
Published as a conference paper at ICLR 2020

SOLVING ODE WITH UNIVERSAL FLOWS:
APPROXIMATION THEORY FOR FLOW-BASED MODELS

Chin-Wei Huang1, Laurent Dinh2, Aaron Courville1,3

1Mila (University of Montreal), 2Google Brain, 3CIFAR Fellow

ABSTRACT

Normalizing flows are powerful invertible probabilistic models that can be used to
translate two probability distributions, in a way that allows us to efficiently track
the change of probability density. However, to trade for computational efficiency
in sampling and in evaluating the log-density, special parameterization designs
have been proposed at the cost of representational expressiveness. In this work, we
propose to use ODEs as a framework to establish universal approximation theory
for certain families of flow-based models.

1 INTRODUCTION

Deep invertible models have recently gained increasing interest among machine learning researchers
as they constitute a powerful probabilistic toolkit. They allow for the tracking of changes in probability
density and have been widely applied in many tasks, including

(i) generative models (Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019),

(ii) variational inference (Rezende & Mohamed, 2015; Kingma et al., 2016; Berg et al., 2018),

(iii) density estimation (Papamakarios et al., 2017; Huang et al., 2018),

(iv) reinforcement learning (Mazoure et al., 2019; Ward et al., 2019), etc.

The main challenges in designing an invertible model for the above use cases are to ensure (1) the
mapping f is invertible, (2) the log-determinant of the Jacobian of f is cheap to compute, and (3)
f is expressive. For use case (i), ideally we would also like to (4) invert f efficiently. In general, it
is hard to design a family of functions that satisfy all of the above. Most work within this line of
research is dedicated to improving the expressivity of the bijective mapping while maintaining the
computational tractability of the log-determinant of Jacobian (Dinh et al., 2014; Kingma et al., 2016;
Dinh et al., 2017; Berg et al., 2018; Huang et al., 2018; Chen et al., 2019).

Huang et al. (2018) propose to approximate a universal triangular map proposed by Hyvarinen
& Pajunen (1998), which is also known as the Knothe-Rosenblatt transformation in the optimal
transport literature (Villani, 2008). Huang et al. (2018) show that if one can approximate such a
triangular map pointwise (using a family of monotonic neural networks), then one can universally
transform one random variable into another. This is extended by Jaini et al. (2019) who propose to
use sum-of-square polynomial functions as approximations.

In this work, we consider a different approach that relies on building a transport map which solves
an ordinary differential equation (ODE). We show that (1) if the solution of an ODE xT with
x0 ∼ q(x) converges in distribution to x∞ ∼ p∞(x) as T →∞, and if (2) if one can approximate
the function xT to any arbitrary precision (pointwise), then we can approximate the distribution p∞
by transforming x0 using the approximating function.
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2 NORMALIZING FLOWS

Assume y ∼ N (0, I). Assume the data is generated via a bijective mapping x = fθ(y). Then the
probability density function of fθ(y) evaluated at x can be written as

pθ(x) = N (f−1
θ (x); 0, I)

∣∣∣∣det
∂f−1

θ (x)

∂x

∣∣∣∣ (1)

Equivalently, one can parameterize the inverse transformation x 7→ gθ(x) with invertible mapping gθ,
and define the generative transformation as fθ = g−1

θ .

Much of the design effort has been dedicated to ensuring (1) the invertibility of the transformation g,
and (2) efficiency in computing the log-determinant of the Jacobian in Equation 1.

Block-wise Affine Coupling For example, Dinh et al. (2017) propose the affine coupling:
gθ(xa, xb) = concat(xa, sθ(xa)� xb +mθ(xa))

where sθ and mθ are parameterized by neural networks and xa and xb are two partitioning of the data
vector, and compose multiple layers of transformations intertwined with permutation of elements
of x. Since an affine transformation is applied to modify one block of the data conditioned on the
other block, we refer to this type of transformation as the block-wise affine coupling (BWAC). While
BWAC is computationally efficient for evaluation and for sampling (inversion), the common criticism
is that it requires a longer chain of transformations to reach the same performance level as other flow
methods (Rezende & Mohamed, 2015; Kingma et al., 2016), and that the affine transformation is not
capable of redistributing the probability mass non-uniformly (Huang et al., 2018), which is essential
for multimodal distribution.

The BWAC can be extended so that all of the data is transformed in one pass (Kingma et al., 2016):
gθ(x)i = sθ,i(x<i) · xi +mθ,i(x<i)

for i iterating over the indices of the features. Later on, Huang et al. (2018) generalize the affine
coupling to invertible neural transformation:

gθ(x)i = NN(xi;πi(x<i))

where NN is a neural network with positive weights and strictly monotonic activation functions; πi is
a hyper-network outputing the parameters of NN which takes all the preceding x<i as input. This non-
affine autoregressive transformation is shown to be universal transport map between any probability
distributions, by approximating the Knothe-Rosenblatt rearrangement between two random variables.

Residual Flows Another family of flows which do not rely on the partial dependency to have
tractable Jacobian determinant computation are of a residual form

gθ(x) = x+ hθ(x)

Behrmann et al. (2018) show that if hθ is contractive (i.e. hθ is C-Lipschitz for some C < 1), then gθ
is invertible. Residual flows can be seen as a discretized neural ODE (Chen et al., 2018; Grathwohl
et al., 2019):

gθ(x;T ) =

∫ T

0

h(gθ(x; t), t, θ) dt

3 APPROXIMATING SOLUTIONS OF ODE AS UNIVERSAL TRANSPORT MAP

In this section, we demonstrate how to use ODEs as a tool to show certain families of flows are
universal density approximators. We do so in two steps: (1) we identify a universal transport map in
the form of a solution to an ODE

ẋt = k(xt, t)

An ODE is called a transport map if x0 ∼ p0 (e.g. data distribution) and xT following the dynamics
converges in distribution to some limiting random variable of interest (such as standard Gaussian).
(2) we approximate the ODE using invertible neural networks.

Assume xn solves some ODE at some time step indexed by n. The following lemma shows that
if xn converges in distribution to x∞ as n approaches infinity, and if xn and yn are asymptotically
indistinguishable, then yn also converges in distribution to x∞.
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Lemma 1. Let x∞, (xn : n ≥ 0) and (yn : n ≥ 0) be random variables. If xn → x∞ in distribution
and if ||xn − yn|| → 0 almost surely as n→∞, then yn → x∞ in distribution.

Below, we give two examples of ODEs that converge in distribution to some asymptotic limit that we
can approximate using universal flows.
Example 1. (Deterministic Langevin diffusions) Consider the following overdamped Langevin
stochastic differential equation (aka Brownian dynamics)

ẋt = ∇ log p∞(xt) +
√

2ẇt

where wt is the standard Brownian motion, which has p∞ as its stationary distribution. It is a
well known result (Roberts et al., 1996) that under some mild smoothness condition on log p∞, the
diffusion above satisfies xt

TV→ x∞. Notably, replacing the Brownian motion term with −∇ log pt(x)
(where pt is the density of xt) corresponds to the functional gradient of the KL divergence

∇ log p∞ −∇ log pt = − δ

δrt(ε)

∫
pε(ε)[log pt(rt(ε))− log p∞(rt(ε))]dε

for some reparameterization rt which satisfies Pε ◦ r−1
t = Pt, where Pt is the law of xt and Pε is the

law of ε that corresponds to the density pε; this deterministic modification does not change the Fokker
Planck representation of the original Langevin SDE (Wang & Li, 2019; Hoffman & Ma, 2019), which
means its solution will be statistically indistinguishable from the original one if the same initial law
P0 is chosen.

Two results follow immediately from this example. First, one can approximate the gradient flow
kt := ∇ log p∞ − ∇ log pt using a neural network ht := h(·, t). The corresponding solution of
the neural ODE would converge to the solution of kt if the approximation error can be somehow
controlled; informally,∣∣∣∣∫ ht −

∫
kt

∣∣∣∣ ≤ ∫ |ht − kt| → 0 if ht → kt

Second, one can numerically integrate the ODE and approximate the numerical integration using
discrete flows. Using the Euler method, we have

xt+ε ≈ xt + εkt(xt)

Provided that kt is Lipschitz, then for sufficiently small ε, εkt is contractive, which can then be
approximated by certain family of Lipschitz neural networks (Anil et al., 2019).

Additionally, it can be shown (with some care) that, combining standard methods of numerical
integration (such as Euler’s method and the midpoint method) with function approximation using
neural networks leads to an “approximate integration error” dn that satisfies the premise of the
following lemma.
Lemma 2. If for any N > 0, {dn : 0 ≤ n ≤ N} is a sequence of real numbers satisfying

dn ≤
c

N2
+

c

N2

n−1∑
t=1

t∑
s=1

ds

for some constant c, then
max

0≤n≤N
dn → 0 as N →∞

Lemma 1 and lemma 2 imply that infinitely deep residual flows are universal density approximators.
Example 2. (Hamiltonian ODE) Define the following scaling coefficients αt = log 2

t and βt = γt =

log t2. Let p∞(x) be the standard normal density, and q(x) be the data distribution. Let q0 = q and
Φ : X → R be some convex function. Define the Hamiltonian ODE:

ẋt = eαt−γtet, x0 ∼ q0

ėt = −eαt+βt+γt∇ log
qt(xt)

p∞(xt)
, e0 = ∇Φ(x0)

where ẋt and ėt are the time derivatives of x and e at time t, and qt is the marginal density of xt.
It follows by Taghvaei & Mehta (2019); Wang & Li (2019) that for some Φ, (xt, et) converges in
distribution to (x∞, e∞) where x∞ ∼ p∞ and e∞ ∼ δ0 (point mass at 0).
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Figure 1: 5-step ANF on 1D MoG. In the inference path (top row), we start with an encoding transform that
maps e to z1 conditioned on x, followed by a decoding transform that maps x into y1 conditioned on z1. We
reuse the same encoder and decoder to refine the joint variable repeatedly to obtain y5 and z5. In the generative
path (bottom row), we reverse the process, starting with the inverse transform of the decoding, followed by the
inverse transform of the encoding, etc.

ODE of this form has a desired property, since it is “conditionally affine”, and thus invertible by
construction. This means the Hamiltonian ODE can be approximated by BWAC.

Specifically, let us construct a sequence of “encoding” and “decoding” functions menc
n and mdec

n
parameterized by neural networks, and define the following (additive) invertible mappings

eπ1 = eπ0 +menc
1 (xπ0 )

xπn+1 = xπn + 2ε ·mdec
n+1(eπn+1) ∀n ≥ 0 (2)

eπn+1 = eπn + 2ε ·menc
n+1(xπn) ∀n ≥ 1 (3)

with eπ0 = 0 and xπ0 ∼ q0. The step size parameter ε will be chosen to depend on the depth coefficient
N , i.e. the number of steps of the joint transformation.

Assume our target distribution lies within a family of distributions Q satisfying Assumption 1 in
the Appendix A (some smoothness condition on the time derivatives and Φ). We can then set the
encoding and decoding functions to be arbitrarily close to the time derivatives by the universal
approximation of neural networks (Cybenko, 1989), and by taking the depth N to be arbitrarily large,
we can approximate the transport map induced by the Hamiltonian ODE arbitrarily well, which gives
rise to the following universal approximation theorem (the proof is relegated to the Appendix A):
Theorem 1. For any q ∈ Q, we can find a sequence (xπN , e

π
N ) of ANFs of the additive form (2,3), such

that if xπ0 , e
π
0 ∼ q(x)δ0(e) and x∞, e∞ ∼ p∞(x)δ0(e), then (xπN , e

π
N )→ (x∞, e∞) in distribution.

The theorem suggests BWAC can be made expressive by augmented the data x with an auxiliary
variable. However, training a model with a Dirac prior δ0 is problematic because the loss is not
smooth. To remedy this problem, we consider using a non-degenerate augmented data distribution
q(e) (taken to be the standard normal) and maximizing the joint likelihood of data (x, e) sampled
from q(x)q(e) under a generative flow with the joint prior being standard normal as well. We call this
the augmented normalizing flow (ANF). We use the BWAC as suggested by Theorem 1. Figure
1 demonstrates that ANFs are capable of transforming the marginal of a 1-D mixture of Gaussian
non-uniformly into a standard normal prior, which is not possible with regular BWAC (since for this
1-D problem BWAC amounts to mere shifting and scaling, which only modifies the first two moments
of the data distribution).

4 CONCLUSION

In this work, we propose to use ODEs that are universal transport map to establish universality of
flow-based methods (in the space of probability distributions). The takeaway is that composing
certain families of flows can be shown to be universal using this technique and that some other
techniques to parameterize flows can also be motivated by our new theory, such as augmentation.
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A PROOFS

Define the scaling coefficients αt = log 2
t and βt = γt = log t2. Let p(x) be the standard normal

density, and q(x) be the data distribution. Let q0 = q and Φ : X → R be some continuous function.
Define the following Hamiltonian ordinary differential equation (ODE):

ẋt = eαt−γtet, x0 ∼ q0 (4)

ėt = −eαt+βt+γt log
qt(xt)

p(xt)
, e0 = ∇Φ(x0) (5)

where ẋt and ėt are the time derivatives of x and e at time t, and qt is the marginal density of xt.
Proposition 1. For some convex Φ, the trajectories of xt and et following (4,5) converge in dis-
tribution to x∞ and e∞, respectively, where x∞ ∼ p(x) and e∞ ∼ δ0 (i.e. a point mass at 0).

Proof. By Theorem 1 of Taghvaei & Mehta (2019) and Appendix C.4 of Wang & Li (2019) (for an
extension to high dimensional cases), since αt, βt and γt satisfy the scaling condition in Taghvaei &
Mehta (2019) and log p is convex, xt converges in KL divergence to x∞ and et converges to 0 almost
surely (which implies convergence in distribution). Pinsker’s inequality implies xt → x∞ in total
variation, dTV, which has a dual representation:

dTV(xt, x∞) = sup
f :X→[−1,1]

E[f(xt)]− E[f(x∞)]

This implies for any bounded, continuous f ,
|E[f(xt)]− E[f(x∞)]| ≤ dTV(xt, x∞) · ||f ||∞

which converges to 0 as t→∞. By Portmanteau’s Lemma, xt → x∞ in distribution.

We first construct a sequence of encoding functions menc
n and decoding functions mdec

n parameterized
by neural networks, and define the following (volume preserving) invertible mappings

eπ1 = eπ0 +menc
1 (xπ0 )

xπn+1 = xπn + 2ε ·mdec
n+1(eπn+1) ∀n ≥ 0

eπn+1 = eπn + 2ε ·menc
n+1(xπn) ∀n ≥ 1

with eπ0 = 0 and xπ0 ∼ q0. The step size parameter ε will be chosen to depend on the depth coefficient
N , i.e. the number of layers of the joint transformation.

Below we prove ANF of the above form can universally transform q(x)δ0(e) into p(x)δ0(e). We
make the following assumption on the family of q:
Assumption 1. We assume the gradient of the convex function in Proposition (1) ∇Φ is continuous,
and that f(e, t) := eαt−γte and g(x, t) := −eαt+βt+γt log qt(x)

p(x) have a bounded second time
derivative (on the trajectories xt and et which are also functions of time), and are uniformly Lipschitz;
that is,

max

{
||f ′′||, ||g′′||, sup

e 6=e′,t>0

||f(e, t)− f(e′, t)||
||e− e′||

, sup
x6=x′,t>0

||g(x, t)− g(x′, t)||
||x− x′||

}
≤ K

for some K ≥ 0, where we define the single-argument vector functions f(t) = f(et, t) and g(t) =
g(xt, t) as the time derivatives of the trajectories (xt, et).

We denote by Q the family of probability measures that satisfies this assumption.

Before we move on to approximation, we start with a lemma (restated) for bounding approximation
error by solving recursion using the technique of generating functions.
Lemma 2. If for any N > 0, {dn : 0 ≤ n ≤ N} is a sequence of real numbers satisfying

dn ≤
c

N2
+

c

N2

n−1∑
t=1

t∑
s=1

ds

for some constant c, then
max

0≤n≤N
dn → 0 as N →∞
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Proof. We would like to bound the error dn explicitly. To do so, we first note that the sequence {dn}
is no larger than {Dn}, which is recursively defined as

D0 = 0

Dn+1 = C + C

n∑
t=1

t∑
s=1

Ds (6)

for n ≥ 0, where for simplicity we let C = c/N2.

Now to express Dn+1 explicitly, we use the method of generating function, following the recipe of
Wilf (2005) (see Chapter 1 for a brief introduction). Define function f to be a power series whose
coefficients are Dn’s; that is, f(x) =

∑
n≥0Dnx

n. Multiply both sides of (6) by xn and summing
over the indices of non-negative integers n ≥ 0 give us

f(x)

x
=

C

1− x
+

Cf(x)

(1− x)2

After rearrangement, we have

f(x)

(
x2 − (2 + C)x+ 1

x(1− x)2

)
=

C

1− x
⇒ f(x)

x
=

C(1− x)

x2 − (2 + C) + 1

which can be decomposed into the partial fractions

f(x)

x
=

C
1+a2

a1 − x
+

C
1+a1

a2 − x
(7)

where a1 and a2 are the roots of the quadratic function x2−(2+C)x+1, which satisfy a1+a2 = 2+C
and a1a2 = 1.

For sufficiently small x, we can break (7) into the geometric series
f(x)

x
=

C

a1(1 + a2)

∑
n≥0

(
x

a1

)n
+

C

a2(1 + a1)

∑
n≥0

(
x

a2

)n
This means for n > 0, since a1a2 = 1, the coefficient of f(x) can be expressed as

Dn =
C

1 + a2

1

an1
+

C

1 + a1

(a1a2)n

an2
= C

(
1

(1 + a1)an−1
1

+
an1

1 + a1

)
(8)

Now let a1 be the larger root. Solving x2 − (2 + C)x+ 1 yields

a1 =
2 + C +

√
C2 + 4C

2
=: 1 + r

where r := C
2 +

√
C2

4 + C.

We show that the parenthesis in (8) can be controlled asymptotically (i.e. does not exceed certain
constant for sufficiently large N ), and that since C diminishes, Dn converges. First, since r > 0,
a1 > 1 and

1

(1 + a1)an−1
1

<
1

2

Second, since (1 + r)n ≤ enr for n ≥ 0 and r ≥ −1,
an1 = (1 + r)n ≤ enr

≤ exp

(
CN

2
+

√
C2N2

4
+ CN2

)

= exp

(
c

2N
+

√
c2

4N2
+ c

)
which converges to exp(

√
c) as N →∞.

Finally, since C → 0 as N →∞ and dn ≤ Dn, dn → 0 for all n ≤ N as N →∞.
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We are now ready to show the result of the pointwise approximation of the Hamiltonian ODE using
ANFs with affine (more specifically, additive) coupling.
Proposition 2. Let xt and et be trajectories (mappings of x0 ∈ X = Rd) following the Hamiltonian
ODE (4,5) described in Proposition 1 dependent on some initial distribution q0 ∈ Q. For each T > 0,
we can choose some number of layers N of the joint transformation and a sequence of pairs of menc

n
and mdec

n (dependent on T ) for 1 ≤ n ≤ N , such that ||xπN − xT || → 0 and ||eπN − eT || → 0 as
T →∞ pointwise for x0 ∈ X = Rd.

Proof. Fix q0 ∈ Q and T > 0 and some compact subset X0 ⊂ X . We first consider all points x0 in
X0, and show that (xπn, e

π
n) can be used to approximate (xT , eT ) uniformly well.

We consider a N -step joint transformation, and set ε = T
2N > 0. We start with approximating eε

by eπ1 . Since eπ0 is 0, by the universal approximation theorem (UAT) of neural networks (Cybenko,
1989), we can choose some menc

1 such that ||eε − eπ1 || = ||eε −menc
1 || ≤ ε2 for all x0 ∈ X0.

We proceed with an approximate leap-frog integration of the dynamic, using the neural encoders
and decoders to approximate the time derivatives. Let E1 := eπ1 (X0) where eπ1 := menc

1 , which is
compact, since X0 is compact and eπ1 is continuous wrt X0. Again, by the UAT, we can choose some
mdec

1 such that ||f(e, ε) − mdec
1 (e)|| < ε2 for all e ∈ E1. Likewise, we let X1 := xπ1 (X0) where

xπ1 := (2εmdec
1 ◦ eπ1 + Id)(X0) with Id being the identity map, such that X1 is also compact since

xπ1 is continuous wrt X0, and choose menc
2 such that ||g(x, 2ε)−menc

2 (x)|| < ε2 for all x ∈ X1.

Repeating the same construction for mdec
n and menc

n for n ≤ N , we have

xπn+1 = xπn + 2εmdec
n+1(eπn+1) (9)

eπn+1 = eπn + 2εmenc
n+1(xπn) (10)

with mdec
n and menc

n chosen such that

1. ||f(e, 2nε+ ε)−mdec
n+1(e)|| < ε2 for all e ∈ En+1 := eπn+1(X0) where eπn+1 := 2εmenc

n+1 ◦
xπn + eπn is a continuous map of X0; and

2. ||g(x, 2nε)−menc
n+1(x)|| < ε2 for all x ∈ Xn := xπn(X0) where xπn := 2εmdec

n ◦ eπn + xπn−1
is a continuous map of X0.

Such choices of menc
n and mdec

n are possible since by construction Xn−1 and En are compact.

Equations (9,10) are approximate midpoint methods as they use functions to approximate the time
derivatives evaluated at midpoints of their counterparts. The exact midpoint method has a cubic
error rate of h

3

24 f
′′(ξ), for some ξ between the midpoint and the approximating point, where h is the

interval width of each iteration; see Section 5.4 of Epperson (2013). That is,

x2nε+2ε = x2nε + 2εf(e2nε+ε, 2nε+ ε) +
ε3

3
f ′′(ξxn+1) (11)

for some ξxn+1 between the two steps. Similarly,

e2nε+ε = e2nε−ε + 2εg(x2nε, 2nε) +
ε3

3
g′′(ξen+1) (12)

for some ξen+1 between the two steps.

Subtracting (9) from (11) yields

x2nε+2ε − xπn+1 = x2nε − xπn + 2εf(e2nε+ε, 2nε+ ε)− 2εmdec
n+1(eπn+1) +

ε3

3
f ′′(ξxn+1)

By triangle inequality, we have∥∥x2nε+2ε − xπn+1

∥∥ ≤ ‖x2nε − xπn‖+
∥∥2εf(e2nε+ε, 2nε+ ε)− 2εmdec

n+1(eπn+1)
∥∥+

∥∥∥∥ε33 f ′′(ξxn+1)

∥∥∥∥
≤ ‖x2nε − xπn‖+ 2ε

∥∥f(e2nε+ε, 2nε+ ε)−mdec
n+1(eπn+1)

∥∥︸ ︷︷ ︸
propagated error

+
ε3

3

∥∥f ′′(ξxn+1)
∥∥︸ ︷︷ ︸

truncated error

9
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The error on the RHS consists of two parts: (1) the first two terms constitute the propagated error
from the previous steps and (2) the third term is a newly introduced truncation error due to the Taylor
expansion.

By triangle inequality again,

∥∥f(e2nε+ε, 2nε+ ε)−mdec
n+1(eπn+1)

∥∥ =
∥∥f(e2nε+ε, 2nε+ ε)− f(eπn+1, 2nε+ ε) + f(eπn+1, 2nε+ ε)−mdec

n+1(eπn+1)
∥∥

≤
∥∥f(e2nε+ε, 2nε+ ε)− f(eπn+1, 2nε+ ε)

∥∥︸ ︷︷ ︸
midpoint deviation

+
∥∥f(eπn+1, 2nε+ ε)−mdec

n+1(eπn+1)
∥∥︸ ︷︷ ︸

approximation error

Again the RHS can be decomposed into two error parts: (1) a midpoint deviation resulting from
performing midpoint numerical integration which would not vanish even if the neural network is
replaced with the true time derivative, and (2) an approximation error due to the inaccuracy of
approximating the time derivative.

Letting dxn = ||x2nε − xπn|| and den = ||e2nε−ε − eπn||, and applying the properties of the Assumption
1, we have

dxn+1 ≤ dxn + 2ε(Kden+1 + ε2) +
ε3K

3
= dxn + 2εKden+1 + ε3

(
K

3
+ 2

)
owing to the uniform error bound of the neural decoder ||f(e, 2nε + ε) −mdec

n+1(e)|| < ε2 for all
e ∈ En+1 and the fact that eπn+1(x0) ∈ En+1 since x0 ∈ X0.

The same can be done to obtain a bound on den+1 by subtracting (10) from (12), which yields

den+1 ≤ den + 2εKdxn + ε3
(
K

3
+ 2

)
To summarize, we have

de1 ≤ ε2 (13)

dxn+1 ≤ dxn + 2εK ′den+1 + ε3K ′ for n ≥ 0 (14)

den+1 ≤ den + 2εK ′dxn + ε3K ′ for n ≥ 1 (15)

where K ′ = max{K, K3 + 2}.
Summing dx1 , ..., d

x
n and subtracting dx1 + ...+ dxn−1 from both sides yield

dxn ≤ 2εK ′
n∑
t=1

det + nε3K ′ (16)

Note that dx0 = 0. Similarly, summing de2, ..., d
e
n and subtracting de2 + ... + den−1 from both sides

yield

den ≤ de1 + 2εK ′
n−1∑
t=1

dxt + (n− 1)ε3K ′ (17)

To recursively express dxn in terms of itself (except for de1), we sum over the sequence de1, ..., d
e
n again

n∑
t=1

det ≤ nde1 + 2εK ′
n∑
t=2

t−1∑
s=1

dxs +

n∑
t=1

(t− 1)ε3K ′

Substituting into (16) yields

dxn ≤ 2εK ′

(
nde1 + 2εK ′

n∑
t=2

t−1∑
s=1

dxs +

n∑
t=1

(t− 1)ε3K ′

)
+ nε3K ′

Since n ≤ N ,
∑n
t=1 t ≤ n2, de1 ≤ ε2 and ε = T

2N , the above can be rearranged and further bounded
by

dxn ≤
(
T 3K ′2

4
+
T 4K ′2

8
+
T 3K ′

8

)
1

N2
+
T 2K ′2

N2

n−1∑
t=1

t∑
s=1

dxs (18)

10
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The same can be done for (17) to analyze den.

n−1∑
t=1

dxt ≤ 2εK ′
n−1∑
t=1

t∑
s=1

des +

n−1∑
t=1

tε3K ′

den ≤ de1 + 2εK ′

(
2εK ′

n−1∑
t=1

t∑
s=1

des +

n−1∑
t=1

tε3K ′

)
+ (n− 1)ε3K ′

den ≤
(
T 2

4
+
T 4K ′2

8
+
T 3K ′

8

)
1

N2
+
T 2K ′2

N2

n−1∑
t=1

t∑
s=1

des (19)

By Lemma 2, we know that the elements of both sequences of error dxn and den converge uniformly
on 1 ≤ n ≤ N to 0 as N → ∞. In particular, for all T > 0, δ > 0 and compact subset X0 of
Rd, there exists some large enough integer N(T, δ,X0) > 0 for which a joint transformation of
N(T, δ,X0) layers parameterized by some neural encoders and decoders satisfies dxN(T,δ,X0) ≤ δ

and deN(T,δ,X0) ≤ δ for all x0 ∈ X0.

Consider some positive value B > 0. We let X0 = [−B,B]d, T = B and δ = 1
B . We can find

a sequence of models with an error rate dxN(B,1/B,[−B,B]d) ≤ 1/B and deN(B,1/B,[−B,B]d) ≤ 1/B

converging pointwise on Rd to 0 as B →∞. This implies

dxN(B,1/B,[−B,B]d) =
∥∥∥xB − xπN(B,1/B,[−B,B]d)

∥∥∥→ 0

pointwise as B →∞. The same holds for the augmented variable e.

The lemma (restated) below shows if one can approximate the solution of an ODE (||yn − xn|| → 0,
i.e. xn and yn are asymptotically indistinguishable) and if the limit of the solution is a transport map
(xn

d→ x∞), then the approximation also forms a transport map (yn
d→ x∞).

Lemma 1. Let x∞, (xn : n ≥ 0) and (yn : n ≥ 0) be random variables. If xn → x∞ in distribution
and if ||xn − yn|| → 0 almost surely as n→∞, then yn → x∞ in distribution.

Proof. Let Λ : Rd → R be an arbitrary bounded and Lipschitz continuous function. Then

|E [Λ (x∞)− Λ (yn)]| ≤ |E [Λ (x∞)− Λ(xn) + Λ(xn)− Λ (yn)]|
≤ |E [Λ (x∞)− Λ(xn)]|+ E [|Λ (xn)− Λ (yn)|]

First, since xn → x∞ in distribution and since Λ is bounded and continuous, by the Portmanteau
Lemma the first term of the RHS converges to 0 as n → ∞. Second, since yn is almost surely
asymptotically indistinguishable from xn (let Ω be the almost sure set), and since the Lipschitzness
of Λ implies uniform continuity, the following are true

• For all ε > 0, there exists a δ > 0 such that ||x− y|| ≤ δ implies |Λ(x)− Λ(y)| ≤ ε.

• For any δ > 0, there exists a integer N > 0 such that for all n ≥ N , ||xn − yn|| ≤ δ for all
ω ∈ Ω.

These imply ||Λ(xn)− Λ(yn)|| → 0 on Ω. Then

E [|Λ (xn)− Λ (yn)|] = EΩ [|Λ (xn)− Λ (yn)|]︸ ︷︷ ︸
E1

+EΩc [|Λ (xn)− Λ (yn)|]︸ ︷︷ ︸
E2

converges to 0, since (1) boundedness of Λ and the Bounded Convergence Theorem imply E1 → 0
and (2) supx Λ(x) < ∞ implies E2 ≤ 2 supx Λ(x)P(Ωc) = 0. Finally, since Λ is arbitrary, by the
Portmanteau Lemma again, yn converges in distribution to x∞ as n→∞.

11
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We now are ready to prove Theorem 1, which we restate below. The main idea is to notice that ANFs
can be made pointwise inseparable from the Hamiltonian ODE, which implies weak convergence
since the Hamiltonian ODE converges in distribution.
Theorem 1. For any q ∈ Q, we can find a sequence (xπN , e

π
N ) of ANFs of the additive form (2,3), such

that if xπ0 , e
π
0 ∼ q(x)δ0(e) and x∞, e∞ ∼ p∞(x)δ0(e), then (xπN , e

π
N )→ (x∞, e∞) in distribution.

Proof. First, by Proposition 1, xB → x∞ in distribution as B → ∞. Second, xB and
xπN(B,1/B,[−B,B]d) chosen from Proposition 2 are almost surely asymptotically indistinguishable.
Thus, by Lemma 1, xπN(B,1/B,[−B,B]d) converges in distribution to x∞. The same holds for the
augmented variable e. Let (xπN ) and (eπN ) denote such sequences. By Theorem 2.7 of Van der Vaart
(2000), (xπN , e

π
N )→ (x∞, e∞) in distribution (as e∞ = 0 is a constant).
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