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ABSTRACT

Quantifying distance between two dynamical neural systems is a fundamental
problem in neuroscience and machine learning fields. Neural dynamics are known
to possess nonlinear features, which makes comparison between systems difficult.
Recently, a promising method to quantify distance between dynamics called Dy-
namic Similarity Analysis (DSA) is proposed (Ostrow et al., 2023), which mea-
sures distance between matrices approximating linear operators defined in time
delay embedded space and thus takes nonlinearity into accounts. Although being a
strong method, DSA is not free from problems, including obscure interpretability,
failure to satisfy the triangle inequality among matrices of different dimensions,
and long computational time. To address these problems, we propose a modified
novel version of DSA. Our proposed DSA measures distance between approxi-
mated Koopman operators, which has better interpretability as a linear operator
that drives dynamics in a mapped space. The distance measure adopted in our
method satisfies the triangle inequality even between matrices of different dimen-
sions. This distance measure also allows extremely fast computational time. We
applied our method and DSA to Lorenz system (Lorenz, 1963) of various param-
eters, and found that our method revealed clusters with respect to parameters and
dynamical properties, while DSA failed to do so. With theoretical underpinnings
of Koopman operators and matrix distance, we propose our method as an effective
method to quantify distance between dynamics.

1 INTRODUCTION

Comparing representations of two or more neural systems has become an important problem in neu-
roscience and machine learning fields. For instance, comparison between brain activity of different
subjects (O’Connell & Chun, 2018; Hebart et al., 2020), or between brain activity and deep neural
network outputs (Yamins et al., 2014; Cichy et al., 2016; Horikawa & Kamitani, 2017), may pro-
vide better understandings of common mechanism of neural information processing, or revealing
unknown neural working principles. This information processing is essentially reduced as the ac-
tivity of neurons —they transmit information to each other and change their activities dynamically.
As information processing appears as a time series of the dynamical system, capturing dynamical
features of neural activity is vital in comparing foundational computations that systems perform.
Comparing dynamical systems, or more specifically, quantifying distance between dynamical sys-
tems is thus an important question, possibly opening the door to comparing many different neural
systems and information processing machines such as deep neural networks (Sexton & Love, 2022;
Fu et al., 2023) or large language models (Kawakita et al., 2023; Wang et al., 2023).

One of the important aspects to consider dynamics of information processing systems is nonlinearity.
It has been known that neural systems and machine learning models own nonlinear representational
features (Rabinovich & Muezzinoglu, 2010) and that they play important roles in performing com-
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putations (Breakspear, 2017; Freyer et al., 2012). Thus, when comparing two information processing
systems, methods that take nonlinearity into account are favorable rather than utilizing techniques to
compare linear dynamical systems, which have a rather long research history in the field of system
identification (Hanzon & Marcus, 1982; Afsari & Vidal, 2013). A possible approach for comparison
taking account of nonlinearity is the use of the Koopman operator method (Koopman, 1931; Mezić,
2005; Brunton et al., 2022), which has become one of the major data-driven strategies to tackle
nonlinear dynamics.

Recently, one such method, called Dynamic Similarity Analysis (DSA), has been invented (Ostrow
et al., 2023). DSA is a data-driven method that measures the distance between a pair of time series
data. Briefly, this method takes two steps: the first step is Hankel Alternative View of Koopman
(HAVOK) analysis (Brunton et al., 2017), where one finds a matrix for each dynamics as an approx-
imation of a linear operator in time delay coordinate space. The next step is the measuring step, and
one quantifies a distance between the obtained pair of matrices. This quantification makes use of
what is called Procrustes analysis of vector fields (PAVF), where a change of basis of coordinate is
regarded as invariant. The authors claim that DSA succeeded in distinguishing dynamics that are
similar in a geometric sense, and identifying dynamical systems of similar dynamical properties that
possess different geometrical features (Ostrow et al., 2023), both of which are unsuccessful with
existing methodologies that utilize geometrical characteristics of state space, such as orthogonal
Procrustes analysis.

Although DSA is a promising and distinctive method to compare dynamics as mentioned above,
it is not free from problems. Firstly, its interpretability is not clear. This lack of interpretability
of DSA can be attributed to that of HAVOK, whose theoretical foundations and backgrounds have
been studied (Arbabi & Mezić, 2017; Hirsh et al., 2021; Kamb et al., 2020) but are yet to be fully
explained. Secondly, the distance measure, PAVF, cannot satisfy the triangle inequality when applied
to quantify matrices of different dimensions. This may be problematic, as we often apply based on
the dissimilarity various machine learning techniques that are based on metric properties of the
dissimilarity measure (Williams et al., 2021). Thirdly, to find distance using PAVF, one has to use
optimization algorithms including neural networks (Ostrow et al., 2023) or iterative optimization
techniques over Stiefel manifolds (Edelman et al., 1998; Sato & Iwai, 2013). This can cause a long
computational time, limiting the applicability of the method.

To address these problems, here we propose an altered version of DSA to quantify distance between
two dynamics (Fig. 1). We make two alterations. Firstly, our method compares two matrices that
are direct approximations of the Koopman operator (Koopman, 1931; Mezić, 2005; Bevanda et al.,
2021; Brunton et al., 2022). Having a clear meaning as linear operators that dominate the dynamics
in nonlinearly transformed spaces, the Koopman operator possesses better interpretability and clarity
in quantifying distance between dynamics. We can also employ kernel methods to enable flexible
representation for the dynamics and at the same time simpler calculations (Baddoo et al., 2022).

Secondly, we modified the distance metric originally proposed in DSA and defined a distance mea-
sure called Modified Procrustes analysis of vector fields (M-PAVF). This metric respects the triangle
inequality even between matrices of different sizes and successfully evades the problem in the origi-
nal metric. This modified metric is also advantageous in its computational simplicity, as one can find
the metric massively faster than the metric in DSA, preserving similar tendency as the DSA metric.

As an application, we employed our version of DSA and the original DSA to time series data of
Lorenz system (Lorenz, 1963) of different parameters to see how these methods quantify distances
between dynamics. The results show that our method showed clusters of dynamical data of the same
parameter, while the original DSA could not. What is more, only did our method succeed in detect-
ing the closeness with respect to dynamics’ dynamical properties of different parameters, revealing
that our version of DSA can be a favorable measure to quantify distance between dynamics.

2 BACKGROUNDS

Before describing our method, we first explain some backgrounds about data-driven approaches
of nonlinear dynamical analysis. Our study makes use of concepts of the Koopman operator and
related methodologies including Extended Dynamic Mode Decomposition (EDMD), kernel EDMD
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Figure 1: Comparison of overview of original DSA and our version of DSA.

(KEDMD), and Hankel Altered View of Koopman analysis (HAVOK). In what follows, we are to
explain each of these and the original DSA briefly.

2.1 KOOPMAN OPERATOR

Initially proposed a century ago in Koopman (1931) and after rediscovery in Mezić (2005), the
Koopman operator has become one of the mainstream approaches in the analysis of nonlinear dy-
namical systems (Mezic, 2013; Bevanda et al., 2021; Brunton et al., 2022). In a nutshell, the Koop-
man operator is a linear operator that drives nonlinearly mapped dynamics. In more detail, assume
a discrete-time dynamical system {zn}∞n=1 on a manifold M ⊂ Rd (d ∈ N) is defined as,

zn+1 = F (zn), n = 1, 2, · · · , (1)

with F : M → M. Here F may be a nonlinear transform, and thus the dynamics may be difficult to
analyze any further. To get a better perspective, consider a dynamics that is given as a transformation
of zn through a function g : M → R,

g(zn+1) = g ◦ F (zn), n = 1, 2, · · · . (2)

The composition of the functions on the right-hand side can be regarded as an operator K := g ◦ F .
This K is called the Koopman operator. When we set g as a member of a Hilbert space F with an
inner product ⟨·, ·⟩, and assume g ◦F ∈ F for any g ∈ F , we readily see that the Koopman operator
is a linear operator on F .

The merit of the Koopman operator is that it transforms a nonlinear dynamics defined as Eq. (1) into
a linear dynamics. For g ∈ F and {g(zn)}∞n=1,···,

g(zn+1) = Kg(zn), (3)

which shows that K has a clear mathematical meaning as a linear operator that drives the mapped
dynamics {g(zn)}. This mapping g is often called an observable (Williams et al., 2015).

Now with a linear equation Eq. (3) at hand, one may expect to examine properties of the dynamical
system in a simple way. For example, one may want to find eigenvalues and eigenfunctions of
K to gain an insight into the dynamics, or make a prediction of zn at some unseen time point.
Unfortunately, it is usually difficult to do so using Eq. (3), as K is a linear operator in an (generally)
infinite dimensional space F . Instead, one has to think of a finite dimensional approximation of K,
i.e., one needs to limit the functional space to a finite dimensional subspace. This technique is called
Extended Dynamic Mode Decomposition (EDMD) (Williams et al., 2015) and is discussed next.
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2.2 EXTENDED DYNAMIC MODE DECOMPOSITION (EDMD)

EDMD (Williams et al., 2015) is a data-driven technique to approximate the action of the Koopman
operator. As mentioned above, it is often difficult to find the eigenvalues and eigenfunctions of the
linear operator K, and one needs to confine the action of the operator in a finite dimensional space.
That is, we take an N dimensional space FN (N ∈ N) and consider approximating K with a linear
operator K′ : FN → FN . In EDMD, we take FN as a span: FN := span(ψ1, · · · , ψN ), where the
functions ψ1, · · · , ψN ∈ F are arbitrary chosen. Each of the functions ψi, (i = 1, · · · , N) is called
a basis function, and the combination of N functions is called a dictionary. Some typical choices of
such a dictionary can be monomial functions, or orthogonal polynomial functions such as Hermite
polynomials (under F being an L2 space with respect to some measure on M).

To approximate K with K′ : FN → FN , we take a function h ∈ FN , and think of the image K′h
as the projection of Kh onto FN . This projection is necessary as Kh is not always on FN and one
has to approximate Kh with a point on FN . Some calculation will show that if {ψi}Ni=1 is linearly
independent and h is expressed as h =:

∑N
i=1 ciψi with c1, · · · , cN ∈ R, then K′h is written as∑N

i=1 c
′
iψi, with

t
(c′1, · · · , c′N ) = K

t
(c1, · · · , cN ). (4)

Here, K is a matrix defined as
K =

t(
AG−1

)
, (5)

where
(A)ij = ⟨Kψi, ψj⟩ , (G)ij = ⟨ψi, ψj⟩ . (6)

Now we obtained the approximated form of K on the finite dimensional subspace FN , which can be
conveniently described using linear algebra.

How can we find A and G using dynamical data? With the time series data {xn}Mn=1 ⊂ M (M ∈
N), we can approximate A and G utilizing Kψi(xn) = ψi(xn+1) (n = 1, · · · ,M − 1) and the
Ergodic hypothesis. This approximation, however, can be problematic, with a large number of
the basis functions (N ) causing enormous memory load and difficulty in taking the matrix inverse
(G−1). We often face this large N problem particularly when the dynamics is high-dimensional,
since the number of the basis functions grows immensely due to combinatorial explosion. Kernel
Extended Dynamic Mode Decomposition (KEDMD) (Williams et al., 2016; Klus et al., 2020) is a
method proposed to alleviate such a problem, where kernel methods come in and drastically facilitate
the matrix computations. We next look at this method.

2.3 KERNEL EXTENDED DYNAMIC MODE DECOMPOSITION (KEDMD)

Basic concepts of KEDMD are almost identical to those of EDMD, except that F is taken to be a
reproducing kernel Hilbert space (RKHS) H with respect to a positive definite kernel k : M×M →
R and the inner product ⟨·, ·⟩ defined using k. In short, k is a generalization of inner products,
or similarity measure, of a pair of points in M, and the RKHS is a Hilbert space of functions
where functions of the form of k(·, x) (∀x ∈ M) and their linear sums reside and for any f ∈ H,
⟨f, k(·, x)⟩ = f(x) holds. In KEDMD, each ψi is set to be ψi(·) = k(·, xi), i = 1, · · · ,M (Klus
et al., 2020; Baddoo et al., 2022; Rosenfeld et al., 2022). Note that the subscripts go over 1 to M ,
not 1 to N . Using the properties of the kernel function, A and G in Eq. (6) is written as

(A)ij = k(xi+1, xj), (G)ij = k(xi, xj). (7)

There are two merits in applying kernel methods to EDMD. First, kernel methods allow us to deal
with nonlinear regressions in a tractable manner, thanks to the kernel trick, enabling flexible rep-
resentation of systems (Shawe-Taylor & Cristianini, 2004). Second, computational loads lessen
because one only has to take M (the number of time points) basis functions at maximum. This
drastically improves computational complexity if N is impermissively large, especially due to the
matrix inversion process G−1 taking O(M3) steps instead of O(N3). It can still be hard with M
basis functions in computing K as in Eq. (5) if M is not small enough. But there exist many tech-
niques to evade this problem utilizing essentially row rank property of Gram matrices G, such as
Nystrom methods (Drineas & Mahoney, 2005; Sun et al., 2015; Zhang & Kwok, 2010). Recently,
in KEDMD literature, a type of Nystrom method was proposed as a part of an algorithm named
linear and nonlinear disambiguation optimization (LANDO) (Baddoo et al., 2022). We adopt this
technique in our computation of K.
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2.4 HANKEL ALTERNATIVE VIEW OF KOOPMAN (HAVOK) ANALYSIS

HAVOK analysis was originally proposed as a method to decompose a chaotic system into a linear
system and intermittent forcing (Brunton et al., 2017). HAVOK makes use of a classical technique
called time delay embedding (Kim et al., 1999; Pan & Duraisamy, 2020), where one stacks time
series data {xn}Mn=1 ⊂ Rd to obtain what is called a Hankel matrix:

H
(h)
1:M−h+1 :=


x1 x2 · · · xM−h+1

x2 x3 · · · xM−h+2

...
...

xh xh+1 · · · xM

 , (8)

where h ∈ {1, · · · ,M}. In HAVOK, one tries to extract a linear relationship between consequent
two time steps on this time delay embedded coordinate, but does so using what can be thought
as the ”basis” for this time series. To compare between two time steps, H(h)

1:M−h and H(h)
2:M−h+1

are taken, which we hereafter denote by H1 and H2, respectively, for notational simplicity. One
applies singular value decomposition (SVD) of rank r (r ⩽ min(hd,M − h)) to these matrices:
H1 ≃ U1Σ1

tV 1 and H2 ≃ U2Σ2
tV 2. These V1 and V2 represent dominant structures of the

time series {xn} and can be thought as bases for it. Then, using these bases, linear regression is
performed to find a matrix A such that tV 2 = A tV 1.

What does the HAVOK procedure mathematically mean? If H(h)
1:M−h+1 is composed over an in-

finitesimally short time period (i.e., M − h is small enough), A is a matrix that appears in Frenet-
Serret equation, which represents time variation of tangent, normal, and binormal vectors, for the
dynamics in time delay embedding space (Hirsh et al., 2021). In the opposite limit of M → ∞,
HAVOK converges to discrete Fourier analysis when {xn} is periodic (Bozzo et al., 2010). For
other general cases, although much work has been done for revealing mathematical properties of
HAVOK (Arbabi & Mezić, 2017; Kamb et al., 2020), a clear-cut mathematical interpretation of
HAVOK seems to be missing.

2.5 DYNAMIC SIMILARITY ANALYSIS (DSA)

DSA is a method to quantify distance between two given systems (Ostrow et al., 2023). It builds on
HAVOK and a matrix distance quantification technique called Procrustes analysis of vector fields
(PAVF). Given two dynamical data {xn}M1

n=1 ⊂ Rd1 and {yn}M2
n=1 ⊂ Rd2 (M1,M2, d1, d2 ∈ N),

the following two steps are taken:

1. HAVOK analysis Perform HAVOK to each of the data using the first r ∈ N rows of the Hankel
matrices, and obtain matrices Ax, Ay ∈ Rr×r from data {xn}M1

n=1 and {yn}M2
n=1, respectively.

2. Procrustes analysis of vector fields (PAVF) To see how close Ax and Ay can be as drift
matrices even after a change of basis, solve the next optimization problem:

d(A,B) := inf
U∈O(r)

∥Ax − UAy
tU∥F , (9)

to find the distance between dynamics. Here, O(r) is the set of orthogonal matrices of dimension r.

In the original paper (Ostrow et al., 2023), the authors applied DSA to simulated dynamical data
and showed that DSA was able to detect the difference between dynamics that are similar in a geo-
metric sense, and identify dynamical systems of similar dynamical properties that possess different
geometrical features, both of which were impossible using existing methods.

Being a promising approach that takes nonlinearity into account and owns an empirically favorable
ability to distinguish dynamical properties, DSA is not free from problems. We here list three of
them. First, its interpretability is not clear. This lack of interpretability is caused by the use of
HAVOK, whose theoretical foundations remain unexplained as mentioned above. Secondly, the
distance measure, PAVF (Eq. (9)), does not always satisfy the triangle inequality when applied to
matrices of different dimensions. PAVF was originally proposed to quantify distance between ma-
trices of the same dimension as in Eq. (9), and under this condition satisfies the triangle inequality,
which is considered favorable as a metric quantifying representational dissimilarity (Williams et al.,
2021). As we are to see later, we can easily extend PAVF for matrices of different dimensions,
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but that is when a problem occurs; the metric breaches the triangle inequality between matrices
of different dimensions. This can be problematic, as after obtaining distance, or dissimilarity, of
systems, we often apply machine learning techniques including k-nearest neighbors (Hastie et al.,
2009) that are theoretically based on metric properties of the dissimilarity measure. Using metrics
that can break the triangle inequality may cause inconsistent results in those later analyses, possi-
bly hindering our understandings. Thirdly, to solve PAVF (Eq. (9)), one has to use optimization
algorithms including neural networks (Ostrow et al., 2023) or iterative optimization techniques over
Stiefel manifolds (Edelman et al., 1998; Sato & Iwai, 2013). This can cause long computational
time, especially when matrix dimensions are large, and thus confines applicability. To address these
problems, we propose a novel altered version of DSA, which is to be explained in detail in the next
section 3.

3 RESULTS

3.1 PROPOSED MODIFICATION OF DSA

In this subsection, we explain our modified version of DSA to quantify distance between given two
systems. In a nutshell, we measure distance between dynamics by calculating the distance between
the approximated Koopman operators. Our method thus consists of the following two steps:

1. Apply EDMD or KEDMD to find Koopman approximant matrices for each system.

2. Perform a modified version of PAVF and compute the distance between the systems.

We are to explain each of the steps in detail in the following. See Fig. 1 for conceptual description.
Let us assume that we have access to a pair of dynamical data {xn}M1

n=1 ⊂ M and {yn}M2
n=1 ⊂ M,

where M ⊂ Rd (M1,M2, d ∈ N). Here, the dimensions of {xn} and {yn} are set to be identical
for a theoretical reason, and practically for data of different dimensions one can zero-pad dynamics
as necessary.

Apply EDMD or KEDMD First, we perform EDMD or KEDMD to estimate the finite dimen-
sional Koopman approximant for each system. We computeK as in Eq. (5) using expressions Eq. (6)
or Eq. (7) for each dynamical data {xn}M1

n=1 and {yn}M2
n=1, and put them K1 and K2, respectively.

Applying EDMD or KEDMD for the first step to quantify distance between dynamics has two
main merits. The first is that instead of applying linear methods, EDMD or KEDMD can capture
the nonlinear properties of the dynamics since we consider dynamics in the nonlinearly mapped
space of observables. As nonlinearity is one of the key factors of dynamical systems including
neural circuits (Freyer et al., 2012), our method may be useful for that purpose. The second is
that the matrices used for comparison have clear mathematical meaning as an approximation of the
Koopman operator, which is the linear operator in nonlinearly transformed dynamics. This provides
better interpretability of what are being compared between dynamics.

Here, note that these Koopman approximant matricesK1 andK2 are of different dimensions. Read-
ers might think that the dimensions should be the same when applying EDMD, since the number
of functions in a dictionary should be the same. However, for simpler and more flexible computa-
tion, one can reduce the number of functions in a dictionary in a data-driven manner when using
either EDMD or KEDMD. For example, one can apply the almost linearly dependent test in EDMD
and KEDMD (Engel et al., 2004), where one discards redundant bases in terms of almost linear
dependency. This reduction technique is recently applied in the Koopman operator literature (Bad-
doo et al., 2022). Or one can utilize Nystrom methods for curtailing the row & column numbers
of the kernel matrices G and A. After these procedures, the dimension on which we project in the
functional space (N in the section 2.2) for estimating K1 can be different from that of K2. We put
K1 ∈ Rm1×m1 and K2 ∈ Rm2×m2 .

Before calculating the distance between the matrices that are approximation of each dynamics, we
have to transform the matrices such that the representation is grounded on orthonormal bases. Eq. (4)
implies that K represents transformation of coefficients with respect to the basis {ψi}mi=1 between
adjacent time steps (m = m1 orm2). To compareK1 andK2 in a reasonable manner, we must align
the representation such that the basis becomes orthonormal. To get an orthonormal basis {ui}mi=1
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of span (ψ1, · · · , ψm), one can employ QR decomposition in the functional space: (ψ1 · · ·ψm) =
(u1 · · ·um) =: (u1 · · ·um)R, where the upper triangular matrix R is nonsingular. The vectors
(ψ1 · · ·ψm) and (u1 · · ·um) are not members of Rm but of the m-powered product space F ×
· · · × F , but the matrix product is calculated according to normal matrix multiplication. For h =∑m

i=1 c̃iui (c̃1, · · · , c̃m ∈ R), its image through K′ is calculated as

K′h = K′ ((u1 · · ·um)
t
(c̃1 · · · c̃m)

)
= K′ ((ψ1 · · ·ψm)R−1 t

(c̃1 · · · c̃m)
)

(10)

= (ψ1 · · ·ψm)KR−1 t
(c̃1 · · · c̃m) = (u1 · · ·um)RKR−1 t

(c̃1 · · · c̃m), (11)

implying that the representation with respect to the orthonormal basis {ui} is given as RKR−1 =:

K̃. In application, R is explicitly calculated as the Cholesky decomposition of G, since tRR =
tR(⟨ui, uj⟩)ijR = (⟨ψi, ψj⟩)ij = G. We compute K̃ for each dynamics {xn} and {yn} and denote
it by K̃1 and K̃2, respectively.

Modified Procrustes analysis of vector fields (M-PAVF) Using the matrices K̃1 ∈ Rm1×m1

and K̃2 ∈ Rm2×m2 in the previous section, we move on to quantifying the metric between the two
matrices. Note that these matrices are generally not of the same size: we assume m1 ≥ m2 without
loss of generality. A simple and naive extension of PAVF (Eq. (9)) would be

dP(K̃1, K̃2) := inf
U∈O(m1)

∥∥∥∥K̃1 − U

(
K̃2 0
0 0

)
tU

∥∥∥∥
F

, (12)

or, equivalently,
dP(K̃1, K̃2) := inf

U∈St(m2,m1)
∥K̃1 − UK̃2

tU∥F , (13)

where St(m2,m1) is a Stiefel manifold of sizem1×m2, i.e., St(m2,m1) = {U ∈ Rm1×m2 ; tUU =
Im2

} and Im2
is the identity matrix of size m2.

Although dP might look like a felicitous metric between square matrices of different sizes, it comes
with a theoretical and a practical shortcomings. The theoretical problem of dP is that it does not
always satisfy the triangle inequality dP(A,B) ≤ dP(B,C) + dP(C,A), which disqualifies dP as
a metric (or, more accurately, pseudometric) in a mathematical sense. This can be unfavorable
in applying diverse machine learning algorithms after obtaining distances (Williams et al., 2021).
The practical demerit is that to obtain dP one has to resort to optimization algorithms such as neural
networks (Ostrow et al., 2023) or iterative optimization over Stiefel manifolds (Edelman et al., 1998;
Sato & Iwai, 2013). This can cause a long computational time, especially when the dimensions of
the matrices are large. These problems are discussed in the next subsection 3.2 in detail.

Instead, we add a small modification to Eq. (13), where we adjust K̃1 and K̃2 with two Stiefel
elements:

dMP(K̃1, K̃2) := inf
U,V ∈St(m2,m1)

∥K̃1 − UK̃2
tV ∥F . (14)

We call this metric Modified Procrustes analysis of vector fields (M-PAVF). In fact, this optimiza-
tion problem has an analytical optimal value, and can be written as

dMP(K̃1, K̃2) =W2

(
{σ(K̃1)

i }m1
i=1, {σ

(K̃2)
j }m2

j=1

)
, (15)

where {σ(K̃1)
i }m1

i=1 and {σ(K̃2)
j }m2

j=1 are the sets of singular values of K̃1 and K̃1, respectively, and
W2 is the L2-Wasserstein distance. Note that whenm1 ̸= m2 and for examplem1 > m2, one needs
to zero-pad the smaller set of singular values. Using this analytical expression, one can immediately
prove that dMP defines a proper metric on the space of finite dimensional square matrices.

3.2 PAVF VS. M-PAVF

In this subsection, we give our experimental results for comparison of the distance defined by PAVF
(dP) and M-PAVF (dMP).

Triangle Inequality Here we give an example that dP cannot satisfy the triangle inequality while

dMP always does. Take A =

(
−2 0
1 0

)
, B = 2, C = −2. Then computing dP (Eq. (13))

7



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Table 1: Values of ρ and property of Lorenz system. Properties of systems were based on Sparrow
(1982). Description of periodic orbits such as [1-2-2]2 represents that the orbit travels around the
first equivalent point for one time and the second two times, repeated two times, then comes back to
the same orbit. Orbits of these parameters are shown in Appendix Fig. 4.

ρ Dynamical property

10 Line-like trajectory
20 Ring-like trajectory
28 Chaos
45 Chaos
60 Chaos
75 Chaos

99.4 Chaos
99.537 Periodic [1-2-2]8

99.6 Periodic [1-2-2]4

99.7 Periodic [1-2-2]2

ρ Dynamical property

100.5 Periodic [1-2-2]
100.93 Intermittent chaos

115 Chaos
126.5 Periodic [1-1-2-2-1-2]
140 Chaos
152 Periodic [1-1-2-2]
165 Periodic [1-1-2-2]
195 Chaos
220 Periodic [1-1]
250 Periodic [1-1]

gives dP(A,B) ≈ 2.920, dP(B,C) = 4, dP(C,A) ≈ 0.7265, which breaches the triangle in-
equality. On the other hand, computing our new metric dMP (Eq. (14)) results in dMP(A,B) ≈
0.2361, dMP(B,C) = 0, dMP(C,A) ≈ 0.2361, which preserves the triangle inequality as expected.
As satisfying the triangle inequality may be preferred in applying various machine learning tech-
niques in later analyses (Williams et al., 2021), dMP may be a better choice in quantifying distance
between matrices.

se
c

Figure 2: Computational time of dP
and dMP using 100 random samples.

Computational Time We next compared computa-
tional time needed for dP(A,B) and dMP(A,B) through
numerical experiment. We randomly sampled 100 pairs
of (A,B) ∈ R100×100 × R30×30, whose each element
follows the Gaussian distribution of mean zero and vari-
ance one, and recorded time for computing dP(A,B) and
dMP(A,B). The result, shown in Fig. 2(a), reveals com-
puting dMP was on average about 400 times faster than dP.
This light computational load can be favorable in exam-
ining high dimensional systems, such as neuronal circuits
or human brain.

3.3 APPLICATION TO LORENZ SYSTEMS
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Figure 3: Two-dimensional projection of distances using original DSA & our method for
Lorenz systems. (a) MDS projection using original DSA. (b) MDS projection using our method.
Each color represents the qualitative dynamical property of that parameter.
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We next applied our method to simulated dynamics to see if it can capture dynamical property or
dynamical similarity. We did this using the Lorenz system (Lorenz, 1963): dx

dt = σ(y − x), dy
dt =

x(ρ − z) − y, dz
dt = xy − βz. On simulation, we fixed σ = 10 and β = 8/3 and changed ρ

to obtain various dynamical properties of the system. We chose 20 values of ρ according to the
properties of dynamics. The values of ρ and the dynamical properties that ρ give are on Table 1.
We performed simulation from the time t = 0 to t = 400 seconds with a time interval of 0.001
second from a common initial value (−8, 8, 27), and discarded data for the first 200 seconds. Then
to collect several data for each parameter, we picked eight periods of the length of five seconds,
[200 + 25k, 205 + 25k], k = 0, · · · , 7, for each ρ. In this way we obtained 160 time series data as
a whole (= 20 values of ρ × eight time periods), each of which is described as an R3×5000 matrix.

We then applied our method to every pair of these 160 time series data to find dynamical distances.
Before application, we normalized the time series by dividing the whole time series by its average
norm. For an approximation of the Koopman operators, we applied KEDMD and set the positive
definite kernel as the Gaussian kernel of variance 1 (k(x, y) = exp

(
−|x− y|2/2

)
). We utilized

the almost linear dependency test (Engel et al., 2004; Baddoo et al., 2022) to curtail the number
of dimensions of Gram matrix G. For comparison, we also performed DSA in the same manner,
with h = 100 points of time delay embedding and the SVD truncation dimension r = 120. This
gives two 160-by-160 distance matrices, which are shown in Appendix Fig. 5(a) and (d). These
distance matrix show distinct tendencies, which represents our method and DSA are extracting dif-
ferent features from dynamics. Two-dimensional mappings of dynamics obtained by employing
classical multidimensional scaling (cMDS) are shown in Fig. 3. Each color of points represents
each dynamical property described in Table 1 and thus contains one or more than one values of ρ.
With our method, we can see clusters of points of the same parameters, while DSA fails to. The
mapping using our method also shows that points of similar dynamical properties are placed close,
as represented in colors. The results imply that our proposed version of DSA may work better than
the original version in identifying and distinguishing dynamics of similar dynamical properties.

To check whether KEDMD or M-PAVF was effective, we evaluated distance between dynamics in
the following ways: (a) PAVF using HAVOK (i.e., original DSA), (b) M-PAVF using HAVOK, (c)
PAVF using KEDMD, and (d) M-PAVF using KEDMD (i.e., proposed method). The results are
shown in Appendix Fig. 6. The panels (a) and (b) show that there are no clusters with respect to
parameters or dynamic properties, while the panels in (c) and (d) there exist cluster-like structures.
These results imply that applying KEDMD was significant in revealing cluster-like structures of
dynamics.

4 DISCUSSION

In this study, we proposed a new method, a modified version of DSA, which is a data-driven distance
quantification between dynamics. Our method quantifies as a distance between dynamics the dis-
tance of the Koopman approximant matrices defined in Eq. (14). The optimization problem defined
in Eq. (14) boils down to the Wasserstein distance between singular values of the Koopman opera-
tor approximants represented with respect to orthonormal coordinates, and thanks to that analytical
expression, we can find distance between dynamics at little computational cost.

Although our method reveals clusters when dynamics is periodic as in Fig. 3, it failed in identifying
and distinguishing parameters of chaotic dynamics. Although the prediction of chaotic systems
is thought to be difficult due to its sensitivity to initial values (Strogatz, 2000), it is desirable if
our method could extract chaotic dynamical properties better and identify dynamics of the same
parameter. We are currently under investigation of hyperparameters and kernel choices that can
distinguish chaotic systems well.

We only applied our method to Lorenz systems in this paper, but our method has broader applica-
tional directions as its target, and we are on our way to pursuing them. This includes classifying
neural dynamics between human subjects performing a behavioral task, revealing learning rules be-
tween deep neural networks (DNN), or comparing human and DNN neural systems. Through these
applications to various neural data, our method might help examining learning rules of the human
brain system, not discarding nonlinear properties of dynamics.
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A APPENDIX

A.1 TRAJECTORIES OF LORENZ SYSTEMS

Figure 4: Trajectories of various values of ρ’s.
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A.2 HAVOK/KEDMD × PAVF/M-PAVF

PAVF using LANDO EDMD, Lorenz, under sigma = 10, beta = 2.66667, via orthogonal coordinate
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DSA using discrete HAVOK, Lorenz, under sigma = 10, beta = 2.66667, via orthogonal coordinate

10 20 28 45 60 75 99.4 99.5
37 99.6 99.7 100

.5
100

.93 115 126
.5 140 152 165 195 220 250

10

20

28

45

60

75

99.4

99.537

99.6

99.7

100.5

100.93

115

126.5

140

152

165

195

220

250
0

2

4

6

8

10

12

14

16

18

20

GDSA using LANDO EDMD, Lorenz, under sigma = 10, beta = 2.66667, via orthogonal coordinate

10 20 28 45 60 75 99.4 99.5
37 99.6 99.7 100

.5
100

.93 115 126
.5 140 152 165 195 220 250

10

20

28

45

60

75

99.4

99.537

99.6

99.7

100.5

100.93

115

126.5

140

152

165

195

220

250
0

0.5

1

1.5

2

2.5

3

3.5

(a) HAVOK x PAVF (Original DSA)
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Figure 5: Distance matrices of four possible methods. (a) PAVF using HAVOK (i.e., original
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