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Abstract

Social interactions across animal species are governed by the interplay between1

multimodal sensory information and an animal’s internal states. Here, we inves-2

tigate this interplay in female Drosophila as she engages with the male during3

courtship, a highly dynamic social behavior. While male behaviors during courtship,4

such as song production, have been well characterized moment by moment, the5

female’s actions have not been described with similar temporal precision, despite6

her central role in determining copulation outcomes. Her behavior displays high7

variability and is often viewed as volitional, raising questions about its structure8

and predictability at fine temporal resolution. To address this, we used a state-space9

model that combines generalized linear models (GLMs) with a Hidden Markov10

Model (HMM) to uncover latent states that modulate the relationship between male11

sensory cues and female responses. We find that overall, male cues weakly predict12

female behavior, but that predictive power varies substantially across inferred states:13

some states exhibit clear cue-driven structure, while others show reduced sensitivity14

to external cues and more internally-driven behavior. At short timescales (33ms),15

female behavior appears only weakly predictable and highly variable, yet, at longer16

timescales (1min), a rich latent state structure emerges, hinting at internal gating17

and evaluation of social signals over time. This work provides the first moment-18

by-moment characterization of female behavior during courtship, taking a crucial19

step toward closing the loop in social modeling. By capturing how internal states20

shape responses to multimodal sensory cues, it offers a foundation for identifying21

underlying circuit pathways for multisensory integration in the brain, via the female22

whole-brain connectome.23

1 Introduction24

Animal communication unfolds through dynamic exchanges shaped by both external signals and25

internal states. In Drosophila melanogaster, males produce structured songs and pursuit behaviors26

that have been quantified at millisecond resolution, providing a model system for studying social27

signals. Male behavior during courtship follows a relatively stereotyped structure, with consistent28

song motifs and spatial positioning near the female [1, 2, 3]. Female trajectories during courtship29

vary widely—when grouped by male position and song onset, female trajectories show no consistent30

directional bias (Figure 1b,c). So, female responses, although decisive in determining courtship31

outcomes, are often treated as noisy and volitional. This imbalance leaves open a fundamental32

question: how do internal states structure the female’s engagement with male cues during social33

interaction?34

The female’s velocity time series presents a unique statistical challenge, as she remains largely35

stationary for over 70% of the time even when he is actively courting her, presumably "assessing" the36

male [4]. This results in a distribution heavily skewed toward zero values, making it difficult to model37
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her movement dynamics and to infer the timescales of her decision-making. Because such prolonged38

stationary-like bouts are common across insects, modeling them explicitly could also provide insight39

into any variability in responsiveness to social cues. The female fly offers a good candidate for this40

approach: in a social context where she is expected to be active and responsive to the male, she also41

spends extended periods in stillness.42

Here, we take a first step by first comprehensively modeling the sensory signals received by the43

female to predict a wide range of her responses. Unlike prior discrete-only approaches, we analyze44

continuous locomotor dynamics alongside discrete actions, including wing flicking—a rejection45

behavior that plays a critical role in communication. Using a GLM-HMM, we find that male46

cues weakly predict female actions overall, but predictive power varies sharply across latent states:47

some states exhibit clear cue-driven dynamics, while others appear internally dominated. At short48

timescales, responses are highly variable; over longer windows, a structured latent dynamics emerges.49

Recent work has shown that unsupervised latent-state models can uncover “behavioral syllables” that50

combine into higher-order structures resembling a grammar [5, 6, 7]. These approaches have revealed51

how individual animals organize locomotor or foraging sequences but have rarely been extended to52

social contexts. This work provides a temporal account of low-engagement animal during a social53

dynamic behavior and how latent states shape its behaviors in response to multimodal cues. More54

broadly, it highlights how AI or ML approaches can reveal latent communicative structures in animal55

behavior, offering new entry points for comparative studies of communication across species.56

2 Methodology57

Social behavior quantification. To investigate how female flies respond to male cues during58

natural courtship, we used high-resolution pose tracking (SLEAP) to extract the trajectories and59

body keypoints of pairs of male and female flies as they interacted (Figure 1a). Simultaneously, we60

recorded the male’s courtship song using a 9-mic array, allowing precise segmentation of his song61

into pulse and sine components (Figure 1a). We extracted detailed behavioral readouts by tracking 1362

keypoints on the female’s body (Figure 1d), allowing us to quantify her forward, lateral, and angular63

velocity, as well as discrete rejection behaviors such as wing flicking (Figure 5b). These outputs64

capture both locomotor responses and elements of behavioral rejection. To relate female behaviors to65

male actions, we characterized the set of multimodal sensory inputs or feedback cues the female66

receives from the male, spanning visual, auditory, and tactile channels (Figure 1f).67

68

A model with hidden states (GLM-HMM) to predict female behavior. We fit a GLM–HMM in69

which the female transitions between discrete latent states, each with its own linear mapping from70

male sensory inputs to behavioral outputs. Specifically, male sensory features from the preceding 371

seconds were used to predict female forward, lateral, and angular velocities, as well as wing flicking,72

with regression weights that depend on the current latent state (Figure 3a; See Appendix). Each latent73

state zt defines a separate generalized linear model (GLM) relating the male cue history st to the74

observed female behavior yt. The female’s movement variables, such as her forward, lateral, and75

angular velocity, are continuous and modeled as a Gaussian distribution whose parameters depend on76

her current latent state zt and cue history st:77

p(yt | zt, st) = N (yt | wztst + bzt , σ
2
zt)78

For her wing flicking (yt = 1) which is a discrete behavior, the model uses a logistic function to79

describe the probability of flicking:80

p(yt | zt, st) = σ(wztst + bzt)81

where wk ∈ RM denotes the GLM weights for latent state k ∈ {1 . . . ,K}. The full set of model82

parameters, θ ≡ {π,A,wk, bk, σ
2
k}, is learned using the expectation–maximization (EM) algorithm83

(Appendix).84

3 Results85

Five-state GLM-HMM. We used the GLM–HMM to predict female behavior and evaluated its86

predictive performance on held-out data. To assess model quality, we computed the difference in87

log-likelihood between the GLM–HMM and the Chance model (more details in Appendix). We fit88
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Figure 1: Female behavior during courtship is variable and multimodal. (a) Top: Example
frame from a courtship video showing SLEAP-tracked male and female flies. Dashed white lines
indicate 9 microphones used to record courtship song. Bottom: recorded courtship song from the
male segmented into sine and pulse components. (b, c) Female trajectories following male song onset.
Example 1-second trajectories of the female (orange) following male pulse song onset, separated by
whether the male was singing from her left or right. Trajectory samples are aligned to the female’s
position and orientation at song onset (n=200). The male is positioned within the gray 30 sector.
Trajectories reveal high variability in female responses. Bold indicates the average female trajectory
in each condition. (d) Schematic showing the 13 keypoints tracked on the fly body using SLEAP.
(e) Schematic of the bidirectional social loop in Drosophila courtship. The green box highlights the
portion of the loop studied in this work. (f) Left: Example 3-second time series of male sensory cues
(top) used to predict female behavior in the next 33ms time bin (below). Sensory cues: visual (male
forward velocity - mFV, lateral speed - mLS, angle - fmAng, mfDist - distance), auditory (sine, pulse),
and tactile (tap). Outputs: female forward velocity - fFV, lateral velocity - fLV, angular velocity
(fAV), and wing flicks. Right: relationship between sensory inputs and female output variables. See
Supp Figure 5 for more details.

GLM-HMMs with varying numbers of latent states. Note that the one-state GLM–HMM is simply a89

standard GLM with no internal state. We found that a five-state GLM–HMM achieved a substantial90

improvement in predictive performance on the heldout fly pairs: 220 bits/s over the Chance model,91

compared to 115 bits/s for the GLM. Increasing the number of states beyond five did not yield92

significant additional gains (Figure 3b). Models with 5–7 states consistently outperformed the GLM,93

suggesting that latent internal dynamics offer predictive value beyond what can be captured by94

sensory cues alone.95

96

Evaluating performance by behavior, by state and overall. We quantified how well the97

model captured moment-by-moment variation in female behavior by computing the Pearson98

correlation between predicted and actual velocities. As shown in Figure 3c, the model achieved99

consistent predictive performance across animals in both training and held-out datasets. A breakdown100

across all three velocity components—forward, lateral, and angular—revealed highest correlations101

for forward motion, with modest correlations for lateral and angular velocities (Figure 3d). Finally,102

we assessed how well the model captured discrete behaviors such as wing flicking using F1 score103

(Figure 3d).104

We next examined the properties of the latent states inferred by the GLM–HMM. Individual flies105

occupied multiple states during courtship, with most animals spending substantial time in States106

3–5 (Figure 3f), suggesting that these states capture common, shared behavioral modes. To better107
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understand how predictive performance varied by state, we computed the correlation between108

predicted and actual velocities within each state. Some states (e.g., State 2) were more predictable109

than others (Figure 3g). While correlations decreased slightly on held-out data (Figure 3g, right), the110

relative pattern was preserved, suggesting that these differences reflect meaningful structure rather111

than overfitting.112

113

Retrieved latent states are structured across timescales. We next investigated what be-114

havioral features the GLM–HMM states correspond to and when they occur during courtship. State 1115

appeared infrequently, typically at the start of sessions, and was marked by high velocities in both116

animals, large inter-fly distances, and minimal song and tap cues (Figure 2a; Figure 8b). We interpret117

this as a chamber introduction state at the start of a session (Figure 2e-f), not reflective of courtship,118

and exclude it from further analysis due to low occupancy and noisy GLM parameters. State 2119

reflects an active locomotor state of the female, marked by moderate to fast movement while the120

male follows at some distance, circling and producing both song and tapping cues. This state occurs121

throughout interactions but declines over time. State 3 represents moderate engagement, with the122

female moving slowly in close proximity to the male, who circles behind her with consistent song123

and tapping. Video inspection suggests the female responds subtly through side-stepping, turning, or124

small shifts in position, and this state is sustained across the session (Figure 2c). State 4 corresponds125

to a low-activity period in which the female is largely stationary and often engaged in grooming,126

while the male remains nearby with minimal movement and sparse sine song or tapping. Finally,127

State 5 reflects full stillness of the female, with neither locomotion nor grooming. Here, the courtship128

song and tap cues are minimal, and the male remains positioned closely with little motion. This129

state often persists for several seconds and becomes increasingly common as courtship progresses130

(Figure 2e), though it drops sharply just before copulation, when the female typically transitions131

back into State 3. This prolonged stillness may reflect a critical phase of behavioral assessment or132

decision-making, but that interpretation remains speculative.133

Latent states are defined by distinct mappings between feedback cues and female locomotion134

behavior. Although States 3, 4, and 5 all have low female velocity (Figure 2a, Figure 8b), they differ135

markedly in how her behavior couples to male cues. A summary of GLM filters broken down by136

behavior in Figure 4a confirm this distinction, revealing mostly low cue sensitivity in States 3–4 but137

tuning to male cues in State 2 and 5. In State 3, the female shows weak but detectable responsiveness,138

occasionally adjusting her position in response to male circling, song, or tapping—reflected in low139

but non-zero filter weights (Figure 4). In State 4, interpreted as a grooming state, her motion appears140

largely self-generated and decoupled from male behavior, with filters near zero regardless of male141

activity. In contrast, State 5 shows strong sensorimotor coupling: although the female remains142

stationary, she is poised to respond to male cues and capable of producing large responses, as shown143

by its high, input-dependent filter weights (Figure 4). These state-dependent sensory filters also depict144

modality-specific drive of female locomotion. A work in progress is to experiment with female flies145

with perturbed visual or auditory senses and model their responses and see how they "compensate".146

4 Conclusion147

Overall, prediction performance remained low across all states (Figure 3h), suggesting that female fly148

behavior may be harder to predict from male cues alone. These patterns held across both training and149

test sets, suggesting that while certain aspects of behavior are robustly predicted by the model, others,150

such as her turning (lateral vel) or side-stepping (angular vel), may depend more heavily on internal151

state, be influenced by sensory cues not measured here, or simply be noisier and thus harder to predict152

at this timescale. In particular, states associated with grooming or prolonged stillness also pose153

additional challenge in modeling animal behavior. Such states make it harder to observe her behavior154

and contribute to overall low prediction. These states may reflect slower internal processes with155

behavioral inertia. Together, these findings suggest that fine-timescale models may be insufficient156

for fully capturing female behavior in these states, and point toward models that incorporate internal157

dynamics on longer timescales are better suited for her behavior—consistent with prior work where a158

nonlinear integration of male cues and slow adaptation over scale of minutes were predictive of her159

walking speed [8].160
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Figure 2: Retrieved latent states uncover structure in female behavior across timescales. (a) Left:
For each state, sensory input features are ordered by their relative difference from the across-state
mean. Right: Distributions of female forward, lateral, and angular velocities - within each state.
Note that the axis scales differ across states. (b) Distributions of values for some of the sensory
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the five states across all of the data (including both training and test sets). Data from all 75 animals.
(e) The mean probability across flies of being in each state fluctuated only slightly over time when
aligned to absolute time (top) or the time of copulation (bottom). Immediately before copulation,
there was a slight increased probability of being in State 3 (bottom). Data are from all 75 fly pairs.
(f) Fitted state transition diagram representing the inferred dynamics of the five-state GLM–HMM.
Arrow labels indicate the probability of transitioning from one state to another. Together, panels e
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5 frequently transition among one another, forming a regime of behaviorally similar dynamics that
emerge as courtship progresses.

5



References161

[1] Herman T Spieth. Courtship behavior in drosophila. Annual review of entomology, 19(1):162

385–405, 1974.163

[2] Christelle Lasbleiz, Jean-François Ferveur, and Claude Everaerts. Courtship behaviour of164

drosophila melanogaster revisited. Animal Behaviour, 72(5):1001–1012, 2006.165

[3] Philip Coen, Jan Clemens, Andrew J. Weinstein, Diego A. Pacheco, Yi Deng, and Mala166

Murthy. Dynamic sensory cues shape song structure in Drosophila. Nature, 507(7491):167

233–237, March 2014. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature13131. URL168

http://www.nature.com/articles/nature13131.169

[4] Kaiyu Wang, Fei Wang, Nora Forknall, Tansy Yang, Christopher Patrick, Ruchi Parekh, and170

Barry J. Dickson. Neural circuit mechanisms of sexual receptivity in Drosophila females.171

Nature, 589(7843):577–581, January 2021. ISSN 0028-0836, 1476-4687. doi: 10.1038/172

s41586-020-2972-7. URL https://www.nature.com/articles/s41586-020-2972-7.173

[5] Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Mapping the174

stereotyped behaviour of freely moving fruit flies. Journal of The Royal Society Interface, 11175

(99):20140672, 2014.176

[6] Alexander B. Wiltschko, Matthew J. Johnson, Giuliano Iurilli, Ralph E. Peterson, Jesse M.177

Katon, Stan L. Pashkovski, Victoria E. Abraira, Ryan P. Adams, and Sandeep Robert Datta.178

Mapping Sub-Second Structure in Mouse Behavior. Neuron, 88(6):1121–1135, December 2015.179

ISSN 08966273. doi: 10.1016/j.neuron.2015.11.031. URL https://linkinghub.elsevier.180

com/retrieve/pii/S0896627315010375.181

[7] Scott Linderman, Annika Nichols, David Blei, Manuel Zimmer, and Liam Paninski. Hierarchical182

recurrent state space models reveal discrete and continuous dynamics of neural activity in c.183

elegans. BioRxiv, page 621540, 2019.184

[8] Rich Pang, Christa A. Baker, Mala Murthy, and Jonathan Pillow. Inferring neural population185

codes for Drosophila acoustic communication. Proceedings of the National Academy of Sciences,186

122(21):e2417733122, May 2025. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2417733122.187

URL https://pnas.org/doi/10.1073/pnas.2417733122.188

[9] Talmo D. Pereira, Nathaniel Tabris, Arie Matsliah, David M. Turner, Junyu Li, Shruthi Ravin-189

dranath, Eleni S. Papadoyannis, Edna Normand, David S. Deutsch, Z. Yan Wang, Grace C.190

McKenzie-Smith, Catalin C. Mitelut, Marielisa Diez Castro, John D’Uva, Mikhail Kislin, Dan H.191

Sanes, Sarah D. Kocher, Samuel S.-H. Wang, Annegret L. Falkner, Joshua W. Shaevitz, and192

Mala Murthy. SLEAP: A deep learning system for multi-animal pose tracking. Nature Methods,193

19(4):486–495, April 2022. ISSN 1548-7091, 1548-7105. doi: 10.1038/s41592-022-01426-1.194

URL https://www.nature.com/articles/s41592-022-01426-1.195

[10] Adam J. Calhoun, Jonathan W. Pillow, and Mala Murthy. Unsupervised identification of the196

internal states that shape natural behavior. Nature Neuroscience, 22(12):2040–2049, December197

2019. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-019-0533-x. URL http://www.198

nature.com/articles/s41593-019-0533-x.199

[11] janclemenslab/glm_utils. glm_utils. https://github.com/janclemenslab/glm_utils.200

Accessed: July 2025.201

[12] Sean Escola. Hidden Markov Models for the Stimulus-Response Relationships of Multistate202

Neural Systems. 2011.203

[13] Zoe C. Ashwood, Nicholas A. Roy, Iris R. Stone, The International Brain Laboratory, Anne E.204

Urai, Anne K. Churchland, Alexandre Pouget, and Jonathan W. Pillow. Mice alternate between205

discrete strategies during perceptual decision-making. Nature Neuroscience, 25(2):201–212,206

February 2022. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-021-01007-z. URL207

https://www.nature.com/articles/s41593-021-01007-z.208

[14] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,209

volume 4. Springer, 2006.210

[15] Yoshua Bengio and Paolo Frasconi. An input output hmm architecture. Advances in neural211

information processing systems, 7, 1994.212

6

http://www.nature.com/articles/nature13131
https://www.nature.com/articles/s41586-020-2972-7
https://linkinghub.elsevier.com/retrieve/pii/S0896627315010375
https://linkinghub.elsevier.com/retrieve/pii/S0896627315010375
https://linkinghub.elsevier.com/retrieve/pii/S0896627315010375
https://pnas.org/doi/10.1073/pnas.2417733122
https://www.nature.com/articles/s41592-022-01426-1
http://www.nature.com/articles/s41593-019-0533-x
http://www.nature.com/articles/s41593-019-0533-x
http://www.nature.com/articles/s41593-019-0533-x
https://github.com/janclemenslab/glm_utils
https://www.nature.com/articles/s41593-021-01007-z


[16] Scott W. Linderman, Peter Chang, Giles Harper-Donnelly, Aleyna Kara, Xinglong Li, Gerardo213

Duran-Martin, and Kevin Murphy. Dynamax: A python package for probabilistic state space214

modeling with jax. Journal of Open Source Software, 10(108):7069, 2025. doi: 10.21105/joss.215

07069. URL https://doi.org/10.21105/joss.07069.216

7

https://doi.org/10.21105/joss.07069


A Dataset217

We confirm that our research complies with all relevant ethical regulations.218

Behavioral chambers. We analyzed behavioral data from 75 male–female pairs of Drosophila219

melanogaster engaged in natural courtship. Behavioral experiments followed the protocol described220

in the SLEAP software [9]. In brief, flies interacted in custom-fabricated behavioral chambers with a221

30mm × 30mm 3D-printed base (Formlabs Form 2, Black V3) and a clear PETG vacuum-molded222

dome (WidgetWorks Unlimited). Overhead video was captured using a Blackfly S 13YM3-M USB3223

camera (FLIR) equipped with an MVL35M23 35mm FL C-mount lens (Thorlabs) and a 25-mm224

premium 850nm longpass filter (Thorlabs FELH0850). Illumination was provided by 850nm infrared225

LED strips positioned for side lighting. The arena floor included nine embedded microphone inlets226

arranged in a 3×3 grid beneath a fine 3D-printed mesh, allowing simultaneous acoustic and behavioral227

recording. Data acquisition was handled by custom-built workstations with Intel i7-8700K CPUs,228

64GB RAM, 4TB Samsung 860 Evo SSDs, and EVGA GeForce GTX 1080 Ti (11GB) GPUs. Videos229

were recorded from above at 150 frames per second (fps) with a 5ms exposure time and a frame230

size of 1024×1024 pixels (1 channel), yielding a spatial resolution of 30.3 pixels/mm. Real-time231

image compression was performed using the Motif recording system and API (Loopbio GmbH), with232

GPU-accelerated H.264 encoding via the libx264 library (superfast preset). This setup produced233

nearly lossless videos with independently seekable frames.234

Flies. All behavioral experiments were conducted using virgin male and female Drosophila235

melanogaster (wild-type strain NM91), aged 3–5 days post-eclosion, following the protocol in236

Coen et al., 2014 [3]. Fly bottles were kept at 25C and 60% relative humidity. Experiments were ini-237

tiated within two hours of incubator lights turning on. Males were single-housed, while females were238

group-housed prior to experiments. To prevent ceiling walking, the plastic dome of the behavioral239

chamber was coated with Sigmacote (SL2, Sigma-Aldrich) and allowed to dry under a fume hood240

for at least 30 minutes before use. Flies were gently introduced into the behavioral chamber using a241

custom-made aspirator. Recordings were terminated upon copulation or after 30 minutes, whichever242

occurred first. In total, we recorded 75 NM91 male–female pairs, yielding approximately 22 hours of243

courtship behavior.244

Fly pose estimation and tracking via SLEAP. Fly poses were automatically tracked and manually245

proofread in all videos using SLEAP. We used the pre-trained ‘flies13’ model published in Pereira et246

al., 2022 [9], which defines a 13-node skeleton capturing prominent anatomical landmarks: head,247

thorax, abdomen, left and right wings (wingL, wingR), forelegs (forelegL4, forelegR4), midlegs248

(midlegL4, midlegR4), hindlegs (hindlegL4, hindlegR4), and eyes (eyeL, eyeR). The skeleton includes249

12 edges connecting: thorax to head; thorax to abdomen; each wing to thorax; each leg to thorax; and250

head to each eye. Male and female identities were tracked using SLEAP’s flow-shift-based identity251

tracking, followed by manual proofreading and correction of identity switches using the SLEAP GUI.252

Final joint coordinates and associated confidence scores were exported to .h5 files via the SLEAP253

API and used for all subsequent analyses.254

Song segmentation. Audio was segmented into courtship song using previously described methods255

[10, 3], with an added pose-based filter to reduce false-positive sine detections. For each audio256

recording, the segmentation algorithm provided the onset and offset times of pulse bouts and sine257

trains, as well as the center of each detected pulse. Due to acoustic limitations in the behavioral setup258

used here, sine detection was prone to noise. Specifically, we retained only those sine bouts where at259

least one of the male’s wing angles exceeded a threshold of 3deg during the bout.260

B Designing sensory inputs261

To model female locomotion and wing flicking behavior, we transformed the tracked fly trajectories262

into a set of f behavioral feedback cues, which served as inputs to the GLM–HMM. For each cue, we263

extracted a 3 s window of history preceding the current time bin, sampled at 150 Hz, resulting in 450264

time points per cue. These temporal windows were projected onto a set of four raised cosine basis265

functions, yielding four filter coefficients per cue. This produced a 4×f -dimensional feature vector (f266
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cues × 4 basis functions). We appended a constant term to this vector to model an intercept, resulting267

in a final 4×f+1-D input vector per time bin.268

For each fly, we constructed a design matrix of size T×(4×f+1), where T is the number of time bins269

after discarding the first 3 s (used for constructing the temporal history). Design matrices from all270

flies were concatenated to form a population-level dataset, enabling us to fit a single GLM–HMM271

model across animals.272

We used a raised cosine basis set to capture temporal structure in the feedback cues. These basis273

functions are approximately orthonormal and spaced to provide smooth, overlapping temporal filters274

over the 3-second window, allowing the model to learn coarse-to-fine temporal dependencies while275

reducing dimensionality. We used the glm_utils [11] library to construct raised cosine basis functions276

and transform or inverse-transform the design matrices.277

Output-specific feedback cues. We fit a single GLM–HMM model with a shared set of latent states278

across all outputs. However, the set of input features used to predict each behavioral output—forward279

velocity (fFV), lateral velocity (fLV), angular velocity (fAV) and wing flicking—was distinct, re-280

flecting the sensory cues most relevant to that dimension of behavior. In particular, the input sets for281

fLV and fAV included interaction terms (e.g., cue × side) to capture directional effects that are not282

applicable to fFV or wing flicking behavior. This was implemented by applying an output-specific283

mask during the M-step in the EM algorithm, such that only the designated subset of input features284

contributed to the GLM weights for each output.285

Inputs used to predict the female’s forward velocity (fFV) included f =7 unsigned cues (Figure 1):286

male forward velocity (mFV), male–female distance (mfDist), male lateral speed (mLS), female287

heading to male thorax angle (fmAng), binary pulse and sine song, and male tapping. Each of these288

cues was temporally smoothed using four raised cosine basis functions, resulting in 4 coefficients per289

cue. This produced a feature vector of size 4×7+1=29, where the final element is a bias offset term.290

For lateral (fLV) and angular velocity (fAV), the same base cues were used, but with directional291

(signed) information introduced through cue × side interaction terms. These allowed the model to292

capture the effects of asymmetric stimuli—such as song played to the left or right of the female—on293

her turning and lateral movement. The full set of signed cues included: mFV × side, mLS × side,294

mfDist × side, wing alignment × side, pulse × side, sine × side, and tap × side. This resulted in a295

feature vector of size 4×7+1=29 each. The sine component, sin(fmAng), corresponds to the “side”296

variable here (and as shown in Figure 1), indicating whether the male is to the left or right of the297

female.298

For predicting wing flicking behavior, f =8 unsigned cues were used: mFV, mLS, mfDist, fmAng,299

wing alignment, male tapping, and binary pulse and sine song. This resulted in a feature vector of300

size 4×8+1=33.301

Encoding male position relative to female. To represent the relative angular position of the male302

with respect to the female, we used both the cosine and sine of the angle “fmAng” between their303

orientations (Figure 1). This circular encoding captures the full 360 directional relationship in a304

smooth and continuous way, avoiding discontinuities at the angle wraparound (e.g., near 0/180).305

Z-scoring sensory inputs. All input features were z-scored independently for each fly to ensure306

comparability across individuals and to standardize the scales of different cues. For binary features307

such as pulse and sine song, we applied “safe” z-scoring: if a feature had near-zero variance (std <308

1e-2, e.g., present in only a few frames), it was set to zero entirely to avoid instability during model309

fitting. Otherwise, the feature was z-scored normally.310

Z-scoring female behavioral outputs. All behavioral output variables—forward velocity (fFV),311

lateral velocity (fLV), and angular velocity (fAV)—were standardized independently for each fly by312

subtracting the mean and dividing by the standard deviation. Binary outputs, such as wing flicking,313

were left untransformed (0 or 1).314

Smoothing. All male sensory input variables were smoothed using a causal half-Gaussian kernel315

(σ = 3 frames (20 ms)), truncated at 4σ (12 frames, 80ms). Female behavioral outputs were also316

smoothed using the same kernel applied causally to avoid introducing future information. Female317
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outputs were then downsampled to 30 Hz by averaging within non-overlapping 33 ms windows (5318

frames at 150 Hz). This preprocessing reduced high-frequency noise while preserving fast behavioral319

dynamics relevant to model prediction.320

C Modeling321

Chance model322

We constructed the Chance baseline model using data from the entire courtship dataset, regardless323

of state or sensory input. This model estimates the emission distribution as a Gaussian with mean324

and covariance computed from all behavioral observations pooled together, for each continuous325

emission. For the discrete output (wing flicking), the Chance model uses a Bernoulli distribution326

with probability equal to the fraction of wing flicks observed in the dataset (i.e., n/N where n is327

the number of time points during the courtship with wing flicking and N is the total number of time328

points during the entire courtship).329

GLM-HMM330

The relationship between internal state, sensory input, and behavioral output is effectively modeled331

by a Generalized Linear Model–Hidden Markov Model (GLM-HMM) [10, 12, 13], which captures332

discrete latent states corresponding to distinct mappings from sensory cues to behavior (Figure 3). In333

this framework, each latent state zt defines a separate generalized linear model relating the male cue334

history st to the observed female behavior yt, including forward, lateral, and angular velocities, as335

well as wing flicking. The emission distribution at time t is:336

p(yt | zt, st) = N (yt | wztst + bzt , σ
2
zt) for continuous outputs (velocities) (1)

p(yt | zt, st) = σ(wztst + bzt) for binary outputs (wing flicking) (2)

Inference of GLM-HMM parameters. When fitting the GLM–HMM, the goal is to estimate the337

parameters that govern both the latent state dynamics and the emission model of female behavior.338

These parameters include the initial state distribution π ∈ RK , the state transition matrix A ∈ RK×K ,339

and the set of emission weights w(j)
k ∈ RM , biases b(j)k , and (for continuous emissions) covariances340

σ
(j)
k ∈ R for each latent state k. Here j indexes emission variables (e.g., forward, lateral, angular,341

wing flicking). We denote the full set of parameters as θ = {π,A,w
(j)
k , b

(j)
k , σ

2(j)
k }.342

These parameters were fit to the female behavioral data using maximum a posteriori (MAP) estimation,343

implemented via the Expectation-Maximization (EM) algorithm. The EM algorithm has previously344

been adapted to fit hidden Markov models with external inputs [12, 14, 10, 13, 15]. However,345

since several implementation details are application-specific, we include a full description of the346

procedure here for completeness. The EM algorithm seeks to maximize the log-posterior of the347

model parameters given the female behavior data Y and sensory input features S. The log-posterior348

is given by, up to an unknown constant:349

log p(θ | Y, S) = log p(Y | S, θ) + log p(θ)

= log
∑
Z

p(Y,Z | S, θ) + log p(θ) (marginalization)

= log
∑
z1:T

p(y1:T , z1:T | s1:T , θ) + log p(θ) (expanding) (3)

where the sum is taken over all KT possible latent state sequences z1:T . The first term represents the350

log-likelihood or the log-posterior of the observed data under the model, and the second term is a351

prior on the parameters.352

Priors. The prior distribution over the model parameters θ was assumed to factorize as follows:353

10



p(θ) = p({w(j)
k }) · p(A) · p(π)

=

 K∏
k=1

∏
j

N (w
(j)
k | 0, λ−1

j )

[ K∏
k=1

Dirichlet(Ak | αk)

]
Dirichlet(απ) (4)

We placed a zero-mean Gaussian prior on each GLM weight vector w(j)
k where λj is the inverse354

variance and controls the strength of regularization for emission variable j. Larger values of λj355

have a shrinking effect on the fitted weights, biasing them toward zero. For the continuous emission356

variables (forward, lateral, and angular velocity), we set the regularization parameter λj = 10−6. For357

the discrete wing flicking emission, which uses a Bernoulli emission model, we used a stronger prior358

with λj = 1.359

The transition matrix and initial state distribution were each given Dirichlet priors with symmetric360

concentration parameters. For the transition matrix A, we used a structured Dirichlet prior over361

each row Ak that encourages self-transitions (i.e., persistence within states) where the concentration362

parameters αk ∈ RK were set as αk = α · 1K + κ · ek. Here, α = 1.1 is a weakly informative363

base concentration applied to all transitions, κ = 100 is a stickiness parameter that adds mass to364

the diagonal (self-transition) entry, 1K is a vector of ones, and ek is a one-hot vector indicating the365

k-th state. This form biases the prior toward self-transitions while still allowing transitions to other366

states. For the initial state distribution απ = α · 1K , with α = 1.1. This weakly informative prior367

encourages a broadly uniform initial state distribution while still allowing the model to learn the368

estimate of π from the data.369

Fitting using Expectation-Maximization (EM) algorithm. We used the EM algorithm to maxi-370

mize the log-posterior given in Eq. 3 with respect to the GLM-HMM parameters. As the sum involves371

an exponential number of terms—O(KT ) to be specific—we do not maximize this expression directly.372

Instead, the EM algorithm provides an efficient way to compute this term using a single forward and373

backward pass over the data. During the E-step of the EM algorithm, we compute the ‘expected374

complete data log-likelihood’ (ECLL), which is a lower bound on the right-hand side of Eq. 3. Then,375

during the ‘maximization’ or M-step of the algorithm, we maximize the ECLL with respect to the376

model parameters θ. It can be shown that this procedure has the effect of always improving the377

log-posterior in each step of the algorithm and converges to a local optimum of the log-likelihood378

[12, 14].379

The ‘complete data log-likelihood’ (CLL) for a session is written as logP (Y,Z|S; θ):380

CLL(θ) = logP (Y,Z|S; θ)
= logP (y1:T , z1:T |s1:T ; θ)

= log

[
P (z1 | π)

T∏
t=2

P (zt|zt−1, A)

T∏
t=1

P (yt|zt, st, wk, bk,Σk)

]

= log πz1 +

T∑
t=2

logAzt−1,zt +

T∑
t=1

logBzt(yt, st)

where Bzt(yt, st) is the Gaussian and Bernouli distribution given by the emission model equation381

(Eq. 2).382

The Expected-CLL or the ECLL for a session, where the expectation is with respect to the distribution383

over the latents
∑

Z p(Z | Y, S; θold) computed during the E-step, can now be written as:384
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ECLL(θ) =
∑
Z

P (Z | Y, S; θold)CLL

=
∑
Z

P (Z | Y, S; θold) logP (Y,Z|S; θ)

=
∑
Z

log πz1P (Z | Y, S; θold) +
∑
Z

T∑
t=2

logAzt−1,ztP (Z | Y, S; θold) +
∑
Z

T∑
t=1

logBzt(yt, st)P (Z | Y, S; θold)

...

=

K∑
k=1

log πkγk(1) +

K∑
j=1

K∑
k=1

T∑
t=2

logAjkξj,k(t) +

K∑
k=1

T∑
t=1

logBk(yt, st)γk(t) (5)

Here, we denote γk(t) = P (zt = k|Y1:T , s1:T , θ
old) for the posterior state probability of being in385

state k at time point t, and ξj,k(t) = P (zt−1 = j, zt = k | Y, S; θold) is the joint posterior state386

distribution for two consecutive latents zt and zt−1. We compute these two posterior distributions γ387

and ξ in the E-step as below:388

E-step389

The E-step of the EM algorithm involves computing the posterior distribution P (Z|Y, θold) over the390

hidden variables given the data and the current setting of the GLM-HMM parameters θold using391

the forward–backward algorithm. The forward–backward algorithm makes use of recursion and392

memoization to allow these posterior probabilities to be calculated efficiently, with the forward and393

backward passes of the algorithm each requiring just a single pass through the whole session.394

The goal of the forward pass is to obtain, for each time point t within a session and each state k, the395

quantity ai(t) = P (Y1 = y1, Y2 = y2, . . . , Yt = yt, zt = i | s1:t) of observing Y = y1, y2, ..., yt396

which represents the posterior probability of the female behavior data up until time t and the latent397

state at time t being state k. Assuming there are K total states, it can be recursively computed as:398

aj(t+ 1) =

K∑
k=1

ak(t)Ajk Bj(yt, st)

where aj(1) = πj P (y1|zt = j, s1) and Bj(yt, st) = P (yt|zt = j, st) is the usual Gaussian or399

Bernoulli GLM distribution.400

During the backward pass, the goal is to calculate the posterior probability of the future behavior data401

given the latent state bj(t) = P (Yt+1 = yt+1, ..., YT = yT | zt = j, st+1:T ), as follows:402

bj(t) =

K∑
k=1

bk(t+ 1)Ajk Bk(yt+1, st+1)

where bj(T ) = 1.403

From the aj(t) and bj(t) quantities obtained from the forward-backward algorithm, we can compute404

the posterior state distribution γ over the latent state at every time step (this uses data from the whole405

session):406

γk(t) = P (zt = k | Y1:T , s1:T , θold)

=
P (zt = k, Y1:T | s1:T , θold)

P (Y1:T | s1:T , θold)

=
P (Y1:t, zt = k | s1:t, θold) · P (Yt+1:T | zt = k, st+1:T , θold)

P (Y1:T | s1:T , θold)

=
ak(t) · bk(t)∑K
i=1 ai(t) · bi(t)

(6)
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Similarly, we can obtain the joint posterior state distribution ξ for the consecutive latents:407

ξj,k(t) = P (zt−1 = j, zt = k | Y, S; θold)

=
aj(t)Ajk bj(t+ 1)Bk(yt+1, st+1)∑K

i=1 ai(t) · bi(t)
(7)

Haivng now computed γ and ξ, ECLL is now a simply a function of model parameters θ with every408

other term known (Eq. 5).409

M-step410

After running the forward–backward algorithm, we can compute the total ECLL by summing over411

the per-session ECLLs (Eq. 5) and adding the log-prior (Eq. 4). During the M-step, we maximize the412

ECLL with respect to the GLM-HMM parameters θ. This uses the smoothed state probabilities γt(k)413

and ξj,k(t) computed during the E-step (Eqs. 6 and 7). For the initial state distribution π, transition414

matrix A and GLM weights for continuous emissions, this results in closed-form updates. The initial415

state probability πk is updated as:416

πnew
k =

∑E
e=1 γ1(k)

E
,

The updated transition probabilities Aij are given by the mode of the posterior Dirichlet distribution:417

Anew
ij =

α− 1 +
∑E

e=1

∑T
t=2 ξi,j(t)∑K

j′=1(α− 1 +
∑E

e=1

∑T
t=2 ξi,j′(t))

,

Because these GLMs contribute independently to the terms A, π and emission terms B, we can418

optimize the filters for each output dimension separately.419

In case of continuous emissions (forward, lateral and angular velocity), each state-specific emission420

model assumes a Gaussian distribution over the output y(j)t ∈ R (j = 1 . . . 3) with mean linearly421

dependent on the input vector st ∈ RM :422

y
(j)
t | zt = k, st, θ ∼ N (w

(j)
k · st, σ

2(j)
k ) (for forward, lateral and angular velocity emissions)

To estimate the GLM weights {w(j)
k , b

(j)
k , σ

2(j)
k }, we solve the weighted multivariate linear regression423

problem for each state k. For notational simplicity, we assume w
(j)
k includes the bias term b

(j)
k ,424

with st augmented by a constant 1. To estimate the weights for each state k in the GLM-HMM, we425

pooled sufficient statistics across all sessions; thus, the variables γk(t), yt, and st below represent426

data concatenated across sessions.427

The state-specific linear weights w
(j)
k ∈ RM+1 and the emission covariances σ

2(j)
k ∈ R have428

closed-form solution for the updates given by:429

w
new(j)
k =

(
T∑

t=1

γt(k) yts
⊤
t

)(
T∑

t=1

γt(k) sts
⊤
t + λjI

)−1

σ
2new(j)
k =

1∑T
t=1 γt(k)

T∑
t=1

γt(k)
(
y
(j)
t − w

(j)
k · st

)(
y
(j)
t − w

(j)
k · st

)⊤
For numerical stability, we added a small constant to the estimated covariance σ2new(j)

k ← σ
2new(j)
k +430

10−8.431

For binary outputs such as wing flicking (y(j)t ∈ {0, 1}), Bernoulli GLM weights have no such432

closed-form update.433
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P (y
(j)
t | zt = k, st, θ) = σ(w

(j)
k · st) (for wing flicking)

We use the Dynamax Python package [16] to minimize the negative ECLL for all emission models.434

For continuous emissions, closed-form updates are implemented in the package. For Bernoulli435

emissions, Dynamax performs gradient-based optimization using the Adam optimizer, which is436

implemented via the Optax library.437

Initializing GLM-HMM weights. We first fit a single-state linear regression model (i.e., a GLM438

without latent states) to each behavioral output. The estimated weights were then used to initialize439

the emission parameters of the GLM-HMM, with small random noise added independently to each440

state’s parameters to break symmetry and encourage state specialization.441

D Assessing model performance442

Normalized Test LogLikelihood. We assessed model performance by calculating the log-likelihood443

of data held-out from training. We held-out out entire sessions of courtship data for assessing test set444

performance. That is, when fitting the model, the ECLL in Eq.5 are modified to include only 80%445

of sessions (because we use five-fold cross-validation throughout this work); and the log-likelihood446

of the held-out 20% of sessions E′ is calculated using the fit parameters θ and a single run of the447

forward pass on the held-out sessions. In particular, we assessed how well the model predicted the448

next output given knowledge of all the data up to the present moment. In practice, it can be computed449

as:450

LLforward(model) =
Test set∑

log

K∑
k=1

ak(T ) (8)

that is, the sum of the last column of the a matrix obtained after doing a single forward pass on a test451

session.452

To report the log-likelihood in more interpretable units, we normalized by subtracting the log-453

likelihood under the Chance model (described above; Figure 3), as follows:454

LLnorm(model) = LLforward(model)− LLforward(chance)

The chance model was drawn from the full distribution of behavior across all courtship recordings455

(Figure 3). To express this in interpretable units, we report LLnorm(model) as bits per second, by456

dividing it by the total duration of courtship in seconds. The normalized log-likelihood of the forward457

model thus reports the improvement in predicting female behavior over the Chance model, based on458

knowledge of her history to better estimate the current state.459

State Inference. Latent states were inferred using forward filtering in the GLM–HMM framework.460

For each time point t, we computed the predictive state distribution γ̂t over states using all observations461

up to the previous time point t− 1:462

γ̂k(t) = P (zt = k | s1:t, y1:t−1)

This procedure is applied after training the GLM–HMM, using the learned transition and emission463

parameters to decode state sequences on the training and held-out data. It can be computed and stored464

using intermediate values during the calculations of the matrix a and γ during a forward pass in the465

E-step. For visualization purposes (e.g., state sequences over time), we assigned each time point to466

the most probable state (argmaxk γ̂t(k)). However, for model predictions, we used the soft state467

probabilities to compute a weighted sum of outputs across all states.468

Behavior prediction. Rather than relying on hard state assignments, the model prediction at each469

time point was taken as a weighted sum over the predictions from all latent states, with weights given470

by the predictive state probabilities (from the forward filtering algorithm). Formally, for a behavioral471

output yt, our model prediction ŷt is given by:472
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ŷt =

K∑
k=1

p(zt = k | s1:t, y1:t−1) · ŷt,k where ŷt,k = wk · st + bk

=

K∑
k=1

γ̂k(t) · ŷt,k (9)

where ŷt,k is the GLM prediction from state k for one of the continuous velocity emission predictions.473

However, for wing flick predictions, we used hard state assignments (obtained from the forward474

filtering step and using the state with the maximum probability at each time step; importantly, we475

did not use the Viterbi algorithm for state inference) and included an additional sigmoid nonlinearity476

(assuming animal in state k at time t):477

P (ŷt) = σ(wk · st + bk)

Pearson correlation coefficient To evaluate model performance for the continuous velocity emis-478

sions, we computed the Pearson correlation score between the observed behavioral output y and the479

model’s soft predictions ŷ as defined above. We compute:480

r =

∑
t(yt − ȳ)(ŷt − ¯̂y)√∑

t(yt − ȳ)2
√∑

t(ŷt − ¯̂y)2
.

where ȳ and ¯̂y denote the mean of the observed yt and predicted ŷt outputs, respectively. This481

correlation captures the linear relationship between predicted and observed signals while incorporating482

uncertainty in latent state identity. The correlation score was computed separately for each fly and for483

each behavioral output variable (forward, lateral, and angular velocity). In Figure 3c, we report the484

mean Pearson correlation score averaged across these three output dimensions.485

Pearson correlation coefficient per state. To evaluate how well each latent state predicts continu-486

ous behavioral outputs, we computed a state-specific version of the Pearson correlation coefficient487

r̂(k) using soft assignments (Figure 3g). Specifically, we computed a soft-assignment weighted488

Pearson correlation coefficient between the true behavioral output yt and the state-specific prediction489

ŷt,k, for each state k. This method incorporates the posterior state probabilities γ̂t(k) (predictive state490

distribution using data up to time point t− 1) as weights. For each state k, the steps were as follows:491

• Compute the weighted means:492

µ(k)
y =

∑
t γ̂t(k)yt∑
t γ̂t(k)

, µ
(k)
ŷ =

∑
t γ̂t(k)ŷt,k∑

t γ̂t(k)

• Compute the weighted covariance:493

Cov(k) =

∑
t γ̂t(k)(yt − µ

(k)
y )(ŷ

(k)
t − µ

(k)
ŷ )∑

t γ̂t(k)

• Compute the weighted variances:494

Var(k)y =

∑
t γ̂t(k)(yt − µ

(k)
y )2∑

t γ̂t(k)
, Var

(k)
ŷ =

∑
t γ̂t(k)(ŷ

(k)
t − µ

(k)
ŷ )2∑

t γ̂t(k)

• Finally, compute the weighted Pearson correlation:495

r̂(k) =
Cov(k)√

Var(k)y ·Var(k)ŷ + ε

where ε is a small constant added for numerical stability.496
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F1 score To evaluate model performance on wing flicking (Figure 3d), we computed the F1 score497

between the observed binary behavioral output y and the model’s predicted output ŷ. The predicted498

output was thresholded at 0.5 to yield a binary classification, and F1 score was computed across all499

time points.500

F1 score per state. To evaluate model performance on wing flicking in each state (Figure 3h),501

we used hard state assignments obtained by taking the most probable state at each time point502

(argmaxk γ̂t(k)). For each state, we then computed the standard F1 score between the observed and503

predicted binary outputs, using only the time points assigned to that state.504

Cross-validation. To select the appropriate number of latent states, we performed cross-validation505

by splitting the dataset into training and test sets. For each candidate model (with a different number506

of states), we fit the model parameters on the training data and evaluated performance on held-out507

test data Figure 3b. We used multiple random train/test splits to ensure robustness of the model508

comparison Figure 6.509
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Figure 3: Model architecture and performance. (a) Schematic of the GLM-HMM framework. At
each time point t, the female is assumed to be in a latent internal state that determines how multimodal
male sensory cues are linearly weighted to predict her motor outputs: forward (fFV), lateral (fLV),
and angular velocity (fAV), along with wing flicks. (b) Normalized log-likelihood (LL) on test data
(in bits/s; see Appendix). Each circle represents one courtship pair. (c) Pearson correlation between
predicted and observed female behavioral outputs, for both training (60 fly pairs) and held-out test
data (15 fly pairs), using the five-state GLM-HMM. Each open or filled circle represents one courtship
pair. (d) Model performance (Pearson correlation) broken down by behavioral variable—forward
velocity (fFV), lateral velocity (fLV), and angular velocity (fAV)—for training (left) and held-out
(right) fly pairs. Each dot represents one courtship pair. A subset of fly pairs also exhibit near-zero
or negative performance, suggesting inter-fly variability. Within each panel, flies are color-coded
consistently: the same shade of orange denotes the same fly pair across behaviors. (f) Fractional
occupancy of each latent state across fly pairs in the 5-state GLM-HMM. Each dot denotes the
proportion of time a given fly pair spent in a particular state; black markers indicate the mean ±
sem. Together with the variability in predictive performance across states shown in g, differences in
fractional occupancy suggest that some states are more behaviorally informative or more frequently
drive motor output than others. (g) Female behavioral predictability by latent state, using soft state
assignments from the GLM-HMM, on training data (left) and held-out (right). Pearson correlation
between predicted and observed outputs is computed within each state by weighting time points
proportionally to their inferred state probabilities (See Appendix). States vary in how strongly female
behavior is predicted by male cues, suggesting that certain internal states reflect periods of stronger
sensory coupling. Black markers indicate the mean ± 1 s.d. (h) Wing flicking F1 scores by state.
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Figure 4: State-dependent sensory filters reveal modality-specific drive of female locomotion. (a)
Output filters that predict female velocities for some of the feedback cues. For each latent state (State
2-5) inferred by the five-state GLM-HMM, we plot the GLM filter that converts a 3-second history of
male cues into predicted female velocities. Columns are grouped by visual (left), auditory (center),
and tactile (right) cues; rows show the effect on female forward (top), lateral (middle), and angular
(bottom) velocity. Positive filter amplitude predicts faster forward motion, steps or turns toward the
male (↑); negative amplitude predicts slowing or motion away (↓). States 2 and 5 show strong filters,
whereas the states 3 and 4 filters are nearly flat, indicating minimal sensorimotor coupling. Cue
abbreviations are in Figure 1. Interaction terms ( × side ) in the lateral and angular filters capture cue
laterality: for mFV, mfDist, mLS and tap cues, side indicates which side of the female the male’s
thorax occupies, whereas for pulse and sine song, it specifies whether the singing wing is on her left
or right.

18



tap

2.97mm

1.19mm

a)

pulse song
sine song
tap

male velocity
female velocity

1s

b)

c)

wing �ick

wing R anglewing L angle

female
male

−100

−50

0

50

100

W
in

g 
an

gl
e 

(d
eg

)

wing L
wing R
wing flick

−100

−50

0

50

100
W

in
g 

an
gl

e 
(d

eg
)

wing L
wing R
wing flick

1sec

Figure 5: Sensory features. (a) Taps are identified using a heuristic based on proximity: a tap is
registered when the male foreleg tip enters the ellipsoidal region containing the female from head to
abdomen. Shown is an example frame where a male tap (cyan) is detected. (b) Left: Female wing
flicking is detected when the left and right wing angles deviate by more than 20° from each other.
Wing angles are measured relative to the body axis using tracked the wing tip positions. Right: Top
and bottom panels each show a 5-second segment of left wing (magenta) and right wing (green) angle
traces from two different flies. Gray shaded bars mark detected wing flick events. (c) A representative
bout showing male and female forward velocity over time, overlaid with male sensory events (pulse
and sine song, and taps). Female responses do not show consistent moment-to-moment coupling with
male cues, motivating the need for a latent state model to explain longer-timescale structure.
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Figure 6: GLM–HMM predictions of female velocity dynamics across multiple timescales.
(a) Top row: continuous latent-state assignments (five colors) over a full courtship session of 6-
minutes. Below, raw z-scored forward, lateral, and angular velocity traces (gray) are overlaid with
GLM–HMM predictions (orange). Two dashed-box insets show progressively shorter epochs: the left
inset (expanded below) spans 30-seconds, revealing rapid transitions and high-frequency fluctuations;
the right inset (expanded at bottom right) spans 1-second. For this analysis, we assigned each time
point to its most likely state during the filtering E-step, shown on top. The velocity predictions
however use "soft" state assignments combining probabilistic contributions from all states.
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Figure 7: Evaluating the states of the GLM-HMM. (a) CV for different train-test splits. (b)
Performance (Pearson’s correlation) of the model trained to predict forward velocity (fFV), lateral
speed (fLS), and angular speed (fAS), shown separately for training pairs (left) and held-out pairs
(right). Lateral and angular speeds—rather than signed velocities—are being predicted here that do
not have information about the direction of female turning. Prediction performance is substantially
higher for lateral and angular speeds than for signed velocities (see Figure 3), implying that directional
movements are more variable and harder to predict, whereas changes in movement magnitude are
more consistently driven by male cues and internal state. Each dot represents one courtship pair.
Within each panel, flies are color-coded consistently: the same shade of orange denotes the same
fly pair across behaviors. Black markers indicate the mean ± 1 s.d. (c) Left: The correspondence
between the 5-state GLM-HMM and the 6-state GLM-HMM. Shown is the conditional probability of
the 5-state model being in the one of its states given the state of the 6-state model. State 2 and State 3
in the 6-state model both correspond to State 2 of the 5-state model most of the time. Right: Same
analysis showing correspondences across multiple model comparisons: 3→4 and 4→5. (d) Same as
Figure 2 for 6-state model. State 2 (red) and State 3 (yellow) overlap with each other for most of the
session, indicating the two aren’t distinguishable and are identical to State 2 from the 5-state model.
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Figure 8: State-wise distributions of behavioral outputs and sensory inputs. (a) Inferred full
transition matrix of the 5-state GLM–HMM, showing the probability of transitioning from each state
(rows) to every other state (columns). Large entries along the diagonal indicate a high probability of
remaining in the same state ("sticky"). State 1, interpreted as a "noisy" or "chamber introduction"
state, is the least stable and primarily shows one-way transition into State 2 (also see Figure 2). (b)
Distributions of each female behavioral output variable within each latent state. (c) Distributions of
male sensory cues within each latent state, complementing Figure 2 where only the mean z-scored
value per cue was shown.
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