
Published as a conference paper at ICLR 2025

ONLINE PREFERENCE ALIGNMENT FOR LANGUAGE
MODELS VIA COUNT-BASED EXPLORATION

Chenjia Bai1,6, Yang Zhang2,1, Shuang Qiu3, Qiaosheng Zhang4, Kang Xu5, Xuelong Li1∗
1Institute of Artificial Intelligence (TeleAI), China Telecom, 2Tsinghua University,
3City University of Hong Kong, 4Shanghai AI Laboratory, 5Tencent AI Lab
6Shenzhen Research Institute of Northwestern Polytechnical University
baicj@chinatelecom.cn, xuelong li@ieee.org

ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has shown great poten-
tial in fine-tuning Large Language Models (LLMs) to align with human prefer-
ences. Existing methods perform preference alignment from a fixed dataset, which
can be limited in data coverage, and the resulting reward model is hard to general-
ize in out-of-distribution responses. Thus, online RLHF is more desirable to em-
power the LLM to explore outside the support of the initial dataset by iteratively
collecting the prompt-response pairs. In this paper, we study the fundamental
problem in online RLHF, i.e. how to explore for LLM. We give a theoretical moti-
vation in linear reward assumption to show that an optimistic reward with an upper
confidence bound (UCB) term leads to a provably efficient RLHF policy. Then,
we reformulate our objective to direct preference optimization with an exploration
term, where the UCB-term can be converted to a count-based exploration bonus.
We further propose a practical algorithm, named Count-based Online Preference
Optimization (COPO), which leverages a simple coin-flip counting module to es-
timate the pseudo-count of a prompt-response pair in previously collected data.
COPO encourages LLMs to balance exploration and preference optimization in
an iterative manner, which enlarges the exploration space and the entire data cov-
erage of iterative LLM policies. We conduct online RLHF experiments on Zephyr
and Llama-3 models. The results on instruction-following and standard academic
benchmarks show that COPO significantly increases performance.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) is a key tool to align the behaviors of Large
Language Models (LLMs) with human values and intentions (Christiano et al., 2017; Bai et al.,
2022b; Ouyang et al., 2022). By fine-tuning the pre-trained LLMs using human-labeled preference
data, RLHF achieves enhanced performance and robustness to ensure that they operate consistently
with user expectations. Existing RLHF methods focus mainly on preference alignment in an offline
dataset by estimating reward functions through the Bradley-Terry (BT) model (Bradley & Terry,
1952) and performing policy gradients to update the LLM as a policy (Ahmadian et al., 2024) to
maximize rewards. Other methods perform Direct Preference Optimization (DPO) (Rafailov et al.,
2023; Meng et al., 2024) that considers a problem of restricted reward maximization to define the
preference loss in LLM policy. However, both types of methods perform offline preference align-
ment in a fixed dataset, which can be limited in the coverage of the preference data. As discussed
in theoretical work (Xiong et al., 2024), learning an optimal policy through offline RLHF requires
a preference dataset with uniform coverage over the entire prompt-response space, which is impos-
sible to satisfy for existing preference datasets. Thus, the offline learned explicit or implicit reward
model cannot accurately estimate the reward of prompt-response pairs that are out-of-distribution
(OOD) concerning the dataset, limiting the capacities of aligned LLMs (Rafailov et al., 2024a).

To address this problem, recent work attempts to extend offline RLHF to an online RLHF process
by (i) generating new responses using the current LLM policy, (ii) obtaining preference labels from

∗Corresponding Author

1

Published as a conference paper at ICLR 2025

human or AI feedback, and (iii) performing preference alignment to update the LLM. The above
steps can be repeated for several iterations to enhance the capabilities of LLMs. We highlight that
the central problem in an online RLHF process is how to explore the prompt-response space in each
iteration. Considering an extreme case where the LLM is a deterministic policy without exploration
ability, the preference data collected in a new iteration will not increase the coverage of preference
data, which means that the LLM policy cannot be improved via multiple iterations. Similar to the
exploration problem in the standard online Reinforcement Learning (RL) problem (Kearns & Singh,
2002; Houthooft et al., 2016), systematic exploration in online RLHF is also important to efficiently
explore the large space of token sequences and to collect informative experiences that could benefit
policy learning the most. Recently, several works have tried to address this problem by introducing
an optimism term in reward or value estimation (Dwaracherla et al., 2024; Cen et al., 2024), guide
the policy towards potentially high-reward responses (Zhang et al., 2024), or actively explore out-
of-distribution regions (Xie et al., 2024). However, they mostly rely on the likelihood derived by
the LLM itself to encourage the policy to be different from the policies in previous iterations, which
lacks theoretical guarantees to empower the LLM to explore systematically based on the confidence
of the learned reward model for prompt-response pairs.

In this paper, we propose a novel algorithm, named Count-based Online Preference Optimization
(COPO), for efficient exploration in online RLHF. Specifically, COPO extends count-based explo-
ration (Strehl & Littman, 2008; Bellemare et al., 2016) that is provably efficient in online RL to
online RLHF for systematic exploration of LLM. We start by constructing an optimistic RLHF
problem with an optimistic reward function in a confidence set of the reward. In the linear reward
assumption, our result shows that the reward with an upper-confidence bound (UCB) bonus leads
to a provably efficient RLHF policy with Õ(

√
T)-regret bound. Then, we covert the UCB term to

a general pseudo-count of prompt-response pair under the tabular MDP settings, which serve as a
special case of the linear case and make the UCB term easy to estimate. Finally, we formulate the
optimistic objective that is theoretically grounded under DPO reward parameterization in general
cases, which results in an optimization objective that combines the DPO objective and count-based
exploration, where we adopt a differentiable coin-flip counting network (Lobel et al., 2023) to esti-
mate the pseudo-counts of prompt-response pairs via simple supervised regression.

Our contributions can be summarized as follows: (i) We propose COPO to encourage the LLMs to
balance exploration and preference optimization in an iterative manner, which enlarges the explo-
ration space and whole data coverage of the iterative LLM policies; (ii) We construct a lightweight
pseudo-counting module with several fully-connected layers based on the LLM, which is theoret-
ically grounded in policy optimization of online RLHF; (iii) we conduct RLHF experiments of
COPO and several strong online RLHF baselines on Zephyr and Llama-3 models. The results of
instruction-following and academic benchmarks show that COPO achieves better performance.

2 PRELIMINARIES

We present the standard RLHF pipeline, summarized from the standard LLM alignment workflow.
Specifically, a language model takes a prompt denoted by x ∈ X , and generates a response denoted
y ∈ Y . Accordingly, we can take X as the state space of the contextual bandit and Y as the action
space, and consider the language model as a policy π which maps x to a distribution over Y . The
standard RLHF process typically comprises 3 stages built on a reference LLM πref : (i) collecting
preference data with the aid of a human labeler or scoring model, (ii) modeling the reward function
from the preference data, and (iii) fine-tuning the LLM initialized from πref via RL.

Reward Modeling from Preference Data. Following Ouyang et al. (2022); Rafailov et al. (2023);
Zhu et al. (2023), we assume that there exists a ground-truth reward function r∗(x, y) : X ×Y → R
and the preference induced by the reward function satisfies the BT model, as

P(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
= σ (r∗(x, y1)− r∗(x, y2)) ,

where y1 ≻ y2 means y1 is preferred over y2, and σ(z) := 1/(1+exp(−z)) is the sigmoid function.
Hence, a preference pair can be denoted by a tuple (x, yw, yl), where yw and yl denotes the preferred
and dispreferred response amongst (y1, y2) respectively.

2

Published as a conference paper at ICLR 2025

Given a preference dataset D = {(x, yw, yl)} sampled from P, we can estimate the reward function
r via maximum likelihood estimation,

rMLE = argmax
r

∑
(x,yw,yl)∈D

log σ
(
r(x, yw)− r(x, yl)

)
. (1)

RL Fine-tuning. In this stage, we fine-tune the language model with the feedback provided by the
reward function r. In particular, the goal of the language model π is to maximize the reward while
remaining close to the initial reference language model πref , thereby formulating the KL-regularized
optimization problem which maximizes the following objective,

J(π, r) = Ex∼ρ,y∼π(·|x) [r(x, y)]− βEx∼ρ

[
DKL(π(·|x)∥πref(·|x))

]
, (2)

where DKL(π(·|x)∥πref(·|x)) is the Kullback-Leibler (KL) divergence from π to πref , β > 0 is
the KL penalty coefficient, and ρ is the distribution prompt x sampled from. As a result, the RL
fine-tuned LLM πr w.r.t. a given reward function r is computed via,

πr := argmax
π

J(π, r) = argmax
π

Ex∼ρ,y∼π(·|x)

[
r(x, y)− β log

π(y|x)
πref(y|x)

]
.

Due to the discrete nature of language generation, this objective is not differentiable and is typically
optimized with RL algorithms. The classic approaches (Ziegler et al., 2019; Ouyang et al., 2022; Bai
et al., 2022b) construct the reward r̂(x, y) = r(x, y)−β(log π(y|x)− log πref(y|x)), and maximize
it using Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Direct Preference Optimization. Alternatively, the KL-regularized objective in Eq. (2) admits a
closed-form solution as

πr(y|x) =
πref(y|x) exp(r(x, y)/β)

Z(r, x)
, (3)

where Z(r, x) =
∑

y πref(y|x) exp(r(x, y)/β) is the partition function. Eq. (3) in turn reparame-
terizes the reward function r as,

r(x, y) = β
(
log πr(y|x)− log πref(y|x) + logZ(r, x)

)
. (4)

Motivated by this reparameterization, DPO (Rafailov et al., 2023) substitutes Eq. (4) into the reward
MLE (Eq. (1)), and integrates reward modeling and RL fine-tuning into a single policy optimization
objective. DPO bypasses the need for explicitly learning the reward and optimization objective is

argmin
πθ

LDPO(πθ;D) = argmin
πθ

−
∑

(x,yw,yl)∈D

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
. (5)

3 COUNT-BASED ONLINE PREFERENCE OPTIMIZATION

3.1 THEORETICAL MOTIVATION

We use calligraphic letters for sets, e.g., S and A. Given a set S, we write |S| to represent the
cardinality of S. For vectors a and b, we use ⟨a, b⟩ = a⊤b to denote their inner product. We write
∥a∥Σ =

√
a⊤Σa as a semi-norm of a when Σ is some positive semi-definite matrix. We focus on

linear reward settings for our theoretical motivation, and we will provide a practical algorithm in the
next section. Formally, we make the following assumption on the parameterization of the reward.
Assumption 1 (Linear Reward). The reward lies in the family of linear functions rθ(x, y) =
⟨θ, ϕ(x, y)⟩ = θ⊤ϕ(x, y) for some known and fixed ϕ(x, y) : X × Y → Rd with
maxx,y ∥ϕ(x, y)∥2 ≤ 1. Let θ⋆ be the true parameter for the ground-truth reward function. To
ensure the identifiability of θ⋆, we let θ⋆ ∈ ΘB , where

ΘB = {θ ∈ Rd
∣∣⟨1, θ⟩ = 0, ∥θ∥2 ≤ B}. (6)

For an LLM, ϕ can be considered as the last hidden state of the sequence. In the online RLHF
process with several iterations, given a preference dataset Dt = {(x(i), y

(i)
w , y

(i)
l)}ni=1 at iteration t,

the reward model is estimated via maximum likelihood estimation, as

θ̂MLE ∈ argmin
θ

ℓDt(θ), where ℓDt(θ) = −
n∑

i=1

log σ
(
⟨θ, ϕ(x(i), y(i)w)− ϕ(x(i), y

(i)
l)⟩

)
. (7)

3

Published as a conference paper at ICLR 2025

When the solution is not unique, we take all of the θ̂ that achieves the minimum. For clarity, we
define the expected value function Jβ(π) with MLE estimated reward θ̂MLE and J⋆

β(π) with ground
truth reward θ⋆ respectively, as

Jβ(π) = Ex∼ρ,y∼π(·|x)

[
ϕ(x, y)⊤θ̂MLE

]
− βEx∼ρ [DKL(π(·|x)∥πref(·|x))] , (8)

J⋆
β(π) = Ex∼ρ,y∼π(·|x)

[
ϕ(x, y)⊤θ⋆

]
− βEx∼ρ [DKL(π(·|x)∥πref(·|x))] . (9)

We start with introducing a lemma on bounding the estimation error conditioned on the data Dt.

Lemma 1. (Zhu et al., 2023) For any λ > 0, letting γ = 1/(2 + e−B + eB) ,with probability at
least 1− δ, we have

∥θ̂MLE − θ⋆∥ΣDt+λI ≤ C ·

√
d+ log(1δ)

γ2n
+ λB2, (10)

where ΣDt =
1
n

∑n
i=1(ϕ(x

(i), y
(i)
w)− ϕ(x(i), y

(i)
l))(ϕ(x(i), y

(i)
w)− ϕ(x(i), y

(i)
l))⊤.

We refer readers to Zhu et al. (2023) for a detailed proof. Considering a confidence set of parameters

Θ(θ̂MLE, λ) =
{
θ ∈ ΘB

∣∣ ∥θ̂MLE − θ∥ΣDt+λI ≤ C ·

√
d+ log(1δ)

γ2n
+ λB2

}
, (11)

Lemma 1 shows that with probability at least 1 − δ, one has θ⋆ ∈ Θ(θ̂MLE, λ). We thus construct
the optimistic expected value function Ĵβ(π) which takes the upper confidence bound (UCB) as the
reward estimate, as

Ĵβ(π;Dt) = max
θ∈Θ(θ̂MLE,λ)

Ex∼ρ,y∼π(·|x)[θ
⊤(ϕ(x, y))]− β · Ex∼ρ[DKL(π(·|x)∥πref(·|x))]

= (Ex∼ρ[ϕ(x, π(x))])
⊤θ̂MLE − βEx∼ρ[DKL(π(·|x)∥πref(·|x))]︸ ︷︷ ︸

original KL-regularized RL tuning objective Jβ(π)

+ ξ∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1︸ ︷︷ ︸
optimistic exploration term (UCB-term)

,

(12)

where ξ = C
√

d+log(1/δ)
γ2n + λB2. The derivation of Eq. (12) is deferred to Appendix A.1. The

first term in Eq. (12) corresponds to the classic two-stage RLHF methods: (i) learning the reward
model θ̂MLE via MLE under the assumption of BT preference model, and (ii) learning a policy to
maximize the estimated reward with KL regularization given θ̂MLE. The second term, which distin-
guishes Ĵβ(π) from Jβ(π), is equivalent to a measurement of how well the current dataset covers the
distribution of responses generated by the target policy π. Now we analyze the suboptimality gap of
the optimal policy π̂ derived from optimizing the optimistic expected value function Ĵβ(π;Dt). For
the output policy π̂t = argmaxπ Ĵβ(π;Dt), we have the following theoretical guarantee.

Theorem 2. For any λ > 0, β > 0, with probability at least 1 − δ, the optimal policy π̂ w.r.t the
optimistic expected value function Ĵβ(π;Dt) satisfies

SubOpt(π̂t) ≤ 2C ·

√
d+ log(1/δ)

γ2n
+ λB2 ·

∥∥Ex∼ρ[ϕ(x, π̂t(x))]
∥∥
(ΣDt+λI)−1 . (13)

The proof is deferred to Appendix A.2. By Theorem 2, we can bound the suboptimality gap of
the output policy π̂t = argmaxπ Ĵβ(π;Dt) for a given iteration t. Further, we can analyze how
well the policy, resulted from optimizing Ĵβ(π;Dt) for T iterations in an online RLHF manner,
asymptotically converges to the true optimal policy π⋆. With the total regret after T iterations
defined as Regret(T) =

∑T
t=1[J

⋆
β(π

⋆) − J⋆
β(π̂t)], we are now ready to state our main theorem

which gives a Õ(
√
T)-regret bound in the linear reward setting.

Theorem 3. Assume that for each iteration 1 ≤ t ≤ T , one preference pair sample is collected and
added into the dataset in the last iteration t − 1. Under Assumption 1, if we set λ = 4 and denote

4

Published as a conference paper at ICLR 2025

ι := log(1+(4T)/(dλ)), with probability at least 1−δ, the total regret Regret(T) after T iterations
satisfies

Regret(T) ≤
√
T · C1 ·

√
d+ log(1/δ)

γ2
+ λB2 ·

√
dι, (14)

where C1 is an absolute constant.

Theorem 3 shows that adopting an online learning paradigm with the optimistic learning objective
Ĵβ(π;Dt) as the optimization objective achieves at most Õ(

√
T) regret, providing a theoretical

guarantee for our algorithm implemented based on Eq. (12), where Õ hides logarithmic dependence
on T and 1/δ. This analysis can be readily extended to the case where mini-batch samples of size k

are collected in every iteration, producing an improved regret bound scaled by 1/
√
k. The proof is

deferred to the Appendix A.3.

3.2 COPO ALGORITHM

In the following, we elaborate on how our COPO actually implements the optimization objective
Ĵβ(π;Dt) in Eq. (12) for LLM alignment. The first term in Eq. (12) involves the same pipeline as
the classic RLHF methods: (i) modeling the reward θ̂MLE from the preference data Dt, and (ii) fine-
tuning the LLM with the estimated reward θ̂MLE via RL, which can be integrated into a single direct
DPO objective according to Rafailov et al. (2023). Thus, we replace the first term with the objective
LDPO(πφ;Dt), where the LLM to be optimized is parameterized by φ. Note that the replacement
with DPO objective implies that we implicitly reparameterize the reward function as r(x, y) =
β(log πφ(y|x) − log πref(y|x)). It loses the need to design and use the feature mapping ϕ(x, y) in
the practical implementation while our discussion remains valid in the linear reward setting.

Then, we have the following lemma adapted from Bai et al. (2022a) to build the re-
lationship between the count-based exploration and the second UCB term proportional to
∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1 .

Lemma 2. (Bai et al., 2022a) In a tabular case where the states and actions are finite, i.e., |X | < ∞
and |Y| < ∞, let d = |X ||Y| and ϕ(x, y) = e(x,y) be the one-hot canonical basis in Rd. The UCB
term ∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1 satisfies

∥Es∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1 = Ex∼ρ,y∼π(·|x)

[
1/

(√
NDt(x, y) + λ

)]
, (15)

where NDt(x, y) is the visit counts of state-action (x, y) in the dataset Dt.

We refer to Bai et al. (2022a; 2024) for a detailed proof. Lemma 2 shows that under the tabular set-
ting, the UCB term takes a simple form as the count-based bonus in the classic RL with exploration
(Strehl & Littman, 2008; Bellemare et al., 2016). Combining Lemma 2 and Eq. (12) altogether, we
finally derive the optimization objective of COPO, described as

max
πφ

Jcopo(πφ,Dt) = −LDPO(πφ;Dt, β) + αEx∼Dt,y∼πφ(y|x)

[
1/

(√
NDt

(x, y;ϑ) + λ
)]

︸ ︷︷ ︸
optimistic term of COPO

, (16)

where α and λ are hyperparameters, and NDt
(x, y;ϑ) is a counting function with trainable parameter

ϑ discussed in the next section. To demonstrate how our COPO objective implements optimism and
elicits active exploration, we analyze its gradient to provide a more intuitive explanation.

What does the COPO update do? Denoting the reward function r̂φ(x, y) = β(log πφ(y|x) −
log πref(y|x)), the gradient of COPO objective in Eq. (16) with respect to φ is derived as follows,

∇φJcopo(πφ,Dt) =βE(x,yw,yl)∼Dt
[σ(r̂φ(x, yl)− r̂φ(x, yw))(∇φ log πφ(yw|x)−∇φ log πφ(yl|x))]

+ α · Ex∼Dt,y∼πref (y|x)

[exp(r̂φ(x, y)/β)√
NDt(x, y;ϑ) + λ

∇φ log πφ(y|x))
]
, (17)

where r̂φ(x, y) = β log πφ(y|x)− β log πref(y|x) parameterized by DPO reward. We note that the
first term remains the same as the original gradient of the DPO loss function, i.e., −∇φLDPO(πφ;D);

5

Published as a conference paper at ICLR 2025

Algorithm 1 Count-based Online Preference Optimization (COPO)

Require: Reference model πref, preference dataset D, online iterations T , optimism coefficient α.
1: for iteration t = 1, 2, . . . , T do
2: Set D̃t as the t-th portion of D and generate y ∼ πref(· | x) for each prompt x in D̃t.
3: Rank {y, yw, yl} with score model and obtain Dt that contains the best and worst responses.
4: Update the parameter ϑ via minfϑ Jcfn(fϑ;Dcfn) for the coin-flipping network via Eq. (18).
5: Update the LLM policy via maxπφ Jcopo(πφ;Dt) defined in Eq. (16) and set πφ → πref .
6: end for

while the second term, corresponding to the gradient of the optimistic term of COPO, controls the
optimization direction of LLM according to both the rewards and the visitation counts. Specifi-
cally, it tends to increase the log-likelihood of response y generated by πφ toward potentially more
rewarding areas when its visit counts NDt(x, y) in the past is relatively low, rather than those re-
sponses with high visit counts. Consequently, the count-based bonus encourages active exploration
toward not only high-reward but also more uncertain regions with respect to the regions the LLM
has already confirmed, i.e., optimism in the face of uncertainty (Agarwal et al., 2019; Lattimore &
Szepesvári, 2020; Qiu et al., 2022; Yang et al., 2022). In each update, we maximize the objective in
Eq. (16) to make the fine-tuned LLM achieve a trade-off that balances the reward-maximizing and
highly uncertain-response pursuing, i.e., the well-known exploration-exploitation trade-off (Mannor
& Tsitsiklis, 2004). In each iteration of COPO, the LLM policy will collect novel prompt-response
pairs on these uncertain regions, and we use an off-the-shelf reward model to construct Dt. Ideally,
with the infinite number of iterations, the datasets ∪tDt collected by the LLM policies can cover the
entire prompt-response space with count-based exploration, and the DPO objective aims to find the
best policy in such a space with wide data coverage. We give an algorithmic description in Alg. 1.

3.3 PSEUDO-COUNT VIA COIN FLIPPING NETWORK

While such a count-based exploration objective in Eq. (16) has theoretical guarantees, it suffers from
the issue that visit counts are not directly useful in a large space where same states are rarely visited
more than once (Bellemare et al., 2016). There is no doubt that it would be significantly amplified
in the prompt-response space of LLMs that is composed of extremely vast discrete token sequences.

Inspired by the count-based exploration in RL (Bellemare et al., 2016; Ostrovski et al., 2017), we can
substitute the empirical visit count NDt

(x, y) with a pseudo-count N̂Dt
(x, y) through density mod-

els. However, it requires learning-positive properties and powerful neural density models, making
them impractical in online RLHF settings. Motivated by the recent progress on estimating pseudo-
counts without restrictions on the type of function approximator or the procedure used to train it, we
instead simply apply a Coin Flipping Network (CFN) (Lobel et al., 2023) that directly predicts the
count-based exploration bonus by solving a simple regression problem.

The Mechanism underlying CFN. The key insight in the CFN is that a state’s visitation
count can be derived from the sampling distribution of Rademacher trials (or coin flips) made
every time a state is encountered. The CFN fϑ parameterized by ϑ is learned by solving
argminϑ E(si,slabel

i)∼Dcfn
[L(si, slabel

i)] where L is the mean-square error loss function and Dcfn is
a dataset of state-label pairs for learning the CFN. In our case, the state s is the feature vector of
prompt-response pair (x, y). Considering the fair coin-flip distribution C over outcomes {−1, 1},
if we flip the coin m times and average the results into zm, the second moment of zm is related to
the inverse count: M2(zm) = E[z2m] =

∑
i Pr(zm = i) ∗ i2 = 1/m. Furthermore, by flipping d

coins each time, the variance of z2m can be reduced by a factor of 1
d , which implies a reliable way for

estimating the inverse count (Lobel et al., 2023). To this end, we generate a d-dimensional random
vector ci ∼ {−1, 1}d as a label slabel

i for state si. The learning objective is described as

min
fϑ

Jcfn(fϑ;Dcfn) = E(si,slabel
i)∼Dcfn

[L(si, slabel
i)] = argmin

ϑ

∑|Dcfn|

i=1
∥ci − fϑ(si)∥2, (18)

where fϑ(si) is a neural network that extracts the feature vectors of prompt-response pairs. In
practice, we adopt si as the last hidden state of the fixed LLM with the prompt-response pair as
input, and fϑ(·) is set to a lightweight network with several fully-connected layers.

6

Published as a conference paper at ICLR 2025

The dataset Dcfn is constructed by using prompt from Dt and responses generated by the LLM
policy in the previous iteration, where each occurrence of a state is paired with a different random
vector. In a case where there are m instances of the same state si in Dcfn, the optimal solution f∗

ϑ

satisfies f∗
ϑ(si) =

1
m

∑m
i=1 ci according to Lobel et al. (2023), then the reciprocal pseudo-count can

be estimated by

1

d
∥fϑ(s)∥2 =

1

d

d∑
j=1

E
[(m∑

i=1

cij
m

)]
=

1

d

d∑
j=1

E
[
z2m

]
=

1

m
. (19)

Thus, by training fϑ on the objective shown in Eq. (18) we can simply approximate the count-based
bonus given by

√
∥fϑ(s)∥2/d ≈

√
1/N(s).

4 RELATED WORKS

RLHF and iterative online RLHF. The RLHF framework used for aligning LLMs was first in-
troduced in Christiano et al. (2017); Ziegler et al. (2019) and further developed in Instruct-GPT
(Ouyang et al., 2022), LLaMA-2 (Touvron et al., 2023) and etc. These works share a similar pipeline
that is typically made up of two separate stages: estimating a reward model based on the BT model
(Bradley & Terry, 1952) and using PPO (Schulman et al., 2017) to optimize the reward signals to-
gether with a KL regularization. Several efforts have been made to simplify the preference alignment
procedure and improve the performance of RLHF (Zhao et al., 2023; Rafailov et al., 2023; Munos
et al., 2023; Azar et al., 2024; Guo et al., 2024; Swamy et al., 2024; Tang et al., 2024; Ethayarajh
et al., 2024b). According to whether preference data is collected before training or by using the cur-
rent policy during training, we can roughly divide these methods into two categories: offline RLHF
and (iterative) online RLHF. In offline RLHF, a line of work studies direct preference learning, in-
cluding DPO (Rafailov et al., 2023) and its variants (Xu et al., 2024; Lee et al., 2024a; Rafailov et al.,
2024b). These algorithms integrate reward modeling and RL-tuning into a single policy objective
and optimize it directly on the offline preference dataset. It is observed that DPO-based algorithms
are more stable than PPO (Tunstall et al., 2023; Dubois et al., 2024) and have also been adopted in
preference learning for other RL problems (Yuan et al., 2024b; Yu et al., 2024).

On the other hand, (iterative) online RLHF means that we can collect extra responses by sampling
responses from the LLM itself and querying preference feedback from humans or AI. This strategy
can help mitigate the OOD issue of the learned reward model (Gao et al., 2023) and gradually push
beyond the boundary of human capabilities. In online RLHF, online exploration is crucial to in-
crease the coverage of preference data that determines policy improvement. There are several works
proposing various techniques to encourage exploration for online RLHF. Dwaracherla et al. (2024)
proposed using the posterior of reward models to approximately measure the uncertainty for active
exploration. XPO (Xie et al., 2024) leveraged the property of the approximation of the regularized
value function under the token-level MDP formulation with general function approximation. Sim-
ilar to ours, SELM (Zhang et al., 2024) and VPO (Cen et al., 2024) considered the optimism from
perspective of learning reward model, but achieved it by incorporating the maximum of the KL-
regularized value function over the target LLM maxπ Jβ(π) into the reward modeling. Instead, our
COPO implements optimism based on the confidence set of the reward MLE, which is provably ef-
ficient and equivalent to count-based exploration in special cases. Other online RLHF works (Yuan
et al., 2024a; Lee et al., 2024b; Singhal et al., 2024) study how to automatically annotate preference
labels for generated response pairs, while we adopt an off-the-shelf reward model to rank responses.

Count-based exploration. In both bandit and online RL, a promising strategy for exploration is
to incorporate a bonus to encourage the agent to gather informative data (Hao et al., 2023), which
can be calculated based on count (Strehl & Littman, 2008; Bellemare et al., 2016), prediction error
(Pathak et al., 2017), or random network distillation (RND, Burda et al. (2018)). In theoretical RL,
count-based exploration is provably efficient in tabular and linear MDPs (Strehl & Littman, 2008;
Jin et al., 2020), which motivates us to focus on count-based exploration in online RLHF. In deep RL
with large state space, count-based exploration can be extended to function approximation by using
density models to calculate pseudo-counts (Bellemare et al., 2016; Bai et al., 2021b;a). However,
with these density-based pseudo-counts come many restrictions that are challenging to fulfill. Other
methods (Tang et al., 2017; Rashid et al., 2020) instead heavily incorporated domain knowledge to
eliminate the usage of density models. In contrast, CFN (Lobel et al., 2023) takes raw states as input
and yields a visitation count when optimized for a supervised learning objective.

7

Published as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset and Ranker For preference alignment of LLMs, we select UltraFeedback 60K (Cui
et al., 2023) that contains preference pairs of single-turn conversation as the preference dataset
D = {x, yw, yl}. For t-iteration of online preference alignment, we generate response y for each
prompt x in D̃t with the updated LLM, where D̃t is the t-th portion of the whole dataset D. Then we
adopt a small-sized PairRM (0.4B) model (Jiang et al., 2023) to rank (y, yw, yl) and update D̃t to
contain the best (chosen) and worst (rejected) responses according to the reward model, denoted as
Dt. Finally, we use Dt for preference alignment with DPO and count-based exploration. In the next
iteration, we use the updated LLM to generate a response and construct Dt+1 accordingly. We note
that the performance of our method can be further improved by using the state-of-the-art reward
models in RewardBench (Lambert et al., 2024), while we adopt a small-scale PairRM model for
proof-of-concept verification and a fair comparison with baselines.

Implementation of CFN We calculate the pseudo-count of the prompt-response pair via CFN.
We implement CFN as a small fully-connected network that contains two hidden layers with 32 and
20 units, respectively. CFN takes the last hidden state of the prompt-response pair extracted by a
backbone LLM as the state, representing ϕ(x, y) in our theoretical analysis. Then FCN uses the
state vector to calculate the pseudo-counts via fϑ(ϕ(x, y)). In the training of CFN, the parameters
of backbone LLM are kept fixed, thus we only require a small amount of computation to update the
parameter of CFN, which counts the prompt-response pairs. The CFN network is trained with Dcfn

in each iteration and is used to encourage exploration in LLM update with DPO objectives.

Baselines. We adopt an online version of DPO (Rafailov et al., 2023) as a baseline, where DPO
is trained on Dt that contains responses of the updated LLM policy. We also adopt SELM (Zhang
et al., 2024) as the state-of-the-art online RLHF algorithm, which performs exploration towards
potentially high-reward responses without considering the confidence of LLM in these responses.
We adopt the same hyper-parameter settings of online DPO and SELM as in Zhang et al. (2024),
where the algorithms are trained under the best hyper-parameter setting via a grid search. Both
SELM and online DPO are finetuned based on the SFT model. For a comprehensive evaluation, we
adopt Zephyr (Tunstall et al., 2023) and Llama-3 (Meta, 2024) for RLHF alignment. Specifically,
we choose Zephyr-7B-SFT with a single iteration of standard DPO training on the first portion of the
training data, which is the same as SELM. And we directly perform preference alignment for Llama-
3-8B-Instruct that has been tuned through SFT. For both Zephyr-7B-SFT and Llama-3-8B-Instruct,
we conduct 3 iterations of DPO/SELM/COPO alignment of training for comparison.

5.2 EXPERIMENT RESULTS

We evaluate our method on instruction-following benchmark AlpacaEval 2.0 (Dubois et al., 2024)
and MT-Bench (Zheng et al., 2023). AlpacaEval addresses the consistency of results by using a
standardized process for comparing model outputs to reference responses. The evaluation set, Al-
pacaFarm, while diverse, is designed to test models across a broad range of simple instructions,
ensuring a consistent benchmark for model performance. According to the results of AlpacaEval
2.0 in Table 1, we find COPO increases the LC win rate of AlpacaEval 2.0 from 22.19 to 27.21
for Zephyr-7B, and increases the LC win rate from 33.17 to 35.54 for Llama3-8B-It, which is a
significant improvement in instruction-following tasks. The result signifies that the count-based
objective enhances the exploration ability of the LLM, which results in better coverage of the un-
derlying prompt-response space. Thus, the LLM policy obtains datasets with better coverage on
the optimal prompt-response pairs and benefits the policy optimization of LLMs. As we discussed
in the theoretical part, the UCB-based exploration reduces the suboptimality gap in preference op-
timization, and the empirical result verifies the theoretical results. Regarding COPO results with
Llama-3-8B-Instruct, we find that the proposed iterative algorithm armed with a count-based explo-
ration term can even outperform much larger LLMs, such as Yi-34B-Chat (Young et al., 2024) and
Llama-3-70B-Instruct (Dubey et al., 2024) in LC win rate. The evaluation results in MT-Bench show
similar performance improvement compared to online DPO and outperform SELM, where COPO
adopts pseudo-count for weighting in policy update compared to SELM. The results in MT-Bench
outperform Yi-34B-Chat while still inferior to Llama-3-70B-Instruct.

8

Published as a conference paper at ICLR 2025

AlpacaEval 2.0 MT-Bench
Model LC Win Rate Win Rate Avg. len Avgerage 1st Turn 2nd Turn
Zephyr-7B-SFT 8.01 4.63 916 5.30 5.63 4.97
Zephyr-7B-DPO 15.41 14.44 1752 7.31 7.55 7.07
DPO Iter 1 (Zephyr) 20.53 16.69 1598 7.53 7.81 7.25
DPO Iter 2 (Zephyr) 22.12 19.82 1717 7.55 7.85 7.24
DPO Iter 3 (Zephyr) 22.19 (↑14.18) 19.88 (↑15.25) 1717 7.46 (↑2.16) 7.85 7.06
SELM Iter 1 (Zephyr) 20.52 17.23 1624 7.53 7.74 7.31
SELM Iter 2 (Zephyr) 21.84 18.78 1665 7.61 7.85 7.38
SELM Iter 3 (Zephyr) 24.25 (↑16.24) 21.05 (↑16.42) 1694 7.61 (↑2.31) 7.74 7.49
COPO Iter 1 (Zephyr) 26.43 21.61 1633 7.68 7.72 7.64
COPO Iter 2 (Zephyr) 27.21 (↑19.20) 22.61 1655 7.78 7.85 7.71
COPO Iter 3 (Zephyr) 26.91 23.60 (↑18.97) 1739 7.79 (↑2.49) 7.89 7.69
Llama-3-8B-Instruct 22.92 22.57 1899 7.93 8.47 7.38
DPO Iter 1 (Llama3-It) 30.89 31.60 1979 8.07 8.44 7.70
DPO Iter 2 (Llama3-It) 33.91 32.95 1939 7.99 8.39 7.60
DPO Iter 3 (Llama3-It) 33.17 (↑10.25) 32.18 (↑9.61) 1930 8.18 (↑0.25) 8.60 7.77
SELM Iter 1 (Llama3-It) 31.09 30.90 1956 8.09 8.57 7.61
SELM Iter 2 (Llama3-It) 33.53 32.61 1919 8.18 8.69 7.66
SELM Iter 3 (Llama3-It) 34.67 (↑11.75) 34.78 (↑12.21) 1948 8.25 (↑0.32) 8.53 7.98
COPO Iter 1 (Llama3-It) 33.68 33.15 1959 8.12 8.38 7.86
COPO Iter 2 (Llama3-It) 34.30 33.31 1939 8.25 8.49 8.01
COPO Iter 3 (Llama3-It) 35.54 (↑12.62) 32.94 (↑10.37) 1930 8.32 (↑0.39) 8.53 8.11
SPIN 7.23 6.54 1426 6.54 6.94 6.14
Orca-2.5-SFT 10.76 6.99 1174 6.88 7.72 6.02
DNO (Orca-2.5-SFT) 22.59 24.97 2228 7.48 7.62 7.35
Mistral-7B-Instruct-v0.2 19.39 15.75 1565 7.51 7.78 7.25
SPPO (Mistral-it) 28.53 31.02 2163 7.59 7.84 7.34
Yi-34B-Chat 27.19 21.23 2123 7.90 - -
Llama-3-70B-Instruct 33.17 33.18 1919 9.01 9.21 8.80
GPT-4 Turbo (04/09) 55.02 46.12 1802 9.19 9.38 9.00

Table 1: Results on AlpacaEval 2.0 and MT-Bench. The red arrows indicate the increment from the
SFT model (i.e., Zephyr-7B-DPO and Llama-3-8B-Instruct). Compared to online DPO and online
SELM baselines, our method achieves superior performance and is competitive with larger models.

According to the result in AlpacaEval, our method generally increases performance after each it-
eration in the online RLHF process. However, in Zephyr experiments, we find the average length
of response increases significantly in the last iterations, resulting in a decreased LC win rate com-
pared to previous iterations. This problem can be caused by the proposed exploration term, which
can encourage the LLM policy to generate longer sentences that can be novel compared to previ-
ous responses. Therefore, a future direction is to combine our method with existing length control
methods to reduce such a bias (Meng et al., 2024; Singhal et al., 2023).

We evaluate our approach and the baseline models using established academic benchmarks from the
LLM leaderboard (Gao et al., 2024), such as GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al.,
2019), ARC challenge (Clark et al., 2018), TruthfulQA (Lin et al., 2021), EQ-Bench (Paech, 2023),
and OpenBookQA (OBQA) (Mihaylov et al., 2018). Following the settings in SELM (Zhang et al.,
2024), we employ various Chain of Thought (CoT) configurations, including zero-shot and few-
shot scenarios. Table 2 presents the results for these benchmarks. Furthermore, our method exhibits
improved performance on these academic benchmarks after incorporating preference alignment on
language tasks. Our technique achieves a suitable balance between maximizing rewards and explor-
ing the response space without compromising the reasoning accuracy in academic tasks. However,
since the preference dataset focuses on how well the model follows instructions or completes tasks
as intended by humans, such an alignment process might not necessarily align well with the require-
ments of some academic benchmarks (e.g., ARC), which often require abstract reasoning, complex
inference, or extensive factual knowledge that may not be enhanced by instruction following.

5.3 ABLATION STUDY

We conduct an ablation study on Llama model to show the effectiveness of the proposed exploration
term in COPO. Table 3 shows the results of the evaluation on AlpacaEval with different factors α of
the exploration terms. According to the results, choosing a suitable α is important to balance explo-
ration and preference alignment. We visualize the count-based term (i.e., Ex,y∈Dt1/

√
N(x, y) + λ)

9

Published as a conference paper at ICLR 2025

Models GSM8K
(8-s CoT)

HellaSwag
(10-s)

ARC
(25-s)

TruthfulQA
(0-s)

EQ
(0-s)

OBQA
(10-s) Average

Zephyr-7B-SFT 43.8 82.2 57.4 43.6 39.1 35.4 50.3
Zephyr-7B-DPO 47.2 84.5 61.9 45.5 65.2 38.0 57.0
DPO Iter 1 (Zephyr) 45.5 85.2 62.1 52.4 68.4 39.0 58.8
DPO Iter 2 (Zephyr) 44.9 85.4 62.0 53.1 69.3 39.4 59.0
DPO Iter 3 (Zephyr) 43.2 85.2 60.8 52.5 69.1 39.6 58.4
SELM Iter 1 (Zephyr) 46.3 84.8 62.9 52.9 68.8 39.6 59.2
SELM Iter 2 (Zephyr) 46.2 85.4 62.1 53.1 69.3 39.6 59.3
SELM Iter 3 (Zephyr) 43.8 85.4 61.9 52.4 69.9 39.8 58.9
COPO Iter 1 (Zephyr) 46.8 85.0 62.4 53.0 68.7 39.3 59.2
COPO Iter 2 (Zephyr) 46.7 85.3 62.5 53.3 69.1 39.8 59.5
COPO Iter 3 (Zephyr) 47.0 85.4 62.9 53.4 69.9 40.3 59.9
Llama-3-8B-Instruct 76.7 78.6 60.8 51.7 61.8 38.0 61.3
DPO Iter 1 (Llama3-It) 78.5 81.7 63.9 55.5 64.1 42.6 64.4
DPO Iter 2 (Llama3-It) 79.4 81.7 64.4 56.4 64.3 42.6 64.8
DPO Iter 3 (Llama3-It) 80.1 81.7 64.1 56.5 64.1 42.6 64.8
SELM Iter 1 (Llama3-It) 78.7 81.7 64.5 55.4 64.1 42.4 64.5
SELM Iter 2 (Llama3-It) 79.3 81.8 64.7 56.5 64.2 42.6 64.9
SELM Iter 3 (Llama3-It) 80.1 81.8 64.3 56.5 64.2 42.8 65.0
COPO Iter 1 (Llama3-It) 79.1 81.7 64.3 56.4 64.3 43.0 64.8
COPO Iter 2 (Llama3-It) 79.3 81.8 64.6 56.4 64.4 43.2 65.0
COPO Iter 3 (Llama3-It) 80.2 81.8 64.7 56.5 64.4 43.6 65.2
SPIN 44.7 85.9 65.9 55.6 54.4 39.6 57.7
Mistral-7B-Instruct-v0.2 43.4 85.3 63.4 67.5 65.9 41.2 61.1
SPPO (Mistral-it) 42.4 85.6 65.4 70.7 56.5 40.0 60.1

Table 2: Performance comparison between COPO and the baselines on academic multi-choice QA
benchmarks in standard zero-shot, few-shot, and CoT settings. Here, n-s refers to n-shot. The red
and blue texts represent the best and the second-best results.

in Fig. 1, where the steps contain 3 iterations split by a dashed line. After each iteration, we collect
new responses on the prompt set and reupdate the CFN network. The result shows that a large α
encourages the LLM to collect novel responses in the first two iterations. After preference align-
ment, the optimism term in the last iteration decreases as the policy has converged to a local-optimal
solution and the performance will not increase in the last iteration. For a small α, the LLM policy
gradually collects novel responses in each iteration, while the final performance is limited by its
exploration ability. A suitable α enables the policy to focus on exploration in early iterations and
preference alignment in later iterations, resulting in better final performance.

Factor Iter1 Iter2 Iter3
0.01 32.89 33.18 33.76
0.10 33.68 34.30 35.54
0.50 33.70 34.61 34.82

Table 3: COPO results on Al-
pacaEval 2.0 with different explo-
ration factor α in 3 iterations.

0 25 50 75 100 125 150 175
Step

0.4

0.5

0.6

0.7

0.8

Ex
pl

or
at

io
n

re
wa

rd

Large
Medium
Small

Figure 1: Exploration rewards in 3 iterations with different α.

6 CONCLUSION

This paper presents COPO, a novel algorithm for online RLHF of LLMs. COPO integrates count-
based exploration with the RLHF framework, achieving a tight regret bound policy through the use
of an UCB bonus. COPO can balance exploration and preference optimization via a lightweight
pseudo-counting module, and obtains superior performance in AlphaEval 2.0, MT-Bench, and LLM
leaderboard evaluations compared to other leading online RLHF algorithms. A future direction is
to further enhance the exploration ability of our method by using a changing prompt set, avoiding
the restrictions on the initial dataset and resulting in better coverage on the prompt-response space.
Meanwhile, an automatic tuned exploration factor according to the status of the LLM policy and the
collected data would be better to balance exploration and alignment in different iterations.

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For the theoretical part, we provide the detailed theoretical proof in Appendix A. For the practical
part, we give experiment setup in Section 5. The hyper-parameters and implementation details are
given in Appendix B. The code is released at https://github.com/Baichenjia/COPO.

ACKNOWLEDGMENTS

This work is supported by National Key Research and Development Program of China (Grant
No.2024YFE0210900) and National Natural Science Foundation of China (Grant No.62306242).

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, and Zhaoran Wang.
Dynamic bottleneck for robust self-supervised exploration. Advances in Neural Information Pro-
cessing Systems, 34:17007–17020, 2021a.

Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In International
Conference on Machine Learning, pp. 577–587. PMLR, 2021b.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022a.

Chenjia Bai, Lingxiao Wang, Jianye Hao, Zhuoran Yang, Bin Zhao, Zhen Wang, and Xuelong Li.
Pessimistic value iteration for multi-task data sharing in offline reinforcement learning. Artificial
Intelligence, 326:104048, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022b.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schu-
urmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach
to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

11

https://github.com/Baichenjia/COPO

Published as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms. arXiv preprint arXiv:2402.00396, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. In International Conference on Machine Learning,
2024a.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024b.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
IEEE Transactions on Neural Networks and Learning Systems, 2023.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
variational information maximizing exploration. In Advances in Neural Information Processing
Systems, 2016.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2025

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking dpo and ppo: Disentangling
best practices for learning from preference feedback. In Advances in neural information process-
ing systems, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on learning theory, pp. 2137–2143.
PMLR, 2020.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada Mi-
halcea. A mechanistic understanding of alignment algorithms: A case study on dpo and toxicity.
In International Conference on Machine Learning, 2024a.

Sangkyu Lee, Sungdong Kim, Ashkan Yousefpour, Minjoon Seo, Kang Min Yoo, and Youngjae Yu.
Aligning large language models by on-policy self-judgment. arXiv preprint arXiv:2402.11253,
2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594–22613. PMLR, 2023.

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 5(Jun):623–648, 2004.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Samuel J Paech. Eq-bench: An emotional intelligence benchmark for large language models. arXiv
preprint arXiv:2312.06281, 2023.

13

Published as a conference paper at ICLR 2025

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, and Zhaoran Wang. Contrastive ucb:
Provably efficient contrastive self-supervised learning in online reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 18168–18210. PMLR, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
algorithms. arXiv preprint arXiv:2406.02900, 2024a.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q*: Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024b.

Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon Whiteson. Optimistic exploration even
with a pessimistic initialisation. In International Conference on Learning Representations, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

Prasann Singhal, Nathan Lambert, Scott Niekum, Tanya Goyal, and Greg Durrett. D2po:
Discriminator-guided dpo with response evaluation models. arXiv preprint arXiv:2405.01511,
2024.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
minimaximalist approach to reinforcement learning from human feedback. arXiv preprint
arXiv:2401.04056, 2024.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Gen-
eralized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

14

Published as a conference paper at ICLR 2025

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. In International
Conference on Machine Learning, 2024.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in neural information
processing systems, 35:23851–23866, 2022.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Xudong Yu, Chenjia Bai, Haoran He, Changhong Wang, and Xuelong Li. Regularized conditional
diffusion model for multi-task preference alignment. arXiv preprint arXiv:2404.04920, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024a.

Xinyi Yuan, Zhiwei Shang, Zifan Wang, Chenkai Wang, Zhao Shan, Zhenchao Qi, Meixin Zhu,
Chenjia Bai, and Xuelong Li. Preference aligned diffusion planner for quadrupedal locomotion
control. arXiv preprint arXiv:2410.13586, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhao-
ran Wang. Self-exploring language models: Active preference elicitation for online alignment.
arXiv preprint arXiv:2405.19332, 2024.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

Published as a conference paper at ICLR 2025

A THEORETICAL PROOF

A.1 DERIVATION OF EQUATION (12)

Proof. For any θ ∈ Θ(θ̂MLE, λ), by Cauchy-Schwartz inequality, the following holds,

|(Ex∼ρ[ϕ(x, π(x))])
⊤(θ − θ̂MLE)| ≤ ∥θ − θ̂MLE∥ΣDt+λI · ∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1

≤ C ·

√
d+ log(1δ)

γ2n
+ λB2 · ∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1

Thus, we have

(Ex∼ρ[ϕ(x, π(x))])
⊤θ ≤ (Ex∼ρ[ϕ(x, π(x))])

⊤θ̂MLE + ξ · ∥Ex∼ρ[ϕ(x, π(x))]∥(ΣDt+λI)−1 (20)

A feasible way to maximize Ex∼ρ[θ
⊤ϕ(x, π(x))] over the confidence set Θ(θ̂MLE, λ) is to choose

the RHS of Eq. (20) as the maximum. Q.E.D.

A.2 PROOF OF THEOREM 2

Proof. Note that the optimistic expected value function at iteration t is

Ĵβ(π;Dt) = max
θ∈Θ(θ̂MLE,λ)

Ex∼ρ,y∼π(·|x)[θ
⊤(ϕ(x, y))]− β · Ex∼ρ[DKL(π(·|x)∥πref(·|x))].

For ease of presentation, we define

J⋆
β(π) = Ex∼ρ,y∼π(·|x)[rθ⋆(x, y)]− β · Ex∼ρ[DKL(π(·|x)∥πref(·|x))]

= Ex∼ρ[θ
⋆⊤ϕ(x, π(x))]− β · Ex∼ρ[DKL(π(·|x)∥πref(·|x))],

and omit the Dt in Ĵβ(π;Dt), i.e., setting Ĵβ(π) := Ĵβ(π;Dt).

According to Lemma 1, we know that θ⋆ ∈ Θ(θ̂MLE, λ) with probability at least 1−δ. Consequently,
we have

Ĵβ(π) ≥ J⋆
β(π), for any π (21)

Meanwhile, by π̂t = argmaxπ Ĵβ(π) we also have

Ĵβ(π̂t) ≥ Ĵβ(π
⋆) (22)

Combining Eq. (21) and Eq. (22), we have

Ĵβ(π̂t) ≥ Ĵβ(π
⋆) ≥ J⋆

β(π
⋆)

Substituting this into the definition of the suboptimality gap, we achieve

SubOpt(π̂t) = J⋆
β(π

⋆)− J⋆
β(π̂t) ≤ Ĵβ(π̂t)− J⋆

β(π̂t)

Here we need to introduce a necessary notation of θ̂t:

θ̂t = argmax
θ∈Θ(θ̂MLE,λ)

{(Ex∼ρ[ϕ(x, π̂t(x))])
⊤θ − β · Ex∼ρ[DKL(π̂t(·|x)∥πref(·|x))]}

With the extra notation, we can further have

SubOpt(π̂t) ≤ Ĵβ(π̂t)− J⋆
β(π̂t)

= Ex∼ρ[(θ̂t − θ⋆)⊤ϕ(x, π̂t(x))]

= Ex∼ρ[(θ̂t − θ̂MLE)
⊤ϕ(x, π̂t(x))] + Ex∼ρ[(θ̂MLE − θ⋆)⊤ϕ(x, π̂t(x))]

≤ (∥θ̂t − θ̂MLE∥ΣDt+λI + ∥θ̂MLE − θ⋆∥ΣDt+λI) · ∥Ex∼ρ[ϕ(x, π̂t(x))]∥(ΣDt+λI)−1

≤ 2C ·

√
d+ log(1/δ)

γ2n
+ λB2 · ∥Ex∼ρ[ϕ(x, π̂t(x))]∥(ΣDt+λI)−1 ,

where the second inequality uses Cauchy-Schwarz inequality, and the last inequality is obtained by
Lemma 1.

16

Published as a conference paper at ICLR 2025

A.3 PROOF OF THEOREM 3

We first present an important lemma and a corollary for a special case. Then, we combine the lemma
and corollary to prove Theorem 3.

Lemma 3. (Abbasi-Yadkori et al., 2011). Let {ϕt}t≥0 be a bounded sequence in Rd satisfying
supt≥0 ∥ϕt∥ ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt =

Λ0 +
∑t

j=1 ϕjϕ
⊤
j . Then, if the smallest eigenvalue of Λ0 satisfies λmin(λ0) ≥ 1, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2 log

[
det(Λt)

det(Λ0)

]
. (23)

Proof. The following proof refers mostly to Jin et al. (2020). Since λmin(Λ0) ≥ 1 and ∥ϕt∥ ≤ 1 for
all j ≥ 0, we have

ϕ⊤
j Λ

−1
j−1ϕj ≤ [λmin(Λ0)]

−1 · ∥ϕj∥2 ≤ 1, ∀j ≥ 0.

For any x ∈ [0, 1], it holds that log(1 + x) ≤ x ≤ 2 log(1 + x). Therefore, we have

t∑
j=1

log(1 + ϕ⊤
j Λ

−1
j−1ϕj) ≤

t∑
j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2

t∑
j=1

log(1 + ϕ⊤
j Λ

−1
j−1ϕj) (24)

Elementary algebra gives

det(Λt) = det(Λt−1 + ϕtϕ
⊤
t) = det(Λt−1) det(I + Λ

− 1
2

t−1ϕtϕ
⊤
t Λ

− 1
2

t−1)

= det(Λt−1)(1 + ϕ⊤
t Λ

−1
t−1ϕt) = det(Λ0)

t∏
i=1

(1 + ϕ⊤
i Λ

−1
i−1ϕi).

Hence, we have
t∑

j=1

log(1 + ϕ⊤
j Λ

−1
j−1ϕj) = log det(Λt)− log det(Λ0) (25)

Combining Eq. (24) and Eq. (25), we conclude the proof of Eq. (23).

Corollary 1. Under the same setting of Lemma 3, if the smallest eigenvalue of Λ0 satisfies
λmin(λ0) ≥ 4, for reference vectors {νj}tj=1 ∈ Rd which are also bounded: ∥νj∥ ≤ 1 for any
j, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

(ϕj + νj)
⊤Λ−1

j−1(ϕj + νj) ≤ 2 log

[
det(Λt)

det(Λ0)

]
. (26)

Proof. By triangle inequality, we have

(ϕj + νj)
⊤Λ−1

j−1(ϕj + νj) ≤ [λmin(Λ0)]
−1 · ∥ϕj + νj∥2 ≤ [λmin(Λ0)]

−1 · 2(∥ϕj∥2 + ∥νj∥2) ≤ 1

when λmin(λ0) ≥ 4 and ∥ν∥ ≤ 1. Then we consider the determinant of the updated matrix Λt:

det(Λt) = det(Λt−1 + (ϕt + νt)(ϕt + νt)
⊤)

= det(Λt−1) det(I + Λ
− 1

2
t−1(ϕt + νt)(ϕt + νt)

⊤Λ
− 1

2
t−1).

(27)

Applying the matrix determinant lemma, which states that for any invertible matrix A and vectors u
and v, we have det(A + uv⊤) = det(A)(1 + v⊤A−1u). Then we can simplify the expression as
follows:

det(Λt) = det(Λt−1)(1 + (ϕt + νt)
⊤Λ−1

t−1(ϕt + νt)) (28)

17

Published as a conference paper at ICLR 2025

By recursively applying this step, we obtain:

det(Λt) = det(Λ0)

t∏
j=1

(1 + (ϕj + νj)
⊤Λ−1

j−1(ϕj + νj)). (29)

Taking the logarithm of both sides of the equation, we utilize the property of logarithms that the
logarithm of a product is the sum of the logarithms:

log det(Λt) = log det(Λ0) +

t∑
j=1

log(1 + (ϕj + νj)
⊤Λ−1

j−1(ϕj + νj)). (30)

We rewrite it as:

log

[
det(Λt)

det(Λ0)

]
=

t∑
j=1

log
(
1 + (ϕj + νj)

⊤Λ−1
j−1(ϕj + νj)

)
, (31)

and using the property of the logarithm that log(1 + x) ≤ x ≤ 2 log(1 + x) for x ∈ [0, 1], we have:

(ϕj + νj)
⊤Λ−1

j−1(ϕj + νj) ≤ 2 log
(
1 + (ϕj + νj)

⊤Λ−1
j−1(ϕj + νj)

)
. (32)

Applying this inequality to the sum, we obtain:

t∑
j=1

(ϕj + νj)
⊤Λ−1

j−1(ϕj + νj) ≤ 2

t∑
j=1

log
(
1 + (ϕj + νj)

⊤Λ−1
j−1(ϕj + νj)

)
. (33)

This completes the proof by showing that:

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

(ϕj + νj)
⊤Λ−1

j−1(ϕj + νj) ≤ 2 log

[
det(Λt)

det(Λ0)

]
. (34)

With a similar derivation to the one for Eq. (23), we can conclude the proof of Eq. (26).

Corollary 1 is indeed a special variant of Lemma 3 with accounting for a case where ϕj is replaced
with ϕj + νj . It is important in RLHF as we estimate the reward model with the BT model over
the preference data, which assumes that the preference signal is induced by the reward difference
between the preferred response and the dispreferred response (i.e., σ(r(x, yw) − r(x, yl))). Then,
under the assumption of linear reward, it further corresponds to the difference in the feature space,
i.e., ϕ(x, yw)− ϕ(x, yl).

Now we are ready to prove the main theorem. We restate our main theorem as follows.
Theorem (Restatement of Theorem 3). Assume that for each iteration 1 ≤ t ≤ T , one preference
pair sample is collected and added into the dataset in the last iteration t− 1. Under Assumption 1,
if we set λ = 4 and denote ι := log(1 + (4T)/(dλ)), with probability at least 1− δ, the total regret
Regret(T) after T iterations satisfies

Regret(T) ≤
√
T · C1 ·

√
d+ log(1/δ)

γ2
+ λB2 ·

√
dι

where C1 is an absolute constant.

Proof. For simplicity, we assume that during T iterations in the online RLHF, the dataset which
is initialized as an empty set D0 = ∅, is collected according to the following protocol for every
t = 1, ..., T ,

1. Sample one response pair {x, yw, yl} from π̂t−1, label the data with the external labeler,
and form the dataset Dt for current iteration t which satisfies Dt = Dt−1 ∪ {x, yw, yl};

18

Published as a conference paper at ICLR 2025

2. Compute the output policy π̂t by π̂t = argmaxπ Ĵβ(π;Dt).

By Theorem 2, we have

Regret(T) =
T∑

t=1

[J⋆
β(π

⋆)− J⋆
β(π̂t)]

≤
T∑

t=1

2C ·

√
d+ log(1/δ)

γ2t
+ λB2 · ∥Ex∼ρ[ϕ(x, π̂t(x))]∥(ΣDt+λI)−1

≤ 2C ·

√
d+ log(1/δ)

γ2
+ λB2 ·

T∑
t=1

∥Ex∼ρ[ϕ(x, π̂t(x))]∥(ΣDt+λI)−1 . (35)

Since we have ∥ϕ(x, y)∥ ≤ 1 for any (x, y) and λ = 4, by Corollary 1, we have

T∑
t=1

(Ex∼ρ[ϕ(x, π̂t(x))])
⊤(ΣDt

+ λI)−1(Ex∼ρ[ϕ(x, π̂t(x))]) ≤ 2 log

[
det(ΣDT+1

+ λI)

det(ΣD1
+ λI)

]
where ΣDt

=
∑t

i=1(ϕ(x
(i), y

(i)
w)−ϕ(x(i), y

(i)
l))(ϕ(x(i), y

(i)
w)−ϕ(x(i), y

(i)
l))⊤. Note that the trace

of ΣDt
+ λI holds

tr(ΣDt + λI) = dλ+

t∑
i=1

∥ϕ(x(i), y(i)w)− ϕ(x(i), y
(i)
l)∥2 ≤ dλ+ 4t

where the last inequality results from triangle inequality. Denoting the eigenvalues of ΣDt
+ λI by

{λi}di=1, by AM-GM inequality, we thus have

det(ΣDt + λI) =

d∏
i=1

λi ≤
(
dλ+ 4t

d

)d

,

then log det(ΣDt + λI) ≤ d log(λ+
4t

d
).

At the same time, we have log det(λI) < log det(ΣD1 + λI), thereby leading to

T∑
t=1

∥Ex∼ρ[ϕ(x, π̂t(x))]∥2(ΣDt+λI)−1 ≤ 2d log(1 +
4T

dλ
)

Introducing ι = log(1 + 4T
dλ), by Cauchy-Schwartz inequality, we further have

T∑
t=1

∥∥Ex∼ρ[ϕ(x, π̂t(x))]
∥∥
(ΣDt+λI)−1 ≤

√
T ·

[
T∑

t=1

∥Ex∼ρ[ϕ(x, π̂t(x))]∥2(ΣDt+λI)−1

]1/2

≤
√
T ·

√
2dι. (36)

Finally, combining Eq. (35) and Eq. (36), we achieve

Regret(T) ≤
√
T · C1 ·

√
d+ log(1/δ)

γ2
+ λB2 ·

√
dι

where ι := log(1 + 4T
dλ) and C1 is an absolute constant.

B IMPLEMENTATION DETAILS

In optimizing the COPO objective for LLM preference alignment, we adopt Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) rather than full-parameter training due to limitations in computing
resources. In contrast, the results of baseline methods reported in experiments are obtained by

19

Published as a conference paper at ICLR 2025

Table 4: Key implementations of the text generation experiments.

Basic Parameters

Pre-training Llama-3-8B Instruct & Zephyr-7b-SFT
Hardware 4 x NVIDIA A100 40G
Datatype bfloat16

Fine-tuning strategy LoRA (Hu et al., 2022)
LoRA target module q-proj & k-proj & v-proj & o-proj & gate-proj & up-proj & down-proj

LoRA r 128
LoRA alpha 128

LoRA dropout 0.05
Optimizer Adamw torch

Train epoch 1
Per device batch-size 2

Accelerator Deepspeed Zero3
Learning rate 5e-7 (1st iter), 3e-7 (2nd iter), 1e-7 (3rd iter)

Learning rate scheduler cosine
Learning rate warmup ratio 0.1

Preference dataset HuggingFaceH4/ultrafeedback binarized
Reward model llm-blender/PairRM

CFN (Ours)

Learning rate 1e-4
Exploration factor (α) 0.1 (Llama) & 0.01 (Zephyr)
Network architecture 4096 (last hidden-dim for LLM) → 32 → 20

Activation LeakyReLU & Linear
Train epoch 1

λ 0.01

full-parameter tuning, which verifies the effective of our method in low-computation request. The
training of our method is conducted on 4xA100-40G GPUs.

The implementation of COPO build on Alignment Handbook implementation (https://
github.com/huggingface/alignment-handbook), which provides the basic DPO al-
gorithm based on the TRL Repo (https://github.com/huggingface/trl). For the im-
plementation of iterative DPO, we adopt the same hyper-parameters as in the SELM implementation
(https://github.com/shenao-zhang/SELM). Since COPO also adopt online DPO as the
backbone, we use the same hyper-parameters as online-DPO except for the CFN network.

COPO mainly contains three stages. (1) Iterative data collection. In this stage, we use vLLM
https://github.com/vllm-project/vllm as the inference server to perform fast sam-
pling of the LLM policy in the previous iteration. In sampling, we set the temperature as 0.0 and
the top-p as 1.0. After generating a response for each prompt, we use llm-blender with PairRM
reward model (https://huggingface.co/llm-blender/PairRM) to rank all three re-
sponses (two from the previous dataset and one from sampling). The final dataset contains the best
and worst responses as chosen and reject responses, respectively. We also store the response of the
LLM policy in the dataset. (2) CFN training. We perform CFN training in the prompt-response
pair sampled in the dataset using the previous LLM policy. We construct a lightweight CFN network
and use it similar to a value head that adheres to an LLM via the ‘AutoModelForCausalLMWithVal-
ueHead’ class. For inference, the CFN takes the last hidden state of the LLM as input and output
the prediction of the coin flips. In regression, we adopt the same ‘CoinFlipMaker’ as in that of on-
line RL (https://github.com/samlobel/CFN). We use two independent trainers for CFN
and online DPO. (3) RLHF training. In this stage, CFN network is keep fixed to provide pseudo-
count estimation for the sampled prompt-response pairs, which is used in our exploration objective
integrating with online DPO. We summarize the key hyperparameters in Table 4.

20

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/trl
https://github.com/shenao-zhang/SELM
https://github.com/vllm-project/vllm
https://huggingface.co/llm-blender/PairRM
https://github.com/samlobel/CFN

Published as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS

C.1 ADVERSARIAL CASES

COPO focuses on improving the exploration ability of the LLM. We conduct an adversarial case
that further restricts the data coverage of the initial preference dataset. In this case, the exploratory
capacity of LLM becomes particularly important. Specifically, we use a subset of the UltraFeedback
dataset with only 20% samples, then we train online DPO, SELM, and COPO for 3 iterations. The
performance evaluated on AlpacaEval 2.0 is given in the following table. Based on the results, we
find that COPO significantly outperforms other methods where the dataset is quite limited, while
other methods have a significant performance drop due to the insufficient exploration ability.

Table 5: Comparison to methods with 20% preference data (LC Win Rate).

Llama-3-8B-It DPO (iter1) DPO (iter2) DPO (iter3)
22.92 26.60 28.01 28.16

SELM (iter1) SELM (iter2) SELM (iter3)
27.81 28.79 29.25

COPO (iter1) COPO (iter2) COPO (iter3)
28.32 30.14 31.80

C.2 COMPARISON TO D2PO

D2PO-related methods also lie on the paradigm of online RLHF, but they mainly focus on how to
automatically annotate preference labels for newly generated response pairs of LLMs. Specifically,
Self-Rewarding LM (Yuan et al., 2024a) uses the LLM-as-a-Judge ability of LLMs to evaluate re-
sponse pairs, Judge-augmented SFT (Lee et al., 2024b) trains a pairwise judgment model to output
preference label as well as rationale, and Discriminator-Guided DPO (Singhal et al., 2024) trains a
discriminative evaluation model to generate annotation for synthetic responses. In contrast, COPO
directly adopts an off-the-shelf reward model to rank responses generated by LLMs, which is a 0.4B
PairRM of small size in our experiment.

We add D2PO (Singhal et al., 2024) as a baseline by removing the PairRM model and training a dis-
criminator via the Bradley-Terry model. We also change the backbone in D2PO from Llama-2-7B
to Llama-3-8B-Instruct. The results on AlpacaEval 2.0 are given as follows. The result shows that
the self-trained discriminator achieves competitive performance compared to the online DPO base-
line, which uses an off-the-shelf reward model, which signifies the effectiveness of D2PO. However,
using a small reward model can be more efficient in practice.

Table 6: Comparison to D2PO with PairRM.

Method DPO w/
PairRM Iter1

DPO w/
PairRM Iter2

DPO w/
PairRM Iter3

D2PO
Iter1

D2PO
Iter2

D2PO
Iter3

LC Win Rate 20.53 22.12 22.19 20.10 21.95 22.03

C.3 COUNT-BASED EXPLORATION FOR KTO

Exploration is essential for RLHF since the preference data are usually limited in data coverage,
which makes DPO develop a biased distribution favoring unseen responses, directly impacting the
quality of the learned policy. The proposed exploration objective measures the visitation count of the
generated prompt-response pair via a coin-flipping network, which can be combined with various
online RLHF algorithms.

In this section, we add a new preference optimization objective in addition to DPO for experiments,
i.e., KTO (Ethayarajh et al., 2024a). KTO maximizes the utility of generations, rather than just the
likelihood of preferences. It works effectively with binary feedback, which is more abundant and
easier to collect than the preference data that the DPO requires. We adopt the implementation of the
KTO loss function from TRL 1 and use online iterations for KTO similar to online DPO. We find

1https://huggingface.co/docs/trl/kto trainer

21

Published as a conference paper at ICLR 2025

that the count-based objective in COPO can also be combined with the online KTO algorithms to
further enhance its performance.

Table 7: The result comparison of online KTO and count-based KTO.

KTO
(iter1)

KTO
(iter2)

KTO
(iter3)

KTO+ COPO
(iter1)

KTO+COPO
(iter2)

KTO+COPO
(iter3)

LC Win Rate 33.19 35.40 35.90 35.32 36.84 37.10

C.4 ABLATION OF REWARD MODEL

Due to the fact that online RLHF methods require an additional reward module to give preference
labels compared to the offline method, we adopt a small-size reward model to ensure that the ad-
ditional requirement is minimal. Specifically, We follow the SELM baseline to use a small-sized
PairRM (0.4B) model to rank responses generated by LLM and contain the best and worst responses
according to the reward model. As we mentioned in our paper, using a powerful reward model can
further improve performance. As a result, we add additional experiments that use a powerful 8B re-
ward model from RewardBench (Lambert et al., 2024), named RLHFlow/ArmoRM-Llama3-8B-v0.1
(Dong et al., 2024) for comparison. The learned models evaluated by AlpacaEval 2.0 are given in the
following Table. The result shows that both COPO and SELM have improved in performance, with
COPO showing a more significant improvement. The reason is that the data coverage of generated
responses in COPO is broader than SELM since we adopt count-based exploration in alignment.
Then an accurate reward model is required for preference labeling in such a large data coverage.

Table 8: The ablation of more powerful reward model with ArmoRM-Llama3-8B.

SELM
(w/ PairRM-0.4B)

SELM
(w/ ArmoRM-8B)

COPO
(w/ PairRM-0.4B)

COPO
(w/ ArmoRM-8B)

LC Win Rate 34.67 39.21 35.54 41.78

C.5 DISCUSSION OF BEST-OF-N AND PPO

The Best-of-N policy is a method for aligning samples from LLMs to human preferences. It involves
drawing N samples, ranking them, and returning the best. For best-of-N, we consider two types of
methods to integrate this strategy into the RLHF process. (1) Using best-of-N to improve the quality
of preference data in offline RLHF. Specifically, we use prompts from the UltraFeedback dataset
and regenerate the chosen and rejected response pairs (yw, yl) with the LLM. For each prompt x,
we generate N responses using the SFT model with a low sampling temperature (e.g., 0.8 in the
experiment). We then use PairRM to score these responses, selecting the highest-scoring one as yw
and the lowest-scoring one as yl. We denote this method as DPO-best. (2) Using best-of-N as an
exploration method in online RLHF. In each iteration of online DPO, we denote the current LLM
policy as π1 and the best-of-N variant as π2. In this way, the π2 policy increases the margins between
π1 and provides more exploration. We denote this variant by online-DPO-best.

The comparison evaluated in AlpacaEval 2.0 is given in the following table, where we use n = 5. We
find that the best-of-N strategy significantly improves the performance of the offline DPO method,
which improves the coverage of the offline dataset. Meanwhile, the best-of-N strategy also enhances
online DPO also improves the performance of online DPO. We note that although best-of-N provides
another efficient exploration strategy, it is more computationally expensive and still underperforms
our method, which signifies that the proposed count-based objective is an efficient and stronger
exploration approach. We do not apply the best-of-N strategy in evaluation since all methods follow
the same evaluation pipeline in a standard benchmark, including AlpacaEval 2.0, MT-Bench, and
LLM leaderboard.

As for PPO, (1) we note that reproducing the successful RLHF results with PPO is challenging as
it requires extensive efforts and resources that the open-source communities usually cannot afford,
which has been discussed in previous works (Ivison et al., 2024). Specifically, the PPO algorithm
requires loading multiple LLMs simultaneously, including the actor (policy), critic (value network),
reward model, and reference model (for KL estimation), which places significant pressure on GPU

22

Published as a conference paper at ICLR 2025

Table 9: The combination of DPO/online-DPO with Best-of-N

- DPO DPO-best online DPO online DPO best ours
LC Win Rate 22.5 26.0 33.17 34.12 35.54

memory that exceeds resources in our group. (2) Meanwhile, the performance of PPO usually
heavily relies on the quality of the reward model. Due to the narrow distribution coverage of the
preference dataset, reward misspecification often occurs, which makes the reward model assign a
high value to out-of-distribution (OOD) samples and has the potential to be exploited during the RL
process. In contrast, using a better reward model (Lambert et al., 2024) trained on a larger dataset
will significantly boost the performance, while the comparison to the DPO-based method becomes
unfair since it leverages knowledge beyond the fixed preference dataset.

D DISCUSSION OF OTHER EXPLORATION METHODS

The use of count-based bonus 1/
√
N(s) was originally proposed in tabular cases to encourage ex-

ploration in RL, where the count N(s) of each state s ∈ S can be calculated accurately since the
total number of states are finite. However, for environments with high-dimensional state space, we
cannot obtain the exact count for states since the state space is infinite, thus a pseudo-counting mech-
anism is required to estimate the N̂(s). In online RL exploration literature (), several methods have
been proposed to estimate the pseudo-counts, including neural density model, hash code, random-
network distillation (RND), and CFN. However, we find only CFN is suitable for LLM to estimate
the pseudo count of prompt-response pairs for the following reasons.

(1) For the neural density models (Bellemare et al., 2016), we have N̂(s) = (ePGn(x)−1)−1, where
PGn(x) is the prediction gain that measures density changes after using the specific state to update
the density model. This calculation process is hard to implement in LLM because training a density
model for prompt-response pairs is highly expensive (Ostrovski et al., 2017), and it is also difficult
to measure density changes by using a single prompt-response pair to update the LLM. (2) For hash
code (Tang et al., 2017), it requires mapping prompt-response pairs to a hash table, and the method
assigns exploration bonuses based on the frequency of state visits. This approach is also hard to
implement since it requires training an autoencoder (AE) that takes a prompt-response pair as inputs
and outputs the hash code in the latent space, then the AE is required to reconstruct the prompt-
response pair. Meanwhile, it can suffer from hash collisions, especially for the response space of
LLMs, potentially leading to inaccurate exploration objectives. (3) RND (Burda et al., 2018) is a
popular exploration method in RL, determined by the output difference between a randomly initial-
ized network and a trained network’s prediction of the state. Despite its simplicity and empirical
success, RND’s exploration bonus is challenging to interpret, as it is based on an unnormalized dis-
tance within a neural network’s latent space. Additionally, there are no rigorous theoretical results
to prove the RND reward is exactly the pseudocount of the state.

Compared to previous works, CFN (Lobel et al., 2023) represents a significant advance in explo-
ration methods using the Rademacher distribution to estimate pseudo counts. This approach does
not rely on density estimation but instead uses the averaging of samples from the Rademacher dis-
tribution to derive state visitation counts. CFN’s key advantages include its theoretical grounding,
which allows it to provide exploration bonuses equivalent to count-based objectives, and its simplic-
ity and ease of training. Unlike other methods, CFN does not impose restrictions on the function
approximator or training procedure, offering flexibility in model architecture selection. In our work,
we set the CFN as a lightweight network with several fully connected layers on top of a pre-trained
hidden layer. The empirical result in online RL also demonstrates CFN’s effectiveness, particularly
in complex environments, and its ability to generalize well to novel states.

23

	Introduction
	Preliminaries
	Count-based Online Preference Optimization
	Theoretical Motivation
	COPO Algorithm
	Pseudo-count via Coin Flipping Network

	Related Works
	Experiments
	Experiment Setup
	Experiment Results
	Ablation Study

	Conclusion
	Theoretical Proof
	Derivation of Equation (12)
	Proof of Theorem 2
	Proof of Theorem 3

	Implementation Details
	Additional Experiments
	Adversarial Cases
	Comparison to D2PO
	Count-based exploration for KTO
	Ablation of reward model
	Discussion of Best-of-N and PPO

	Discussion of other exploration methods

