
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GEOILP: A SYNTHETIC DATASET TO GUIDE
LARGE-SCALE RULE INDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive logic programming (ILP) is a machine learning approach aiming to learn
explanatory rules from data. While existing ILP systems can successfully solve
small-scale tasks, large-scale applications with various language biases are rarely
explored. Besides, it is crucial for a large majority of current ILP systems to
require expert-defined language bias, which hampers the development of ILP to-
wards broader utilizations. In this paper, we introduce GeoILP, a large-scale syn-
thetic dataset of diverse ILP tasks involving numerous aspects of language bias.
The ILP tasks are built from geometry problems, at the level from textbook ex-
ercise to regional International Mathematical Olympiad (IMO), with the help of
a deduction engine. These problems are elaborately selected to cover all chal-
lenging language biases, such as recursion, predicate invention, and high arity.
Experimental results show that no existing method can solve GeoILP tasks. In
addition, along with classic symbolic-form data, we provide image-form data to
boost the development of the joint learning of neural perception and symbolic rule
induction.

1 INTRODUCTION

Inductive logic programming (ILP), at the intersection of machine learning (ML) and symbolic ar-
tificial intelligence, learns hypotheses from background knowledge and examples (Muggleton &
De Raedt, 1994; Muggleton et al., 2012; Cropper et al., 2020a; Cropper & Dumančić, 2022; Zhang
et al., 2023). ILP adopts logical formulae to represent knowledge, examples, and hypotheses uni-
formly. The most fascinating merit of ILP, differing from other ML approaches, is the ability to
learn highly interpretable hypotheses, which reveals a potential way toward human-comprehensible,
controllable, and trust-worthy artificial intelligence.

Classic symbolic ILP are based on discrete search, suffering from the combinatorially growing
search space and thus restricting to small-scale scenes. To alleviate this obstacle, symbolic methods
require user-defined language bias to limit searching, which is markedly crucial for efficiency (Crop-
per & Dumančić, 2022). Such hand-crafted work is more or less the same as the feature engineering
(Khalid et al., 2014) in other ML tasks at the early stage, requiring certain expert knowledge and
considerably many troublesome trial and error. In the modern ML community, feature engineering
is often superseded by automatic feature extractors, such as various neural networks, which achieve
amazing success in large-scale applications (e.g., GPT-4 (Achiam et al., 2023)). Accordingly, thor-
oughly turning hand-crafted determination of language bias into automatic language bias discovery
is a promising direction toward broader applications of ILP.

Modern neural-symbolic ILP relaxes the hypotheses space into a continuous space and leverage
gradient-based optimization techniques to induce solutions, from which interpretable rules can be
extracted. Despite not requiring an elaborated language bias, existing neural-symbolic methods are
limited to a relatively small hypotheses space, presuming low-arity predicates, function-free clauses,
and few rule’s body atoms (Glanois et al., 2022). Scaling up to large-scale scenarios is also the major
challenge for this line of work.

However, large-scale ILP datasets are lacking in evaluating more powerful methods and guiding
enhancement. Existing datasets are either small or relatively large but lack reference hypotheses.
Our goal is to construct a large-scale ILP dataset, providing reference hypotheses to guide the reso-
lution of present limitations in ILP, which would lead ILP to an expert-free learning paradigm (like

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

modern neural learning) and exceedingly broader utilization. Furthermore, we aim to evaluate ILP
systems without much expert priors (like other ML tasks), i.e., training & testing without excessive
user-defined bias.

Therefore, we construct GeoILP, a large-scale dataset synthesized from plane geometry rules that
help generate reference hypotheses involving various language biases. We first adopt a symbolic
deduction engine to obtain target examples from the rules and determine the background knowledge
and hypotheses by traceback from the examples. We also consider the noisy and multi-task settings,
which are closer to real-world applications and actively studied in other ML tasks.

In summary, GeoILP contains 836 single-tasks and 207 multi-tasks. The predicate arity is up to
8, the number of variables in a rule is up to 12, and the number of body atoms is up to 9. Overall,
85% single-tasks and 50% multi-tasks leverage hypothesis with the number of rules ranging from (at
least) 10 to 100 (refer to section 5.3 for details). Besides, the language biases also involve argument
symmetry, constraints, different types of recursion, and predicate invention.

We conduct experiments on existing applicable methods, which show that GeoILP is completely
unreachable.

In addition, GeoILP provides image-form background knowledge, which requires jointly training
a perception network, transforming the raw sensory input (image) into symbolic knowledge, and
an ILP system inducing the hypothesis. The breakthrough for such joint learning, which remains
less explored, would be a breakthrough for the whole artificial intelligence community (Cropper &
Dumančić, 2022).

2 RELATED WORK

2.1 ILP METHODS

Symbolic methods search in the hypotheses space defined by language biases. Among these,
notable methods include FOIL (Quinlan, 1990), Progol (Muggleton, 1995; Muggleton & Bryant,
2000), TILED (Blockeel & De Raedt, 1997), ALEPH (SRINIVASAN, 2001), Metagol (Muggleton
et al., 2015), ILASP (Law et al., 2018; 2020). These methods suffer from combinatorially growing
hypotheses, noisy data, and inefficient predicate invention. Popper (Cropper & Morel, 2021a) is a
modern symbolic ILP system, which is, to the best of our knowledge, the only symbolic system
capable of simultaneously learning recursive rules, inventing predicates (Cropper & Morel, 2021b),
handling noise (Hocquette et al., 2024), and scaling better, though still very expensive to do these.

Neural-symbolic methods or differentiable methods, make continuous relaxation of the discrete
hypotheses space and induce solutions by minimizing loss function via gradient-based optimizer.
While the early-stage methods require user-defined language templates task-by-task to restrict hy-
potheses (Rocktäschel & Riedel, 2017; Campero et al., 2018), the following works tend to automat-
ically deal with more general language biases (Evans & Grefenstette, 2018; Si et al., 2019; Glanois
et al., 2022). As learning interpretable solutions is the outstanding property of ILP, the methods that
cannot produce human-readable rules are out of the scope of this paper (e.g., Dong et al. (2019)).

2.2 ILP DATASETS

Real-world datasets Real-world datasets collect background knowledge and examples from real-
world observation. The application scenarios cover knowledge base completion (Bordes et al., 2013;
Toutanova & Chen, 2015; Yang et al., 2017; Hudson & Manning, 2019), drug design (Inoue et al.,
2013; Tamaddoni-Nezhad et al., 2006), ecology (Bohan et al., 2017), etc. The main demerit of
real-world datasets is lacking reference hypotheses. Consequently, an ILP system failing on these
datasets would have little idea about where to improve.

Synthetic datasets Synthetic datasets covering mathematical formal systems (Evans & Grefen-
stette, 2018), grammar learning (Muggleton et al., 2014; Law et al., 2019), games (Cropper et al.,
2020b), program analysis (Sivaraman et al., 2019; Bartha & Cheney, 2020), etc. They can provide
reference hypotheses to guide resolving the limitations of ILP systems. However, current synthetic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

datasets are small-scale, whose hypotheses typically contain less than 10 rules, and have already
been solved by existing ILP. Our work extends this line of work to much larger scenarios.

3 BACKGROUND

We first introduce necessary logic notions and then define inductive logic programming (ILP). Fur-
ther terminology is illustrated in the next section as well.

3.1 LOGIC PRELIMINARIES

We assume basic knowledge about first-order logic.

Horn clause Every formula in first-order language can be transformed into its semantically equiv-
alent conjunctive normal form, a conjunction of clauses. A clause is a disjunction of literals. A
literal is an atom (positive literal) or its negation (negative literal). An atom is called ground if it
contains no variable. Horn clause is a widely used subset of clauses that allow at most one positive
literal. Horn clause involve facts, which are atoms, and rules that can be semantically equivalently
represented as (assumed function-free here)

H(X)← B1(X) ∧ B2(X) ∧ · · · ∧ Bk(X)

where X denotes a vector of variables, the atom H(X) is the head atom of the rule, and the atoms
B1(X),B2(X), . . . ,Bk(X) are the body atoms of the rule. A program is a set of Horn clauses. We
define rule size as the number of atoms in a rule and program size as the sum of rule size.

Note that the variables in a clause are implicitly quantified by universal quantifiers that are supposed
to be placed at the beginning. The variables appearing only in the body but not the head are called
existentially quantified. 1

Forward chaining Forward chaining can be used to deduce all the true ground facts from given
rules and background facts. Formally, given a set of ground atoms A and a Horn rule set R, the
immediate consequence through one-step forward chaining is defined as the set

conR(A) = A ∪

{
α

∣∣∣∣∣ α← α1, . . . , αk ∈ ground(R),
k∧

i=1

αi ∈ A

}
where ground(R) consists of all the ground rules instantiated fromR. Then, we recursively define
the consequence through t steps CR,t(A)

CR,0(A) = A, CR,t+1(A) = conR
(
CR,t(A)

)
We say the fix point is reached at step T if T is the smallest natural number satisfying CR,T (A) =
CR,T+1(A), and CR,T (A) is the set of all the consequences of the forward chaining.

3.2 INDUCTIVE LOGIC PROGRAMMING

We adopt the most popular ILP setting learning from entailment (LFE) (Cropper & Dumančić,
2022). The training data is a tuple (B, E+, E−) of background knowledge B, positive examples of
the concept E+, and negative examples of the concept E−. E+, E− are sets of ground atoms relevant
to the target predicate we want to learn. B is a set of clauses that act as background knowledge (BK),
typically a set of ground atoms irrelevant to the target predicate (rules can also be in BK). The goal
of ILP is to induce a hypothesisH, consisting also of clauses, satisfying the following conditions

∀e ∈ E+, H ∪B ⊨ e (completeness)

∀e ∈ E−, H ∪B ⊭ e (consistency)

The completeness condition states that the hypothesis and BK entail all positive examples. The
consistency condition states that the hypothesis and BK do not entail any negative examples.

1Take an example to explain the name, ∀X∀Y ∀Z H(X,Y) ← B1(X,Z) ∧ B2(Z, Y) is equivalent to
∀X∀Y H(X,Y)← ∃Z (B1(X,Z) ∧ B2(Z, Y)). Z is existentially quantified in this rule.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For example, given

B = {Father(John,Mary),Father(Tom, John)}
E+ = {Grandfather(Tom,Mary)}
E− = {Grandfather(Mary,Tom),Grandfather(John,Mary)}

, an ILP task learner may learn the following hypothesisH (upper italic letters denote variables)

Grandfather(X,Y)← Father(X,Z) ∧ Father(Z, Y)

With the learned hypothesis, an automated theorem prover can derive all the facts regarding the
target predicate Grandfather from the background facts regarding the relation Father.

4 LIMITATIONS OF CURRENT ILP

In this section, we identify the critical limitations of current ILP that impede the development of
broader applications. Our proposed dataset is intended to cover all these challenges and is thus a
good testbed for elaborating more sophisticated rule induction systems.

4.1 HAND-CRAFTED LANGUAGE BIAS

Language bias is used to limit the hypothesis space in symbolic ILP. As calculated by Cropper &
Morel (2021a), the number of possible hypotheses grows combinatorially fast.

Without carefully human-determined language bias, such as the predicates allowed to appear in the
rule’s head, the predicates allowed to appear in the rule’s body, enabling recursion or not, enabling
predicate invention or not, the maximum number of clauses allowed in a hypothesis, the maximum
number of unique variables in a clause, the maximum number of body atoms in a clause, the number
of allowed existentially quantified variables, the maximum times a predicate can appear in a rule,
symbolic ILP tends to be extremely slow, even useless (Cropper & Dumančić, 2022). Determining
a good language bias is onerous and requires a vast amount of trial and error.

Below, we introduce the most dominant language biases, which notably increase hypothesis space
and should thus be completely automatically determined by ILP systems.

Predicate arity Real-world relations may involve several entities. For instance, the dyadic re-
lation GoodAt(student,math) asserts that a student is good at math (subject), while the triadic
relation Course(teacher,math, student) asserts that a teacher teaches math to a student. However,
current neuro-symbolic methods typically support arity lower than two (Evans & Grefenstette, 2018;
Campero et al., 2018; Glanois et al., 2022). Several symbolic methods can support arbitrary arity
but exceedingly increase search complexity (Cropper & Morel, 2021a).

Argument symmetry Argument symmetry may exist for predicates. For example, if John is
Mary’s cousin, then Mary must also be John’s cousin. As this example, argument symmetry can
be represented as a Horn rule, yet complex symmetry may yield too many rules. For instance, the
triadic atom asserting whether 3 people queue in a straight line evaluates to the same truth value if
permuting all 3 arguments (any 3 people), which yields

(
3!
2

)
= 15 Horn rules. To the best of our

knowledge, there is no specialized way to learn compact representations for argument symmetry.

Predicate constraint Atoms’ truth value may be forced to be opposite under some constraints.
Asymmetry constraint can be considered as Horn goal (clause with only negative literals) ←
Pred(X,Y) ∧ Pred(Y,X). The representation of other constraints (e.g., irreflexivity, anti-
transitivity, anti-triangularity, functionality, exclusivity) can be found in Cropper & Hocquette
(2023). Current neuro-symbolic methods do not cover this aspect.

Recursion There are two types of recursion in Horn programs: recursion and mutual recursion
(Bancilhon & Ramakrishnan, 1986). Recursion refers to the phenomenon that the same predicate ap-
pears simultaneously in a rule’s head and body. For instance, Even(X)← Even(Y)∧Succ2(Y,X)
is recursive, where Even asserts whether a natural number is even and Succ2(Y,X) asserts whether

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

X = Y + 2. Even is the recursive predicate in this case. Besides, this recursive rule is also called
linear because the recursive predicate only appears once in the body. Mutual recursion refers to the
phenomenon that two predicates mutually derive from each other. We say a predicate Pred1 derives
another predicate Pred2 if there exists such a set of rules (variables omitted)

Pred2 ← · · · ∧Q1 Q1 ← · · · ∧Q2 Q2 ← · · · ∧Q3 · · · Qn ← · · · ∧ Pred1

where Qs denote other predicates and . . . denote any other body atoms. Therefore, two mutually
recursive predicates can be mutually deduced via forward chaining. For instance,

Even(X)← Odd(Y) ∧ Succ(Y,X) Odd(X)← Even(Y) ∧ Succ(Y,X)

, where Succ(X,Y) asserts whether Y = X + 1, show that Even and Odd (asserting whether a
natural number is odd) are mutually recursive. A rule is also called recursive if the head predicate is
mutually recursive with one of its body predicates, and the rule is called linear if only one mutually
recursive predicate appears in the body. Enabling recursion is expensive for symbolic ILP, while the
state-of-the-art neuro-symbolic ILP does not support mutual recursion (Glanois et al., 2022).

Predicate invention Predicate invention is a crucial part of automatically discovering
new concepts, which may lead to breakthroughs in AI development (Russell, 2019,
chap. 3). Specifically, predicate invention enables predicates that are unused in BK &
target examples appearing in the hypothesis. For example, learning Even from the BK
{Zero(0),Succ(0, 1),Succ(1, 2),Succ(2, 3), . . . } may require inventing dyadic relation Succ2 and
the following rules

Even(X)← Even(Y) ∧ Succ2(Y,X) Even(0)← Zero(0)

Succ2(Y,X)← Succ(Z,X) ∧ Succ(Y,Z)

While inventing such auxiliary predicates substantially reduces hypotheses (Cropper & Dumančić,
2022) and improves learning performance (Cropper, 2019), predicate invention is expensive, inac-
curate, restricted to low-arity invention (Cropper & Morel, 2021b).

4.2 INSUFFICIENT NOISE HANDLING

Mislabeled & ambiguous data Noise is ubiquitous in realistic data. While symbolic methods
struggle to learn from noisy data (Hocquette et al., 2024), neuro-symbolic methods can deal with
mislabeled examples (Glanois et al., 2022) and ambiguous BK (Evans & Grefenstette, 2018). Han-
dling mislabeled BK is still an open problem (Cropper & Dumančić, 2022). Further study on large-
scale noisy tasks lacks synthesized datasets to control the noise rate in experiments.

Open-world assumption While the closed-world assumption (CWA) asserts any ground atom,
whose predicate appears in the BK, to be false if it is not given in BK, the open-world assumption
(OWA) allows those ground atoms that are not known to be true to have the possibility of being
true (Reiter, 1981). Almost all existing ILP systems assume CWA. However, OWA is a more re-
alistic setup since a complete BK is inaccessible in real-world applications. A set of incomplete
background ground atoms is considered noisy if an ILP system assumes CWA.

4.3 MULTI-TASK LEARNING

Existing ILP focuses on once learning one target predicate. However, simultaneously learning sev-
eral target predicates can share common rules and capture mutual recursions among target predi-
cates. Glanois et al. (2022) proposes an iterative multi-task learning scheme for their neuro-symbolic
model and successfully learns certain hypotheses at a small program size. Large-scale multi-task
learning is a promising direction for building broader applications, which remains unexplored.

4.4 UNABLE TO LEARN FROM RAW INPUT

One major gap between ILP and modern ML systems is the ability to induce knowledge from raw
sensory input. Most ILP systems only receive symbolic data as input, while raw data is usually
images, speech, natural language, etc. There are initial works that use neural networks to perceive

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and transform raw input into symbolic form and use symbolic deduction to do reasoning (Manhaeve
et al., 2018; Dai et al., 2019; Dai & Muggleton, 2021). Efficiently jointly training perception network
and ILP system in large-scale tasks would be a promising direction for robust and reliable artificial
intelligence. See Evans (2020); Evans et al. (2021; 2022) for more possibilities to induce rules from
raw sensory input.

5 GEOILP

In this section, we formally introduce GeoILP, our proposed dataset for elaborating large-scale so-
phisticated rule induction systems, in four parts. First, a general guide for synthesizing ILP tasks
from predefined rules. Second, the steps for identifying the examples (deduction step) and the BK
(traceback step) of GeoILP. Third, the features of GeoILP critically differ from other ILP testbeds.
Fourth, the approach to transform symbolic input into raw sensory input.

5.1 A GENERAL GUIDE FOR ILP TASK SYNTHESIS

Inductive reasoning can be seen as a ”reverse” procedure of deductive reasoning in the sense that the
former learns rules from premises and conclusions while the latter infers conclusions from premises
and valid rules. In ILP, premises correspond to the BK, and the conclusions correspond to the target
examples. Therefore, to construct ILP data, we can derive target examples from selected premises
and predefined rules using a deduction engine.

Concretely, the data-synthesizing procedure works as follows:

1. Randomly or intentionally choose several ground atoms as premises.

2. Define a consistent set of rules. 2

3. Deduce all the conclusions from the premises and rules using any deduction engine.

4. Select a part or all of the conclusions (also ground atoms) as positive examples. 3

5. Trace back from the conclusions to identify a minimum set of premises contributing to
deducing the conclusions as ILP BK.

6. Optionally, obtain negative examples by removing the conclusions from all syntactically
possible ground atoms (all combinations of target predicate and constants).

5.2 SYNTHESIZING GEOILP

We choose plane geometry as the application domain as its formal system covers all the difficulties
indicated in section 4 (see section 5.3).

Formalizing plane geometry and building a corresponding symbolic deduction engine are challeng-
ing works outside this paper’s scope. We adopt an expert-designed deduction engine based on
deductive database theory (Gallaire et al., 1984), similar to the ones used in automated geometry
theorem proving (e.g., GEX (Chou et al., 2000), JGEX (Ye et al., 2010a;b; 2011), AlphaGeometry
(Trinh et al., 2024)). 4 The only constants are the points in the plane. The engine leverages a set of
Horn rules for deduction. Table 1 shows the characteristics of predicates.

Deduction To initialize deduction step with premises, we use 231 plane geometry problems given
in JGEX (Ye et al., 2010a;b; 2011), ranging from textbook exercises, regional olympiads, and fa-
mous theorems. An example of premises is depicted in Figure 1. The final dataset, built from
such selected premises, can effectively help construct automated geometry theorem provers without
needing expert-defined rules, as the rules learned by ILP can be useful. Then, the deduction engine

2A set of rules is consistent if the rules do not contradict each other.
3Merely selecting a part of the conclusions as positive examples may yield fewer rules with more body

atoms. P1 ← P2 ∧ Q and P2 ← R1 ∧ R2 may be reduced to P1 ← R1 ∧ R2 ∧ Q if the premises involve
Q,R1,R2 and only select P1 as conclusions.

4Note that GEX, JGEX, and AlphaGeometry are deductive reasoning algorithms and are not applicable to
ILP, which is inductive reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Predicates used in GeoILP (Target=can be used as target predicate; Head=can be used in
the head; Body=can be used in the body). Details see Appendix A.1.

Name Arity Target Argument
Symmetry Constraints Head Body Full

Name

Coll 3 ✗ ✓ ✓ ✓ ✓ collinear
Ncoll 3 ✗ ✓ ✓ ✓ ✓ not collinear

Sameside 6 ✗ ✓ ✓ ✗ ✓ same side
Midp 3 ✓ ✓ ✓ ✓ ✓ midpoint
Cong 4 ✓ ✓ ✓ ✓ ✓ segment congruent
Perp 4 ✓ ✓ ✓ ✓ ✓ perpendicular
Para 4 ✓ ✓ ✓ ✓ ✓ parallel

Cyclic 4 ✓ ✓ ✓ ✓ ✓ concyclic
Circle 4 ✓ ✓ ✓ ✓ ✓ circle

Eqangle 8 ✓ ✓ ✓ ✓ ✓ equal angle
Eqratio 8 ✓ ✓ ✓ ✓ ✓ equal ratio

uses forward chaining to reach the fix point. In the single-task setting, we separate conclusions with
different predicates.

Note that the deduction engine regards argument-permutation equivalent atoms as the same, which
substantially reduces deduction costs since argument symmetry is omnipresent. Therefore, rules for
argument permutation and several trivial rules are not explicitly listed. See Appendix A.4 for details.

Traceback Since the conclusions deduced from one set of premises may involve all 8 predicates,
synthesizing a single ILP task should filter out those premises irrelevant to the target predicate.
To achieve this, the deduction engine constructs a deduction graph when doing forward chaining,
which illustrates the immediate dependence of the ground atoms in the graph. Every body atom in
a matched (ground) rule has a directed edge pointing to the head atom (see Figure 1). Starting from
the conclusions involving only the target predicate, we trace back along the directed edges in the
reverse direction until reaching the premises. The trace-backed premises are regarded as the BK.
The directed edges alongside (red arrows in Figure 1) constitute a reference hypothesis.

After deduction and traceback, we repeat the BK and target examples ten times, retaining predi-
cates unchanged but mapping every point (constants) to new, unique points. In other words, the
initial group of points is duplicated into ten groups. Then, the data are divided into training set and
evaluation set according to 8:2 point groups.

5.3 DATASET FEATURES

In total, 65 expert-defined rules and much more trivial rules encoded in the deductive database are
used for synthesizing GeoILP (see Appendix A.4). Several rules are listed here to demonstrate how
GeoILP covers the limitations mentioned in section 4.

⟨1⟩ Midp(M,C,D)← Midp(M,A,B) ∧ Para(A,C,B,D) ∧ Para(A,D,B,C)

⟨2⟩ Para(A,B,E, F)← Para(A,B,C,D) ∧ Para(C,D,E, F)

⟨3⟩ Cong(A,M,B,M)← Perp(A,B,B,C) ∧Midp(M,A,C)

⟨4⟩ Cong(O,A,O,B)← Midp(M,A,B) ∧ Perp(O,M,A,B)

⟨5⟩ Perp(A,B, P,Q)← Cong(A,P,B, P) ∧ Cong(A,Q,B,Q)

We briefly introduce the meaning of the predicates appearing in the above rules and Figure 1 to
facilitate understanding them. See Appendix A.1 for exhaustive descriptions. Midp(M,A,B)
asserts M is the midpoint of segment AB. Para(A,B,C,D) asserts lines AB & CD are
parallel. Perp(A,B,C,D) asserts lines AB & CD are perpendicular. Cong(A,B,C,D) as-
serts segments AB & CD are of same length. Coll(A,B,C) asserts A,B,C are collinear.
Ncoll(A,B,C) asserts A,B,C are not collinear. Cyclic(A,B,C,D) asserts A,B,C,D are con-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A BD

E

C

O

H

A BD

E

C

O

H

Cong(O,A,O,B)

Cong(O,B,O,C)

Midp(H,B,C)

Coll(D,O,H)

Perp(E,C,C,O)

Perp(E,A,A,O)

Eqangle(C,E,C,O,A,E,A,O)

Ncoll(A,C,O)
Cyclic(O,A,E,C)

Ncoll(C,D,A)

Eqangle(C,A,C,O,D,A,D,O)

Cyclic(O,A,D,C)

Premises Deduction & Traceback Conclusions

Perp(O,H,B,C)

Perp(O,D,B,C)

Figure 1: Synthesizing one of GeoILP (single) tasks from one set of premises with Cyclic as target
predicate. Black arrows denote deduction (forward chaining), and red arrows denote traceback.

cyclic. Eqangle(A,B,C,D,E,F,G,H) asserts full-angles [AB,CD] & [EF,GH] are equal. Full-
angle is defined by two lines and, intuitively, two full-angles [AB,CD] & [EF,GH] are equal if,
supposing Rot denotes a rotation, Rot(AB) ∥ EF and Rot(EF) ∥ GH . Refer to Ye et al. (2010b)
for the formal definition.

Predicate Characteristics of predicates are provided in Table 1. The predicates are of arity from 3
to 8, all involving argument symmetry (see Appendix A.2) and different constraints (see Appendix
A.3). Note that, among constraints, Midp and Circle are functional; thus, our dataset can be easily
adapted to study the setting with functions. In addition, nearly all the predicates can be used in the
head and body of a rule.

Rules The number of rules in a task ranges from 10 to 91, which do not consider rules for argument
symmetry and trivial rules. See Appendix A.4 for details about trivial rules. The maximum number
of body atoms is 5. the maximum number of variables in a rule is 12. Existentially quantified
variables usually exist. For instance, A,B of Rule⟨1⟩, C,D of Rule⟨2⟩, C of Rule⟨3⟩, M of Rule⟨4⟩.

Recursion All types of recursion are omnipresent in the whole rule set, and almost any two pred-
icates are mutually recursive. In the example rule subset above, Rule⟨1⟩ is recursive and linear;
Rule⟨2⟩ is recursive but not linear; Rule⟨3⟩ & Rule⟨5⟩ (or Rule⟨4⟩ & Rule⟨5⟩) justify that they are
recursive because Cong and Perp are mutually recursive; while Rule⟨3⟩ (also Rule⟨4⟩) is linear,
Rule⟨5⟩ is not linear.

Predicate invention Almost all GeoILP tasks require predicate invention. For example, a task
learning Para with Cong, Coll, Ncoll, Eqangle, Perp may need to invent Midp as auxiliary predi-
cate (Appendix B.1). In addition, extra meaningful relations that are not used in GeoILP may also
be invented to reduce hypothesis space, e.g., congruent triangle, similar triangle (Appendix B.1).

Noisy data First, our synthetic data makes the open-world assumption. For instance, in Figure 1,
Perp appears twice in the BK (premises), while two new atoms of Perp not given in the BK also
appear in the deduced conclusions, which means that atoms not given in the BK can also be true. In
GeoILP, it is common for all true atoms not to be given in BK. Second, the negative examples are
noisy since our rule set is incomplete for the entire plane geometry (i.e., several true atoms may not
be deduced based on the incomplete rule set).

Multi-task In the multi-task setting, we trace back premises from all conclusions; thus, all pred-
icates in the deduction graph are considered target predicates for an ILP multi-task. In most cases,
the trace-backed premises are the same as the initial premises.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Detailed comparison between GeoILP and the existing dataset. (# denotes number of)

Dataset ∂ILP GeoILP

#Tasks 20 single-tasks 836 single-tasks;
207 multi-tasks

Predicate Arity 1 - 2 3 - 8

Predicate Invention ∼ 60% 96% for single-tasks

Max #Variables 6 12

Max #Body Atoms 2 9

#Rules 1 - 5

10-100 for 85% single-tasks
and 50% multi-tasks;

up to 2000 for single-tasks;
up to 3500 for multi-tasks

Argument Symmetry in just a few predicates;
limited to dyadic predicates

in every predicate;
various symmetries in

up to ogdoadic predicates

Predicate Constraints in a few predicates in every predicate

Recursion
linear recursion: 30%

non-linear recursion: 10%
linear mutual recursion: 10%

recursion: ∼ 100%
mutual recursion: ∼ 90%

all 4 kinds of recursion are common

5.3.1 COMPARISON WITH OTHER ILP DATASETS

We compare GeoILP with the dataset proposed in ∂ILP (Evans & Grefenstette, 2018), which is
the only synthetic dataset used by recent neuro-symbolic methods (e.g., HRI [20]). Table 2 reveals
GeoILP’s extremely strong complexity from various aspects. 5

5.4 CONSTRUCTING RAW INPUT

An essential difference distinguishing it from other datasets is that GeoILP additionally provides
raw inputs corresponding to each task. Like in Figure 1, the BK (premises) is transformed into an
image like in the plane geometry textbook. We adopt the constructive diagram builder language
developed in AlphaGeometry (Trinh et al., 2024) to construct the image point by point from a given
set of premises, which works well with the symbolic deduction engine. The goal is to provide
data for learning rules from raw sub-symbolic inputs (images) and symbolic target examples. The
images only contain basic geometry objects, reducing the burden of perception and making them a
good testbed for this immature research topic. We also attach a corresponding image of conclusions
(BK + positive examples) to each task, like the rightmost diagram in Figure 1. Handling GeoILP
in geometric form at least requires the ability to identify geometric objects, to identify the relations
among objects, and to induce interpretable rules. Developing such a complex system requires great
effort, which is out of the scope of a dataset constructing work and is left to future work. 6

More details about datasets and example data are provided in Appendix A & B, respectively.

6 EXPERIMENTS

6.1 SETUP

Considering the great difficulty of GeoILP, we divide it into four progressive levels, which provides
chances for gradually strengthening ILP systems. Table 3 illustrates the specification of each level.

5Multi-tasks do not involve predicate invention since they regard all available predicates as target predicates.
6For readers interested in the induction ability of large language models, we provide a guide on how to

translate GeoILP into natural-language form in Appendix C.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: GeoILP’s specification of four progressive levels for single-tasks & specification of multi-
tasks.

Level basic simple advanced complex multi-task
(single) tasks% 2% 7% 23% 66% -

arity ≤ 8 ≤ 8 ≤ 8 ≤ 8 ≤ 8
body atoms ≤ 2 ≤ 9 ≤ 9 ≤ 9 ≤ 9

mutual recursion? ✗ ✗ ✓ ✓ ✓
rules ≤ 20 ≤ 20 ≤ 20 ≤ 2014 ≤ 3553

The four levels are set according to four dimensionalities: predicate arity, number of body atoms,
involving mutual recursion or not, and number of rules. The former three are critical bottlenecks
of many neuro-symbolic ILP methods, e.g., Glanois et al. (2022). The last one is a critical aspect
affecting search complexity for both symbolic and neuro-symbolic ILP methods.

6.2 RESULTS

Symbolic Among symbolic methods, Popper (Cropper & Morel, 2021a) is the most powerful one
that simultaneously supports learning recursion, involving hypothesis constraints, inventing predi-
cates (Cropper & Morel, 2021b), and handling noise (Hocquette et al., 2024), and scales better as
well. We conduct experiments using Popper 7, enabling predicate invention, recursion and noise
handling. Noise handling is turned on because GeoILP follows OWA, while Popper follows CWA.
The maximum number of variables in a rule is set to 12, which is the maximum value in every
four levels. When conducting experiments on different levels, we set the maximum number of body
atoms and the maximum number of rules to the maximum values of the learning level. This setup
aligns with our purpose of not injecting many priors into training. After 1-day searching, Popper
does not return any hypothesis, even at the basic level. We regard GeoILP as unsolvable by Popper
since the searching time is already about two orders of magnitude longer than in previous works
(about hundreds of seconds or less, e.g., Cropper & Morel (2021a); Glanois et al. (2022))

Neuro-symbolic Several neuro-symbolic methods (Evans & Grefenstette, 2018; Glanois et al.,
2022) do not support higher-arity predicates, rules with more than two body atoms, or using target
predicate in the rule’s body, which are their primary bottlenecks of being inapplicable to GeoILP.
Several others (Rocktäschel & Riedel, 2017; Campero et al., 2018) require expert-defined rule tem-
plates task-by-task, which is inappropriate for large-scale applications like GeoILP. Difflog (Si et al.,
2019) is a neural-symbolic method that supports arbitrary hypothesis space. However, our experi-
ments show that, even at the basic level, Difflog 8 throws an out-of-memory error on a server with
500GB of memory, an order of magnitude larger than in the original paper (64GB). We leave further
investigation on improving memory usage for future work.

7 DISCUSSION AND CONCLUSION

We propose GeoILP, a large-scale synthetic dataset for inductive logic programming involving all
challenging language biases in reference hypotheses. GeoILP is, in terms of the hypothesis size,
at least one magnitude larger than existing datasets that can provide guiding hypotheses. Although
GeoILP may be biased towards plane geometry, it is still a good testbed for large-scale ILP. Be-
sides, we also provide image-form background knowledge, aiming to boost the development of joint
learning of neural perception and symbolic rule induction.

7Version 4.3.0: https://github.com/logic-and-learning-lab/Popper/tree/v4.3.0
8We leverage the implementation and recommend parameter setting in https://github.com/

petablox/difflog/tree/3c2d5218d9a0a1e200ebbf2d6a1e5d077fb18826.

10

https://github.com/logic-and-learning-lab/Popper/tree/v4.3.0
https://github.com/petablox/difflog/tree/3c2d5218d9a0a1e200ebbf2d6a1e5d077fb18826
https://github.com/petablox/difflog/tree/3c2d5218d9a0a1e200ebbf2d6a1e5d077fb18826

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to recursive query pro-
cessing strategies. In Proceedings of the 1986 ACM SIGMOD international conference on Man-
agement of data, pp. 16–52, 1986.

Sándor Bartha and James Cheney. Towards meta-interpretive learning of programming language
semantics. In Inductive Logic Programming: 29th International Conference, ILP 2019, Plovdiv,
Bulgaria, September 3–5, 2019, Proceedings 29, pp. 16–25. Springer, 2020.

Hendrik Blockeel and Luc De Raedt. Lookahead and discretization in ilp. In International Confer-
ence on Inductive Logic Programming, pp. 77–84. Springer, 1997.

David A Bohan, Corinne Vacher, Alireza Tamaddoni-Nezhad, Alan Raybould, Alex J Dumbrell, and
Guy Woodward. Next-generation global biomonitoring: large-scale, automated reconstruction of
ecological networks. Trends in ecology & evolution, 32(7):477–487, 2017.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
induction and theory learning using neural theorem proving. arXiv preprint arXiv:1809.02193,
2018.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive database approach to
automated geometry theorem proving and discovering. Journal of Automated Reasoning, 25(3):
219–246, 2000.

Andrew Cropper. Playgol: Learning programs through play. arXiv preprint arXiv:1904.08993,
2019.

Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at 30: a new introduction.
Journal of Artificial Intelligence Research, 74:765–850, 2022.

Andrew Cropper and Céline Hocquette. Learning logic programs by discovering where not to search.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6289–6296,
2023.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Machine Learning,
110(4):801–856, 2021a.

Andrew Cropper and Rolf Morel. Predicate invention by learning from failures. arXiv preprint
arXiv:2104.14426, 2021b.

Andrew Cropper, Sebastijan Dumančić, and Stephen H. Muggleton. Turning 30: New ideas in
inductive logic programming. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4833–4839. International Joint
Conferences on Artificial Intelligence Organization, 7 2020a. doi: 10.24963/ijcai.2020/673. URL
https://doi.org/10.24963/ijcai.2020/673. Survey track.

Andrew Cropper, Richard Evans, and Mark Law. Inductive general game playing. Machine Learn-
ing, 109:1393–1434, 2020b.

Wang-Zhou Dai and Stephen Muggleton. Abductive knowledge induction from raw data. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 1845–1851. International Joint Conferences on Artificial Intelligence Organiza-
tion, 8 2021. doi: 10.24963/ijcai.2021/254. URL https://doi.org/10.24963/ijcai.
2021/254. Main Track.

11

https://doi.org/10.24963/ijcai.2020/673
https://doi.org/10.24963/ijcai.2021/254
https://doi.org/10.24963/ijcai.2021/254

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=B1xY-hRctX.

Richard Evans. Kant’s cognitive architecture. PhD thesis, Imperial College London, 2020.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Richard Evans, José Hernández-Orallo, Johannes Welbl, Pushmeet Kohli, and Marek Sergot. Mak-
ing sense of sensory input. Artificial Intelligence, 293:103438, 2021. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2020.103438. URL https://www.sciencedirect.com/
science/article/pii/S0004370220301855.

Richard Evans, Matko Bošnjak, Lars Buesing, Kevin Ellis, David Pfau, Pushmeet Kohli, and Marek
Sergot. Making sense of raw input (extended abstract). In Lud De Raedt (ed.), Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 5727–5731.
International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/
ijcai.2022/799. URL https://doi.org/10.24963/ijcai.2022/799. Journal Track.

Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A deductive approach.
ACM Computing Surveys (CSUR), 16(2):153–185, 1984.

Claire Glanois, Zhaohui Jiang, Xuening Feng, Paul Weng, Matthieu Zimmer, Dong Li, Wulong Liu,
and Jianye Hao. Neuro-symbolic hierarchical rule induction. In International Conference on
Machine Learning, pp. 7583–7615. PMLR, 2022.

Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper. Learning mdl logic
programs from noisy data. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10553–10561, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Katsumi Inoue, Andrei Doncescu, and Hidetomo Nabeshima. Completing causal networks by meta-
level abduction. Machine learning, 91(2):239–277, 2013.

Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature selection and feature
extraction techniques in machine learning. In 2014 science and information conference, pp. 372–
378. IEEE, 2014.

Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs from
noisy examples. arXiv preprint arXiv:1808.08441, 2018.

Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. Representing and
learning grammars in answer set programming. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):2919–2928, Jul. 2019. doi: 10.1609/aaai.v33i01.33012919. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/4147.

Mark Law, Alessandra Russo, and Krysia Broda. The ilasp system for inductive learning of answer
set programs. arXiv preprint arXiv:2005.00904, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://www.sciencedirect.com/science/article/pii/S0004370220301855
https://www.sciencedirect.com/science/article/pii/S0004370220301855
https://doi.org/10.24963/ijcai.2022/799
https://ojs.aaai.org/index.php/AAAI/article/view/4147
https://ojs.aaai.org/index.php/AAAI/article/view/4147

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Stephen Muggleton. Inverse entailment and progol. New generation computing, 13:245–286, 1995.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi Inoue, and
Ashwin Srinivasan. Ilp turns 20: biography and future challenges. Machine learning, 86:3–23,
2012.

Stephen H Muggleton and Christopher H Bryant. Theory completion using inverse entailment. In
International conference on inductive logic programming, pp. 130–146. Springer, 2000.

Stephen H Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad. Meta-
interpretive learning: application to grammatical inference. Machine learning, 94:25–49, 2014.

Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive learning
of higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 100(1):49–73,
2015.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5:239–266, 1990.

Raymond Reiter. On closed world data bases. In Bonnie Lynn Webber and Nils J. Nilsson
(eds.), Readings in Artificial Intelligence, pp. 119–140. Morgan Kaufmann, 1981. ISBN 978-
0-934613-03-3. doi: https://doi.org/10.1016/B978-0-934613-03-3.50014-3. URL https:
//www.sciencedirect.com/science/article/pii/B9780934613033500143.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf.

Stuart Russell. Human compatible: AI and the problem of control. Penguin Uk, 2019.

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs
using numerical relaxation. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 6117–6124. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/847. URL https://doi.org/
10.24963/ijcai.2019/847.

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim. Active inductive
logic programming for code search. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pp. 292–303. IEEE, 2019.

A SRINIVASAN. The aleph manual. http://www.cs.ox.ac.uk/activities/programinduction/Aleph/,
2001.

Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis Kakas, and Stephen Muggleton. Application
of abductive ilp to learning metabolic network inhibition from temporal data. Machine Learning,
64:209–230, 2006.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle,
and Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pp. 57–66, Beijing, China, July 2015. Association for Com-
putational Linguistics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/
W15-4007.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/B9780934613033500143
https://www.sciencedirect.com/science/article/pii/B9780934613033500143
https://proceedings.neurips.cc/paper_files/paper/2017/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://doi.org/10.24963/ijcai.2019/847
https://doi.org/10.24963/ijcai.2019/847
https://aclanthology.org/W15-4007
https://aclanthology.org/W15-4007

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. Advances in neural information processing systems, 30, 2017.

Zheng Ye, Shang-Ching Chou, and Xiao-Shan Gao. Visually dynamic presentation of proofs in plane
geometry: Part 1. basic features and the manual input method. Journal of Automated Reasoning,
45:213–241, 2010a.

Zheng Ye, Shang-Ching Chou, and Xiao-Shan Gao. Visually dynamic presentation of proofs in
plane geometry: Part 2. automated generation of visually dynamic presentations with the full-
angle method and the deductive database method. Journal of Automated Reasoning, 45:243–266,
2010b.

Zheng Ye, Shang-Ching Chou, and Xiao-Shan Gao. An introduction to java geometry expert. In
Automated Deduction in Geometry: 7th International Workshop, ADG 2008, Shanghai, China,
September 22-24, 2008. Revised Papers 7, pp. 189–195. Springer, 2011.

Zheng Zhang, Levent Yilmaz, and Bo Liu. A critical review of inductive logic programming tech-
niques for explainable ai. IEEE Transactions on Neural Networks and Learning Systems, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS OF GEOILP

A.1 PREDICATES DESCRIPTION

In this section, we exhaustively describe the predicates.

The constants in GeoILP are points in the plane. The exact meaning of each predicate is listed below.

• Midp(M,A,B) asserts M is the midpoint of segment AB.

• Para(A,B,C,D) asserts line AB and line CD are parallel.

• Perp(A,B,C,D) asserts line AB and line CD are perpendicular.

• Cong(A,B,C,D) asserts segment AB and segment CD are of same length.

• Coll(A,B,C) asserts A,B,C are collinear.

• Ncoll(A,B,C) asserts A,B,C are not collinear.

• Cyclic(A,B,C,D) asserts A,B,C,D are concyclic.

• Eqangle(A,B,C,D,E,F,G,H) asserts full-angles [AB,CD] & [EF,GH] are equal.

– Full-angle is defined by two lines. Intuitively, two full-angles [AB,CD] & [EF,GH]
are equal if, supposing Rot denotes a rotation, Rot(AB) ∥ EF and Rot(CD) ∥ GH .

– Refer to Ye et al. (2010b) for the formal definition.

• Eqratio(A,B,C,D,E,F,G,H) asserts the ratio of segment AB and segment CD equals
to the ratio of segment EF and GH .

• Circle(O,A,B,C) asserts A,B,C are concyclic and the center is O.

• Sameside(B,A,C, Y,X,Z) asserts B is to the same side of A&C as Y is to X&Z. Math-

ematically, this is equivalent to (
→
BA ·

→
BC)(

→
Y X ·

→
Y Z) > 0.

Sameside are not allowed as target predicates because it does not appear in the head of any rules.
Coll and Ncoll are not allowed as target predicates because the rules where they appear in the head
are either too few or trivial (see Appendix A.4 for trivial rules).

A.2 ARGUMENT SYMMETRY OF PREDICATES

We use biconditional to describe the argument symmetry of predicates.

• Midp(M,A,B)↔ Midp(M,B,A)

• Para(A,B,C,D)↔ Para(C,D,A,B)

• Para(A,B,C,D)↔ Para(B,A,C,D)

• Perp(A,B,C,D)↔ Perp(C,D,A,B)

• Perp(A,B,C,D)↔ Perp(B,A,C,D)

• Cong(A,B,C,D)↔ Cong(C,D,A,B)

• Cong(A,B,C,D)↔ Cong(B,A,C,D)

• Coll(A,B,C)↔ Coll(A,C,B)

• Coll(A,B,C)↔ Coll(B,C,A)

• Ncoll(A,B,C)↔ Ncoll(A,C,B)

• Ncoll(A,B,C)↔ Ncoll(B,C,A)

• Cyclic(A,B,C,D)↔ Cyclic(B,C,D,A)

• Cyclic(A,B,C,D)↔ Cyclic(B,A,C,D)

• Circle(O,A,B,C)↔ Circle(O,B,C,A)

• Circle(O,A,B,C)↔ Circle(O,A,C,B)

• Sameside(B,A,C, Y,X,Z)↔ Sameside(Y,X,Z,B,A,C)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Sameside(B,A,C, Y,X,Z)↔ Sameside(B,C,A, Y,X,Z)

• Eqangle(A,B,C,D,E, F,G,H)↔ Eqangle(E,F,G,H,A,B,C,D)

• Eqangle(A,B,C,D,E, F,G,H)↔ Eqangle(C,D,A,B,G,H,E, F)

• Eqangle(A,B,C,D,E, F,G,H)↔ Eqangle(B,A,C,D,E, F,G,H)

• Eqratio(A,B,C,D,E, F,G,H)↔ Eqratio(E,F,G,H,A,B,C,D)

• Eqratio(A,B,C,D,E, F,G,H)↔ Eqratio(C,D,A,B,G,H,E, F)

• Eqratio(A,B,C,D,E, F,G,H)↔ Eqratio(B,A,C,D,E, F,G,H)

Note that these biconditional formulae constitute a minimal representation of argument symmetry.
Much more symmetries can be derived by combining several of them.

The rule set would be too large if these argument symmetries were all represented as Horn rules. A
compact representation and effective handling should be thus considered by ILP methods.

A.3 CONSTRAINTS OF PREDICATES

We describe the constraints of predicates. We express the constraints by Horn goal, as in Cropper &
Hocquette (2023).

• ← Sameside(B,A,C, Y,X,Z) ∧ Sameside(A,B,C, Y,X,Z)

• ← Midp(M,A,B) ∧Midp(N,A,B) ∧M ̸= N

• ← Circle(O,A,B,C) ∧ Circle(Q,A,B,C) ∧O ̸= Q

• ← Perp(A,B,C,D) ∧ Perp(C,D,E, F) ∧ Perp(A,B,E, F)

• ← Eqangle(A,B,C,D,E, F,G,H) ∧ Eqangle(C,D,A,B,E, F,G,H) ∧
Npara(A,B,C,D)

• ← Eqangle(A,B,C,D,E, F,G,H) ∧ Eqangle(C,D,A,B,E, F,G,H) ∧
Ncong(A,B,C,D)

(Npara for not parallel; Ncong for not congruent)

A.4 RULES

All the Horn rules utilized to synthesize GeoILP are divided into expert-defined rules, trivial rules,
and argument-symmetry rules (if representing argument symmetries by Horn rules).

Trivial rules are Horn rules trivial for human. For example, Coll(A,B,C) ← Coll(A,D,B) ∧
Coll(A,D,C). Note that, though trivial for human, an ILP learner may suffer from the large number
of trivial rules. A whole set of such trivial rules is illustrated in Chou et al. (2000) and is encoded
into the deductive database.

The 65 expert-defined rules are

1. Para(A,B,E, F)← Perp(A,B,C,D) ∧ Perp(C,D,E, F) ∧Ncoll(A,B,E)

2. Cyclic(A,B,C,D)← Cong(O,A,O,B) ∧ Cong(O,B,O,C) ∧ Cong(O,C,O,D)

3. Para(A,B,C,D)← Eqangle(A,B, P,Q,C,D, P,Q)

4. Eqangle(P,A, P,B,Q,A,Q,B)← Cyclic(A,B, P,Q)

5. Cyclic(A,B, P,Q)← Eqangle(P,A, P,B,Q,A,Q,B) ∧Ncoll(P,Q,A)

6. Cong(A,B, P,Q) ← Cyclic(A,B,C, P) ∧ Cyclic(A,B,C,Q) ∧ Cyclic(A,B,C,R) ∧
Eqangle(C,A,C,B,R, P,R,Q)

7. Para(E,F,B,C)← Midp(E,A,B) ∧Midp(F,A,C)

8. Eqratio3(A,B,C,D,O,O)← Para(A,B,C,D) ∧ Coll(O,A,C) ∧ Coll(O,B,D)

9. Eqangle(A,B,E, F,C,D,G,H)← Perp(A,B,C,D) ∧ Perp(E,F,G,H)

10. Eqangle(A,B,E, F,M,N,R,U) ← Eqangle(A,B,C,D,M,N, P,Q) ∧
Eqangle(C,D,E, F, P,Q,R,U)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

11. Eqratio(A,B,E, F,M,N,R,U) ← Eqratio(A,B,C,D,M,N, P,Q) ∧
Eqratio(C,D,E, F, P,Q,R,U)

12. Eqangle(A,B,A,D,A,D,A,C)← Eqratio(D,B,D,C,A,B,A,C)∧Coll(D,B,C)∧
Ncoll(A,B,C)

13. Eqratio(D,B,D,C,A,B,A,C)← Eqangle(A,B,A,D,A,D,A,C)∧Coll(D,B,C)∧
Ncoll(A,B,C)

14. Eqangle(O,A,A,B,A,B,O,B)← Cong(O,A,O,B) ∧Ncoll(O,A,B)

15. Cong(O,A,O,B)← Eqangle(A,O,A,B,B,A,B,O) ∧Ncoll(O,A,B)

16. Eqangle(A,X,A,B,C,A,C,B)← Circle(O,A,B,C) ∧ Perp(O,A,A,X)

17. Perp(O,A,A,X)← Circle(O,A,B,C) ∧ Eqangle(A,X,A,B,C,A,C,B)

18. Eqangle(A,B,A,C,O,B,O,M)← Circle(O,A,B,C) ∧Midp(M,B,C)

19. Midp(M,B,C) ← Circle(O,A,B,C) ∧ Coll(M,B,C) ∧
Eqangle(A,B,A,C,O,B,O,M)

20. Cong(A,M,B,M)← Perp(A,B,B,C) ∧Midp(M,A,C)

21. Perp(A,B,B,C)← Circle(O,A,B,C) ∧ Coll(O,A,C)

22. Eqangle(A,D,C,D,C,D,C,B)← Cyclic(A,B,C,D) ∧ Para(A,B,C,D)

23. Cong(O,A,O,B)← Midp(M,A,B) ∧ Perp(O,M,A,B)

24. Perp(A,B, P,Q)← Cong(A,P,B, P) ∧ Cong(A,Q,B,Q)

25. Perp(P,A,A,Q)← Cong(A,P,B, P) ∧ Cong(A,Q,B,Q) ∧ Cyclic(A,B, P,Q)

26. Para(A,C,B,D)← Midp(M,A,B) ∧Midp(M,C,D)

27. Midp(M,C,D)← Midp(M,A,B) ∧ Para(A,C,B,D) ∧ Para(A,D,B,C)

28. Para(A,B,C,D)← Eqratio(O,A,A,C,O,B,B,D)∧Coll(O,A,C)∧Coll(O,B,D)∧
Ncoll(A,B,C) ∧ Sameside(A,O,C,B,O,D)

29. Coll(A,B,C)← Para(A,B,A,C)

30. Eqratio(M,A,A,B,N,C,C,D)← Midp(M,A,B) ∧Midp(N,C,D)

31. Perp(A,B,C,D)← Eqangle(A,B, P,Q,C,D,U, V) ∧ Perp(P,Q,U, V)

32. Cong(A,B,C,D)← Eqratio(A,B, P,Q,C,D,U, V) ∧ Cong(P,Q,U, V)

33. Eqangle(A,B,A,C, P,Q, P,R) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Cong(C,A,R, P) ∧Ncoll(A,B,C)

34. Eqangle(B,A,B,C,Q, P,Q,R) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Cong(C,A,R, P) ∧Ncoll(A,B,C)

35. Eqangle(C,A,C,B,R, P,R,Q) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Cong(C,A,R, P) ∧Ncoll(A,B,C)

36. Cong(A,C, P,R) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

37. Eqangle(A,B,A,C, P,Q, P,R) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

38. Eqangle(C,A,C,B,R, P,R,Q) ← Cong(A,B, P,Q) ∧ Cong(B,C,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

39. Eqangle(A,B,A,C, P,Q, P,R) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

40. Eqratio(A,B, P,Q,B,C,Q,R) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

41. Eqratio(B,C,Q,R,C,A,R, P) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

42. Eqratio(C,A,R, P,A,B, P,Q) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

43. Cong(B,C,Q,R) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

44. Cong(A,C, P,R) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

45. Eqangle(A,B,A,C, P,Q, P,R) ← Eqangle(B,A,B,C,Q, P,Q,R) ∧
Eqangle(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

46. Cong(A,C, P,R) ← Eqangle(B,A,B,C,Q,R,Q, P) ∧
Eqangle(C,A,C,B,R,Q,R, P) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

47. Cong(B,C,Q,R) ← Eqangle(B,A,B,C,Q,R,Q, P) ∧
Eqangle(C,A,C,B,R,Q,R, P) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

48. Eqangle(A,B,A,C, P,Q, P,R) ← Eqangle(B,A,B,C,Q,R,Q, P) ∧
Eqangle(C,A,C,B,R,Q,R, P) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

49. Eqangle(A,B,A,C, P,Q, P,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

50. Eqratio(C,A,R, P,A,B, P,Q) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

51. Eqangle(B,A,B,C,Q, P,Q,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

52. Eqangle(C,A,C,B,R, P,R,Q) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C)

53. Eqangle(A,B,A,C, P,Q, P,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

54. Eqangle(C,A,C,B,R, P,R,Q) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

55. Eqratio(B,C,C,A,Q,R,R, P) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

56. Eqratio(C,A,A,B,R, P, P,Q) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqangle(B,A,B,C,Q, P,Q,R) ∧Ncoll(A,B,C)

57. Cong(B,C,Q,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

58. Cong(A,C, P,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

59. Eqangle(A,B,A,C, P,Q, P,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

60. Eqangle(B,A,B,C,Q, P,Q,R) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

61. Eqangle(C,A,C,B,R,Q,R, P) ← Eqratio(B,A,B,C,Q, P,Q,R) ∧
Eqratio(C,A,C,B,R, P,R,Q) ∧Ncoll(A,B,C) ∧ Cong(A,B, P,Q)

62. Para(M,N,A,B) ← Para(A,B,C,D) ∧ Coll(M,A,D) ∧ Coll(N,B,C) ∧
Eqratio(M,A,M,D,N,B,N,C) ∧ Sameside(M,A,D,N,B,C)

63. Eqratio(M,A,M,D,N,B,N,C) ← Para(A,B,C,D) ∧ Coll(M,A,D) ∧
Coll(N,B,C) ∧ Para(M,N,A,B)

These rules are adapted from those in AlphaGeometry. 9

9https://github.com/google-deepmind/alphageometry/blob/main/jgex_ag_
231.txt

18

https://github.com/google-deepmind/alphageometry/blob/main/jgex_ag_231.txt
https://github.com/google-deepmind/alphageometry/blob/main/jgex_ag_231.txt

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B DATA EXAMPLES FROM GEOILP

B.1 PREDICATE INVENTION

The example below requires the invention of Eqangle

Background Knowledge:

• Cong(D8,A8,D8,B8)
• Cong(D8,B8,D8,C8)
• Cong(D8,E8,D8,A8)
• Coll(C8,A8,F8)
• Perp(E8,F8,A8,C8)
• Coll(G8,A8,B8)
• Perp(E8,G8,A8,B8)
• Ncoll(F8,G8,A8)
• Cong(D9,A9,D9,B9)
• Cong(D9,B9,D9,C9)
• Cong(D9,E9,D9,A9)
• Coll(C9,A9,F9)
• Perp(E9,F9,A9,C9)
• Coll(G9,A9,B9)
• Perp(E9,G9,A9,B9)
• Ncoll(F9,G9,A9)

Positive Examples:

• Cyclic(C8,E8,A8,B8)
• Cyclic(E8,A8,F8,G8)
• Cyclic(C9,E9,A9,B9)
• Cyclic(E9,A9,F9,G9)

Proof steps:

• Cyclic(C8,E8,A8,B8) ← Cong(D8,A8,D8,B8) ∧ Cong(D8,E8,D8,A8) ∧
Cong(D8,B8,D8,C8)

• Coll(F8,A8,C8)← Coll(C8,A8,F8)
• Coll(G8,A8,B8)← Coll(G8,A8,B8)
• Eqangle(A8,C8,E8,F8,A8,B8,E8,G8)← Perp(E8,G8,A8,B8) ∧ Perp(E8,F8,A8,C8)
• Eqangle(F8,A8,F8,E8,G8,A8,G8,E8) ← Coll(F8,A8,C8) ∧ Coll(G8,A8,B8) ∧ Eqan-

gle(A8,C8,E8,F8,A8,B8,E8,G8)
• Cyclic(E8,A8,F8,G8)← Eqangle(F8,A8,F8,E8,G8,A8,G8,E8) ∧ Ncoll(F8,G8,A8)
• Cyclic(C9,E9,A9,B9) ← Cong(D9,A9,D9,B9) ∧ Cong(D9,E9,D9,A9) ∧

Cong(D9,B9,D9,C9)
• Coll(F9,A9,C9)← Coll(C9,A9,F9)
• Coll(G9,A9,B9)← Coll(G9,A9,B9)
• Eqangle(A9,C9,E9,F9,A9,B9,E9,G9)← Perp(E9,G9,A9,B9) ∧ Perp(E9,F9,A9,C9)
• Eqangle(F9,A9,F9,E9,G9,A9,G9,E9) ← Coll(F9,A9,C9) ∧ Coll(G9,A9,B9) ∧ Eqan-

gle(A9,C9,E9,F9,A9,B9,E9,G9)
• Cyclic(E9,A9,F9,G9)← Eqangle(F9,A9,F9,E9,G9,A9,G9,E9) ∧ Ncoll(F9,G9,A9)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 2: An example of image-form background knowledge.

Figure 3: An example of image-form background knowledge + positive examples.

B.2 RAW SENSORY DATA

See Figure 2 for an example of image-form background knowledge. See Figure 3 for an example of
image-form conclusions, which is a combination of background knowledge and positive examples.

C TRANSLATING GEOILP INTO NATURAL-LANGUAGE FORM

For readers interested in the induction ability of large language models (LLMs), we provide guidance
for translating GeoILP into natural-language form.

The prompt fed to LLMs should consist of three parts: task description, task data, and a command
requiring LLMs to induce a hypothesis. The difficult part is the task data, containing background
knowledge and positive & negative examples, which are ground atoms. The translation from sym-
bolic atoms to natural-language forms varies in different domains. For plane geometry, AlphaGeom-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

etry (Trinh et al., 2024) provides several templates. For example, Coll(A,B,C) is translated into
A,B,C are collinear. All the predicates used in GeoILP can be found in AlphaGeometry, and thus
all GeoILP’s atoms can be translated into natural-language forms. In addition, to enforce LLMs
generating Horn rules (in natural-language forms), the command could ask LLMs to generate rules
in the form of “If ... and ..., then ...”, where each “...” corresponds to a ground atom. “...” can be
repeated multiple times and must be concatenated by “and”.

21

	Introduction
	Related work
	ILP methods
	ILP datasets

	Background
	Logic preliminaries
	Inductive logic programming

	Limitations of current ILP
	Hand-crafted language bias
	Insufficient noise handling
	Multi-task learning
	Unable to learn from raw input

	GeoILP
	A general guide for ILP task synthesis
	Synthesizing GeoILP
	Dataset features
	Comparison with other ILP datasets

	Constructing raw input

	Experiments
	Setup
	Results

	Discussion and Conclusion
	Details of GeoILP
	Predicates description
	Argument symmetry of predicates
	Constraints of predicates
	Rules

	Data examples from GeoILP
	Predicate invention
	Raw sensory data

	Translating GeoILP into natural-language form

