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ABSTRACT

We show that the Rademacher complexity-based approach can generate non-
vacuous generalisation bounds on Convolutional Neural Networks (CNNs) for
classifying a small number of classes of images. The development of new Tala-
grand’s contraction lemmas for high-dimensional mappings between vector spaces
and CNNs for general Lipschitz activation functions is a key technical contribution.
Our results show that the Rademacher complexity is independent of the network
depth, assuming a bounded product of the norms of the weight matrices, for CNNs
with common activations such as ReLU, Leaky ReLU, Parametric ReLU, Tanh, or
any other odd functions.

1 INTRODUCTION

Deep models are typically heavily over-parametrized, while they still achieve good generalization
performance. Despite the widespread use of neural networks in biotechnology, finance, health science,
and business, just to name a selected few, the problem of understanding deep learning theoretically
remains relatively under-explored. In 2002, Koltchinskii and Panchenko (Koltchinskii & Panchenko,
2002) proposed new probabilistic upper bounds on generalization error of the combination of many
complex classifiers such as deep neural networks. These bounds were developed based on the general
results of the theory of Gaussian, Rademacher, and empirical processes in terms of general functions
of the margins, satisfying a Lipschitz condition. However, bounding Rademacher complexity for
deep learning remains a challenging task. In this work, we provide some new upper bounds on
Rademacher complexity in deep learning which does not explicitly depend on the length of deep
neural networks. In addition, we show that Koltchinskii and Panchenko’s approach can be improved
to generate non-vacuous bounds for CNNs.

1.1 RELATED PAPERS

The complexity-based generalization bounds were established by traditional learning theory aiming
to provide general theoretical guarantees for deep learning. (Goldberg & Jerrum, 1993), (Bartlett &
Williamson, 1996), (Bartlett et al., 1998b) proposed upper bounds based on the VC dimension for
DNNs. (Neyshabur et al., 2015) used Rademacher complexity to prove the bound with exponential
dependence on the depth for ReLU networks. (Neyshabur et al., 2018) and (Bartlett et al., 2017) uses
the PAC-Bayesian analysis and the covering number to obtain bounds with polynomial dependence
on the depth, respectively. (Golowich et al., 2018) provided bounds with (sub-linear) square-root
dependence on the depth for DNNs with positive-homogeneous activations such as ReLU.

The standard approach to develop generalization bounds on deep learning (and machine learning) was
developed in seminar papers by (Vapnik, 1998), and it is based on bounding the difference between
the generalization error and the training error. These bounds are expressed in terms of the so called
VC-dimension of the class. However, these bounds are very loose when the VC-dimension of the
class can be very large, or even infinite. In 1998, several authors (Bartlett et al., 1998a; Bartlett
& Shawe-Taylor, 1999) suggested another class of upper bounds on generalization error that are
expressed in terms of the empirical distribution of the margin of the predictor (the classifier). Later,
Koltchinskii and Panchenko (Koltchinskii & Panchenko, 2002) proposed new probabilistic upper
bounds on the generalization error of the combination of many complex classifiers such as deep
neural networks. These bounds were developed based on the general results of the theory of Gaussian,
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Rademacher, and empirical processes in terms of general functions of the margins, satisfying a
Lipschitz condition. They improved previously known bounds on generalization error of convex
combination of classifiers. Generalization bounds for deep learning and kernel learning with Markov
dataset based on Rademacher and Gaussian complexity functions have recently analysed in (Truong,
2022a). Analysis of machine learning algorithms for Markov and Hidden Markov datasets already
appeared in research literature (Duchi et al., 2011; Wang et al., 2019; Truong, 2022c).

In the context of supervised classification, PAC-Bayesian bounds have been used to explain the
generalisation capability of learning algorithms (Langford & Shawe-Taylor, 2003; McAllester, 2004;
A. Ambroladze & ShaweTaylor, 2007). Several recent works have focused on gradient descent
based PAC-Bayesian algorithms, aiming to minimise a generalisation bound for stochastic classifiers
(Dziugaite & Roy., 2017; W. Zhou & Orbanz., 2019; Biggs & Guedj, 2021). Most of these studies
use a surrogate loss to avoid dealing with the zero-gradient of the misclassification loss. Several
authors used other methods to estimate of the misclassification error with a non-zero gradient by
proposing new training algorithms to evaluate the optimal output distribution in PAC-Bayesian bounds
analytically (McAllester, 1998; Clerico et al., 2021b;a). Recently, (Nagarajan & Kolter, 2019) showed
that uniform convergence might be unable to explain generalisation in deep learning by creating
some examples where the test error is bounded by δ but the (two-sided) uniform convergence on
this set of classifiers will yield only a vacuous generalisation guarantee larger than 1− δ for some
δ ∈ (0, 1). There have been some interesting works which use information-theoretic approach to find
PAC-bounds on generalization errors for machine learning (Xu & Raginsky, 2017; Esposito et al.,
2021) and deep learning (Jakubovitz et al., 2018).

In this work, we show that the Rademacher complexity does not explicitly depend on the length of
CNNs which uses some special classes of activation functions σ such that σ − σ(0) belongs to ReLU
family L = {ψα : ψα(x) = ReLU(x)− αReLU(−x), ∀x ∈ R, α ∈ [0, 1]}, or odd function ones
O = {ψ : ψ(−x) = −ψ(x), ∀x ∈ R}. Our result improves Golowich et al.’s bound (Golowich
et al., 2018) where the authors showed that the Rademacher complexity is square-root dependent on
the depth for DNNs with ReLU activation functions.

1.2 CONTRIBUTIONS

More specifically, our contributions are as follows:

• We develop new contraction lemmas for high-dimensional mappings between vector spaces
which extends the Talagrand contraction lemma.

• We apply our new contraction lemmas to each layer of a CNN.

• We validate our new theoretical results experimentally on CNNs for MNIST image classifi-
cations, and our bounds are non-vacuous when the number of classes is small.

As far as we know, this is the first result which shows that the Rademacher complexity-based approach
can lead to non-vacuous generalisation bounds on CNNs.

1.3 OTHER NOTATIONS

Vectors and matrices are in boldface. For any vector x = (x1, x2, · · · , xn) ∈ Rn where R is the field
of real numbers, its induced-Lp norm is defined as

∥x∥p =
( n∑
k=1

|xk|p
)1/p

. (1)

The j-th component of the vector x is denoted as [x]j for all j ∈ [n].

For A ∈ Rm×n where

A =


a11, a12, · · · , a1n
a21, a22, · · · , a2n

...
...

. . .
...

am1, am2, · · · , amn

 (2)
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we defined the induced-norm of matrix A as

∥A∥p,q = sup
x̸=0

¯

∥Ax∥q
∥x∥p

. (3)

For abbreviation, we also use the following notation

∥A∥p := ∥A∥p,p. (4)

It is known that

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |, (5)

∥A∥2 =
√
λmax

(
AAT

)
, (6)

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |, (7)

where λmax(AAT ) is defined as the maximum eigenvalue of the matrix AAT (or the square of the
maximum singular value of A).

2 CONTRACTION LEMMAS IN HIGH DIMENSIONAL VECTOR SPACES

First, we recall the Talagrand’s contraction lemma.

Lemma 1 (Ledoux & Talagrand, 1991, Theorem 4.12) Let H be a hypothesis set of functions
mapping from some set X to R and ψ be a µ-Lipschitz function from R → R for some µ > 0. Then,
for any sample S of n points x1,x2, · · · ,xn ∈ X , the following inequality holds:

Eε

[
sup
h∈H

∣∣∣∣ 1n
n∑
i=1

εi(ψ ◦ h)(xi)
∣∣∣∣] ≤ 2µEε

[
sup
h∈H

∣∣∣∣ 1n
n∑
i=1

εih(xi)

∣∣∣∣], (8)

where ε = (ε1, ε2, · · · , εn).
In this section, we introduce some new versions of Talagrand’s contraction lemma for the high-
dimensional mapping ψ between vector spaces. The proof of the following theorem can be found in
Supplementary Materials.

Theorem 2 Let H be a set of functions mapping from some set X to Rm for some m ∈ Z+ and

L =
{
ψα : ψα(x) = ReLU(x)− αReLU(−x) ∀x ∈ R, α ∈ [0, 1]

}
(9)

where ReLU(x) = max(x, 0).

For any µ > 0, let ψ : R → R be a µ-Lipschitz function. Define

H+ =

{
H ∪ {−h : h ∈ H}, if ψ − ψ(0) is odd
H ∪ {−h : h ∈ H} ∪ {|h| : h ∈ H}, if ψ − ψ(0) others

. (10)

Then, it holds that

Eε

[
sup
h∈H

∥∥∥∥ 1n
n∑
i=1

εiψ(h(xi))

∥∥∥∥
∞

]

≤ γ(µ)Eε

[
sup
h∈H+

∥∥∥∥ 1n
n∑
i=1

εih(xi)

∥∥∥∥
∞

]
+

1√
n

∣∣ψ(0)∣∣, (11)

where

γ(µ) =


µ, if ψ − ψ(0) is odd or belongs to L
2µ, if ψ − ψ(0) is even
3µ, if ψ − ψ(0) others

. (12)

Here, we define ψ(x) := (ψ(x1), ψ(x2), · · · , ψ(xm))T for any x = (x1, x2, · · · , xm)T ∈ Rm.
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Remark 3 Some remarks are in order.

• Identity, ReLU, Leaky ReLU, Parametric rectified linear unit (PReLU) belong to the class of
functions L.

• If ψ is odd or belongs to L, then ψ(0) = 0. Therefore, Theorem 2 improves Lemma 1 in
the special case where m = 1. This enhancement is achieved by leveraging the unique
properties of certain function classes.

• Our results are based on a novel approach, which shows that tighter contraction lemmas
can be obtained when both the class of functions H and the activation functions possess
certain special properties. More specifically, in this work, we extend the class of functions
H by adding more functions, resulting in a new class H+, which possesses certain special
properties. Additionally, we restrict the class of activation functions to L ∪ {ψ : R → R :
ψ(x)− ψ(0) = −(ψ(−x)− ψ(0)), ∀x ∈ R}.

3 RADEMACHER COMPLEXITY BOUNDS FOR CONVOLUTIONAL NEURAL
NETWORKS (CNNS)

3.1 CONVOLUTIONAL NEURAL NETWORK MODELS

Let d0, d1, · · · , dL, dL+1 be a sequence of positive integer numbers such that d0 = d for some fixed
d ∈ Z+. We define a class of function F as follows:

F :=
{
f = fL ◦ fL−1 ◦ · · · ◦ f1 ◦ f0 : fi ∈ Gi ⊂ {gi : Rdi → Rdi+1}, ∀i ∈ {1, 2, · · · , L}

}
,

(13)

where f0 : [0, 1]d → Rd1 is a fixed function and di+1 = M for some M ∈ Z+. A Convolutional
Neural Network (CNN) with network-depth L is defined as a composition map f ∈ F where

fi(x) = σi(Wix), ∀x ∈ Rdi . (14)

Here, Wi ∈ Wi where Wi is a set of matrices in Rdi+1×di .

Given a function f ∈ F , a function g ∈ RM × [M ] predicts a label y ∈ [M ] for an example x ∈ Rd
if and only if

g(f(x), y) > max
y′ ̸=y

g(f(x), y′) (15)

where g(f(x), y) = wT
y f(x) with wy = (0, 0, · · · , 0, 1, 0, · · · , 0)︸ ︷︷ ︸

wy(y)=1

.

For a training set {xi}ni=1, the ∞-norm Rademacher complexity for the class function F is defined as

Rn(F) := Eε

[
sup
f∈F

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
∀k ∈ [L], (16)

where {εi} is a sequence of i.i.d. Rademacher (taking values +1 and −1 with probability 1/2 each)
random variables, independent of {xi}.

3.2 SOME CONTRACTION LEMMAS FOR CNNS

Based on Theorem 2, the following versions of Talagrand’s contraction lemma for different layers of
CNN are derived.

Definition 4 (Convolutional Layer with Average Pooling) Let G be a class of µ-Lipschitz function
σ from R → R such that σ(0) is fixed. Let C,Q ∈ Z+, {rl, τl}l∈[Q] be two tuples of positive integer
numbers, and {Wl,c ∈ Rrl×rl , c ∈ [C], l ∈ [Q]} be a set of kernel matrices. A convolutional layer
with average pooling, C input channels, and Q output channels is defined as a set of Q×C mappings
Ψ = {ψl,c, l ∈ [Q], c ∈ [C]} from Rd×d to R⌈(d−rl+1)/τl⌉×⌈(d−rl+1)/τl⌉ such that

ψl,c(x) = σavg ◦ σl,c(x), (17)

4
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where

σavg(x) =
1

τ2l

( τ2
l∑

k=1

xk, · · · ,
jτ2

l∑
k=(j−1)τ2

l +1

xk, · · · ,
⌈(d−rl+1)2/τ2

l ⌉τ
2
l∑

k=⌈(d−rl+1)2/τ2
l ⌉−r

2
l +1

xk

)
,

∀x ∈ R⌈(d−rl+1)2/τ2
l ⌉τ

2
l , (18)

and for all x ∈ Rd×d×C ,

σl,c(x) = {x̂c(a, b)}d−rl+1
a,b=1 , (19)

x̂c(a, b) = σ

( rl−1∑
u=0

rl−1∑
v=0

x(a+ u, b+ v, c)Wl,c(u+ 1, v + 1)

)
. (20)

Lemma 5 (Convolutional Layer with Average Pooling) Let F be a set of functions mapping from
some set X to Rm for some m ∈ Z+. Consider a convolutional layer with average pooling defined
in Definition 4. Recall the definition of L in (9). Then, it hold that

Eε

[
sup
c∈[C]

sup
l∈[Q]

sup
ψl∈Ψ

sup
f∈F

∥∥∥∥ 1n
n∑
i=1

εiψl,c ◦ f(xi)
∥∥∥∥
∞

]

≤
[
γ(µ) sup

c∈[C]

sup
l∈[Q]

( rl−1∑
u=0

rl−1∑
v=0

∣∣Wl,c(u+ 1, v + 1)
∣∣)]E[ sup

f∈F+

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
+

|σ(0)|√
n
,

(21)
where

γ(µ) =


µ, if σ − σ(0) is odd or belongs to L
2µ, if σ − σ(0) is even
3µ, if σ − σ(0) others

. (22)

Here,

F+ =

{
F ∪ {−f : f ∈ F}, if σ − σ(0) is odd
F ∪ {−f : f ∈ F} ∪ {|f | : f ∈ F}, if σ − σ(0) others

. (23)

For Dropout layer, the following holds:

Lemma 6 Let ψ(x) is the output of the x via the Dropout layer. Then, it holds that

Eε

[
sup
f∈H

∥∥∥∥ 1n
n∑
i=1

εiψ ◦ f(xi)
∥∥∥∥
∞

]
≤ E

[
sup
f∈H

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
. (24)

The following Rademacher complexity bounds for Dense Layers.

Lemma 7 (Dense Layers) Recall the definition of L in (9). Let G be a class of µ-Lipschitz function,
i.e., ∣∣σ(x)− σ(y)

∣∣ ≤ µ|x− y|, ∀x, y ∈ R, (25)

such that σ(0) is fixed. Let V be a class of matrices W on Rd×d′ such that supW∈V ∥W∥∞ ≤ β.
For any vector x = (x1, x2, · · · , xd′), we denote by σ(x) := (σ(x1), σ(x2), · · · , σ(xd′))T . Then, it
holds that

Eε

[
sup
W∈V

sup
f∈G

∥∥∥∥ 1n
n∑
i=1

εiσ(Wf(xi))

∥∥∥∥
∞

]

≤ γ(µ)βEε

[
sup
f∈G

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
+

|σ(0)|√
n
, (26)

where

γ(µ) =


µ, if σ − σ(0) is odd or belongs to L
2µ, if σ − σ(0) is even
3µ, if σ − σ(0) others

. (27)
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3.3 RADEMACHER COMPLEXITY BOUNDS FOR CNNS

Theorem 8 Let

L =
{
ψα : ψα(x) = ReLU(x)− αReLU(−x) ∀x ∈ R, α ∈ [0, 1]

}
. (28)

Consider the CNN defined in Section 3.1 where

[fi(x)]j = σi
(
wT
j,ifi−1(x)

)
∀j ∈ [di+1]

and σi is µi-Lipschitz. In addition, f0(x) = [xT , 1]T , ∀x ∈ Rd and x is normalised such that
∥x∥∞ ≤ 1. Let

K = {i ∈ [L] : layer i is a convolutional layer with average pooling}, (29)
D = {i ∈ [L] : layer i is a dropout layer}. (30)

We assume that there are Qi kernel matrices W (l)
i ’s of size r(l)i × r

(l)
i for the i-th convolutional layer.

For all the (dense) layers that are not convolutional, we define Wi as their coefficient matrices. In
addition, define

γcvl,i = γ(µi) sup
l∈[Qi]

ri,l∑
u=1

ri,l∑
v=1

∣∣W (l)
i (u, v)

∣∣, (31)

γdl,i = γ(µi)
∥∥Wi

∥∥
∞ i /∈ K. (32)

where

γ(µi) =


µi, if σi − σi(0) is odd or belongs to L
2µ, if σi − σi(0) is even
3µ, if σi − σi(0) others

. (33)

Then, the Rademacher complexity, Rn(F), satisfies

Rn(F) := Eε

[
sup
f∈F+

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
≤ FL, (34)

where FL is estimated by the following recursive expression:

Fi =


Fi−1γcvl,i +

|σi(0)|√
n
, i ∈ K

Fi−1γdl,i +
|σi(0)|√

n
, i /∈ (K ∪D)

Fi−1, i ∈ D
(35)

and F0 =
√

d+1
n .

Remark 9 For some special CNNs where all the activation functions belong to ReLU family or
odd functions, Theorem 8 shows that the Rademacher complexity does not depend on the network
length under the assumption of a bounded product of norms of weight matrices. This result improves
Golowich et al.’s bound (Golowich et al., 2018) where the authors showed that the Rademacher
complexity is square-root dependent on the depth. It also improve Neyshabur et al.’s bound Neyshabur
et al. (2015) where the authors show that the Rademacher complexity depends exponentially on the
network-length.

Proof This is a direct application of Lemmas 5, 6, and 7. By the modelling of CNNs in Section 3.1,
it holds that

Fk :=
{
f = fk ◦ fk−1 ◦ · · · ◦ f1 ◦ f0 : fi ∈ Gi ⊂ {gi : Rdi → Rdi+1}, ∀i ∈ {1, 2, · · · , k}

}
(36)

and F := FL.

6
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For CNNs, fl(x) = σl(Wlx)) for all l ∈ [L] where Wl ∈ Wl (a set of matrices) and σl ∈ Ψl where
Ψl =

{
σl :

∣∣σl(x)− σl(y)
∣∣ ≤ µl|x− y|, ∀x, y ∈ R

}
. (37)

Then, since |σl|,−σl ∈ Ψl, it is easy to see that
Fl,+ ⊂ Ψl(WlFl−1,+), ∀l ∈ [L], (38)

where Fl,+ is a supplement of Fl defined in (23).

Therefore, by peeling layer by layer we finally have

Eε

[
sup
f∈F

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
≤ FL, (39)

where for each i ∈ [L]

Fi =


Fi−1γcvl,i +

|σi(0)|√
n
, i ∈ K

Fi−1γdl,i +
|σi(0)|√

n
, i /∈ (K ∪D)

Fi−1, i ∈ D
(40)

and

F0 = Eε

[
sup
f∈H+

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

]
. (41)

Here, H+ is the extended set of inputs to the CNN, i.e.,

H+ =

{
f0 ∪ {−f0}, if σ1 − σ1(0) is odd
f0 ∪ {−f0} ∪ {|f0|}, if σ1 − σ1(0) others

. (42)

Now, for the case σ1 − σ1(0) is odd, it is easy to see that

sup
f∈H+

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

=

∥∥∥∥ 1n
n∑
i=1

εif0(xi)

∥∥∥∥
∞

(43)

≤
∥∥∥∥ 1n

n∑
i=1

εif0(xi)

∥∥∥∥
2

. (44)

On the other hand, for the case σ1 − σ1(0) is general, we have

sup
f∈H+

∥∥∥∥ 1n
n∑
i=1

εif(xi)

∥∥∥∥
∞

≤ max

{∥∥∥∥ 1n
n∑
i=1

εif0(xi)

∥∥∥∥
∞
,

∥∥∥∥ 1n
n∑
i=1

εi
∣∣f0(xi)∣∣∥∥∥∥

∞

}
. (45)

On the other hand, we have

Eε

[∥∥∥∥ 1n
n∑
i=1

εif0(xi)

∥∥∥∥
2

]

≤ 1

n

√√√√Eε

[∥∥∥∥ 1n
n∑
i=1

εif0(xi)

∥∥∥∥2
2

]
(46)

≤ 1

n

√√√√d+1∑
j=1

n∑
i=1

[f0(xi)]2j (47)

≤ 1

n

√
(d+ 1)n (48)

=

√
d+ 1

n
, (49)

where (48) follows from |[f0(xi)]j | ≤ 1 for all i ∈ [n], j ∈ [d1] when the data is normalised by using
the standard method.

Similarly, we also have

Eε

[∥∥∥∥ 1n
n∑
i=1

εi
∣∣f0(xi)∣∣∥∥∥∥

2

]
≤

√
d+ 1

n
. (50)
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4 GENERALIZATION BOUNDS FOR CNNS

4.1 GENERALIZATION BOUNDS FOR DEEP LEARNING

Definition 10 Recall the CNN model in Section 3.1. The margin of a labelled example (x, y) is
defined as

mf (x, y) := g(f(x), y)−max
y′ ̸=y

g(f(x), y′), (51)

so f mis-classifies the labelled example (x, y) if and only if mf (x, y) ≤ 0. The generalisation
error is defined as P(mf (x, y) ≤ 0). It is easy to see that P(mf (x, y) ≤ 0) = P

(
wT
y f(x) ≤

maxy′∈Y wT
y′f(x)

)
.

Remark 11 Some remarks:

• Since g(f(x), y) > maxy′ ̸=y g(f(x), y
′), it holds that g̃(fk(x, y)) > maxy′ ̸=y g̃(fk(x, y

′))
for some k ∈ [L] where g̃ is an arbitrary function. Hence, P(mf (x, y) ≤ 0) ≤
P(g̃(fk(x, y)) > maxy′ ̸=y g̃(fk(x, y

′))), so we can bound the generalisation error by
using only a part of CNN networks (from layer 0 to layer k). However, we need to know g̃.
If the last layers of CNN are softmax, we can easily know this function.

• When testing on CNNs, it usually happens that the generalisation error bound becomes
smaller when we use almost all layers.

Now, we prove the following lemma.

Lemma 12 Let F be a class of function from X to Rm. For CNNs for classification, it holds that

Eε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εimf (xi, yi)

∣∣∣∣] ≤ β(M)Eε

[
sup
f∈F

∥∥∥∥ 1n
n∑
i=1

εimf (xi)

∥∥∥∥
∞

]
, (52)

where

β(M) =

{
M(2M − 1), M > 2

2M, M = 2
. (53)

For M > 2, (52) is a result of (Koltchinskii & Panchenko, 2002, Proof of Theorem 11). We improve
this constant for M = 2. Based on the above Rademacher complexity bounds and a justified
application of McDiarmid’s inequality, we obtains the following generalization for deep learning
with i.i.d. datasets.

Theorem 13 Let γ > 0 and define the following function (the γ-margin cost):

ζ(x) :=


0, γ ≤ x

1− x/γ, 0 ≤ x ≤ γ

1, x ≤ 0

. (54)

Recall the definition of the average Rademacher complexity Rn(F) in (34) and the definition of
β(M) in (53). Let {(xi, yi)}ni=1 ∼ Pxy for some joint distribution Pxy on X × Y . Then, for any
t > 0, the following holds:

P
{
∃f ∈ F : P

(
mf (x, y) ≤ 0

)
> inf
γ∈(0,1]

[
1

n

n∑
i=1

ζ(mf (xi, yi))

+
2β(M)

γ
Rn(F) +

2t+
√
log log2(2γ

−1)√
n

]}
≤ 2 exp(−2t2). (55)

Corollary 14 (PAC-bound) Recall the definition of the average Rademacher complexity Rn(F) in
(34) and the definition of β(M) in (53). Let {(xi, yi)}ni=1 ∼ Pxy for some joint distribution Pxy on

8
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X × Y . Then, for any δ ∈ (0, 1], with probability at least 1− δ, it holds that

P
(
mf (x, y) ≤ 0

)
≤ inf
γ∈(0,1]

[
1

n

n∑
i=1

1
{
mf (xi, yi) ≤ γ

}
+

2β(M)

γ
Rn(F) +

√
log log2(2γ

−1)

n
+

√
2

n
log

3

δ

]
, ∀f ∈ F . (56)

Proof This result is obtain from Theorem 13 by choosing t > 0 such that 3 exp(−2t2) = δ.

5 NUMERICAL RESULTS

In this experiment, we use a CNN (cf. Fig. 1) for classifying MNIST images (class 0 and class 1),
i.e., M = 2, which consists of n = 12665 training examples.

For this model, the sigmoid activation σ satisfies σ(x)− σ(0) = 1
2 tanh

(
x
2

)
which is odd and has

the Lipschitz constant 1/4. In addition, for the dense layer, the sigmoid activation satisfies

∣∣σ(x)− σ(y)
∣∣ ≤ 1

4

∣∣x− y|, ∀x, y ∈ R. (57)

Hence, by Theorem 8 it holds that Rn(F) ≤ F3, where

F3 ≤ 1

4
∥W∥∞F2 +

1

2
√
n︸ ︷︷ ︸

Dense layer

, (58)

F2 ≤
(
1

4
sup
l∈[64]

3∑
u=1

3∑
v=1

∣∣W (l)
2 (u, v)

∣∣)F1 +
1

2
√
n︸ ︷︷ ︸

The second convolutional layer

, (59)

F1 ≤
(
1

4
sup
l∈[32]

3∑
u=1

3∑
v=1

∣∣W (l)
1 (u, v)

∣∣)F0 +
1

2
√
n︸ ︷︷ ︸

The first convolutional layer

, (60)

F0 =

√
d+ 1

n
. (61)

Numerical estimation of F3 gives Rn(F) ≤ 0.00859.

By Corollary 14 with probability at least 1− δ, it holds that

P
(
mf (x, y) ≤ 0

)
≤ inf
γ∈(0,1]

[
1

n

n∑
i=1

ζ
(
mf (xi, yi)

)
+

4M

γ
Rn(F) +

√
log log2(2γ

−1)

n
+

√
2

n
log

3

δ

]
(62)

By setting δ = 5%, γ = 0.5, the generalisation error can be upper bounded by

P
(
mf (x, y) ≤ 0

)
≤ 0.189492. (63)

For this model, the reported test error is 0.0028368.

Two extra experiments are given in Supplementary Materials.
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Figure 1: CNN model with sigmoid activations

6 COMPARISION WITH GOLOWICH ET AL.’S BOUND (GOLOWICH ET AL.,
2018)

In (Golowich et al., 2018, Section 4), the authors present an upper bound on Rademacher complexity
for DNNs with ReLU activation functions as follows:

Rn(F) = O

( L∏
j=1

∥Wj∥F max

{
1, log

( L∏
j=1

∥Wj∥F
∥Wj∥2

)}
min

{
max{1, log n}3/4

n1/4
,

√
L

n

})
(64)

where W1,W2, · · · ,WL are the parameter matrices of the L layers.
Now, let Γ be the term inside the bracket in (64), and define

β = min
j

∥Wj∥F
∥Wj∥2

≥ 1. (65)

Then, from (64) we have

Γ ≥
L∏
j=1

∥Wj∥F min

{
max{1, log n}3/4

√
max{1, L log β}

n1/4
,

√
L

n

}
. (66)

For the general case, it holds that β > 1. Hence, from (66) we have

Rn(F) = O

(√
L

n

L∏
j=1

∥Wj∥F
)

(67)

which depends on the square-root of the network-length under the assumption of a bounded product
of weight matrices

∏L
j=1 ∥Wj∥F . As shown in (Golowich et al., 2018), this bound improves many

previous bounds, including Neyshabur et al.’s bound Neyshabur et al. (2015), Bartlett et al. (2017),
Neyshabur et al. (2018).
By using Theorem 8 and Lemma 7, we can show that

Rn(F) = O

(√
1

n

L∏
j=1

µj∥Wj∥∞
)

(68)

for DNNs with some special classes of activation functions, including ReLU family and classes of
old activation functions, where µj is the Lipschitz constant of the j-layer activation function. Hence,
under the assumption of a bounded product of norms of weight matrices

∏L
j=1 ∥Wj∥∞, our derived

bound is independent of the network depth. This represents a significant improvement over the bound
established by Golowich et al., particularly for DNNs with a large network depth L.
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