypothesis and BK entail all positive examples. The
consistency condition states that the hypothesis and BK do not entail any negative examples.

For example, given B = {Father(John, Mary), Father(Tom,John)}, &7 =
{Grandfather(Tom, Mary)}, £~ = {Grandfather(Mary, Tom), Grandfather(John, Mary)}
an ILP task learner may learn the following hypothesis H (upper italic letters denote variables)

Grandfather(X,Y") < Father(X, Z) A Father(Z,Y)

With the learned hypothesis, an automated theorem prover can derive all the facts regarding the
target predicate Grandfather from the background facts regarding the relation Father.

4 LIMITATIONS OF CURRENT ILP

In this section, we identify the critical limitations of current ILP that impede the development of
broader applications. Our proposed dataset is intended to cover all these challenges and is thus a
good testbed for elaborating more sophisticated rule induction systems.

4.1 HAND-CRAFTED LANGUAGE BIAS

Language bias is used to limit the hypothesis space in symbolic ILP. As calculated by Cropper &
Morel| (2021a)), the number of possible hypotheses grows combinatorially fast.

Without carefully human-determined language bias, such as the predicates allowed to appear in the
rule’s head, the predicates allowed to appear in the rule’s body, enabling recursion or not, enabling
predicate invention or not, the maximum number of clauses allowed in a hypothesis, the maximum
number of unique variables in a clause, the maximum number of body atoms in a clause, the number
of allowed existentially quantified variables, the maximum times a predicate can appear in a rule,
symbolic ILP tends to be extremely slow, even useless (Cropper & Dumancic, [2022). Determining
a good language bias is onerous and requires a vast amount of trial and error.

Below, we introduce the most dominant language biases, which notably increase hypothesis space
and should thus be completely automatically determined by ILP systems.

Predicate arity Real-world relations may involve several entities. For instance, the triadic relation
Sell(seller, buyer, book) asserts that, in a transaction order, a seller sells a book to a buyer. However,
current neuro-symbolic methods typically support arity lower than two (Evans & Grefenstette, 2018;,
Campero et al., 2018} |Glanois et al., [2022). Several symbolic methods can support arbitrary arity
but exceedingly increase search complexity (Cropper & Morel, [2021a)).

Argument symmetry Argument symmetry may exist for predicates. For example, if John is
Mary’s cousin, then Mary must also be John’s cousin. As this example, argument symmetry can
be represented as a Horn rule, yet complex symmetry may yield too many rules. For instance, the
triadic atom asserting whether 3 people queue in a straight line evaluates to the same truth value if
permuting all 3 arguments (any 3 people), which yields 3!(3! — 1) = 30 Horn rules. To the best of
our knowledge, there is no specialized way to learn compact representations for argument symmetry.

Predicate constraint Atoms’ truth value may be forced to be opposite under some constraints.
Asymmetry constraint can be considered as Horn goal (clause with only negative literals) <
Pred(X,Y) A Pred(Y,X). The representation of other constraints (e.g., irreflexivity, anti-
transitivity, anti-triangularity, functionality, exclusivity) can be found in |Cropper & Hocquette
(2023)). Current neuro-symbolic methods do not cover this aspect.

Recursion There are two types of recursion in Horn programs: recursion and mutual recursion
(Bancilhon & Ramakrishnan,|1986). Recursion refers to the phenomenon that the same predicate ap-
pears simultaneously in a rule’s head and body. For instance, Even(X) < Even(Y) A Succa (Y, X)
is recursive, where Even asserts whether a natural number is even and Succe (Y, X) asserts whether
X =Y + 2. Even is the recursive predicate in this case. Besides, this recursive rule is also called
linear because the recursive predicate only appears once in the body. Mutual recursion refers to the
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phenomenon that two predicates mutually derive from each other. We say a predicate Pred; derives
another predicate Preds if there exists such a set of rules (variables omitted)

Preds < --- A Qq Qi+ -ANQ2 Q2+ - ANQ3 Qn -+ A Predy

where @Js denote other predicates and ... denote any other body atoms. Therefore, two mutually
recursive predicates can be mutually deduced via forward chaining. For instance,

Even(X) < 0dd(Y) A Succ(Y, X) 0dd(X) < Even(Y') A Succ(Y, X)
, where Suce(X,Y") asserts whether Y = X + 1, show that Even and Odd (asserting whether a
natural number is odd) are mutually recursive. A rule is also called recursive if the head predicate is
mutually recursive with one of its body predicates, and the rule is called linear if only one mutually
recursive predicate appears in the body. Enabling recursion is expensive for symbolic ILP, while

mutual recursion between any two predicates is not supported by the state-of-the-art neuro-symbolic
ILP (Glanois et al., 2022)).

Predicate invention Predicate invention is a crucial part of automatically discovering
new concepts, which may lead to breakthroughs in AI development (Russell, 2019,
chap. 3). Specifically, predicate invention enables predicates that are unused in BK &
target examples appearing in the hypothesis. For example, learning Even from the BK
{Zero(0), Succ(0, 1), Succ(1,2), Succ(2, 3), ... } may require inventing dyadic relation Succy and
the following rules

Even(X) < Even(Y') A Succe (Y, X) Even(0) < Zero(0)

Succy (Y, X) < Succ(Z, X) A Succ(Y, Z)
While inventing such auxiliary predicates substantially reduces hypotheses (Cropper & Dumancic}
2022)) and improves learning performance (Cropper, [2019)), predicate invention is expensive, inac-
curate, and restricted to low-arity invention (Cropper & Morel, 2021b)).

4.2 INSUFFICIENT NOISE HANDLING

Mislabeled & ambiguous data Noise is ubiquitous in realistic data. While symbolic methods
struggle to learn from noisy data (Hocquette et al.| 2024)), neuro-symbolic methods can deal with
mislabeled examples (Glanois et al., 2022) and ambiguous BK (Evans & Grefenstette, [2018)). Han-
dling mislabeled BK is still an open problem (Cropper & Dumancicl 2022)).

Open-world assumption While the closed-world assumption (CWA) asserts any ground atom,
whose predicate appears in the BK, to be false if it is not given in BK, the open-world assumption
(OWA) allows those ground atoms that are not known to be true to have the possibility of being
true (Reiter} [1981). Almost all existing ILP systems assume CWA. However, OWA is a more re-
alistic setup since a complete BK is inaccessible in real-world applications. A set of incomplete
background ground atoms is considered noisy if an ILP system assumes CWA.

4.3 MULTI-TASK LEARNING

Existing ILP focuses on once learning one target predicate. However, simultaneously learning sev-
eral target predicates can share common rules and capture mutual recursions among target predi-
cates. (Glanois et al.|(2022)) proposes an iterative multi-task learning scheme for their neuro-symbolic
model and successfully learns certain hypotheses at a small program size. Large-scale multi-task
learning is a promising direction for building broader applications, which remains unexplored.

4.4 UNABLE TO LEARN FROM RAW INPUT

One major gap between ILP and modern ML systems is the ability to induce knowledge from raw
sensory input. Most ILP systems only receive symbolic data as input, while raw data is usually
images, speech, natural language, etc. There are initial works that use neural networks to perceive
and transform raw input into symbolic form and use symbolic deduction to do reasoning (Manhaeve
etal.,[2018;|Dai et al.,[2019; Dai & Muggleton,|2021). Efficiently jointly training perception network
and ILP system in large-scale tasks would be a promising direction for robust and reliable artificial
intelligence. See Evans|(2020); Evans et al.| (2021} |2022) for more possibilities to induce rules from
raw sensory input.
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Table 1: Predicates used in GeolLP (Target=can be used as target predicate; Head=can be used in
the head; Body=can be used in the body). Details see Appendix [A.T]

Name Arity  Target SA;I%? Hrgetlrl; Constraints Head Body 1\2 l;nue
Coll 3 X v v v v collinear
Ncoll 3 X v v v v not collinear
Sameside 6 X v v X v same side
Midp 3 v v v v v midpoint
Cong 4 v v v v v segment congruent
Perp 4 v v v v v perpendicular
Para 4 v v v v v parallel
Cyclic 4 v v v v v concyclic
Circle 4 v v v v v circle
Eqgangle 8 v v v v v equal angle
Eqratio 8 v v v v v equal ratio
5 GEOILP

In this section, we formally introduce GeolLP, our proposed dataset for elaborating large-scale so-
phisticated rule induction systems, in four parts. First, a general guide for synthesizing ILP tasks
from predefined rules. Second, the steps for identifying the examples (deduction step) and the BK
(traceback step) of GeolLP. Third, the features of GeolLP critically differ from other ILP testbeds.
Fourth, the approach to transform symbolic input into raw sensory input.

5.1 A GENERAL GUIDE FOR ILP TASK SYNTHESIS

Inductive reasoning can be seen as a “reverse” procedure of deductive reasoning in the sense that the
former learns rules from premises and conclusions while the latter infers conclusions from premises
and valid rules. In ILP, premises correspond to the BK, and the conclusions correspond to the target
examples. Therefore, to construct ILP data, we can derive target examples from selected premises
and predefined rules using a deduction engine.

Concretely, the data-synthesizing procedure works as follows:

Randomly or intentionally choose several ground atoms as premises.
Define a consistent set of rules.
Deduce all the conclusions from the premises and rules using any deduction engine.

Select a part or all of the conclusions (also ground atoms) as positive examples. E]

A e

Trace back from the conclusions to identify a minimum set of premises contributing to
deducing the conclusions as ILP BK.

6. Optionally, obtain negative examples by removing the conclusions from all syntactically
possible ground atoms (all combinations of target predicate and constants).

5.2 SYNTHESIZING GEOILP

We choose plane geometry as the application domain as its formal system covers all the difficulties
indicated in section ] (see section[5.3).

Formalizing plane geometry and building a corresponding symbolic deduction engine are challeng-
ing works outside this paper’s scope. We adopt an expert-designed deduction engine based on
deductive database theory (Gallaire et al., |1984), similar to the ones used in automated geometry

2A set of rules is consistent if the rules do not contradict each other.

3Merely selecting a part of the conclusions as positive examples may yield fewer rules with more body
atoms. P; <+ P2 A Q and P2 < R; A R2 may be reduced to P; < Rq1 A Ro A Q if the premises involve
Q, R1, R2 and only select Py as conclusions.
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Cong(0,B,0,C)

Perp(0,H,B,C)
Midp(H,B,C) — \
————————————________,_—vvPerp(O,D,B,C)
¢ Col1(D,0,H)
o -________________———> Cyclic(0,A,E,C)
Ncoll(A,C,0)

Perp(E,C,C,0) \ /

E Eqangle(C,E,C,0,A,E,A,0)
Perp(E,A,A,0)

_________________.———> Cyclic(0,A,D,C)
Ncoll(C,D,A) /ﬂ

Cong(0,A,0,B) ® ®® FEgangle(C,A,C,0,D,A,D,0)

Premises Deduction & Traceback Conclusions

Figure 1: Synthesizing one of GeolLP (single) tasks from one set of premises with Cyclic as target
predicate. Black arrows denote deduction (forward chaining), and red arrows denote traceback.

theorem proving (e.g., GEX (Chou et al.| 2000), JGEX (Ye et al., 2010ajb; 2011), AlphaGeometry
(Trinh et al., [2024)). E] The only constants are the points in the plane. The engine leverages a set of
Horn rules for deduction. Table [I]shows the characteristics of predicates.

Deduction To initialize deduction step with premises, we use plane geometry problems given in
JGEX (Ye et al., 2010azb; [2011), ranging from textbook exercises, regional olympiads, and famous
theorems. An example of premises is depicted in Figure [T} The final dataset, built from such se-
lected premises, can effectively help construct automated geometry theorem provers without needing
expert-defined rules, as the rules learned by ILP can be useful. Then, the deduction engine uses for-
ward chaining to reach the fix point. In the single-task setting, we separate conclusions with different
predicates.

Note that the deduction engine regards argument-permutation equivalent atoms as the same, which
substantially reduces deduction costs since argument symmetry is omnipresent. Therefore, rules for
argument permutation and several trivial rules are not explicitly listed. See Appendix[A.4|for details.

Traceback Since the conclusions deduced from one set of premises may involve all 8 predicates,
synthesizing a single ILP task should filter out those premises irrelevant to the target predicate.
To achieve this, the deduction engine constructs a deduction graph when doing forward chaining,
which illustrates the immediate dependence of the ground atoms in the graph. Every body atom in
a matched (ground) rule has a directed edge pointing to the head atom (see Figure[T). Starting from
the conclusions involving only the target predicate, we trace back along the directed edges in the
reverse direction until reaching the premises. The trace-backed premises are regarded as the BK.
The directed edges alongside (red arrows in Figure[I)) constitute a reference hypothesis.

After deduction and traceback, we repeat the BK and target examples ten times, retaining predicates
unchanged but mapping every point to new, unique points. In other words, the initial group of points
is duplicated into ten groups. Then, the data are divided into training set and evaluation set according
to 8:2 point groups.

5.3 DATASET FEATURES

In total, 63 expert-defined rules and many more trivial rules encoded in the deductive database are
used for synthesizing GeolLP (see Appendix [A.4). Several rules are listed here to demonstrate how

“Note that GEX, JGEX, and AlphaGeometry are deductive reasoning algorithms and are not applicable to
ILP, which is inductive reasoning.
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Table 2: Detailed comparison between GeolLP and the existing dataset. (# denotes number of)

Dataset OILP GeolLP
#Tasks 20 single-tasks 823()57511::513:3;?
Predicate Arity 1-2 3-8
Predicate Invention ~ 60% 96% for single-tasks
Max #Variables 6 12
Max #Body Atoms 2 9

10-100 for 85% single-tasks
and 50% multi-tasks;
< 1783 for single-tasks;
< 3553 for multi-tasks

#Rules 1-5

in every predicate;
various symmetries in
up to ogdoadic predicates

in just a few predicates;

Argument Symmetry limited to dyadic predicates

Predicate Constraints in a few predicates in every predicate
linear recursion: 30% recursion: ~ 100%
Recursion non-linear recursion: 10% mutual recursion: ~ 90%

linear mutual recursion: 10%  all 4 kinds of recursion are common

GeolLP covers the limitations mentioned in section @]

(1) Midp(M, C, D) + Midp(M, A, B) A Para(A, C, B, D) A Para(A, D, B, C)
(2) Para(A, B, E, F) < Para(A, B,C, D) ANPara(C, D, E, F)

(3) Cong(A, M, B, M) « Perp(A, B, B,C) AMidp(M, A, C)

(4) Cong (0, A, O, B) + Midp(M, A, B) A Perp(O, M, A, B)

(5) Perp(A, B, P,Q) < Cong(A, P, B, P) A Cong(A,Q, B, Q)

We briefly introduce the meaning of the predicates appearing in the above rules and Figure [T] to
facilitate understanding them. See Appendix for exhaustive descriptions. Midp(M, A, B)
asserts M is the midpoint of segment AB. Para(A,B,C,D) asserts lines AB & CD are
parallel. Perp(A,B,C,D) asserts lines AB & CD are perpendicular. Cong(A,B,C,D) as-
serts segments AB & CD are of same length. Coll(A,B,C) asserts A, B,C are collinear.
Neoll(A, B, C) asserts A, B, C are not collinear. Cyclic(A, B, C,D) asserts A, B,C, D are con-
cyclic. Eqangle(A, B, C, D, E, F, G, H) asserts full-angles [AB, CD] & [EF, GH| are equal. Full-
angle is defined by two lines and, intuitively, two full-angles [AB, CD] & [E'F, GH] are equal if,
supposing Rot denotes a rotation, Rot(AB) | EF and Rot(EF') | GH. Refer to|Ye et al.| (2010b)
for the formal definition.

Predicate Characteristics of predicates are provided in Table[I] The predicates are of arity from 3
to 8, all involving argument symmetry (see Appendix [A.2) and different constraints (see Appendix
. Note that, among constraints, Midp and Circle are functional; thus, our dataset can be easily
adapted to study the setting with functions. In addition, nearly all the predicates can be used in the
head and body of a rule.

Rules The number of rules in 85% single-tasks ranges from at least 10 to 100, while the rest of
single-tasks involve hundreds to thousands of rules. These rules result from expert-defined rules,
argument symmetry rules, and trivial rules. See Appendix [A.4]for details about trivial rules. The
maximum number of body atoms is 9. The maximum number of variables in a rule is 12. Exis-
tentially quantified variables usually exist. For instance, A, B of Rule(1), C, D of Rule(2), C of
Rule(3), M of Rule(4).
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Recursion All types of recursion are omnipresent in the whole rule set, and almost any two pred-
icates are mutually recursive. In the example rule subset above, Rule(1) is recursive and linear;
Rule(2) is recursive but not linear; Rule(3) & Rule(5) (or Rule(4) & Rule(5)) justify that they are
recursive because Cong and Perp are mutually recursive; while Rule(3) (also Rule(4)) is linear,
Rule(5) is not linear.

Predicate invention Almost all GeolLP tasks require predicate invention. For example, a task
learning Para with Cong, Coll, Ncoll, Eqangle, Perp may need to invent Midp as auxiliary predi-
cate (Appendix [B.I)). In addition, extra meaningful relations that are not used in GeoILP may also
be invented to reduce hypothesis space, e.g., congruent triangle, similar triangle (Appendix [B.I]).

Noisy data First, our synthetic data makes the open-world assumption. For instance, in Figure [T}
Perp appears twice in the BK (premises), while two new atoms of Perp not given in the BK also
appear in the deduced conclusions, which means that atoms not given in the BK can also be true. In
GeolLP, it is common for all true atoms not to be given in BK. Second, the negative examples are
noisy since our rule set is incomplete for the entire plane geometry (i.e., several true atoms may not
be deduced based on the incomplete rule set).

Multi-task In the multi-task setting, we trace back premises from all conclusions; thus, all predi-
cates in the deduction graph are considered target predicates for an ILP multi-task. E]In most cases,
the trace-backed premises are the same as the initial premises.

5.3.1 COMPARISON WITH OTHER ILP DATASETS

We compare GeolLP with the dataset proposed in OILP (Evans & Grefenstettel 2018)), which is
the only synthetic dataset used by recent neuro-symbolic methods (e.g., HRI [20]). Table 2] reveals
GeolLP’s extremely strong complexity from various aspects.

5.4 CONSTRUCTING RAW INPUT

An essential difference distinguishing it from other datasets is that GeolLP additionally provides
raw inputs corresponding to each task. Like in Figure[lI] the BK (premises) is transformed into an
image like in the plane geometry textbook. We adopt the constructive diagram builder language
developed in AlphaGeometry (Trinh et al.,|2024) to construct the image point by point from a given
set of premises, which works well with the symbolic deduction engine. The goal is to provide
data for learning rules from raw sub-symbolic inputs (images) and symbolic target examples. The
images only contain basic geometry objects, reducing the burden of perception and making them a
good testbed for this immature research topic. We also attach a corresponding image of conclusions
(BK + positive examples) to each task, like the rightmost diagram in Figure [, Handling GeoILP
in geometric form at least requires the ability to identify geometric objects, to identify the relations
among objects, and to induce interpretable rules. Developing such a complex system requires great
effort, which is out of the scope of a dataset constructing work and is left to future work.

More details about datasets and example data are provided in Appendix [A] & [B] respectively.
6 EXPERIMENTS

6.1 SETUP

Considering the great difficulty of GeoILP, we divide it into four progressive levels, which provides
chances for gradually strengthening ILP systems. Table [3]illustrates the specification of each level.

“Hence, multi-tasks do not involve predicate invention.

The numbers of rules are lower bounds of actual numbers, since it is hard to count all trivial rules and
argument symmetry rules that are implicitly encoded in the deduction engine.

"These statistics are from our provided reference hypotheses. An ILP system may learn other possible
hypotheses with different statistics.

8For readers interested in the induction ability of large language models, we provide a guide on how to
translate GeolLP into natural-language form in Appendix E}
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Table 3: GeolLP’s four single-task levels & multi-task level.

Level basic simple advanced complex multi-task
(single) tasks% 2% 9% 23% 66% -
arity <8 <8 <8 <8 <8
# body atoms <2 <9 <9 <9 <9
mutual recursion? X X v v v
# rules <20 <20 <20 <1783 <3553

The four levels are set according to four dimensionalities: predicate arity, number of body atoms,
involving mutual recursion or not, and number of rules. The former three are critical bottlenecks
of many neuro-symbolic ILP methods, e.g., |Glanois et al.| (2022)). The last one is a critical aspect
affecting search complexity for both symbolic and neuro-symbolic ILP methods.

6.2 RESULTS

Symbolic Among symbolic methods, Popper (Cropper & Morel, [2021a)) is the most powerful one
that simultaneously supports learning recursion, involving hypothesis constraints, inventing predi-
cates (Cropper & Morel, 2021b), and handling noise (Hocquette et al.| [2024), and scales better as
well. We conduct experiments using Popper% enabling predicate invention, recursion and noise
handling. Noise handling is turned on because GeolLP follows OWA, while Popper follows CWA.
The maximum number of variables in a rule is set to 12, which is the maximum value in every
four levels. When conducting experiments on different levels, we set the maximum number of body
atoms and the maximum number of rules to the maximum values of the learning level. This setup
aligns with our purpose of not injecting many priors into training. After 1-day searching, Popper
does not return any hypothesis, even at the basic level. We regard GeolILP as unsolvable by Popper
since the searching time is already about two orders of magnitude longer than in previous works
(about hundreds of seconds or less, e.g., Cropper & Morel|(2021a); |Glanois et al.| (2022))

Neuro-symbolic Several neuro-symbolic methods (Evans & Grefenstettel 2018}, (Glanois et al.,
2022) do not support higher-arity predicates, rules with more than two body atoms, or using target
predicate in the rule’s body, which are their primary bottlenecks of being inapplicable to GeolLP.
Several others (Rocktaschel & Riedel, 2017 |Campero et al.|, |2018) require expert-defined rule tem-
plates task-by-task, which is inappropriate for large-scale applications like GeolLP. Difflog (S1i et al.,
2019) is a neural-symbolic method that supports arbitrary hypothesis space. However, our experi-
ments show that, even at the basic level, Difﬂogthrows an out-of-memory error on a server with
500GB of memory, an order of magnitude larger than in the original paper (64GB). We leave further
investigation on improving memory usage for future work.

7 DISCUSSION AND CONCLUSION

We propose GeolLP, a large-scale synthetic dataset for inductive logic programming involving all
challenging language biases in reference hypotheses. GeolLP is, in terms of the hypothesis size,
at least one magnitude larger than existing datasets that can provide guiding hypotheses. Although
GeolLP may be biased towards plane geometry, it is still a good testbed for large-scale ILP. Be-
sides, we also provide image-form background knowledge, aiming to boost the development of joint
learning of neural perception and symbolic rule induction.

“Version 4.3.0: https://github.com/logic-and-learning-lab/Popper/tree/v4.3.0
'We leverage the implementation and recommend parameter setting in https://github.com/
petablox/difflog/tree/3c2d5218d9%alale200ebbf2d6ale5d077fb18826.
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A DETAILS OF GEOILP

A.1 PREDICATES DESCRIPTION

In this section, we exhaustively describe the predicates.

The constants in GeolLP are points in the plane. The exact meaning of each predicate is listed below.

Midp(M, A, B) asserts M is the midpoint of segment AB.

Para(A, B, C, D) asserts line AB and line C'D are parallel.

Perp(A, B, C, D) asserts line AB and line C'D are perpendicular.

Cong(A, B, C, D) asserts segment AB and segment C'D are of same length.

Coll(A, B, C) asserts A, B, C are collinear.

Ncoll(A, B, C) asserts A, B, C are not collinear.

Cyclic(A, B, C, D) asserts A, B, C, D are concyclic.

Eqangle(A, B, C,D, E,F, G, H) asserts full-angles [AB, CD] & [EF, GH] are equal.

— Full-angle is defined by two lines. Intuitively, two full-angles [AB,CD] & [EF, GH]
are equal if, supposing Rot denotes a rotation, Rot(AB) || EF and Rot(CD) || GH.

— Refer to|Ye et al.|(2010b)) for the formal definition.

Eqratio(A, B, C,D, E,F, G, H) asserts the ratio of segment AB and segment C'D equals
to the ratio of segment FF and GH.

Circle(O, A, B, C) asserts A, B, C are concyclic and the center is O.

Sameside(B, A, C,Y, X, Z) asserts B is to the same side of A&C as Y isto X&Z. Math-
— — — —

ematically, this is equivalent to (BA- BC)(YX -Y Z) > 0.

Sameside are not allowed as target predicates because it does not appear in the head of any rules.
Coll and Ncoll are not allowed as target predicates because the rules where they appear in the head
are either too few or trivial (see Appendix for trivial rules).

A.2 ARGUMENT SYMMETRY OF PREDICATES

We use biconditional to describe the argument symmetry of predicates.

Midp(M, A, B) ¢ Midp(M, B, A)
Para(A, B, C,D) «+ Para(C, D, A, B)
Para(A,B,C,D) < Para(B, A,C, D)
Perp(A,B,C,D) < Perp(C, D, A, B)
Perp(A, B, C,D) < Perp(B, A,C, D)
Cong(A,B,C,D) + Cong(C, D, A, B)
Cong(A,B,C,D) «» Cong(B, A,C, D)
Coll(A, B, C) < Coll(4, C, B)

Coll(A, B, C) ¢ Coll(B, C, A)

Ncoll(A, B, C) +» Neoll(4, C, B)
Ncoll(A, B, C) <+ Neoll(B, C, A)
Cyclic(A, B, C,D) « Cyclic(B,C, D, A)
Cyclic(A, B, C,D) «+ Cyclic(B, A,C, D)
Circle(0, A, B, C) «+ Circle(O, B,C, A)

Circle(O, A, B, C) «+ Circle(O, A, C, B)

Sameside(B, A, C,Y, X, Z) +» Sameside(Y, X, Z, B, A, C)
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» Sameside(B, A,C,Y, X, Z) +> Sameside(B,C, A,Y, X, Z)

* Eqangle(A,B,C,D,E,F,G,H) + Eqangle(E, F,G,H, A, B,C, D)
* Eqangle(A, B,C,D,E, F,G, H) +» Eqangle(C,D, A, B,G,H,E, F)
» Eqangle(A, B,C,D,E,F,G, H) <> Eqangle(B,A,C,D,E,F,G, H)
» Eqratio(A,B,C,D,E,F,G,H) <> Eqratio(E,F,G,H, A, B,C, D)
« Eqratio(A, B,C, D, E, F,G, H) «» Eqratio(C, D, A, B,G, H, E, F)
» Eqratio(A,B,C,D,E,F,G, H) < Eqratio(B,A,C,D,E,F,G, H)

Note that these biconditional formulae constitute a minimal representation of argument symmetry.
Much more symmetries can be derived by combining several of them.

The rule set would be too large if these argument symmetries were all represented as Horn rules. A
compact representation and effective handling should be thus considered by ILP methods.

A.3 CONSTRAINTS OF PREDICATES

We describe the constraints of predicates. We express the constraints by Horn goal, as in|Cropper &
Hocquette (2023)).

* + Sameside(B, A,C,Y, X, Z) A Sameside(A, B,C,Y, X, Z)
e« Midp(M, A, B) AMidp(N, A, B)A M # N

* + Circle(O, A, B,C) A Circle(Q, A, B,C) NO # Q

* + Perp(A, B,C,D) APerp(C, D, E, F) ANPerp(A, B, E, F)

°« Eqangle(A,B,C,D,E,F,G,H) A Eqangle(C,D,A,B,E,F,G,H) A
Npara(A, B,C, D)
°« Eqangle(A4,B,C,D,E,F,G,H) A Eqangle(C,D,A,B,E,F,G,H) A

Ncong(A, B,C, D)

(Npara for not parallel; Ncong for not congruent)

A.4 RULES

All the Horn rules utilized to synthesize GeolLP are divided into expert-defined rules, trivial rules,
and argument-symmetry rules (if representing argument symmetries by Horn rules).

Trivial rules are Horn rules trivial for human. For example, Coll(A4, B,C) + Coll(A, D, B) A
Coll(A, D, C). Note that, though trivial for human, an ILP learner may suffer from the large number
of trivial rules. A whole set of such trivial rules is illustrated in |Chou et al.| (2000) and is encoded
into the deductive database.

The expert-defined rules are

Para(A, B, E, F) «+ Perp(A, B,C, D) A Perp(C, D, E, F) A Ncoll(A, B, E)
Cyclic(4, B, C, D) + Cong(O, A, O, B) A Cong(O, B,0,C) A Cong(O,C,0, D)
Para(A, B,C, D) < Eqangle(A, B, P,Q,C,D, P,Q)

Eqangle(P, A, P, B,Q, A, Q, B) «+ Cyclic(4, B, P, Q)

Cyclic(4, B, P,Q) + Eqangle(P, A, P, B,Q, A,Q, B) A Ncoll(P, @, A)

Cong(A, B, P,Q) < Cyclic(4, B,C, P) A Cyclic(A, B,C, Q) A Cyclic(A, B,C, R) A
Eqangle(C,A,C,B,R, P,R,Q)

Para(E, F, B,C) + Midp(E, A, B) A Midp(F, 4, C)
8. Eqratio3(A, B,C, D, 0, 0) < Para(A, B,C, D) A Coll(O, A, C) A Coll(O, B, D)
9. Eqangle(A, B, E, F,C,D,G, H) + Perp(A, B,C,D) APerp(E, F,G, H)

10. Eqangle(A, B, E, F,M,N,R,U) — Eqangle(4, B,C,D,M,N,P,Q) A
Eqangle(C,D,E,F,P,Q,R,U)

AN o

~
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11.

12.

13.

14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
217.
28.

29.
30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Eqratio(A, B, E, F,M,N,R,U) — Eqratio(A,B,C,D,M,N,P,Q) A
Eqratio(C,D,E, F,P,Q,R,U)
Eqangle(A, B, A, D, A, D, A, C) + Eqratio(D,B,D,C, A, B, A,C)AColl(D, B, C)A

Eqratio(D, B, D,C, A, B, A,C) < Eqangle(A, B, A, D, A, D, A,C)A\Coll(D, B,C)A
Ncoll(A4, B, C)

Eqangle(O, A, A, B, A, B, 0O, B) < Cong(O, A, O, B) A Ncoll(O, A, B)
Cong(O, A, 0, B) < Eqangle(A,0, A, B, B, A, B,0) A Ncoll(O, A, B)
Eqangle(A, X, A, B,C, A, C, B) + Circle(O, A, B,C) A Perp(O, A, A, X)
Perp(0, A, A, X) < Circle(O, A, B, C) A Eqangle(A, X, A, B,C, A, C, B)
Eqangle(4, B, A,C,0, B,0, M) « Circle(O, A, B,C) AMidp(M, B, C)

Midp(M, B, C) - Circle(0, A, B,C) A Coll(M,B,C) A
Eqangle(A4, B, A,C,0,B,0, M)

Cong(A, M, B, M) + Perp(A, B, B,C) A Midp(M, A, C)

Perp(A, B, B, C) « Circle(O, A, B,C) A Coll(O, A, C)

Eqangle(A, D,C,D,C, D,C, B) «+ Cyclic(A, B,C, D) A Para(A4, B,C, D)
Cong(0, A, O, B) + Midp(M, A, B) A Perp(O, M, A, B)

Perp(A, B, P,Q) + Cong(A, P, B, P) A Cong(A,Q, B, Q)

Perp(P, A, A, Q) + Cong(A, P, B, P) A Cong(A, Q, B,Q) A Cyclic(A, B, P,Q)
Para(A, C, B, D) < Midp(M, A, B) A Midp(M, C, D)

Midp(M, C, D) + Midp(M, A, B) A Para(A,C, B, D) A Para(A, D, B, C)

Para(A, B,C, D) + Eqratio(O, A, A, C, O, B, B, D)AColl(O, A, C)AColl(O, B, D)A
Neoll(A, B, C) A Sameside(A,O,C, B,0, D)

Coll(A, B,C) + Para(A, B, A, C)

Eqratio(M, A, A, B,N,C,C, D) + Midp(M, A, B) A Midp(N, C, D)
Perp(A, B,C, D) < Eqangle(4, B, P,Q,C,D,U,V) A Perp(P,Q, U, V)
Cong(A, B,C, D) < Eqratio(4, B, P,Q,C,D,U,V) A Cong(P,Q,U, V)

Eqangle(A4, B, A,C, P,Q, P, R) + Cong(A,B,P,Q) N Cong(B,C,Q,R)
Cong(C, A, R, P) A Ncoll(4, B, C)

>

Eqangle(B, A,B,C,Q,P,Q,R) <+ Cong(A,B,P,Q) N Cong(B,C,Q,R) A
Cong(C, A, R, P) A Ncoll(A4, B,C)

Eqangle(C,A,C,B,R,P,R,QQ) <+ Cong(4,B,P,Q) N Cong(B,C,Q,R) A
Cong(C, A, R, P) A Ncoll(4, B, C)

Cong(A4,C, P, R) — Cong(A4,B,P,Q) A Cong(B,C,Q,R) A
Eqangle(B, A, B,C,Q, P,Q, R) A Ncoll(A, B, C)

Eqangle(A,B,A,C,P,Q,P,R) <+  Cong(A,B,P,Q) AN Cong(B,C,Q,R) A
Eqangle(B, A, B,C,Q, P,Q, R) A Ncoll(A, B, C)

Eqangle(C,A,C,B,R,P,R,QQ) <+ Cong(4,B,P,Q) N Cong(B,C,Q,R) A
Eqangle(B, A, B,C,Q, P,Q, R) A Ncoll(A4, B, C)

Eqangle(A4, B, A,C, P,Q, P, R) +— Eqangle(B, A, B,C,Q,P,Q,R) A
Eqangle(C, A,C, B, R, P, R, Q) A Ncoll(A, B, C

Eqratio(A, B, P,Q, B,C,Q, R) — Eqangle(B,A,B,C,Q,P,Q,R) A
Eqangle(C, A,C, B, R, P, R,Q) A Ncoll(A, B,C

Eqratio(B,C,Q,R,C, A, R, P) — Eqangle(B, A, B,C,Q,P,Q,R) A
Eqangle(C, A,C, B, R, P, R, Q) A Ncoll(4, B, C)

Eqratio(C, A, R, P, A, B, P, Q) — Eqangle(B, A, B,C,Q, P,Q,R) A
Eqangle(C, A,C, B, R, P, R, Q) A Ncoll(A, B, C)
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43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

A
C,
 R) — Eqangle( A,
C,B,R,Q, R, P) ANNcoll(A, B,C) A Cong(A
B, A,
A,

R) — Eqangle(

io(

Eqratio(C,

Eqgratio(C,

,C,Q, P,Q, R) ~ Eqratio(B, 4, B,C,Q, P,Q, R)

,C,B,R7P,R,Q) — EqratiO(B,A7B7C’,Q7P,Q,R)
R Q

)
A,C,P,Q,P,R) — Eqratio(B, A, B,C,Q, P,Q, R)
B

R

’Q) <_ EqratiO(B’ A7 B7 C? Q? P’ Q’R)
R

P

g
g
g
&
Q
Q
(S
O
=
=

) — Eqratio(B, A, B,C,Q, P,Q, R)

Eqratio(C, 4, A, B, R, P, P,Q) - Eqratio(B, A, B,C,Q, P,Q, R)
R

P

Cong(B,C,Q, R) — Eqratio(B, A, B,C,Q, P,Q, R)
A

Eqratio(C, A,C, B, R, P, R,Q) A Ncoll(A, B,C) A Cong(A, B,
C

e
S

Cong(A,C, P, R) — Eqratio(B, A, B,
Eqratio(C, A,

Q
Q
v
Q
=3

A Ncoll(A, B,C) A Cong(A, B,

Q)
P, R) — Eqratio(B, A,
Q) A Ncoll(A, B,C) A Cong(A, B
(

7B,C,Q,P,Q7R) — Eqratlo B
,Q) A Ncoll(A, B, C) A Cong(A,

Eqangle(C, A,C, B, R,Q, R, P) — Eqratio(B, A
Eqratio(C, A,C, B, R, P, R,Q) A Ncoll(A, B,C) A Cong(A, B,
)

Para(M, N Para(A, B,C,D) A Coll(M,A,D) A Coll(N,B,C)
Eqratio(M, )A Sames1de(M, A,D,N,B,C)

Eqratio(M, ) +— Para(A, B,C,D) A Coll(M, A, D)
Coll(N, B,C) A Para(M, N, A, B)

R
oL

7A7
B

)

W YW

a La

O O ©
~
O
=

)

o
e

These rules are adapted from those in AlphaGeometry. E

11https ://github.com/google-deepmind/alphageometry/blob/main/jgex_ag_
231.txt
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B DATA EXAMPLES FROM GEOILP

B.1 PREDICATE INVENTION

The example below requires the invention of Eqangle

Background Knowledge:

Cong(D8,A8,D8,B8)
* Cong(D8,B8,D8,C8)
Cong(D8,E8,D8,A8)
Coll(C8,A8,F8)
Perp(ES8,F8,A8,C8)
Coll(G8,A8,B8)
Perp(E8,G8,A8,B8)
Ncoll(F8,G8,A8)
Cong(D9,A9,D9,B9)
* Cong(D9,B9,D9,C9)
Cong(D9,E9,D9,A9)
Coll(C9,A9,F9)
Perp(E9,F9,A9,C9)
Coll(G9,A9,B9)
Perp(E9,G9,A9,B9)
Ncoll(F9,G9,A9)

Positive Examples:

Cyclic(C8,E8,A8,B8)
Cyclic(E8,A8,F8,G8)
Cyclic(C9,E9,A9,B9)
Cyclic(E9,A9,F9,G9)

Proof steps:
* Cyclic(C8,E8,A8,B8) «+  Cong(D8,A8D8B8) A  Cong(D8E8DSA8) A
Cong(D8,B8,D8,C8)
* Coll(F8,A8,C8) +— Coll(C8,A8,F8)
* Coll(G8,A8,B8) «+— Coll(G8,A8,B8)
* Eqangle(A8,C8,E8,F8,A8 B8, E8,G8) < Perp(E8,G8,A8,B8) A Perp(E8,F8,A8,C8)

» Eqangle(F8,A8,F8,E8,G8,A8,G8,E8) < Coll(F8,A8,C8) A Coll(G8,A8,B8) A Eqan-
gle(A8,C8,E8,F8,A8,B8,E8,G8)

* Cyclic(E8,A8,F8,G8) < Eqangle(F8,A8,F8,E8,G8,A8,G8,E8) A Ncoll(F8,G8,A8)

e Cyclic(C9,E9,A9.B9) «  Cong(D9,A9,D9.B9) A  Cong(D9,E9,D9,A9) A
Cong(D9,B9,D9,C9)

« Coll(F9,A9,C9) « Coll(C9,A9,F9)
« Coll(G9,A9,B9) + Coll(G9,A9,B9)
« Eqangle(A9,C9,E9,F9,A9,B9,E9,G9) < Perp(E9,G9,A9,B9) A Perp(E9,F9,A9,C9)

* Eqangle(F9,A9,F9,E9,G9,A9,G9,E9) + Coll(F9,A9,C9) A Coll(G9,A9,B9) A Eqan-
gle(A9,C9,E9,F9,A9,B9,E9,G9)

* Cyclic(E9,A9,F9,G9) <— Eqangle(F9,A9,F9,E9,G9,A9,G9,E9) A Ncoll(F9,G9,A9)
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Figure 3: An example of image-form background knowledge + positive examples.

B.2 RAW SENSORY DATA

See Figure 2| for an example of image-form background knowledge. See Figure[3|for an example of
image-form conclusions, which is a combination of background knowledge and positive examples.

C TRANSLATING GEOILP INTO NATURAL-LANGUAGE FORM

For readers interested in the induction ability of large language models (LLMs), we provide guidance
for translating GeolLP into natural-language form.

The prompt fed to LLMs should consist of three parts: task description, task data, and a command
requiring LLMs to induce a hypothesis. The difficult part is the task data, containing background
knowledge and positive & negative examples, which are ground atoms. The translation from sym-
bolic atoms to natural-language forms varies in different domains. For plane geometry, AlphaGeom-
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etry (Trinh et al., [2024) provides several templates. For example, Coll(A, B, C) is translated into
A,B,C are collinear. All the predicates used in GeolLP can be found in AlphaGeometry, and thus
all GeolLP’s atoms can be translated into natural-language forms. In addition, to enforce LLMs
generating Horn rules (in natural-language forms), the command could ask LLMs to generate rules
in the form of “If ... and ..., then ...”, where each “...” corresponds to a ground atom. “...” can be
repeated multiple times and must be concatenated by “and”.
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