
Under review as a conference paper at ICLR 2023

LOOP UNROLLED SHALLOW EQUILIBRIUM REGULAR-
IZER (LUSER) - A MEMORY-EFFICIENT INVERSE
PROBLEM SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

In inverse problems we aim to reconstruct some underlying signal of interest from
potentially corrupted and often ill-posed measurements. Classical optimization-
based techniques proceed by optimizing a data consistency metric together with
a regularizer. Current state-of-the-art machine learning approaches draw inspira-
tion from such techniques by unrolling the iterative updates for an optimization-
based solver and then learning a regularizer from data. This loop unrolling (LU)
method has shown tremendous success, but often requires a deep model for the
best performance leading to high memory costs during training. Thus, to address
the balance between computation cost and network expressiveness, we propose
an LU algorithm with shallow equilibrium regularizers (LUSER). These implicit
models are as expressive as deeper convolutional networks, but far more memory
efficient during training. The proposed method is evaluated on image deblurring,
computed tomography (CT), as well as single-coil Magnetic Resonance Imaging
(MRI) tasks and shows similar, or even better, performance while requiring up to
8× less computational resources during training when compared against a more
typical LU architecture with feedforward convolutional regularizers.

1 INTRODUCTION

In an inverse problems we face the task of reconstructing some data or parameters of an unknown
signal from indirect observations. The forward process, or the mapping from the data to observa-
tions, is typically well known, but ill-posed or non-invertible. More formally, we consider the task
of recovering some underlying signal x from measurements y taken via some forward operator A
according to

y = Ax+ η, (1)
where η represents noise. The forward operator can be nonlinear, but to simplify the notation, we
illustrate the idea in linear form throughout this paper. A common approach to recover the signal is
via an iterative method based on the least squares loss:

x̂ = argmin
x

∥y −Ax∥2. (2)

For many problems of interest, A is ill-posed and does not have full column rank. Thus, attempting
to solve (2) does not yield a unique solution. To address this, we can extend (2) by including
a regularizing term to bias the inversion towards solutions with favorable properties. Common
examples of regularization include ℓ2, ℓ1, and Total Variation (TV). Each regularizer encourages
certain properties on the estimated signal x̂ (e.g., smoothness, sparsity, piece-wise constant, etc.)
and is often chosen based on task-specific prior knowledge.

Recent works (Ongie et al., 2020) attempt to tackle inverse problems using more data-driven meth-
ods. Unlike typical supervised learning tasks that attempt to learn a mapping purely from examples,
deep learning for inverse problems have access to the forward operator and thus should be able to
guide the learning process for more accurate reconstructions. One popular approach to incorporat-
ing knowledge of the forward operator is termed loop unrolling (LU). These methods are heavily
inspired by standard iterative inverse problem solvers, but rather than use a hand tuned regularizer,
they instead learn the update with some parameterized model. They tend to have a fixed number

1

Under review as a conference paper at ICLR 2023

of iterations (typically around 5-10) due to computational constraints. Gilton et al. (2021) proposes
an interesting alternative that takes advantage of deep equilibrium (DEQ) models (Bai et al., 2019;
2020; Fung et al., 2021; El Ghaoui et al., 2021) that we refer to as DEQ4IP. Equilibrium models are
designed to recursively iterate on their input until a “fixed point” is found (i.e., the input no longer
changes after passing through the model). They extend this principle to the LU method, choosing to
iterate until convergence rather than for a “fixed budget”.

Our Contributions. We propose an alternative novel architecture for solving inverse problems
called Loop Unrolled Shallow Equilibrium Regularizer (LUSER). It incorporates knowledge of the
forward model by adopting the principles of LU architectures while reducing its memory consump-
tion by using a shallow (relative to existing feed-forward models) DEQ as the learned regularizer
update. Unlike DEQ4IP that converts the entire LU architecture into a DEQ model, we only convert
the learned regularizer at each stage. This has the advantage of simplifying the learning task for DEQ
models, which can be unstable to train in practice. To our knowledge, this is the first use of multiple
sequential DEQ models within a single architecture for solving inverse problems. Our proposed
architecture (i) reduces the number of forward/adjoint operations compared to the work proposed
by Gilton et al. (2021), and (ii) reduces the memory footprint during training without loss of ex-
pressiveness as demonstrated by our experiments.We empirically demonstrate better reconstruction
across multiple tasks than LU alternatives with comparable number of parameters, with the ability
to reduce computational memory costs during training by a factor of up to 8×.

The remainder of the paper is organized as follows. Section 2 reviews related works in solving
inverse problems. Section 3 introduces the proposed LUSER, which we compare with other baseline
methods in image deblurring, CT, and MRI tasks in Section 4. We conclude in Section 5 with a brief
discussion.

2 RELATED WORK

2.1 LOOP UNROLLING

As noted above, a common approach to tackling an inverse problem is to cast it as an optimization
problem consisting of the sum of a data consistency term and a regularization term

min
x

∥y −Ax∥22 + γ r(x), (3)

where r is a regularization function mapping from the domain of the parameters of interest to a real
number and γ ≥ 0 is a well-tuned coefficient. The regularization function is chosen for specific
classes of signals to exploit any potential structure, e.g., ∥x∥2 for smooth signals and ∥x∥0 or ∥x∥1
for sparse signals.

When r is differentiable, the solution of (3) can be obtained in an iterative fashion via gradient
descent. For some step size λ at iteration k = 1, 2, . . . ,K, we apply the update:

xk+1 = xk + λA⊤(y −Axk)− λγ∇r(xk). (4)

For non-differentiable r, the more generalized proximal gradient algorithm can be applied with the
following update, where τ is a well-tuned hyperparameter related to the proximal operator:

xk+1 = proxτ,r(xk + λA⊤(y −Axk)). (5)

The loop unrolling (LU) method performs the update in (4) or (5), but replaces λγ∇r or the proximal
operator with a learned neural network instead. The overall architecture repeats the neural network
based update for a pre-determined number of iterations, fixing the overall computational budget.
Note that the network is only implicitly learning the regularizer. In practice, it is actually learning an
update step, which can be thought of as de-noising or a projection onto the manifold of the data. LU
is typically trained end-to-end.While end-to-end training is easier to perform and encourages faster
convergence, it requires all intermediate activations to be stored in memory. Thus, the maximum
number of iterations is always kept small compared to classical iterative inverse problem solvers.

Due to the limitation in memory, there is a trade-off between the depth of a LU and the richness
of each regularization network. Intuitively, one can raise the network performance by increasing
the number of loop unrolled iterations. For example, Gilton et al. (2021) extends the LU model to

2

Under review as a conference paper at ICLR 2023

potentially infinite number of iterations using an implicit network, and (Putzky & Welling, 2019)
allows deeper unrolling iterations using invertible networks, while requiring recalculation of the in-
termediate results from the output in training phase. This approach can be computationally intensive
for large-scale inverse problems or when the forward operator is nonlinear and computationally ex-
pensive to apply. For example, the forward operator may involve solving differential equations such
as the wave equation for seismic wave propagation (Chapman, 2004) and the Lorenz equations for
atmospheric modeling(Oestreicher, 2022).

Alternatively, one can design a richer regularization network. For example Fabian & Soltanolkotabi
(2022) uses a transformer as the regularization network and achieves extremely competitive results in
the fastMRI challenge (Zbontar et al., 2018), but requires multiple 24GB GPU for training, which is
often impractical, especially for large systems. Our design strikes a balance in the expressiveness in
regularization networks and memory efficiency during training. Our proposed work is an alternative
method to achieve a rich regularization network without the additional computational memory costs
during training.

2.2 DEEP EQUILIBRIUM MODELS FOR INVERSE PROBLEMS (DEQ4IP)

Deep equilibrium (DEQ) models introduce an alternative to traditional feed-forward networks (Bai
et al., 2019; 2020; Fung et al., 2021; El Ghaoui et al., 2021). Rather than feed an input through a
fixed (relatively small) number of layers, DEQ models solve for the “fixed-point” given some input.
More formally, given a network fθ and some input x(0) and y, we recursively apply the network via

x(k+1) = fθ(x
(k),y), (6)

until convergence.1 In this instance, y acts as an input injection that determines the final output. This
is termed the forward process. The weights θ of the model can be trained via implicit differentiation,
removing the need to store all intermediate activations from recursively applying the network (Bai
et al., 2019; Fung et al., 2021). In particular, we adopt the “Jacobian-free” backpropagation strategy
outlined in Fung et al. (2021). This allows for deeper, more expressive models without the associated
memory footprint to train such models.

Gilton et al. (2021) demonstrates an application of one such model, applying similar principles to a
single iteration of an LU architecture. Such an idea is a natural extension as it allows the model to
“iterate until convergence” rather than rely on a “fixed budget”. More specifically, the model repeats
(4) and (5) many times (in practice, usually around 50 iterations) until xk converges. However, such
a model can be unstable to train and often performs best with pre-training of the learned portion of
the model (typically acting as a learned regularizer/de-noiser). It is also important to note is that
such a model would have to apply the forward operator (and its adjoint) many times during the
forward process. Although this can be accelerated to reduce the number of applications, it is still
often signficiantly more than the number of applications for an LU equivalent which can be an issue
if the forward operator is computationally expensive to apply.

2.3 ALTERNATIVE APPROACHES TO TACKLE MEMORY ISSUES

I-RIM (Putzky & Welling, 2019) is a deep invertible network that address the memory issue by re-
calculating the intermediate results from the output. However it is not ideal when forward model is
computationally expensive. Gradient checkpointing (Sohoni et al., 2019) is another practical tech-
nique to reduce memory costs for deep neural networks. It saves intermediate activations of some
checkpoint nodes, and recomputes the forward pass between two checkpoints for backpropagation.
However, it is not an easy and efficient technique to implement for a weight-tied neural network.

3 METHODOLOGY

LU methods currently dominate the state-of-the-art approaches for solving inverse problems due to
their stability when training, inclusion of the forward model, and their near instantaneous inference

1Note that, since our approach will ultimately use both methods, to aid in a clearer presentation we use
subscript, i.e., xk, to denote the LU iterations, and superscript with parenthesis, i.e., r(i), to denote the iterations
in the deep equilibrium model.

3

Under review as a conference paper at ICLR 2023

times. However, there is a noticeable trade-off in terms of the memory requirements vs accuracy
when training these models. Even for medium scale problems, some of the proposed architectures
require multiple GPUs just to train, making this approach infeasible to use for much larger scale in-
verse problems. DEQ4IP offers an interesting alternative, drastically reducing the memory required
during training and allowing the flexibility to adjust accuracy during reconstruction when perform-
ing inference. However, these models can potentially suffer when the forward/adjoint operators are
computationally expensive, particularly since it takes more iterations to converge than a standard
fixed LU method.

To address these concerns, we propose a novel architecture for solving inverse problems called Loop
Unrolled Shallow Equilibrium Regularizer (LUSER). We adopt a LU approach to limit the number
of forward/adjoint calls for particularly complex inverse problems while also drastically reducing
the memory requirements for training, allowing us to scale up to much larger inverse problems (or
require less GPU memory for existing problems). LUSER achieves this by adopting DEQ models
as the trainable regularizer update in a standard LU architecture. The implicit DEQ models are
smaller in size but just as expressive (Bai et al., 2019) as typical convolutional models used as the
learned regularizer update allowing for an accurate reconstruction with less computational memory
costs. Furthermore, learning a proximal update is a far simpler task compared to solving the inverse
problem as a whole.

We adopt a “proximal gradient descent” styled LU architecture. The network takes in measurements
y and some initial estimate x0. The architecture consists of K stages, alternating between a gradient
descent step dk = xk + λA⊤(y −Axk) for k = 1, 2, . . . ,K, followed by a feed-forward pass of
the shallow equilibrium model acting as a proximal update block.

Injection Layer

Data Layer Mix Layerconcatenate Is converged?Initialize
with zeros

No

Yes

Figure 1: A proximal block in LUSER

Figure 1 illustrates a single block in LUSER as a learned proximal operator. The input dk from
the previous stage is processed only once by a set of input injection layers to avoid redundant com-
putation. The input injection will determine the final fixed point output. The recursive portion of
the proximal block consists of two sets of layers: the data layer and the mixing layer. The current
estimate of the fixed point is first passed through the data layer before being concatenated with the
input injection and processed by the mixing layer. This process repeats until a fixed point is found.
In practice, convergence to a fixed point is achieved when the difference between two time steps
|r(k+1) − r(k)| is within a small ϵ or when the maximum number of iterations is reached. A more
thorough summary can be found in Fung et al. (2021).

At each stage, the shallow equilibrium regularizer attempts to output its best estimate of the ground
truth x∗. We introduce a skip connection between the input dk and the final output so that the
regularizer is learning the residual r between the input dk and the ground truth x∗ instead, similar
to the approach adopted by DnCNNs Ryu et al. (2019). When xk converges to x∗, dk will also
converge to x∗ and we expect the residual to be closer and closer to the zero vector. Therefore,
we initialize the input of data layer with a zero vector with the same dimensions as the input dk in
the hopes that fewer iterations will be needed at later stages as the current estimate xk converges
towards the ground truth. Let r(i) denote the ith update of the residual, where r(0) = 0 and r(∞)

be the fixed point solution of the residual. Let ⊕ denote the concatenation operator. The process in
one loop unrolled block can be formulated as the following:

xk+1 = dk + MixLayer
(

DataLayer(r(∞))⊕ InjectLayer(dk)
)
. (7)

Although Figure 1 shows the simplest way of finding the fixed point, in practice acceleration or
other fixed point solvers are applied to solve for the fixed point. Similar to Gilton et al. (2021), we

4

Under review as a conference paper at ICLR 2023

also apply Anderson acceleration (Walker & Ni, 2011) for all of our models when searching for the
fixed point.

Using a fixed point solver based architecture for the regularization block allows LUSER to achieve
a similar level of performance with a much shallower number of layers than traditional feedforward
models. For the scope of this article, we restrict ourselves to a total of 5 layers to demonstrate
memory savings, but initial experiments have shown that increasing the number of layers can yield
higher performance.

We also explore two variants of LUSER, dubbed LUSER-SW and LUSER-DW. LUSER-SW refers
to a shared-weight version of the proposed algorithm, where the proximal operator in all loop un-
rolled iterations are weight-tied and thus identical. Theoretically, the regularizer should be able to
handle any input regardless of the iteration step. However, in practice, the distribution of inter-
mediate reconstructions can be vastly different. Thus, training a single model to handle all these
instances can be a daunting task, leading to poor generalization across the different stages. Since
the total computational budget is fixed, one approach can be to use different weights (DW) for the
learned proximal operator at each stage to handle the potentially different distributions. This will
increase the number of parameters that need to be trained and stored, but since LUSER already has
so few parameters to begin with, expanding to the different weight variant is still feasible. This paper
will compare two variants of LUSER with other architectures in different tasks.

DEQ4IP relies on the learned proximal operator to have the same weights, thus we cannot include a
different weight variant for comparison. On the other hand, the same principles can be applied to the
LU variant of DEQ4IP. However, we aim to only compare models of similar number of parameters
(or less in the case of LUSER-SW), and thus restrict our attentions to the shared weight variant of
LU only.

4 EXPERIMENTS AND RESULTS

In this section, we compare our proposed networks to LU with DnCNN as proximal operator (LU-
DnCNN) and DEQ4IP on three different tasks: image deblurring, computed tomography (CT), and
single-coil accelerated Magnetic Resonance Imaging (MRI). The datasets we use are RGB CelebA
(Liu et al., 2015), LoDoPaB-CT (Leuschner et al., 2021), and single-coil knee data from fastMRI
(Zbontar et al., 2018) respectively. We also experiment with incorporating an auxiliary loss of
including an MSE loss on intermediate reconstructions with the ground-truth instead of just the final
output. This is done for the LU models (LU-DnCNN, LUSER).

4.1 EXPERIMENTAL SETUP

In the image deblurring task, the blurry image is obtained by applying a (9 × 9) Gaussian kernel
with variance of 5 to an image with additive white Gaussian noise with a standard deviation of 0.01.
If the image is RGB, the same kernel is applied to all channels. For accelerated MRI tasks, mea-
surements in k-space (or frequency domain) are often subsampled due to the cost in measurement.
The goal of MRI reconstruction is to recover the underlying physical structure from subsampled
noisy measurements. We simulate the forward operator A with a 2-dimensional Fourier transform
with randomly selected rows. We consider two common subsampling scenarios: 4× and 8× accel-
eration, or subsampling the columns in full measurement by a factor of 4 and 8 respectively. For
the CT task, the forward operator is a Radon transform, and we uniformly select 200 out of 1000
angles in measurements. The adjoint of measurement A⊤y is used as initialization for MRI and CT
tasks, which brings the measurement back to the signal domain. However, in the deblurring task,
since the measurement lies in a same domain as the underlying clean image, y is used as the initial
guess. Notice that some works use the filtered backprojection as the initialization for CT, such as
(Khorashadizadeh et al., 2022), but we use the adjoint for the purpose of consistency.

We fix the budget of LU-DnCNN and LUSER to be a total of 8 iterations, while as we allow DEQ4IP
to iterate until it reaches a fixed point. We use a DnCNN adopted from Ryu et al. (2019) with
17 convolutional layers with 64 channels, followed by BatchNorm and ReLU activations for the
regularizer for LU-DnCNN and DEQ4IP. For the learned regularizer update in LUSER, we use 2
convolutional layers each for the input injection layer and data layer. The mixing layer contains 3
convolutional layers.

5

Under review as a conference paper at ICLR 2023

Table 1: Architecture of Proximal Network in LUSER

Layer Details

Injection Layer SN(conv(Cin:1, Cout:32, ks:3, pad:1)) + LeakyReLU
SN(conv(Cin:32, Cout:32, ks:3, pad:1)) + LeakyReLU

Data Layer SN(conv(Cin:1, Cout:32, ks:3, pad:1)) GN + LeakyReLU
SN(conv(Cin:1, Cout:32, ks:3, pad:1)) GN + LeakyReLU

Mix Layer
SN(conv(Cin:64, Cout:64, ks:3, pad:1)) GN + LeakyReLU
SN(conv(Cin:64, Cout:64, ks:3, pad:1)) GN + LeakyReLU

SN(conv(Cin:64, Cout:1, ks:3, pad:1))

In order to stablize training for DEQ inspired models, we wrap all convolutional layers in DEQ4IP
and LUSER with Spectral Norm (SN) (Miyato et al., 2018). We list more details for the learned
proximal network for LUSER in Table 1 for the case when the input has a single channel. Cin and
Cout denote the input and output channels, ks refers to the kernel size of a convolutional layer, pad
denotes the padding in 2-dimension, and GN stands for GroupNorm.

We use two metrics to evaluate the quality of reconstruction: Peak Signal-to-Noise Ratio (PSNR) in
dB and the Structural Similarity Index (SSIM). Note that although we use the same models as Gilton
et al. (2021), we train our models from scratch and report lower values on the MRI task. We suspect
that this is due to evaluating with a single channel only. When we include the imaginary channel
(for a total of 2 channels), the metrics we recorded are more aligned with those reported in Gilton
et al. (2021). All models are trained with a single RTX6000 24GB GPU.

4.2 RECONSTRUCTION QUALITY

Table 2 compares the average testing PSNR and SSIM. The different weight version of LUSER out-
performs LU-DnCNN with a similar number of network parameters as specified in Table 3. LUSER-
SW achieves similar level of performance in most tasks with only 5 layers, versus 17 layers in LU-
DnCNN. DEQ4IP attains the best performance in image delurring task and CT, but LUSER achieves
comparable quality. Training shared-weight architectures with auxiliary losses improves the recon-
struction quality in most tasks. Note that we restricted ourselves to only 5 layers for LUSER-SW
and LUSER-DW for all reported experiments to highlight the memory savings without degradation
in performance. In an initial exploration, we noticed that increasing the number of layers can lead to
boosts in performance. For example, in the CT task, LUSER-SW with 6 layers increases the PSNR
and SSIM by 1.04 dB and 0.022 respectively.

Figure 2 shows representative reconstruction results. LUSER-DW achieves higher PSNR and SSIM
in some cases, and attains better qualities in detailed structures, especially compared to LU-DnCNN.
The areas with improvements are emphasized with red boxes in the ground truth images.

Table 2: Average PSNR and SSIM for test set, the best two performances are in bold.

PSNR LU-DnCNN DEQ4IP LUSER-SW LUSER-DW
SSIM Final loss Aux loss Final loss Final loss Aux loss Final loss Aux loss

Deblurring
(3, 218, 178)

29.93 30.39 31.57 30.30 30.65 31.40 31.15
0.862 0.871 0.895 0.869 0.878 0.891 0.888

CT
(1, 300, 300)

30.59 31.59 32.19 28.82 28.04 31.83 31.66
0.844 0.859 0.871 0.801 0.797 0.860 0.859

4× MRI
(2, 320, 320)

29.01 29.02 29.01 28.82 29.18 29.86 29.37
0.668 0.671 0.678 0.662 0.685 0.740 0.713

8× MRI
(2, 320, 320)

27.50 27.65 27.51 27.42 27.42 28.06 27.55
0.576 0.572 0.570 0.562 0.560 0.630 0.596

6

Under review as a conference paper at ICLR 2023

PSNR: 25.46
SSIM: 0.833

PSNR: 27.95
SSIM: 0.867

PSNR: 28.87
SSIM: 0.884

PSNR: 33.37
SSIM: 0.805

PSNR: 33.85
SSIM: 0.797

PSNR: 31.06
SSIM: 0.925

PSNR: 32.54
SSIM: 0.939

PSNR: 33.83
SSIM: 0.949

PSNR: 34.96
SSIM: 0.834

Initialization LU-DnCNN DEQ4IP LUSER-DW Ground Truth

Deblurring

CT

8× MRI

4× MRI

PSNR: 30.58
SSIM: 0.696

PSNR: 31.78
SSIM: 0.744

PSNR: 33.21
SSIM: 0.779

Figure 2: Representative reconstructions, where each row represents one task. The left-most column
shows the initialization or input to the networks; the middle three columns show the reconstructions
for LU-DnCNN, DEQ4IP and LUSER-DW; and the right-most column shows the underlying true
images. Regions corresponding to qualitative improvements are emphasized in red boxes in the last
column.

Table 3: Comparison of network sizes and maximum possible batch sizes during training. Entries
with ‘-’ denote that the architecture with a batch size of 1 cannot fit into a particular GPU RAM
capacity.

Maximum GPU RAM LU-DnCNN DEQ4IP LUSER-SW LUSER-DW
Batch Size Capacity (17 layers) (17 layers) (5 layers) (5 layers)

Deblurring
(3, 218, 178)

#Params 558,580 558,580 96,503 770,073
8 GB 1 16 10 10

10 GB 1 16 14 14
24 GB 4 68 34 34

CT
(1, 300, 300)

#Params 556,033 556,033 93,954 751,625
8 GB - 4 2 2

10 GB - 6 4 4
24 GB 2 20 10 10

MRI
(2, 320, 320)

#Params 557,185 557,185 95,107 760,849
8 GB - 4 4 4

10 GB 2 6 4 4
24 GB 4 16 12 12

7

Under review as a conference paper at ICLR 2023

4.3 MEMORY IN TRAINING

GPU capacity is a major bottleneck for training large-scale loop unrolled networks as discussed
earlier. Table 3 compares the network sizes (number of parameters) as well as the maximum training
batch sizes for three commonly seen GPU RAM capacities: 8 GB, 10 GB and 24 GB. Batch sizes are
recorded with maximum even numbers, except when it is 1 for stochastic gradient descent. Notice
that in MRI, because the Fourier transformation is implemented in tensor form, the minimum batch
size it can take is 2. We use the batch size as a proxy for the memory requirements during training.
Since DEQ4IP is an extension of LU-DnCNN, their networks are of the same size, but implicit DEQ
models support larger batch sizes making DEQ4IP far more memory-efficient during training. The
advantages of using DEQ models for LUSER and DEQ4IP are particularly highlighted in the case of
limited memory (smaller GPUs). LU-DnCNN is unable to even train for the CT and MRI task with
limited memory constraints, while LUSER and DEQ4IP can. This pattern is expected to repeat for
more large scale tasks where standard LU architectures will be unable to train at all due to memory
requirements. It is important to note that memory requirements depend more on the depth of the
network than the number of parameters. For example, even though LUSER-DW and LUSER-SW
have different numbers of parameters, they share the same architecture/depth and thus use roughly
the same amount of memory during training.

4.4 INFERENCE TIME

The evaluation time of these models depend on the complexity of the forward model. For the ex-
periments performed, taking a gradient step on average took 5.3e-5, 6.9e-4, and 6.6e-3 seconds for
deblurring, MRI and CT respectively. In this regime, the time to evaluate the DEQ models dominates
the inference time. However, as the forward model time increases, it has the potential to dominate.

In order to test this, we introduce artificial delays of 5e-2 and 5e-1 seconds to the CT forward model
and evaluate the models on the test set. Because the performance does not significantly vary (as the
trained models didn’t change), we only report the run times in Figure 3. In these regimes, the choice
of adopting a Loop Unrolled structure presents an advantage over DEQ4IP. In our experiments,
DEQ4IP took approximately 30-50 iterations to reach a reasonable level of performance, leading
to 30-50 calls of the forward model. The inference time is shown in the shaded region in green of
Figure 3a, while as LUSER is shown in red for a max iteration of 10-30. It is interesting to note that
as the forward model run time increases, so does the overlap between LUSER and DEQ4IP, with
LUSER evaluating faster on average somewhere between 1e-2 and 1e-1 seconds.

The reason becomes more evident in Figure 3b which show cases the breakdown in timing for the
solid line example from Figure 3a. The blue bar represents the approximate portion of time spent
evaluating the forward model while as the green and red represent the learned model portion (as well
as any overhead) associated with DEQ4IP and LUSER respectively. As the forward modeling time

10 4 10 3 10 2 10 1

Forward Model Run Time (sec)

100

101

In
fe

re
nc

e
Ti

m
e

(s
ec

)

Inference Time vs Forward Model Time
DEQ4IP
LUSER

(a)

CelebA
5.3e-5s

MRI
6.9e-4s

CT
6.6e-3s

Simulated
5.5e-2s

Simulated
5.0e-1s

Task/Forward Model Time

0

2

4

6

8

10

Ru
n

Ti
m

e
(s

ec
)

Evaluation Times
DEQ4IP
LUSER
Forward Model

(b)

Figure 3: (a) Plot of inference time across a range of “max iterations” and (b) with approximate
forward model time overlaid on total time.

8

Under review as a conference paper at ICLR 2023

becomes non-negligible, the evaluation time suffers accordingly with LUSER evaluating faster even
for the 5e-2 second delay experiment.

4.5 EFFECT OF WEIGHT SHARING

As shown in Table 2, LUSER-DW has better performance than LUSER-SW with equivalent block
structure, but has a larger number of parameters. We also explore the possibility of reusing multiple
LUSER proximal blocks across loop unrolled iterations. For example, in MRI tasks, we repeat
4 different proximal blocks over 8 iterations. Let gi denote the ith proximal block where i =
{1, 2, 3, 4}, and we form the LUSER network with the sequence of proximal blocks in order of
g1, g1, g2, g2, g3, g3, g4, g4. Now, the number of parameters is only half of that in LUSER-DW, but
maintains a similar level of performance. We denote this variant LUSER-PSW, which stands for
partially shared-weight. Table 4 compares the average PSNR and SSIM of LUSER-SW, LUSER-
PSW and LUSER-DW with the same block structure, which are trained using final loss only.

Table 4: Average PSNR and SSIM for LUSER with different weight-sharing schematics

LUSER-SW LUSER-PSW LUSER-DW

4× MRI PSNR 28.82 28.85 29.86
SSIM 0.66 0.74 0.74

8× MRI PSNR 27.42 28.04 28.06
SSIM 0.56 0.63 0.63

Table 5 summarizes various prorperties among the three architectures. In particular, we refer to
the expressiveness of the network loosely as the performance relative to the depth. LUSER is able
to achieve comparable performance to both DEQ4IP and LU with a much shallower network. We
denote the rows related to timing with the asterisk to include the simulated regimes as well, though
for negligible forward models, DEQ4IP can be faster than LUSER.

Table 5: Method Comparisons

LU DEQ4IP LUSER
Training Time∗ Fast Slow Moderate
Inference Time∗ Fast Slow Moderate

Network Size Large Large Small
Training Memory Usage Large Small Moderate

Expressiveness Low Moderate High

5 CONCLUSION

Loop unrolling architectures with deep convolutional layers as the learned regularizer update are
a popular approach for solving inverse problems. Although its variants achieve state-of-the-art re-
sults across a variety of tasks, LU algorithms incur a huge memory cost when training due to the
requirement of saving all intermediate activations, sometimes even requiring multiple GPUs to train
on complex tasks. DEQ4IP offers an interesting alternative via extending LU to infinitely many
layers by finding a fixed point solution, but can be impractical when the forward/adjoint operators
are nonlinear or larger in scale. To address the memory issue, we proposed two variants of loop un-
rolling architectures with deep equilibrium models as the learned regularizer updates, LUSER-SW
and LUSER-DW. We verify the memory savings (by comparing batch sizes) relative to loop un-
rolling algorithms with a DnCNN model. Across all tasks, LUSER-DW outperforms LU-DnCNN
with a similar number of network parameters, while reducing the memory requirements by a factor
of 5 or more.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in
Neural Information Processing Systems, 33:5238–5250, 2020.

Chris Chapman. Fundamentals of seismic wave propagation. Cambridge university press, 2004.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Zalan Fabian and Mahdi Soltanolkotabi. Humus-net: Hybrid unrolled multi-scale network architec-
ture for accelerated mri reconstruction. arXiv preprint arXiv:2203.08213, 2022.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley J Osher, and Wotao Yin.
Fixed point networks: Implicit depth models with jacobian-free backprop. 2021.

Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse
problems in imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
de Hoop, and Ivan Dokmani’c. Conditional injective flows for bayesian imaging. arXiv preprint
arXiv:2204.07664, 2022.

Johannes Leuschner, Maximilian Schmidt, Daniel Otero Baguer, and Peter Maass. Lodopab-ct, a
benchmark dataset for low-dose computed tomography reconstruction. Scientific Data, 8(1):1–12,
2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Christian Oestreicher. A history of chaos theory. Dialogues in clinical neuroscience, 2022.

Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis, and
Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on
Selected Areas in Information Theory, 1(1):39–56, 2020.

Patrick Putzky and Max Welling. Invert to learn to invert, 2019. URL https://arxiv.org/
abs/1911.10914.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-
play methods provably converge with properly trained denoisers. In International Conference on
Machine Learning, pp. 5546–5557. PMLR, 2019.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and
Christopher Ré. Low-memory neural network training: A technical report. arXiv preprint
arXiv:1904.10631, 2019.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(4):1715–1735, 2011.

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muck-
ley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J.
Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero,
Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens,
C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastmri: An
open dataset and benchmarks for accelerated mri, 2018. URL https://arxiv.org/abs/
1811.08839.

10

https://arxiv.org/abs/1911.10914
https://arxiv.org/abs/1911.10914
https://arxiv.org/abs/1811.08839
https://arxiv.org/abs/1811.08839

	Introduction
	Related Work
	Loop Unrolling
	Deep Equilibrium Models for Inverse Problems (DEQ4IP)
	Alternative Approaches to Tackle Memory Issues

	Methodology
	Experiments and Results
	Experimental Setup
	Reconstruction Quality
	Memory in Training
	Inference Time
	Effect of weight sharing

	Conclusion

