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Abstract

A central but unresolved aspect of problem-solving in AI is the capability to
introduce and use abstractions, something humans excel at. Work in cognitive
science has demonstrated that humans tend towards higher levels of abstraction
when engaged in collaborative task-oriented communication, enabling gradually
shorter and more information-efficient utterances. Several computational methods
have attempted to replicate this phenomenon, but all make unrealistic simplifying
assumptions about how abstractions are introduced and learned. Our method,
Procedural Abstractions for Communicating Efficiently (PACE), overcomes these
limitations through a neuro-symbolic approach. On the symbolic side, we draw
on work from library learning for proposing abstractions. We combine this with
neural methods for communication and reinforcement learning, via a novel use
of bandit algorithms for controlling the exploration and exploitation trade-off in
introducing new abstractions. PACE exhibits similar tendencies to humans on a
collaborative construction task from the cognitive science literature, where one
agent (the architect) instructs the other (the builder) to reconstruct a scene of block-
buildings. PACE results in the emergence of an efficient language as a by-product of
collaborative communication. Beyond providing mechanistic insights into human
communication, our work serves as a first step to providing conversational agents
with the ability for human-like communicative abstractions.

1 Introduction

When presented with the opportunity for repeated interaction, human conversational partners tend
towards more concise utterances [13, 24, 20]. This is done via the introduction of more informative
abstractions into their language, which enable shorter utterances and thereby promote more efficient
communication and cooperation. Additionally, humans use abstractions in many other procedural
tasks, such as cooking and programming. In a seminal paper [14] that combines perspectives from
Cognitive Science and AI it is argued that abstractions guide learning, facilitate trade-offs, and
simplify computation. They identified an outstanding open problem that “future work in both
computer science and psychology will need to identify other pressures that can shape abstraction
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Figure 1: In early rounds of the architect-builder game, the architect messages refer to horizontal
or vertical blocks (a). After multiple interactions, the architect tries to introduce an abstraction (the
small O), which after a learning period allows for shorter communication to solve the task (b).

learning – such as the need to communicate and coordinate with others”. We carry out the first
steps to solving this problem in the setting of co-operative artificial agents. How could AI agents be
designed to introduce and exploit abstractions in a similar way in co-operative problem-solving?

We take a novel neuro-symbolic approach to study the introduction of abstractions in the context of
emergent communication (EC) in multi-agent systems [22, 9]. We investigate this as a signalling game,
a foundational tool in cognitive science [23, 27] to establish how human languages are optimised to
communicate concepts efficiently. Our setting is an extension of the Architect-Builder game [24], a
two-agents collaborative building task. Here, the architect observes a goal-scene and instructs the
builder to place blocks to recreate it. Using abstractions here can significantly increase the efficiency
of the collaboration, as observed in human interactions [24] and depicted in Figure 1.

We draw on ideas from library learning [8, 1] to introduce new abstractions into the language. These
correspond to common sequences of instructions that maximally reduce the length of future programs.
However, it is not desirable to only naïvely consider compression, as this would result in a huge
language with a word for every single shape – even those rarely seen. For humans, there is a trade-off
between competing pressures: to be informative while not having to memorise too many words
causing a high cognitive load [32]. To address this trade-off in our agents, we use techniques from
EC and reinforcement learning previously shown to promote these pressures in other settings [4, 3].

We test our model within an extended version of the Architect-Builder game and find that it exhibits
the same tendency as humans — a development toward more informative and concise communication.
Interestingly, we find that after a number of abstractions have been introduced, our model naturally
converges to a stable language, situating this observation within the cognitive science literature
on efficient communication [17, 10, 33, 11]. Our approach addresses many limitations of existing
approaches by [24] and [16] and provides a valuable framework for future exploration in this area.

2 Architect-Builder Game

In the Architect-Builder Game, the architect is provided with a set of goal-scenes consisting of
horizontal and vertical blocks on a (9x9) grid. The architect needs to communicate instructions to
the builder (who does not know the goal state) that allow for it to construct the goal-scene starting
from a blank grid. This is inspired by the human experiments in [24]. In our work, the architect is a
neuro-symbolic agent and the builder is a neural agent. The architect is initialised with a pre-defined
symbolic policy πarch, which for each goal-scene contains a program to construct it. These programs
consist of a sequence of instructions in a language A, initially containing two primitive actions:
placing either a horizontal or vertical block. The agents are trained together to learn policies that
enable the architect to communicate instructions to the builder that enable it to reach the goal-state.
We refer to the architect and builder’s communication policies as πcomm and πbldr, respectively.

3 Abstractions for Communicating Efficiently

There are three main components to PACE, Abstraction, Communication and Explo-
ration/Exploitation. In the Abstraction component, the architect utilises a library learning mechanism
to identify common sub-sequences for abstraction. In the Communication component, EC allows the
architect and builder to learn a language for collaboration. The Exploration/Exploitation component
utilises bandit techniques to choose between alternative programs for a given goal-scene.
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At a high-level interaction between the architect and builder in PACE proceeds as follows: (1)
given a goal-scene the architect chooses a program via the bandit, and (2) the architect and builder
communicate via EC. After multiple interactions, an abstraction is introduced through library learning.
Then the loop repeats. Appendix A.2 presents more detailed algorithms explaining each phase.

3.1 Introducing Abstractions

The architect initially has a program consisting of primitive instructions to create a given goal-scene
from an empty grid. As the interaction proceeds with the builder, the architect may discover common
abstractions which can shorten the communication. These can be used to rewrite current programs
allowing for more compressed versions which are then available as an alternative in later interactions.
The architect can analyse the available programs and introduce into A a new abstraction for a sub-
sequence that enables the maximal reduction in the length of the whole set of programs. We choose a
sub-routine according to a Bayesian procedure inspired by library learning methods like DreamCoder
[8]. The architect evaluates a set of sub-sequences and picks the one which maximises (1):

P (A ∪ {acand}|{pi}Ni=1) ∝
N∏
i=1

P (pi|A ∪ {acand}) (1)

This captures an inductive bias of the architect to introduce abstractions that are informative, as the
probability of a program under the augmented language is proportional to the reduction in program
length when re-writing the program using the candidate abstraction.

3.2 Communicating a program

Human languages are subject to pressures to be informative and to minimise cognitive load. In
previous work, EC has been used to explain the language structure in the numerals and colours
domains [4, 3]. We apply EC techniques to study how pressures manifest within abstraction learning.
Given a program, p, selected by the architect, a one-step signalling game is created for each instruction
of p which is of the form (x, a, x′): grid state x is transformed into x′ by action a. We note that
along with the action we pass positional information to the builder, we assume the encoding of this is
pre-determined and we omit it from further notation. The architect’s and builder’s policies, πcomm

and πbldr, are learnable and parameterised by fully-connected neural networks. Model inference is
defined as x̂′ = πbldr(x, πcomm(a)) which provides an estimate of the next grid-state, x′. Since our
messages are discrete, we use the gumbel-softmax relaxation to sample from discrete messages which
makes our model end-to-end differentiable [15]. The policies are trained to minimise the binary
cross-entropy loss. The accuracy of the reconstruction is used in the bandit’s reward function.

3.3 Exploration/Exploitation of Abstractions

As abstractions are introduced, there will be multiple alternative programs of different lengths
available to the architect. They may differ in reconstruction accuracy, in particular, programs
containing a new abstraction will initially have low accuracy. If we want the agents to learn how
to use these new abstractions they must be exposed to them. Hence, this is a classic exploration vs.
exploitation problem which bandit techniques are well-suited for [31]. We view the selection between
programs as a contextual bandit with combinatorial actions [21]. We update the estimated value of a
single action as Q(a)← Q(a) + α(r −Q(a)), where r is the reconstruction accuracy which is 1 if
the action is successfully interpreted by the builder and 0 otherwise. The parameter α is the learning
rate. The value of an entire program is calculated according as Q(p) =

∏
a∈|p| γQ(a). This captures

the trade-off between program length and the communicative accuracy of instructions. The value γ is
in the interval (0, 1] where a lower value results in a stronger bias for shorter programs. Exploration
vs. exploitation is undertaken using ϵ-greedy, where ϵ is held at a constant value, ensuring a constant
level of exploration. Through this, we allow the architect to control the regret, i.e. the difference
between the optimal and observed reward, arising from the introduction of new abstractions.

4 Empirical Evaluation

To evaluate PACE we investigate the following questions: 1) Does PACE result in a final language
allowing for shorter communications? 2) Does communicative pressures impact what abstractions
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get adopted? The behaviour of PACE is compared to two naïve baselines. The first, No abstractions,
is PACE without the abstraction phase. The second, Greedy, always picks the shortest program. We
use reward (also referred to as reconstruction accuracy) and average program length to compare these
approaches. Unless otherwise stated results obtained are averaged over 16 runs.

PACE reduces program length PACE does indeed converge to shorter programs over interaction
steps, as seen in Figure 2 (left). When we compare PACE to the No abstraction variant, the program
lengths are halved, going from an average length of 10 to one of 4.92± 0.20, indicating that a more
efficient language has been derived. The Greedy variant reduces program lengths even more, however,
this comes at a price. In Figure 2 (right) we see drastic drops in accuracy for Greedy every time an
abstraction is introduced, whereas PACE’s slower introduction leads to smaller drops in accuracy.
For a while, both strategies manage to recover near full accuracy, but after some time, the Greedy
communication fails to recover and becomes progressively worse.
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Figure 2: Comparison between PACE, Greedy and No abstractions in terms of program length and
test reward over time. Line indicates mean value and shaded regions indicate the 95% confidence
interval.
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(a) The first abstraction being introduced successfully.
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(b) The thirteenth abstraction gets eventually discarded.

Figure 3: Different abstractions being introduced. We show the mean and 95% confidence interval
for Q-value (black) and frequency (blue) versus epochs (of which there are 40 in a step).

The Communicative Pressures on Abstractions PACE’s final language does not adopt all abstrac-
tions introduced. In Figure 3, we show some that experience different fates. Figure 3 (left) shows
the Q-value and frequency of abstraction 1 from Figure 4 (a tower), which is retained in PACE’s
final language. Figure 3 (right) instead shows the same for abstraction 13 from Figure 4 (the letter
X), which after a trial period was not retained, judged as too hard to learn by the architect. This is
connected to the different frequencies of these two shapes in our dataset, with the tower being more
than 20 times more common than the X. Thus, the first is much easier for the architect to learn how
and when to use it than the second one.
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5 Discussion & Conclusion

Addressing the challenge in [14], we initiated the study of how abstractions could be used to make
communication between AI agents more efficient, as they do between humans [24]. PACE develops a
compact language through interaction, resulting in shorter programs. The size of the language is the
consequence of pressures that naturally arise through the need to communicate about a shared task.
This is achieved through a novel combination of EC, library learning and bandits. Our work serves as
a bridge between abstraction learning and efficient communication [17, 10, 33, 11, 7, 4, 3].

Beyond importance within cognitive science, we believe our results have real implications for machine
learning. Significant research effort is being invested into exploring the role of natural language as a
mechanism for humans to provide instructions to intelligent agents [2, 30]. Providing these systems
with the capability of handling abstractions can facilitate improved cooperation between humans and
agents. We believe that PACE represents a step towards equipping intelligent agents with flexible and
extendable languages.
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A Appendix

A.1 Related Literature

Emergent communication in the Architect-Builder game was first studied in humans by [24], however
only on a smaller dataset with only 12 goal-scenes. They also propose a simple Bayesian model for
the task, inspired by [12] and [8]. However, this is not a proper multi-agent system and is limited to
assuming that abstractions are introduced automatically by a centralised process in both the architect
and builder at the same time. Our work addresses this major limitation by situating the task in a
multi-agent system where the introduction of abstractions is controlled by the architect, a more
plausible representation. When a new abstraction is introduced, ACE allows the architect and builder
to negotiate a change to their common language to incorporate it, or if it proves difficult to learn,
discard it. Furthermore, our setting does not require an explicit parameter to keep the language size
manageable, this appears automatically as a consequence of communicative pressures in ACE. [16]
conduct a preliminary study into using multi-agent reinforcement learning for the Architect-Builder
task, but make many simplifications. Most notably, there is no learning of a messaging policy and the
abstractions are assumed to be immediately understood by the builder. Under this assumption, this
actually collapses to a single agent setting and is not subject to pressures for efficient communication.

While EC has been used to study areas such as the impact of populations [6, 18, 29], compositionality
[25, 5, 28], and naming conventions in semantic categories [3, 4], we introduce it as a tool to study
the process of abstraction and combine it with library learning and bandits.

A.2 Algorithms composing PACE

Algorithm 1 shows how the components of PACE integrate. The algorithm alternates between the
Communication Phase and the Abstraction Phase for s steps, where s is determined experimentally1.

The Communication Phase is repeated for e iterations, determined experimentally. In each iteration,
programs are sampled from πarch by the bandit’s ϵ-greedy strategy and are used to form a dataset of
grid-state transitions. This dataset forms the basis of our signalling game and is used to train πcomm,
πbldr and to update the Q-values of actions. Here, we expect a language to emerge which is subject
to pressures for efficient communication.

In the Abstraction Phase sub-sequences in the programs are identified. The sub-sequence that
maximises Equation 1 is selected. This abstraction, anew, is introduced into A. anew may allow
existing programs to be rewritten: in this case, the resulting shorter programs are introduced into
πarch for the respective goal-scene. Finally, Q(anew) is initialised.

We also provide more detailed algorithms for the focal points of PACE’s methodology. Algorithms 2
and 3 refer to the Communication Phase, which we break down further into two parts: the dataset
generation for the signalling game and the communication round done via EC. Algorithm 4 instead
refers to the Abstraction Phase.

A.3 Evolution of Language and Resulting Programs

In Figure 4 we report the abstraction that PACE introduces in a single run2. Abstractions circled
in green are in the final language. In Figure 5, we show how the composition of our language
changes throughout the repeated interactions. The relative proportion of primitives is reduced in
favour of abstractions referring to either one of the 31 discrete shapes in the dataset (roughly 40%),
or a sub-shape (roughly 20%). We show how this change in distribution impacts the composition of

1We found that 20 steps were a good choice for our setting, after which the language stabilises and no more
abstractions are introduced in the emergent language.

2Further examples, which are quite similar, can be found in our code repository.
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Algorithm 1 Procedural Abstractions for Communicating Efficiently (PACE)

Require: initial πarch, initial A, qinit, α, ϵ, e, s
Ensure: trained πcomm, πbldr, Q, updated πarch, A

1: Initialise neural networks πcomm and πbldr

2: Initialise action Q-values Q(a) to qinit, ∀a ∈ A
3: for s steps do
4: // Communication Phase
5: for e rounds do
6: For each goal choose a program in πarch via bandit
7: Create a training dataset D of triples (x, a, x′) of transitions based on chosen programs
8: Play signalling games with D to train πcomm, πbldr and Q-values
9: end for

10: Optional: evaluate on hold-out test dataset
11: // Abstraction Phase
12: Find action sub-sequences in programs
13: Choose new abstraction anew that maximises Eq. 1
14: Compress existing programs using anew, if possible
15: For each goal, add new programs to πarch

16: Add anew to A and initialise Q(anew) to qinit
17: end for

Algorithm 2 Dataset generation via bandit

Require: πarch, Q, bandit strategy
Ensure: D # A dataset of signalling games

1: D = {}
2: for g ∈ G do
3: Get set of programs for g from πarch

4: Compute Q-values for programs
5: Pick program, p, via bandit strategy
6: break p in a set of triples (x, a, x′) of transitions
7: D ← D

⋃
{(xi, ai, x

′
i)}i∈|p|

8: end for

Algorithm 3 A round of communication of PACE

Require: D, πcomm, πbldr, Q
Ensure: trained πcomm, πbldr, Q

1: # Play signalling game and update policies
2: while D is not empty do
3: Sample batch B from D without replacement
4: loss = 0
5: for (x, a, x′) ∈ B do
6: m = πcomm(a)

7: x̂′ = πbldr(x,m)

8: loss← loss+ L(x′, x̂′)
9: Update Q(a) for all a in B

10: end for
11: Update πcomm and πbldr via gradient descent
12: end while
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Algorithm 4 Abstraction phase

Require: πarch, A
Ensure: updated A and πarch

1: Z = {} # The set of preferred programs
2: for g ∈ G do
3: Get set of programs for g from πarch

4: Compute Q-values for programs
5: Pick programs, p, via greedy bandit strategy
6: Z ← Z

⋃
{p}

7: end for
8: Find all sub-sequences in Z (candidate abstractions)
9: Select best abstraction, anew, via Equation 1

10: A← A
⋃
{anew}

11: for g ∈ G do
12: for p ∈ πarch(g) do
13: if anew is applicable to p then
14: Add p re-written in terms of anew to πarch(g)
15: end if
16: end for
17: end for

programs in Figure 6 with two goal-scenes examples. We see that the introduction of new abstractions
enables for programs to be rewritten much more compactly.

A.4 Q-value initialisation: Pessimism is best

It is not obvious how the initialisation of the Q-values for new abstractions may impact regret.
Compelling cases can be made for both optimistic (a more aggressive introduction) and pessimistic
(a more gradual introduction) strategies. Empirically we find the pessimistic strategy works better
in our case. Here, we establish its impact on learning of the common “tower” abstraction. We
compare a pessimistic strategy (qinit = 0) to an optimistic strategy (qinit = 1) in terms of cumulative
regret, defined as RegretT =

∑T
t=1 (r

∗ − rt). In Figure 7, we see that a pessimistic initialisation
of 0 incurs significantly less cumulative regret than an optimistic value of 1. This is attributable
to the optimistic variant’s tendency to force the abstraction into use before the builder has had the
opportunity to become familiar with it. The pessimistic agent introduces the new abstraction more
gradually while still providing the opportunity for learning of a common language.

A.5 Implementation Details

We implement PACE within Python version 3.9.18 and PyTorch version 2.2.1 [26] and run experi-
ments on Apple M2 Pro CPU (16 GB) on MacOS 14.4.1. The communication policies, πcomm and
πbldr, are deep neural networks which have 1 and 2 hidden layers, respectively. Each hidden layer
contains 200 neurons and utilises ReLU activation functions. The outputted layer of πcomm is com-
prised of 30 neurons, which is its maximum vocabulary size. The output layer of πbldr is comprised
of 81 neurons, which is the size of the grid. Each output neuron in πbldr represents the builder’s belief
that the grid index is occupied. We use the gumbel-softmax relaxation with the hard parameter so
that the networks can be differentiated end-to-end. The model is optimised to minimise binary cross
entropy error and we use a learning rate of 0.0009 in conjunction with the ADAM optimiser [19].
The bandit hyperparameters α, γ, ϵ and qinit are set to 0.5, 0.99, 0.1, and 0.0 respectively. Note, that
before an abstraction is introduced we prune all but the 3 best programs (determined empirically)
for each goal-scene in πarch to not incur an exponential growth in the number of programs for each
goal-scene. We also set the number of epochs e to 40. All hyperparameters chosen are experimentally
determined through grid search.
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Figure 4: The abstractions introduced by PACE in an example run. We circle in green the abstractions
that are adopted by the architect in its final language.

A.6 Dataset details

We compose the goal-scene dataset G similarly to [24], where each scene is composed of two shapes
placed side by side that are in turn built exclusively of the two primitive building blocks. These
shapes are of different sizes and resemble either uppercase or lowercase letters from the English
alphabet, resulting in 31 unique shapes, with multiple sub-shapes reoccurring in different shapes. The
dataset results in a total of 961 goal-scenes. This is over 100 times bigger than that of [24], which
enables training neural agents. We split the dataset into 930 training scenes and 31 test scenes. These
splits are constructed to ensure the distribution over shapes is the same. However, in the test set, the
ordered pair of shapes constituting each goal-scene, does not appear in the training set.
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Figure 5: Relative proportion of actions as the language changes over training. Primitives refer to the
initial actions, shapes refer to one of the 31 discrete shapes appearing in goal-scenes, and sub-shapes
refer to anything else.

Figure 6: Two goal scenes with representations of their initial and final programs chosen by PACE.
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Figure 7: Cumulative regret for an optimistic and pessimistic initialisation of Q-values. Line indicates
mean performance and shaded regions indicate the 95% confidence interval for 16 random seeds.
Epoch interval is between step 1 and step 2.
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Figure 8: The 31 shapes that in pair compose each goal-scene.
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