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ABSTRACT

Aligning diffusion models to downstream tasks often requires finetuning new
models or gradient-based guidance at inference time to enable sampling from the
reward-tilted posterior. In this work, we explore a simple inference-time gradient-
free guidance approach, called controlled denoising (CoDe), that circumvents
the need for differentiable guidance functions and model finetuning. CoDe is
a blockwise sampling method applied during intermediate denoising steps, al-
lowing for alignment with downstream rewards. Our experiments demonstrate
that, despite its simplicity, CoDe offers a favorable trade-off between reward
alignment, prompt instruction following, and inference cost, achieving a compet-
itive performance against the state-of-the-art baselines. Our code is available at:
https://github.com/anujinho/code.

1 INTRODUCTION

Figure 1: CoDe generates high quality compression (non-
differentiable reward), style, face and stroke (differentiable
rewards) guided images.

Diffusion models have emerged as
a powerful tool for generating high-
fidelity realistic images, videos, natu-
ral language content and even molec-
ular data (Ho et al., 2020; Song et al.,
2020; Bar-Tal et al., 2024; Wu et al.,
2022). While diffusion models have
proved to be effective at modeling
complex and realistic data distribu-
tions, their successful application of-
ten hinges on following user-specific
instructions in the form of images,
text, bounding-boxes or other rewards.
A common approach to the algnment
of diffusion models to user preferences involves finetuning them on preference data, which is typ-
ically done through reinforcement learning (RL), to generate samples with a higher reward while
maintaining a low KL divergence from the base diffusion model (Fan et al., 2023; Uehara et al.,
2024a).

Guidance-based approaches keep the base diffusion model frozen and control its output by aligning its
generative process to a reward function at inference time. Gradient-based guidance methods utilize
gradients of the reward at each denoising step to align the generated samples with the downstream
task (Chung et al., 2023; Yu et al., 2023; Bansal et al., 2024b; He et al., 2024). In addition to
requiring access to a differentiable reward signal, these approaches require memory-intensive gradient
computations. On the other hand, gradient-free guidance methods such as Best-of-N (Beirami
et al., 2024) circumvent the need for differentiable rewards but can potentially be computationally
intractable as they sometimes need a large number of samples, N , to satisfy the alignment goal.

1

https://github.com/anujinho/code


Published as a workshop paper at DeLTa Workshop (ICLR 2025)

In this paper, we consider a simple gradient-free guidance approach that aims at remedying the
intractability of best-of-N . Drawing inspiration from blockwise controlled decoding in language
models (Mudgal et al., 2024), we propose controlled denoising (CoDe), which exerts best-of-N
control over N blocks of B denoising steps rather than waiting for the fully denoised images. Our
key contributions can be summarized as follows:

I. We propose CoDe — an inference-time blockwise guidance approach which samples from
an optimal KL-regularized objective. We study the interplay between the sample size (N )
and block-size (B) and demonstrate that CoDeis effective at improving the reward at the
cost of the least amount of KL divergence from the base model.

II. We assess the performance of the aligned diffusion models structurally for two case studies
(Gaussian Mixture Model (GMM), and image generation), in five scenarios under image gen-
eration: style, face, stroke, compressibility and aesthetic guidance. Our extensive (qualitative
and quantitative) experimental results demonstrate that CoDe achieves competitive perfor-
mance against the state-of-the-art baselines, while offering a balanced trade-off between
reward alignment, prompt instruction following, and inference cost.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

A diffusion model provides an efficient procedure to sample from a probability density q(x) by
learning to invert a forward diffusion process. The forward process is a Markov chain iteratively
adding a small amount of random noise to a “clean” data point x0 ∈ X over T steps. The noisy sample
at step t is given by xt =

√
ᾱtx0 +

√
1− ᾱtεt, where εt ∼ N (0, 1), αt = 1− βt, ᾱt =

∏T
t=1 αt,

and {βt}t∈[T ] is a variance schedule (Ho et al., 2020; Nichol & Dhariwal, 2021). To estimate q(x),
the diffusion model pθ learns the conditional probabilities q(xt−1|xt) to reverse the diffusion process
starting from a fully noisy sample xT ∼ N (0, 1). Using a conditioning signal c, diffusion models
can be extended to sample from pθ(x|c). The conditioning signal, c, can take diverse forms, from
text prompts and categorical information to semantic maps (Zhang et al., 2023; Mo et al., 2023). Our
work focuses on a text-conditioned model, Stable Diffusion (Rombach et al., 2021), which has been
trained using a reweighed version of the variational lower bound (Ho et al., 2020) as optimization
loss function:

θ̂ = argmin
θ

Et∼[1,T ], x0,εt

[
∥εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, c, t)∥2

]
. (1)

Here, εθ is a neural network which attempts to predict the noise added to xt−1 in the forward process.
An extended version of the preliminaries on diffusion models has been included in the appendix
section B.

2.2 KL-REGULARIZED OBJECTIVE

Consider we have access to a reference diffusion model p(·), which we refer to as the base model.
Note that here we drop θ (from pθ) for the ease of notation, also because base diffusion model
parameters are kept intact throughout the inference-time guidance. Our goal is to obtain samples
from the base model that optimize a downstream reward function r(·) : X → R, while ensuring
that the sampled data points do not deviate significantly from p to prevent degeneration in terms of
image fidelity and diversity of the output samples (Ruiz et al., 2023). Thus, we aim to sample from
a reward aligned diffusion model (π) that optimizes for a KL-regularized objective to satisfy both
requirements. Let us start by defining some key concepts.

Value function. The expected reward when decoding continues from a partially decoded sample xt:

V (xt; p) = Ex0∼p(x0|xt)[r(x0)]. (2)

Advantage function. We can define a one-step advantage of using another diffusion model π for
optimizing the downstream reward as:

A(xt;π) := Ext−1∼π(xt−1|xt) [V (xt−1; p)]− Ext−1∼p(xt−1|xt) [V (xt−1; p)] . (3)

It is important to note that the advantage of the base model (when π = p) is 0. Thus, we aim to
choose an aligned model π to achieve a positive advantage over the base model.
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Divergence. We further denote the KL divergence (KL(.||.), also known as relative entropy) between
the aligned model π and the base model p at each intermediate step xt as:

D(xt;π) := KL
(
π(xt−1|xt) ∥ p(xt−1|xt)

)
=

∫
π(xt−1|xt) log

π(xt−1|xt)

p(xt−1|xt)
dxt−1. (4)

Objective. Using Eq. (3) and Eq. (4), we can now formulate the KL-regularized objective as:

π∗λ = argmax
π

[
λA(xt;π)−D(xt;π)

]
, (5)

where λ ∈ R≥0 trades off reward for drift from the base diffusion model p.
Theorem 2.1. The optimal model π∗λ for the objective formulated in Eq. (5) is given by:

π∗λ(xt−1|xt) ∝ p(xt−1|xt) e
λV (xt−1;p). (6)

As we shall discuss in Section 3, our proposed approach builds on Theorem 2.1 to approximately
sample from this reward aligned model using a Monte Carlo sampling strategy. An extension of
the result in a conditional diffusion setting can be found in Appendix C. Notably, this is a step-wise
variant of the more widely known similar objective (Korbak et al., 2022), which has been used in
some learning-based methods (Prabhudesai et al., 2023; Fan et al., 2023; Wallace et al., 2023; Black
et al., 2023; Gu et al., 2024; Lee et al., 2024) discussed in Section A for fine-tuning a diffusion model.
However, contrary to the prior art, we use our objective directly for a guidance-based alignment,
where as the end-to-end objective would be intractable. We also remark that this advantage is similar
to controlled decoding (Mudgal et al., 2024) and how it enables efficient sampling from reward guided
distributions in language models. In Appendix D, we demonstrate that sampling can be achieved using
Langevin dynamics (Welling & Teh, 2011), resulting in a generalized form of classifier guidance
(Dhariwal & Nichol, 2021). However, a key limitation of gradient-based approaches is the need for
a differentiable reward function. To alleviate this, we explore a sampling-based method for model
alignment allowing us to handle both differentiable and non-differentiable downstream rewards.

3 CODE : BLOCKWISE CONTROLLED DENOISING

Inspired by recent RL-based alignment strategies for LLMs through process rewards or value-guided
decoding (Mudgal et al., 2024), we propose a sampling-based guidance method to align a conditional
pretrained diffusion model, p(·|c), following the optimal solution, π∗λ, described in Theorem 2.1.
In the following, we outline an approach to approximate the value function for intermediate noisy
samples followed by introducing our sampling-based alignment strategy. Our proposed approach,
coined as CoDe, is summarized in Algorithm 1.

Approximation of the value function. To compute the value function in Eq. (2) for an intermediate
noisy sample xt, it is necessary to compute the expectation over x0 ∼ p(x0|xt). Note that for
diffusion models such as DDPMs (Ho et al., 2020), the predicted clean sample x̂0 can be estimated
given an intermediate sample xt using Tweedie’s formula (Efron, 2011) as follows:

x̂0 = E[x0|xt] =
xt −

√
1− ᾱtεθ(xt, c, t)√

ᾱt
. (7)

By plugging Eq. (7) into Eq. (2), the value function can be approximated as:

V (xt; p, c) = Ex0∼pθ(x0|xt,c)[r(x0)] ≈ r(E[x0|xt]) = r(x̂0). (8)

The benefit of such an approximation is that it circumvents the need for training a separate model
to learn the value function, as is for instance adopted by DPS (Chung et al., 2023) and Universal
Guidance (Bansal et al., 2024b). According to the Tweedie’s formula, the approximation of the
conditional expectation, Ex0 [r(x0)], is tight when the base diffusion model parameters θ perfectly
optimize Eq. 13. For example, this approximation is expected to be more accurate towards the end of
the denoising process (Ye et al., 2024).

Our objective is to achieve an improved alignment vs. divergence trade-off by sampling from
the optimal solution presented in Theorem 2.1. Therefore, by taking advantage of the ap-
proximation in Eq. (8), we present a blockwise extension of Best-of-N (BoN) for diffusion
models, termed as Controlled Denoising (CoDe) and outlined in Algorithm 1. CoDe inte-
grates BoN sampling into the standard inference procedure of a pretrained diffusion model.
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Algorithm 1: CoDe
Require: p, T , N , B, c

1 Sample initial noise: xT ∼ N (0, I)
2 Initialize counter: s = 1
3 for t ∈ [T − 1, · · · , 0] do
4 if mod(s,B) = 0 then
5 Sample N times over B steps:

{x(n)
t−1}

N
n=1 ∼

∏t+B
i=t p(xi−1|xi)

6 Select the sample with maximum value:

xt−1 ← argmax

{x(n)
t−1

}Nn=1

V (x
(n)
t−1; p, c)

7 end
8 s← s + 1

9 end
Return: x0

Unlike BoN, instead of rolling out the full denoising
N times and selecting the best resulting sample, we
opt for performing blockwise BoN. Specifically, for
each block of B steps, we unroll the diffusion model
N times independently (Algorithm 1, line 5). Then,
based on the value function, select the best sample
(line 6) to continue the reverse process until we obtain
a clean image at t = 0. A key advantage of CoDe
is its ability to achieve similar alignment-divergence
trade-offs while using a significantly lower value of
N , as is demonstrated in Section F.

Best-of-N (BoN) sampling for diffusion models. A
strong baseline for inference-time alignment is Best-
of-N (BoN). Empirical evidence from the realm of large language models (LLMs) (Gao et al., 2022;
Mudgal et al., 2024; Gui et al., 2024) suggests that BoN closely approximates sampling from the
optimal solution presented in Theorem 2.1, which is theoretically corroborated by Beirami et al.
(2024); Yang et al. (2024). More recently, BoN has emerged as a strong baseline for scaling inference-
time compute (Snell et al., 2024; Brown et al., 2024). In BoN, N samples are obtained from the
diffusion model by completely unrolling it out over T denoising steps. Then, the most favorable
image is selected based on a reward. This renders BoN sampling equivalent to CoDe with B = T .
For other intermediate values of B, CoDe could be seen as a blockwise generalization of BoN.

Soft Value-Based Decoding (SVDD) for diffusion models. Concurrently to our work, Li et al.
(2024) proposed an iterative sampling method to integrate soft value function-based reward guidance
into the standard inference procedure of pre-trained diffusion models. The soft value function helps
look-ahead into how intermediate noisy states lead to high rewards in the future. Specifically, this
method involves first sampling N samples from the base diffusion model, and then selecting the
sample corresponding to the highest reward across the entire set. This highest-reward sample is used
for the next denoising step in the reverse-diffusion process. This renders SVDD-PM sampling as a
special case of CoDe, operating specifically on a step block size B = 1.

4 EXPERIMENTAL SETUP

We assess the performance of CoDe by comparing it against a suite of existing state-of-the-art
guidance methods, in Text-to-Image (T2I) and Text-and-Image-to-Image ((T+I)2I) scenarios, across
both differentiable and non-differentiable reward models. Through extensive experiments, we aim
to answer the following questions: Does CoDe offer a competitive alignment-divergence trade-off
compared to other baselines? How does CoDe perform across guidance tasks qualitatively and
quantitatively?

Baselines. We select a set of widely adopted baselines from the literature. Recall that our goal
is to sample from the optimal value of the KL-regularized objective, as outlined in Theorem 2.1.
One approach to achieve this, as detailed in Appendix D, is using a gradient-based method with
an approximated value function, as in DPS (Chung et al., 2023), which serves as our first baseline.
Further, Universal Guidance (UG) (Bansal et al., 2024b), MPGD (He et al., 2024) and Freedom (Yu
et al., 2023), improve upon DPS by offering better gradient estimation. Another way to sample from
Theorem 2.1 is by using a sampling-based approach such as in CoDe. In this direction, we consider
Best-of-N (BoN) (Beirami et al., 2024) and SVDD-PM (Li et al., 2024) as our third and fourth
baselines, which are also special cases of CoDe as explained earlier. For the sake of completeness,
we also consider SDEdit (Meng et al., 2021) as a relevant (T+I)2I approach, for which all baselines
could build on.

Extensions with Noise Conditioning. When the reward distribution deviates significantly from
the base distribution p, sampling-based approaches would require a relatively larger value of N to
achieve alignment. To tackle this, a reference input sample, e.g. an image with the desired paining
stroke or style, denoted as xref , is provided as an additional conditioning input. Next to that, inspired
by image editing techniques using diffusion (Meng et al., 2021; Koohpayegani et al., 2023), we
add partial noise corresponding to only τ = η × T (with η ∈ (0, 1]) steps of the forward diffusion
process, instead of the full noise corresponding to T steps. Then, starting from this noisy version

4



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 2: CoDe(η) demonstrates a superior trade-off between compressibility, image and text
alignment as compared to other baselines on the (T+I)2I settings.

of the reference image xτ , CoDe progressively denoises the sample for only τ steps to generate the
clean, reference-aligned image x0. By conditioning the initial noisy sample xτ on the reference
image xref, we can generate images x0 that better incorporate the characteristics and semantics of
the reference image while adhering to the text prompt c. An extended version of Algorithm 1 with
noise-conditioning, denoted as CoDe(η) is discussed in detail in Appendix E (see lines 1 − 3 in
Algorithm 2). For the sake of fair comparison, we apply this enhancement also to other (T+I)2I
baselines denoting them as BoN(η), SVDD-PM(η), UG (η) and DPS(η). As we demonstrate in our
experimentation, threshold η provides an extra knob built in CoDe allowing the user to efficiently
trade off divergence for reward. Note that the reward-conditioning of the generated image is inversely
proportional to the value of η. Setting η = 1 results in τ = T and fully deactivates the input-image
conditioning. A byproduct of this conditioning is compute efficiency, as is discussed in Section 6.

Evaluation Settings and Metrics. We consider two case studies. Case Study I: a prototypical 2D
Gaussian Mixture Models (GMMs) in Appendix Section F, as is also studied in (Ho et al., 2021; Wu
et al., 2024); Case Study II: widely adopted T2I and (T+I)2I evaluations using Stable Diffusion in
Section 5 across five reward-alignment scenarios: (i) style, (ii) face (iii) stroke, (iv) compressibility
and (v) aesthetic guidance. For Case Study I, we present trade-off curves for win rate versus KL-
divergence for all baselines. For Case Study II, since calculating KL-divergence in high-dimensional
image spaces is intractable, we use Frechet Inception Distance (FID) (Heusel et al., 2017). To ensure
we capture alignment w.r.t reference image (and avoid using the guidance reward itself) we borrow an
image alignment metric commonly used in style transfer domain (Gatys et al., 2016; Yeh et al., 2020),
referred to as I-Gram here. Further, we assess prompt alignment using CLIPScore (Hessel et al.,
2021), referred to as T-CLIP throughout the paper. Additionally, we consider win rate (commonly
adopted in the LLM space) as yet another evaluation metric, where it reflects on the number of
samples offering larger reward than the base model. To sum up, we consider expected reward, FID,
I-Gram, T-CLIP, and win rate.

5 CASE STUDY II: IMAGE GENERATION WITH STABLE DIFFUSION

We consider five commonly adopted guidance scenarios: compressibility, style, stroke, face and
aesthetic guidance. On the quantitative side, given the non-differentiable nature of compressibility as
guidance signal, we demonstrate the efficacy of CoDe as compared to only sampling-based baselines
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in Table 1. For differentiable reward-guidance scenarios (style, face, stroke and aesthetic), we
evaluate the performance across all scenarios/settings combined for further statistical significance in
Tables 2, 3. Further details in the appendix section H.

5.1 NON-DIFFERENTIABLE REWARD: COMPRESSION

First, we consider a scenario with non-differentiable reward, where gradient-based guidance does
not apply. Following Fan et al. (2023), we use image compressibility as the reward score which is
measured by the size of the JPEG image in kilobytes. This way, we guide the diffusion denoising
process to generate memory-light, compressible images.

Table 1: Quantitative metrics for compression reward.

Method Compressibility Reward - T2I
Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)

Base-SD 1.0 1.0 1.0 1.0 -
BoN 1.23 1.10 1.70 0.99 -
SVDD-PM 1.83 2.86 61.75 0.88 -
CoDe 1.65 2.12 32.70 0.95 -

Compressibility Reward - (T+I)2I
Base-SD 1.0 1.0 1.0 1.0 1.0
SDEdit (η = 0.8) 0.97 2.19 29.25 0.98 1.34
BoN (η = 0.8) 1.08 2.27 31 0.98 1.32
SVDD-PM (η = 0.8) 1.48 3.54 69.5 0.89 1.15
CoDe(η = 0.8) 1.34 3.08 48.75 0.97 1.20

Qualitative Comparisons. A com-
parative look across baselines and set-
tings is illustrated in Fig. 2. We ob-
serve that CoDe(η) generates the best
results, offering superior compression
as well as image and text alignment.
SVDD-PM(η), SDEdit(η) and BoN(η)
align well with the image and text
prompt, but fall short on providing
smooth-textured, content-light com-
pressed images. However, this is to
be expected in the case of SDEdit(η)
since its generative process is not guided by the compression-reward.

Quantitative Evaluations. Table 1 illustrates the performance comparison of CoDe, CoDe(η) as
compared to other baselines. Sampling-based baselines (SVDD-PM Li et al. (2024) and BoN Gao
et al. (2022)) for two scenarios, T2I and (T+I)2I, where in the latter the reference image is omitted.

Figure 3: CoDe(η) offers the best reward vs. KL-
divergence trade-off. SVDD-PM(η) demonstrates
a higher reward beyond N = 7, but at the cost of a
much higher KL-divergence.

In both scenarios, we observe that SVDD-PM
and SVDD-PM(η) offer slightly higher com-
pression reward score as compared to other
baselines; however, CoDe(η) offers better im-
age (I-Gram) and text (T-CLIP) alignment and
the least divergence from the base distribution
(FID, CMMD) as compared to all other base-
lines. Most notably, Fig. 3 illustrates the reward
vs. KL divergence for this scenario, demon-
strating that in normal operating regimes (be-
fore reward over-optimization occurs, see ap-
pendix N, 19), CoDe(η) offers almost the same
reward as its special case of B = 1 for SVDD-
PM(η) with less than half of its KL divergence.
Here, different points on the curves represent
sweeping on each method’s main set of param-
eters (N = [10, 20, 30, 40, 100] for CoDe(η),
BoN(η) and N = [2, 3, 5, 7, 10, 20, 30, 40, 100]
for SVDD-PM(η)). Details on the computation
of KL divergence are in the appendix, section
K.

5.2 DIFFERENTIABLE REWARDS

Style guidance. We guide image generation based on a reference style image (Bansal et al., 2024b;
He et al., 2024; Yu et al., 2023). Following the reward model proposed in Bansal et al. (2024b), we
use the CLIP image encoder to obtain embeddings for the reference style and the generated images.
The cosine similarity between these embeddings is then used as the guidance signal. Stroke guidance.
A closely related scenario to style guidance is stroke generation, where a high-level reference image
containing only coarse colored strokes is used as reference (Cheng et al., 2023; Meng et al., 2021).
The objective in this setting is to produce images that remain faithful to the reference strokes. To
achieve this, similar to style guidance, we employ the CLIP image encoder to obtain embeddings
from both the reference and generated images and compute the reward by measuring the cosine
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Figure 4: The style alignment offered by CoDe(η) stands on par or outperforms other baselines in
terms of quality and preserving nuances of the reference image, while adhering to the text-prompt.

similarity between these embeddings. Face guidance. To guide the generation process to capture the
face of a specific individual (as in (He et al., 2024; Bansal et al., 2024b)), we employ a combination
of multi-task cascaded convolutional network (MTCNN) (Zhang et al., 2016) for face detection and
FaceNet (Schroff et al., 2015) for facial recognition, which together produce embeddings for the
facial attributes of the image. The reward is then computed as the negative ℓ1 loss between feature
embeddings of the reference and generated images.

Qualitative Comparisons. A comparative look across baselines, scenarios and settings is illustrated
in in Figs. 4 and 14 (and 9 12, 13 and 15 in the appendix). Let us start with style guidance in Fig. 4.
As can be seen, CoDe(η) shows arguably a better performance in capturing the style of the reference
image, regardless of the text prompt. When it comes to alignment with the text prompt, UG(η)
seems to suffer to some extent with “Eiffel tower” and “woman” fading away in the corresponding
images. Important Remark: Note that by excluding noise conditioning from the original baselines
(removing η, see Figs. 9, 21), they all suffer in capturing the style of the reference image, highlighting
the importance of using noise-conditioning as is proposed for CoDe for all baselines operating in the
(T+I)2I scenarios. Further qualitative results for stroke, face and aesthetic guidance are summarized
respectively in Figs. 14, 15, Figs. 12, 13 and Figs. 17, 16 in the Appendix H.

Table 2: Quant. metrics (± std.) for (T+I)2I differentiable scenar-
ios.

Method FID (↓) I-Gram (↑) T-CLIP (↑) Runtime (↓)
SDEdit(η) 1.0 1.0 1.0 1.0
BoN(η) 1.06 1.08 (± 0.002) 0.98 (± 0.002) 23.62 (± 0.005)

SVDD-PM (η) 1.29 1.64 (± 0.03) 0.94 (± 0.002) 103.73 (± 0.05)

DPS (η) 1.01 1.23 (± 0.04) 0.96 (± 0.005) 6.07 (± 0.03)

UG(η) 1.38 1.31 (± 0.05) 0.89 (± 0.002) 92.07 (± 0.04)

CoDe(η) 1.15 1.60 (± 0.05) 0.98 (± 0.006) 37.21 (± 0.03)

Quantitative Evaluations. Table 2
summarizes the performance across
all scenarios (including all settings)
over four metrics: I-Gram, FID, T-
CLIP and runtime (in second/image,
and detailed in Appendix section I).
The reason why we use I-Gram (in-
stead of expected reward per scenario)
in our evaluations is because expected
reward has been seen by the model
throughout the guidance process. The scores here are normalized with respect to SDEdit as the
baseline, thus indicating the performance gain over that. We notice that SVDD-PM(η) and CoDe(η)
perform on par in terms of offering the best image alignment (indicated by I-Gram), while being
superior than all other baselines. However, CoDe(η) offers a better trade-off between image, text-
alignment and divergence as compared to SVDD-PM(η), as indicated by its superior T-CLIP and
FID scores. Note that here again by excluding noise-conditioning from the other baselines (as in
their original proposition) the gain margin offered by CoDe(η) would be considerably larger as
is shown in our ablation studies. See Appendix H for further qualitative and quantitative results.

5.3 ABLATIONS
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Figure 5: Ablation on the block size (B) and the noise ratio (η).

Table 3: Ablation on partial-noise conditioning.

Method FID (↓) I-Gram (↑) T-CLIP (↑) Runtime (↓)
Base-SD (2021) 1.0 1.0 1.0 1.0
BoN (2022) 1.19 1.07 (± 0.004) 0.99 (± 0.001) 18.90 (± 0.01)

SVDD-PM (2024) 1.42 1.24 (± 0.02) 0.98 (± 0.004) 99.10 (± 0.08)

DPS (2023) 1.14 1.12 (± 0.01) 0.98 (± 0.004) 5.82 (± 0.02)

UG (2024b) 2.91 1.86 (± 0.03) 0.85 (± 0.005) 87.92 (± 0.03)

CoDe 1.17 1.30 (± 0.009) 0.99 (± 0.001) 34.63 (± 0.04)

CoDe(η) 3.00 3.19 (± 0.05) 0.87 (± 0.006) 23.82 (± 0.03)

Fig. 5 investigates the impact of
varying block size (B) and noise
ratio (η) for CoDe on image (I-
Gram) vs. text alignment (T-CLIP).
For reference, CoDe(η = 1) (with-
out image-conditioning) and UG
are also depicted. Here, different
points per curve represent sweep-
ing on their main parameter (N =
[5, 10, 20, 30, 40, 100] for CoDe, and guidance scale of [1, 3, 6, 12, 24] for UG). On the left im-
age, increasing block size seems to limit the image alignment performance; or put differently, same
performance at a much larger N . Regardless of block size, CoDe curves fall on top of UG indicating
a superior overall performance. On the right, changing the noise ratio η toward higher values, reduces
the conditioning strength (as indicated also in (Meng et al., 2021; Koohpayegani et al., 2023)) re-
sulting in lower image alignment capacity (I-Gram). Yet again, CoDe variants fall on top of the UG
curve suggesting better image vs. text alignment performance. More detailed ablation studies and
reward vs alignment trade-off curves are provided in Appendix H. Further note that the operation
points with very low T-CLIP scores on UG curves ended up degenerating to the extent that images
did not have anything in common with the text prompt (see appendix O, Fig. 20), which was another
consideration for choosing the best trade-off point.

We also study the impact of dropping the partial-noise conditioning on all baselines, including
CoDe in Table 3. For reference, CoDe(η) is also included where the best empirical value for η is
selected per scenario. We report scores across all metrics by normalizing them w.r.t. the base Stable
Diffusion model (denoted by Base-SD). As can be seen, CoDe, i.e. without noise-conditioning,
offers performance gains in terms of image alignment while staying competitive w.r.t. text alignment
(I-Gram and T-CLIP scores) and deviating lesser from the base model (FID score), compared to all
baselines except UG. Notably, CoDe is also considerably faster than both SVDD-PM and UG in
terms of runtime. As stated earlier, here CoDe(η), i.e. with noise-conditioning, offers a much more
pronounced gain in terms of I-Gram in terms of the other baselines.

6 CONCLUDING REMARKS

We introduce a gradient-free blockwise inference-time guidance approach for diffusion models.
By combining blockwise optimal sampling with an adjustable noise conditioning strategy, CoDe,
CoDe(η) offer a better reward vs. divergence trade-off compared to state-of-the-art baselines.

Limitations and future work. Diffusion models are still computationally intensive; as such,
extracting quantitative results on the performance of (inference-time) guidance-based alignment
methods calls for massive resources, especially when ablating across numerous design parameters.
We have used up to 32 NVIDIA A100’s solely dedicated to the presented evaluation results. Yet,
most commonly adopted settings we have experimented with to arrive at the numerical results in
Tables 1 and 3 can be further expanded for the sake of better statistical significance in future work.

Broader Impact. We would like to caution against the blind usage of the proposed techniques as
alignment methods are prone to reward over-optimization, which warrants care in socially consequen-
tial applications.
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A RELATED WORK

Finetuning-based alignment. Prominent methods in this category typically involve either training
a diffusion model to incorporate additional inputs such as category labels, segmentation maps, or
reference images (Ho et al., 2021; Li et al., 2023; Zhang et al., 2023; Bansal et al., 2024a; Mou et al.,
2024; Ruiz et al., 2023) or applying reinforcement learning (RL) to finetune a pretrained diffusion
model to optimize for a downstream reward function (Prabhudesai et al., 2023; Fan et al., 2023;
Wallace et al., 2023; Black et al., 2023; Gu et al., 2024; Lee et al., 2024; Uehara et al., 2024b).
While these approaches have been successfully employed to satisfy diverse constraints, they are
computationally expensive. Furthermore, finetuning diffusion models is prone to “reward hacking”
or “over-optimization” (Clark et al., 2024; Jena et al., 2024), where the model loses diversity and
collapses to generate samples that achieve very high rewards. This is often due to a mismatch between
the intended behavior and what the reward model actually captures. In practice, a perfect reward
model is extremely difficult to design. As such, here we focus on inference-time guidance-based
alignment approaches where these issues can be circumvented. Additionally, none of the fine-tuning
based methods are built for image-to-image scenarios, which is the focus of this work, as we clarified
earlier. To compare against them, a direct approach could be fine-tuning per reference image, which
renders the process computationally infeasible, or taking a meta-learning approach to fine-tuning.
However, such fundamental adjustments are beyond the current scope of our work.

Gradient-based inference-time alignment. There are two main divides within this category: (i)
guidance based on a value function, and (ii) guidance based on a downstream reward function. In
the first divide, a value function is trained offline using the noisy intermediate samples from the
diffusion model. Then, during inference, gradients from the value function serve as signals to guide
the generation process (Dhariwal & Nichol, 2021; Yuan et al., 2023). A key limitation of such an
approach is that the value functions are specific to the reward model and the noise scales used in the
pretraining stage. Thus, the value function has to be retrained for different reward and base diffusion
models. The second divide of methods successfully overcomes this by directly using the gradients of
the reward function based on the approximation of fully denoised images using Tweedie’s formula
(Chung et al., 2022; 2023; Yu et al., 2023). Interesting follow-up research has explored methods to
reduce estimation bias (Zhu et al., 2023; Bansal et al., 2024b; He et al., 2024) and to scale gradients
for maintaining the latent structures learned by diffusion models (Guo et al., 2024). Despite such
advancements, the need for differentiable guidance functions can limit the broader applicability of
the gradient-based methods.

Gradient-free inference-time alignment. Tree-search alignment has recently gained attention in the
context of autoregressive language models (LMs), where it has been demonstrated that Best-of-N
(BoN) approximates sampling from a KL-regularized objective, similar to those used in reinforcement
learning (RL)-based finetuning methods (Gui et al., 2024; Beirami et al., 2024; Gao et al., 2022).
This approach facilitates the generation of high-reward samples while maintaining closeness to the
base model. Mudgal et al. (2024) demonstrate that the gap between Best-of-N (BoN) and token-wise
value-based decoding (Yang & Klein, 2021) can be bridged using a blockwise decoding strategy.
Inspired by this line of research, we propose a simple blockwise alignment technique (tree search
with a fixed depth) that offers key advantages: (i) it preserves latent structures learned by diffusion
models without requiring explicit scaling adjustments, unlike gradient-based methods, and (ii) it
avoids “reward hacking” typically associated with learning-based approaches. Concurrently, Li et al.
(2024) propose a related method, called SVDD-PM, based on the well-known token-wise decoding
strategy in the LM space. In contrast, we devise a blockwise sampling strategy because it allows
further control on the level of intervention, and offers a trade-off between divergence and alignment,
which is of primal interest in the context of guided generation. To enhance the sampling strategy in
terms of efficiency, we apply adjustable noise-conditioning which also offers greater control over
guidance signals and further improves alignment. Sequential Monte Carlo-based methods (SMC)
for diffusion models (Wu et al., 2023; Chung et al., 2023; Phillips et al., 2024; Cardoso et al., 2023)
share similarities with tree-search-based alignment methods such as ours, particularly in not requiring
differentiable reward models. However, these methods were originally designed to solve conditioning
problems rather than reward maximization. Crucially, they involve resampling across an entire
batch of images, which can lead to suboptimal performance when batch sizes are small since the
SMC theoretical guarantees hold primarily with large batch sizes. In contrast, our method performs
sampling on a per-sample basis. Lastly, using SMC for reward maximization can also result in a loss
of diversity, even with large batch sizes.
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B PRELIMINARIES ON DIFFUSION MODELS

A diffusion model provides an efficient procedure to sample from a probability density q(x) by
learning to invert a forward diffusion process. The forward process is a Markov chain iteratively
adding a small amount of random noise to a “clean” data point x0 ∈ X over T steps. The noisy sample
at step t is given by xt =

√
ᾱtx0 +

√
1− ᾱtεt, where εt ∼ N (0, 1), αt = 1− βt, ᾱt =

∏T
t=1 αt,

and {βt}t∈[T ] is a variance schedule (Ho et al., 2020; Nichol & Dhariwal, 2021). The forward process
can then be expressed as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (9)

Now, to estimate q(x), the diffusion model pθ learns the conditional probabilities q(xt−1|xt) to
reverse the diffusion process starting from a fully noisy sample xT ∼ N (0, 1) as:

pθ(x0) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), βtI), (10)

where the variance is fixed at βtI, and only µθ(xt, t) is learned as:

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
. (11)

Here, εθ is a neural network which attempts to predict the noise added to xt−1 in the forward process
as:

εθ(xt, t) ≈ εt =
xt −

√
ᾱtx0√

1− ᾱt
. (12)

Furthermore, using a conditioning signal c, diffusion models can be extended to sample from pθ(x|c).
The conditioning signal, c, can take diverse forms, from text prompts and categorical information to
semantic maps (Zhang et al., 2023; Mo et al., 2023). Our work focuses on a text-conditioned model,
Stable Diffusion (Rombach et al., 2021), which has been trained on a large corpus consisting of M
image-text pairs D = {(xi, ci)}Mi=1 using a reweighed version of the variational lower bound (Ho
et al., 2020) as optimization loss function

θ̂ = argmin
θ

Et∼[1,T ], x0,εt

[
∥εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, c, t)∥2

]
. (13)
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C PROOF OF THEOREM 2.1

Proof of Theorem 2.1.

Jλ(xt, π, c) = Ext−1∼π

[
λ(V (xt−1; p, c)− V (xt; p, c)) + log

p(xt−1|xt, c)

π(xt−1|xt, c)

]
(14)

= Ext−1∼π

[
log

p(xt−1|xt, c) e
λ(V (xt−1;p,c)−V (xt;p,c))

π(xt−1|xt, c)

]
(15)

= Ext−1∼π

[
log

p(xt−1|xt, c) e
λV (xt−1;p,c)

π(xt−1|xt, c)
+ log eλV (xt;p,c)

]
(16)

= Ext−1∼π

[
log

p(xt−1|xt, c) e
λV (xt−1;p,c)

π(xt−1|xt, c)

]
+ λV (xt; p, c) (17)

Now, let

pλ(xt−1|xt, c) :=
p(xt−1|xt, c)e

λV (xt−1;p,c)

Zλ(xt, c)
, (18)

where the normalizing constant Zλ(xt, c) is given by

Zλ(xt, c) = Ext−1∼p

[
p(xt−1|xt, c)e

λV (xt−1;p,c)
]
. (19)

Putting it back in Eq. 17, we get

Jλ(xt, π, c) = Ext−1∼π

[
log

pλ(xt−1|xt, c)

π(xt−1|xt, c)
Zλ(xt, c)

]
+ λV (xt; p, c) (20)

= Ext−1∼π

[
log

pλ(xt−1|xt, c)

π(xt−1|xt, c)
+ logZλ(xt, c)

]
+ λV (xt; p, c) (21)

= Ext−1∼π

[
log

pλ(xt−1|xt, c)

π(xt−1|xt, c)

]
+ logZλ(xt, c) + λV (xt; p, c) (22)

= −Ext−1∼π

[
log

π(xt−1|xt, c)

pλ(xt−1|xt, c)

]
+ logZλ(xt, c) + λV (xt; p, c) (23)

= −KL(π(xt−1|xt, c) ∥ pλ(xt−1|xt, c)) + logZλ(xt, c) + λV (xt; p, c) (24)

Eq. 24 is uniquely maximized by π∗λ(xt−1|xt, c) = pλ(xt−1|xt, c).
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D SAMPLING FROM OPTIMAL MODEL USING LANGEVIN DYNAMICS

Given the optimal policy given in Eq. 6, our goal is to now sample from π∗ instead of p. However,
given only p, it is difficult to sample from this optimal policy. To overcome this problem, we
look at the score-based sampling approach as in NCSN (Song & Ermon, 2019). Starting from an
arbitrary point xT , we iteratively move in the direction of ∇xt

log π∗(xt), which is equivalent to
∇xt

log pλ(xt). We can derive an equivalent form:

pλ(xt) =
p(xt)e

λV (xt)

Zλ
(25)

log pλ(xt) = log p(xt) + λV (xt)− logZλ (26)
∇xt log pλ(xt) = ∇xt log p(xt) +∇xtλV (xt)−∇xt logZλ (27)

sλ(xt, t) = sθ(xt, t) + λ∇xt
V (xt). (28)

As the above derivation is limited to stochastic diffusion sampling, we leverage the connection
between diffusion models and score matching (Song & Ermon, 2019):

∇xt log p(xt) = −
1√

1− ᾱt
εt. (29)

Similarity with classifier guidance. Starting from an arbitrary point xT , we iteratively move in the
direction of∇xt log p(xt|y). We can derive an equivalent form:

p(xt|y) =
p(y|xt)p(xt)

Z
(30)

log p(xt|y) = log p(xt) + log p(y|xt)− logZ (31)
∇xt

log p(xt|y) = ∇xt
log p(xt) +∇xt

log p(y|xt)−∇xt
logZ (32)

sλ(xt|y, t) = sθ(xt, t) +∇xt log p(y|xt). (33)
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E CODE WITH IMAGE-CONDITIONING: CODE(η)

Algorithm 2: CoDe(η)
Require: p, T , N , B, xref, c, η

1 Sample conditional initial noise:
2 τ = η × T

3 xτ =
√
ᾱτxref +

√
1− ᾱτz, z ∼ N (0, I)

4 Initialize counter: s = 1
5 for t ∈ [τ − 1, · · · , 0] do
6 if mod(s,B) = 0 then
7 Sample N times over B steps:

{x(n)
t−1}

N
n=1

i.i.d.∼∏t+B
i=t p(xi−1|xi)

8 Compute values of all N samples:

{x(n)
t−1}

N
n=1 =

{r(E[x0|x(n)
t−1])}

N
n=1

9 Select the sample with maximum value:

xt−1 ← argmax

{x(n)
t−1

}Nn=1

V (x
(n)
t−1; p, c)

10 end
11 s← s + 1

12 end
Return: x0

For (T+I)2I cases, where the reward depends on a
target image, the reward distribution deviates signif-
icantly from the base distribution p. Here, sampling-
based approaches would require a relatively larger
value of N to achieve alignment. To tackle this, a
reference target image xref , such as a specific style or
even stroke painting, is provided as an additional con-
ditioning input. Inspired by image editing techniques
using diffusion (Meng et al., 2021; Koohpayegani
et al., 2023), we add partial noise corresponding to
only τ = η×T (with η ∈ (0, 1]) steps of the forward
diffusion process, instead of the full noise correspond-
ing to T steps. This is illustrated in line 2 and 3 of
Algorithm 2. Then, starting from this noisy version
of the reference image xτ , CoDe(η) progressively
denoises the sample for only τ steps to generate the
clean, reference-aligned image x0 (lines 5 to 10).
Specifically, for each block of B steps, we unroll the
diffusion model N times independently (Algorithm 2,
line 7). Then, based on the value function estimation (line 8), select the best sample (line 9) to con-
tinue the reverse process until we obtain a clean image at t = 0. A key advantage of CoDe(η) is its
ability to achieve similar alignment-divergence trade-offs while using a significantly lower value
of N , as is demonstrated in Section F. Note that the inner loop of CoDe(η) (lines 5-10) runs for τ
steps (instead of T ) due to adjustable noise conditioning discussed in the following. For the sake of
brevity, we assume τ to be divisible by B; otherwise, we apply the same steps on a last but smaller
block. By conditioning the initial noise sample xτ on the reference image xref, we can generate
images x0 that better incorporate the characteristics and semantics of the reference image while
adhering to the text prompt c. As we demonstrate in our experimentation, threshold η provides an
extra knob built in CoDe(η) allowing the user to efficiently trade off divergence for reward. Note that
the reward-conditioning of the generated image is inversely proportional to the value of η. Setting
η = 1 results in τ = T and fully deactivates the noise conditioning. A byproduct of this conditioning
is compute efficiency, as is discussed in Section 6

Given Theorem 2.1 and its proof in Appendix C, we aim to sample from the reward-tilted posterior
π∗λ(xt−1|xt, c) in order to optimize the KL-regularized reward maximization objective Eq. (5). In
order to perform CoDe’s blockwise guidance, we:

1. sample from the prior p(xt−1|xt, c) using the denoising diffusion process, across all N
streams,

2. and then compute the values of each of the N samples using V (xt−1; p)

By doing so, the probability of the selected sample xt−1 with the highest value (in Alg. 1 Line
8, 2, Line 9) implicitly incorporates the prior distribution p(xt−1|xt, c) as a Monte-Carlo estimation
technique. Additionally, selecting the highest value sample

xt−1 ← argmax
{x(n)

t−1}Nn=1

V (x
(n)
t−1; p, c) (34)

is mathematically equivalent to sampling from the categorical distribution

xt−1
i.i.d.∼ Categorical({softmax[V (xn

t−1)/τ ]}),∀n ∈ [1, N ], (35)

where the temperature τ → 0. This technique for sampling from the posterior and its theoretical
optimality in terms of reward vs divergence tradeoffs has also been used in related works such as (Li
et al., 2024; Beirami et al., 2024; Gui et al., 2024; Yang et al., 2024). Specifically on the optimality
of this sampling technique, we would like to mention that several recent works have shown that BoN
sampling is almost optimal in terms of reward vs divergence tradeoffs (Beirami et al., 2024; Gui
et al., 2024; Yang et al., 2024; Mudgal et al., 2024). In particular, Theorem 1 from (Yang et al., 2024)
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shows that the samples obtained from BoN follow the same distribution as the optimal CD from
Eq. (6). This is the reason (Mudgal et al., 2024) reported the most favorable reward vs divergence
tradeoffs using blockwise language model decoding as blockwise decoding is also optimal in terms
of reward vs divergence given that it interpolates two (almost) optimal decoding schemes.
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Figure 6: Setup (left, middle) and reward vs. divergence trade-off (right) for Case Study I. CoDe
offers highest reward at lowest divergence with much lower N than BoN.

Figure 7: In contrast to BoN, SVDD-PM, CoDe with and without noise-conditioning (η = 0.6, η = 1,
resp.) are robust against increased distance between reward and prior distributions. SVDD-PM’s
generated samples offer almost zero variance indicating reward over-optimization.

F CASE STUDY I: GAUSSIAN MIXTURE MODELS (GMMS)

To establish an in-depth understanding of the impact of the proposed methods, we start with a simple
model/reward distribution as shown in Fig. 6. For the prior distribution, we consider a 2D Gaussian
mixture model p(x0) =

∑2
i=0 wiN (µi,σ

2I2), where σ = 2, [µ1,µ2,µ3] = [(5, 3), (3, 7), (7, 7)],
and Id is an d-dimensional identity matrix. Additionally, we define the reward distribution as
p(r|x) = N (µr,σ

2
rI2) with µr = [14, 3] and σr = 2. As can be seen in the figure, in this case and

by design, reward distribution is far off the peak of the prior. Here, we train a diffusion model with
a 3-layer MLP that takes as input (xt, t) and predicts the noise εt. This model is trained over 200
epochs with T = 1000 denoising steps. Note that all other discussed baselines can straightforwardly
be trained in this setting. The results are illustrated in Fig. 6 where we plot win rate vs. KL-
divergence for different values of N ∈ [2, 500]. The details for computing the KL divergence have
been provided in the appendix K. For the guidance-based methods DPS and UG, the guidance scale
is varied between 1 and 50, whereas for the sampling-based methods, BoN the number of samples N
is varied between 2 and 500, while for SVDD and CoDe, the number of samples N is varied between
2 and 40.

As can be seen, BoN offers the upper bound of performance with CoDe achieving on-par performance
trade-offs. This aligns with the observations from the realm of LLMs (Beirami et al., 2024; Gui et al.,
2024), where BoN has been theoretically proven to offer the best win-rate vs KL divergence trade-offs.
However, it is important to notice that CoDe achieves an on-par win-rate vs KL divergence trade-off
with BoN for a much smaller N . Specifically, CoDe with N ∈ [2, 10] achieves the same win rate
vs KL divergence performance as BoN with N ∈ [30, 500], rendering CoDe roughly 10-15× more
efficient than BoN.

In contrast, UG and DPS tend to exhibit higher KL divergence, as they often collapse to the mode of
the reward distribution when the guidance scale is increased, leading to a reduction in diversity among
the sampled data points, a phenomenon also noted in prior research (Sadat et al., 2024; Ho et al.,
2021). In both scenarios, SVDD achieves a high expected reward (or win rate) but at the expense of
significantly higher divergence, even for N = 2. In contrast, CoDe offers flexibility, allowing users
to balance the trade-off by adjusting parameters such as N and B, as is demonstrated here. For a
different scenario (and for providing a more comprehensive picture), where the reward distribution
falls within the distribution of the prior see Appendix G.
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Let us dive one step deeper into comparing the performance of CoDe, CoDe(η), BoN and SVDD-PM.
To this aim, in Fig. 7, we vary the distance between the mean of the reward and prior distributions,
gradually shifting the reward further away. To handle this scenario effectively, we use noise condition-
ing for CoDe, denoted by (η = 1, 0.6), by sampling from the known reward distribution and providing
it as an input conditioning sample. We also study the impact of block size B for reward-guidance
by varying it between B = [1, 80, 320], with B = 1 corresponding to SVDD-PM. This is shown for
N = 10, 50 in Fig. 7 where the expected reward sharply drops for BoN regardless of choice of N ,
whereas it drops less or remains almost intact for CoDe with η = 0.6, B = [80, 320]. In the case of
η = 1 for CoDe, we notice that the reward drops sharply for a larger block size (B = 320), while
almost remaining constant or dropping lesser for a smaller block size (B = 80). On the other hand,
SVDD-PM, imposing token-wise aggressive guidance with B = 1 offers a high, constant reward
for both N = [10, 50]. However, SVDD-PM’s generated samples have a variance that is orders of
magnitude lower than BoN or CoDe, as can be seen in the right most part of Fig. 7. This particularly
low variance of SVDD-PM’s generated samples (almost 10−4) indicates their collapse to a single
point in the reward distribution. This has been studied extensively in the literature and is referred to
as reward over-optimization (Prabhudesai et al., 2023), and corroborates the need for keeping a small
KL divergence from the base model, as also empirically and theoretically argued by (Beirami et al.,
2024; Gao et al., 2022)
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G ADDITIONAL RESULTS FOR CASE STUDY I

For the sake of completeness, we also study a variant of the GMM setting as discussed in Section F,
where the mean of the reward distribution is equal to the mean of one of the components in the
prior distribution, as shown in Fig. 8. The prior distribution p(x) is modelled as a 2-dimensional
Gaussian mixture model (GMM) p(x0) =

∑3
i=1 wiN (µi,σ

2I2), with σ = 2, [µ1,µ2,µ3] =
[(5, 3), (3, 7), (7, 7)], and Id is an d-dimensional identity matrix, as shown in Fig. 8. All mixture
components are equally weighted with, i.e., w1 = w2 = w3 = 0.33. In contrast to the previous setup,
we define the reward distribution as p(r|x) = N (µr,σ

2
rI2) with µr = [5, 3] and σr = 2. Based

on this setup, we train a diffusion model pθ(x) to estimate the prior distribution p(x). For this we
use a 3-layer MLP that takes as input (xt, t) and predicts the noise εt. It is trained over 200 epochs
with T = 1000 denoising steps. Then, we implement CoDeto guide the trained diffusion model to
generate samples with high likelihood under the reward distribution.

Figure 8: Setup (top row) and reward vs. diver-
gence trade-off (bottom row). CoDe offers highest
reward at lowest divergence with a much lower N
than BoN.

In Fig. 8, we present the trade-off curves for nor-
malized expected reward (or win rate) versus KL
divergence by adjusting the hyperparameters of
the respective methods. For the guidance-based
methods DPS and UG, the guidance scale is var-
ied between 1 and 50, whereas for the sampling-
based methods BoN, SVDD, and CoDe, the
number of samples N is varied between 2 and
500. Similar to the results in Section F, we ob-
serve CoDe achieve the most favorable trade-off
between normalized expected reward and KL di-
vergence, with BoN performing closely behind.
In the case of win rate vs. KL divergence, BoN
demonstrates the best trade-off, consistent with
findings from the literature on Language Model
(LM) alignment (Mroueh, 2024; Beirami et al.,
2024; Gui et al., 2024). Furthermore, guidance-
based methods tend to exhibit higher KL diver-
gence, as they often collapse to the mode of
the reward distribution when the guidance scale
is increased, leading to a reduction in diversity
among the sampled data points. For both per-
formance metrics, SVDD-PM achieves a high
expected reward or win rate but at the expense
of significantly increased divergence, even for
smaller values of N . Whereas CoDe offers the
widely sought-after flexibility, allowing users to balance the trade-off by adjusting parameters such as
N and B.
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H ADDITIONAL RESULTS FOR CASE STUDY II
Unless otherwise mentioned, for all experiments, we use a pretrained Stable Diffusion version 1.5
(Rombach et al., 2021) as our base model, which is trained on the LAION-400M dataset (Schuhmann
et al., 2021). As highlighted earlier, we strive to present meaningful comparative (both qualitative and
quantitative) results across a variety of scenarios. For quantitative evaluations, we generate 50 images
per setting (i.e., prompt-reference image pair) with 500 DDPM steps. To achieve this, we have used
NVIDIA A100 GPUs with 80GB of RAM. We consider four commonly adopted guidance scenarios:
compressibility, style, stroke, and face guidance. For each scenario, the reward model is task specific
as elaborated in the following. A text prompt as well as a reference image are used as guidance
signals. For the first three scenarios, a total of 33 generation settings (i.e., text prompt - reference
image pairs) are used for evaluations. For compressibility guidance, we have 12 settings. Per setting,
we generate 50 samples and estimate the evaluation metrics accordingly. On the qualitative side,
to demonstrate the capacity of CoDe(η) compared to other baselines, we illustrate a few generated
examples across two reference images for two different text prompts. On the quantitative side, given
the non-differentiable nature of compressibility as guidance signal, we demonstrate the efficacy of
CoDe as compared to only sampling-based baselines in Table 1. For differentiable reward-guidance
scenarios (style, face and stroke), we evaluate the performance across all scenarios/settings combined
for further statistical significance in Tables 2, 3.

Further details on evaluation metrics. For computing I-Gram, we utilize VGG (Simonyan &
Zisserman, 2014) Gram matrices of the reference and generated images to measure image alignment
across all scenarios/settings, as commonly followed in the literature (Somepalli et al., 2024; Gatys
et al., 2016; Yeh et al., 2020). Specifically, these are computed using the last layer feature maps
of an ImageNet-1k pretrained VGG backbone (Simonyan & Zisserman, 2014). Image alignment
between a reference, generated image pair is then measured by computing the dot product of their
gram matrices. Further, we report a recently proposed CLIP-based Maximum Mean Discrepancy
(CMMD) (Jayasumana et al., 2024) as a divergence measure. It overcomes the drawback of FID
stemming from the underlying Gaussian assumption in the representation space of the Inception
model (Szegedy et al., 2015).

Qualitative performance. Let us start with style guidance in Fig. 9. As can be seen, CoDe either
stands on-par or performs better as compared to all other baselines in terms of capturing both, the
style of the reference image and the semantics of the text prompt. This can be seen in comparison
with UG for the text prompt of “portrait of a woman”, where UG fails to incorporate the text
prompt, but latches onto the style of the reference image. The results for face guidance with and
without noise-conditioning are illustrated in Figs. 12, 13, respectively. It can be noticed that the
noise-conditioned baselines capture the reference face much better than their non noise-conditioned
counterparts. Moreover, in the case of noise-conditioning, BoN(η), SVDD-PM(η) and UG(η) fail
to meaningfully capture the semantics of the text-prompt, particularly for “Headshot of a woman
made of marble”. However, CoDe(η) captures both, the reference face and the text prompt. In
the case of the other text prompt “Headshot of a person with blonde hair with space background”,
SVDD-PM(η) and CoDe(η) offer best results as compared to other baselines. Finally, the results
for stroke guidance without noise-conditioning are illustrated in Fig. 15. It can be seen that none of
the baselines capture the reference strokes or their color palettes successfully, but only adhere to the
text-prompt. This empirically corroborates the need for using noise-conditioning for guidance, when
the reward distribution (strokes in this scenario) differs significantly from the base diffusion model’s
distribution.

Quantitative performance. In this section, we break down the quantitative performance of all
methods across the three different differentiable reward scenarios of style, face and stroke guidance.
We summarize the results in Tab. 4, 5, 6 with the first row corresponding to the base Stable Diffusion
model and R: indicating the reward metric used for guiding the diffusion model.
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Figure 9: Quality evaluation across methods for style guidance without noise-conditioning.

Figure 10: Reward vs. divergence trade-off curves for style guidance.
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Figure 11: Reward vs. divergence trade-off curves for face guidance.

Style Guidance. The results are summarized in Table 4. Compared to the sampling-based guidance
counterparts BoN and BoN(η), CoDe achieves a higher reward at the cost of slightly higher divergence
(FID and CMMD), with and without the noise-conditioning. Yet, with a slightly smaller reward
CoDe, CoDe(η) offers a better performance than SVDD-PM, SVPP-PM(η) across FID, CMMD and
T-CLIP. Compared to guidance-based counterparts such as DPS, DPS(η) and UG, UG(η), CoDe,
CoDe(η) offer a better trade-off in terms of reward vs base distribution divergence and reward vs text,
image alignment. This is also illustrated in Fig. 10 where CoDe(η) consistently outperforms UG,
UG(η) in terms of image alignment (normalized expected reward as well as win rate), while offering
lesser divergence w.r.t. both FID and CMMD.

Table 4: Quantitative metrics for style guidance.

Method R1: Style Guidance
Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)

Base-SD (2021) 1.0 1.0 1.0 1.0 1.0
SDEdit (2021) 1.22 3.25 67.75 0.90 2.9
BoN (2022) 1.14 1.30 2.25 0.99 1.1
BoN (η = 0.6) 1.34 3.36 84.02 0.87 1.57
SVDD-PM (2024) 1.44 1.81 10.93 0.99 1.6
SVDD-PM (η = 0.6)(2024) 1.60 4.16 96.52 0.82 3.5
DPS (2023) 1.22 1.29 5.46 0.99 1.2
DPS (η = 0.6)(2023) 1.29 3.31 90.06 0.83 2.5
UG (2024b) 1.39 4.27 91.13 0.82 2.9
UG (η = 0.7) 1.37 4.43 103.6 0.79 3.5
CoDe 1.34 1.49 7.40 1.0 1.6
CoDe(η = 0.6) 1.52 3.64 84.45 0.86 3.2
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Figure 12: Quality evaluation across methods for face guidance.
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Figure 13: Quality evaluation across methods for face guidance without noise-conditioning.

Face Guidance. We summarize the results in Table 5. As the rewards are negative, we first compute
the negative log of the reward values and then normalize it with respect to the base.

Table 5: Quantitative metrics for face guidance.

Method R2: Face Guidance
Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)

Base-SD (2021) 1.0 1.0 1.0 1.0 1.0
SDEdit (2021) 0.99 1.79 34.91 0.89 1.74
BoN (2022) 1.08 1.22 2.52 0.99 1.0
BoN (η = 0.7) 1.08 1.82 35.3 0.88 1.8
SVDD-PM (2024) 1.42 1.42 9.67 0.97 0.74
SVDD-PM (η = 0.7) (2024) 1.70 2.07 48.22 0.86 1.77
DPS (2023) 1.04 1.09 1.36 0.99 1.03
DPS (η = 0.7) (2023) 1.21 1.71 33.21 0.86 1.68
UG (2024b) 1.66 1.69 29.76 0.86 1.06
UG (η = 0.7) 1.77 1.94 61.27 0.85 1.45
CoDe 1.30 1.25 6.76 0.98 0.91
CoDe(η = 0.7) 1.5 1.86 42.40 0.88 1.91

Compared to BoN, BoN(η) and DPS, DPS(η), CoDe, CoDe(η) provides higher rewards but also
with higher divergence (FID and CMMD). Although SVDD-PM, SVDD-PM(η) and UG, UG(η)
achieve higher rewards, CoDe, CoDe(η) offer a better trade-off in terms of FID, CMMD and T-CLIP.
Moreover, CoDe(η) offers the best image-alignment in terms of I-Gram as compared to all other
baselines.

Additionally, CoDe(η) provides competitive results as compared to UG, which is the second-best
method while offering better prompt alignment as reflected in a higher T-CLIP score. We draw similar
conclusions from the reward vs. divergence curves presented in Fig. 11, where CoDe(η) achieves
competitive rewards as compared to UG, UG(η), SVDD-PM, SVDD-PM(η), but on-par win rates as
compared to UG, at the cost of slightly higher FID and CMMD scores.
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Figure 14: Same narrative as in Fig. 4 with CoDe(η) outperforming UG(η) in terms of quality and
ref. image-alignment, while standing-on par with all other baselines.

Figure 15: Quality evaluation across methods for stroke guidance without noise-conditioning.

28



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 6: Quantitative metrics for stroke generation.

Method R3: Stroke Generation
Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)

Base-SD (2021) 1.0 1.0 1.0 1.0 1.0
SDEdit (2021) 1.38 2.79 145.6 0.90 2.64
BoN (2022) 1.25 1.05 4.5 0.99 1.12
BoN (η = 0.6) 1.55 3.12 170 0.89 3.05
SVDD-PM (2024) 1.56 1.04 12.0 0.99 1.38
SVDD-PM (η = 0.6) (2024) 1.83 3.87 187.1 0.85 4.4
DPS (2023) 1.34 1.04 14.0 0.97 1.13
DPS (η = 0.6) (2023) 1.45 2.81 195.0 0.88 2.83
UG (2024b) 1.55 2.78 78.0 0.88 1.63
UG (η = 0.6) 1.66 4.45 236.5 0.78 0.6
CoDe 1.41 0.78 6.5 0.99 1.38
CoDe(η = 0.6) 1.75 3.50 178.5 0.87 4.25

Stroke. As shown in Table. 6, among the sampling-based methods, CoDe provides better results than
BoN in terms of expected reward and FID while maintaining the same T-CLIP score. Although UG
and SVDD-PM offer higher rewards, CoDe offers lower divergence (FID and CMMD) and better
T-CLIP scores. Overall, we observe that CoDe(η) has the highest rewards while offering competitive
FID, CMMD and T-CLIP.
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Figure 16: Reward vs. divergence trade-off curves for aesthetic guidance.

Figure 17: Qualitative evaluation across methods for aesthetic guidance.

Aesthetic Guidance. To guide the diffusion denoising process towards generating aesthetically
pleasing images, we employ the LAION aesthetic predictor V2 (Schuhmann et al., 2022), which
leverages a multi-layer perceptron (MLP) architecture trained atop CLIP embeddings. This model’s
training data consists of 176,000 human image ratings, spanning a range from 1 to 10, with images
achieving a score of 10 being considered art piece. Table 7 shows the results for sampling based and
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Table 7: Quant. metrics (± std.) for aesthetics guidance.

Method Aesthetic Guidance - T2I
Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑)

Base-SD (2021) 1.0 1.0 1.0 1.0
BoN (2022) 1.10 1.98 6.41 0.99
UG (2024b) 1.30 7.53 65.05 0.86
MPGD (2024) 1.22 6.55 57.63 0.93
Freedom (2023) 1.29 4.07 22.45 0.95
CoDe 1.27 2.59 6.6 0.99

gradient based inference-time guidance methods on the given T2I scenario. We observe that CoDe
offers better rewards as compared to MPGD (He et al., 2024) and BoN while being second to best as
compared to Freedom Yu et al. (2023) and UG Bansal et al. (2024b). However, CoDe offers better
text alignment (T-CLIP) and lower divergence from the base distribution (FID, CMMD) as compared
to all its gradient based counterparts. This can also be observed in Figs. 16, where CoDe offers
almost the same reward as MPGD, Freedom and UG, but at a lower divergence or higher T-CLIP.
Additionally, we demonstrate a qualitative comparsion between all baselines in Fig. 17. It can be
observed that UG generates aesthetic images that do not completely adhere to the text-prompt leading
to reward over-optimization. This is not as prominent in Freedom, CoDe and MPGD where the
generated images are of comparable aesthetic quality while significantly adhering to the text prompt
of the animal. . Given the tradeoff curves in Figs. 16, we observe that CoDe offers better or on par
rewards as compared to MPGD (He et al., 2024) for smaller FID and higher T-CLIP scores, thus
offering a better reward vs divergence tradeoff. When compared to Freedom Yu et al. (2023) and UG
Bansal et al. (2024b), CoDe achieves competitive or lesser rewards but offers better text alignment
(T-CLIP) and lower divergence from the base distribution (FID, CMMD). This also corroborates
in Fig. 17 where UG generates aesthetic images that do not completely adhere to the text-prompt
leading to reward over-optimization.
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I COMPUTATION COMPLEXITY

We present a breakdown of the computational complexities of all baselines across each of the guidance
scenarios. DPS is considerably faster across all three generation scenarios among the gradient-based
guidance methods. This is due to the m gradient and K refinement steps used in UG, which are not
used in DPS. The difference is more pronounced in the case of style- and stroke guidance as UG uses
a higher number of gradient steps m. Further, among the sampling-based approaches, SVDD-PM
is an order of magnitude slower than BoN as it applies token-wise guidance. On the contrary, our
blockwise approaches CoDe, CoDe(η) are more efficient than UG and SVDD-PM and closely follow
BoN.

Table 8: Computational Complexity

Methods Inf. Steps Rew. Queries Runtime [sec/img]
Style Face Stroke

Base-SD 2021 T - 14.12 14.12 14.12
BoN 2022 NT N 266.02 268.43 265.86
SVDD-PM 2024 NT NT 1168.74 1859.67 1169.68
DPS 2023 T T 62.52 122.21 61.83
UG 2024b mKT mKT 1588.41 543.12 1592.89
CoDe NT NT/B 441.81 583.12 442.08
CoDe(η) Nη T Nη T/B 331.42 403.19 274.56

32



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 18: Reward vs. Compute and FID vs Compute trade-off curves for Style guidance.

J PERFORMANCE VS EFFICIENCY TRADEOFFS.

In addition to the breakdown of computational complexity, we also illustrate performance-efficiency
tradeoff curves in terms of reward vs compute and divergence (FID) vs compute curves for the style
guidance scenario in Fig. 18. Compute is calculated using the breakdown of the computational
complexity in terms of the inference steps and reward queries as shown in Table ??. We illustrate
both these curves since it is important to analyze both reward and divergence (FID) to get a holistic
picture of performance and reward over-optimization. Here different points on the curve represent
sweeping on their main parameters (N = [5, 10, 20, 30, 40, 100] for CoDe, N = [10, 20, 30, 40] for
SVDD-PM, BoN, gradient guidance scale = [0.5, 0.7, 0.9, 1.1, 1.3]) for DPS and K = [1, 3, 6, 12, 24]
for UG (with the best gradient scale = 6). As can be observed, CoDe(η) and SVDD-PM(η) offer the
best reward vs compute and FID vs compute tradeoffs as compared to all other baselines. Specifically,
while SVDD-PM(η) achieves higher rewards for the same compute as compared to CoDe(η), it
also deviates significantly more from the base distribution as compared to CoDe(η). It is important
to note that divergence captures preserving core capabilities not captured by reward, resulting in
inferior reward vs divergence tradeoffs that are discussed in the previous sections. Thus, in terms of
a tradeoff between performance (captured through reward and divergence) vs efficiency, CoDe(η)
still offers a better tradeoff as compared to SVDD-PM(η) enabling performance points that are not
even achievable by SVDD-PM(η). On the other hand, UG offers high rewards but at the cost of either
significantly higher compute or FID.
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K DETAILS FOR ESTIMATING KL DIVERGENCE

To compute the KL divergence between the guided and the base diffusion model, we draw on some
existing results that give us an upper bound on the KL divergence between CoDe and the base
diffusion model, which is given by the following:
Lemma K.1.

KL(CoDe(N,B) ∥Base) ≤
(
logN − N − 1

N

)
× T

B
. (36)

Proof. The proof follows the same lines as (Beirami et al., 2024, Theorem B.1), with the exception
that we need to resort to (Mroueh, 2024, Theorem 1) to bound the KL divergence of each intervention.

For BoN where the block size B = T , the KL divergence is upper bounded by

KL(BoN(N) ∥Base) ≤ logN − N − 1

N
,

which is directly implied by (Mroueh, 2024, Theorem 1) as well. For SVDD-PM where B = 1, the
KL divergence is upper bounded by

KL(SVDD-PM(N) ||Base) ≤
(
logN − N − 1

N

)
× T.

Since the noise-conditioned variants of these methods only denoise for ηT steps instead of the full T
steps, the KL divergences are upper bounded using

KL(CoDe(N,B, η) ∥Base) ≤
(
logN − N − 1

N

)
× ηT

B
, (37)

KL(BoN(N, η) ∥Base) ≤ logN − N − 1

N
, (38)

KL(SVDD-PM(N, η) ∥Base) ≤
(
logN − N − 1

N

)
× ηT. (39)

K.1 NUMERICAL COMPUTATION OF KL DIVERGENCE FOR GAUSSIAN MODELS (CASE STUDY
I)

In Section F, to estimate the KL divergence between the base and guided models, we first generate
1000 samples from the base diffusion model and the reward guided model each. Then assuming
Gaussian densities for both, we compute the mean and variance for each of the distributions and then
use the closed-form expression to calculate the KL divergence between two Gaussians. We notice
that in this setting when we reach the degeracy limit, the bounds suggested by Lemma K.1 are loose,
particularly for all SVDDPM experiments in Section F. This is a known issue with these KL bounds
and has been discussed by Beirami et al. (2024).
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L GENERAL GUIDELINES FOR SETTING CODE’S N,B, η

CoDe utilizes three parameters N,B, η in order to guide the diffusion denoising process towards
a reward-tilted posterior. The interplay between these three parameters has been demonstrated
through various reward vs divergence tradeoff curves, reward vs text alignment tradeoff curves
(Figs. 10, 11, 16) and performance vs efficiency tradeoff curves (Fig. 18). In this section, we discuss
the impact of each parameter on the guidance process and then provide a general set of guidelines on
how to choose these values based on different tasks.

• N,B:
Intuitively, N and B impact the exploration of the prior distribution thus controlling the
chances of sampling from a higher reward region (modes of the reward-distribution) while
denoising.
Practically, increasing N leads to higher rewards or more reward-aligned generated im-
ages. However, increasing N also leads to a higher divergence from the base distribution
(FID, CMMD, KL Divergence), lower text-alignment (T-CLIP) and a linear increase in
computational complexity (inference steps and reward queries).
On the other hand, reducing B increases the number of times the denoising process is
diverted towards a high reward region in its distribution thus increasing reward-alignment in
generated images. Reducing B also leads to a higher divergence from the base distribution
(FID, CMMD, KL Divergence), lower text-alignment (T-CLIP) and a linear increase in
computational complexity (inference steps and reward queries).
The divergence increases logarithmically in N (??) and the compute increases linearly in N
(Tab. 8).
On the other hand, divergence and compute both increase exponentially as B reduces (??,
Tab. 8).

• η :
Intuitively, η controls the degree of conditioning of the input reference image on the
generated image. For a smaller η, the denoising process starts from a slightly noised version
of the input reference image and only denoises the image for ηT steps instead of the full
T steps, thus also reducing the total number of steps that could lead to reward-alignment
(Section E Alg. 1, 2).
Thus, in practice, reducing η leads to an increase in reference image alignment and a
reduction in reward and text alignment. In cases where the reference image is sampled from
the reward distribution (style, face and stroke guidance in (T+I)2I settings with CoDe(η)),
reducing η leads to an increase in reward alignment.
The computational complexity varies linearly with η.

Depending on the nature of the task and the divergence of the reward distribution from the prior, the
guidelines mentioned above can be used to increase/decrease N , B, η for the desired tradeoffs.
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M ADAPTIVE CONTROL ON N,B FOR CODE

Various related works (Raya & Ambrogioni, 2023; Kim et al., 2023; Sclocchi et al., 2025) have
empirically demonstrated that different denoising steps have varying impacts on the final output. The
early stages primarily determine the overall structure of the image, whereas the latter stages refine
the fine-grained details. Given this observation, CoDe could potentially improve its performance by
incorporating an adaptive control mechanism that adjusts its blockwise sampling strategy based on the
denoising stage. In order to asses whether this adaptive strategy could help CoDe further improve its
performance, we perform an ablation experiment by varying N,B across the first half T1 ∈ [500, 250]
and second half T2 ∈ (250, 0] of the diffusion denoising process, for the T2I compression guidance
scenario. We experiment on a total of four cases by varying N,B across the two halves of denoising.
In the first two cases, N = 40 throughout denoising and B = 1 for T1, B = 5 for T2 or B = 5 for
T1, B = 1 for T2 (rows with N = 40, B1 = 1, B2 = 5 and N = 40, B1 = 5, B2 = 1 in Tab. 9). In
the next two cases, B = 5 throughout denoising and N = 40 for T1, N = 20 for T2 or N = 20
for T1, N = 40 for T2 (rows with N1 = 40, N2 = 20, B = 5 and N1 = 20, N2 = 40, B = 5 in
Tab. 9). We observe that hyperparameters that enforce stronger reward-guidance in the second half of
denoising (T2) offer higher rewards as compared to the ones which enforce it in the first half (T1).
N1 = 40, N2 = 20, B = 5 offers lower rewards, lower divergence (FID, CMMD) and on-par text
alignment (T-CLIP) as compared to N = [20, 40], B = 5. Similar observations extend for ablating
on B where N = 40, B1 = 1, B2 = 5 offers lower reward, lower divergence (FID, CMMD) and
slightly lower text alignment (T-CLIP) as compared to N = 40, B1 = 5, B2 = 1. We would like to
clarify that except for the experiments where we swap N1 and N2 or B1 and B2, the ratio of N/B
does not remain the same. Note that using a higher N or lower B throughout denoising to exert
stronger inference-time guidance results in higher rewards and higher divergence as compared to
their adaptive control counterparts. These observations for using stronger guidance in the second half
of denoising intuitively align with the task of generating compressible images, where the fine-grained
details and the texture of the image is to be controlled. But for other rewards that demand control
over the structure and positioning of objects in generated images, a stronger reward-guidance signal
in the first half of denoising might be more effective.

Table 9: Quantitative metrics for compression reward with adaptive control.

Method Compressibility Reward - T2I
H.P. Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑)

Base-SD - 1.0 1.0 1.0 1.0
BoN N = 100, B = T 1.23 1.10 1.70 0.99
SVDD-PM N = 40, B = 1 1.83 2.86 61.75 0.88
CoDe N = 20, B = 5 1.54 2.01 12.83 0.97
CoDe N = 40, B = 5 1.65 2.12 32.70 0.95
CoDe N = 40, B1 = 1, B2 = 5 1.69 2.36 42.51 0.94
CoDe N = 40, B1 = 5, B2 = 1 1.76 2.41 48.30 0.95
CoDe N1 = 40, N2 = 20, B = 5 1.58 2.08 15.35 0.97
CoDe N1 = 20, N2 = 40, B = 5 1.60 2.11 17.97 0.97
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N REWARD OVER-OPTIMIZATION IN COMPRESSION GUIDANCE FOR
SVDD-PM(η)

Following section 5.1, Fig. 3, we demonstrate a few images generated in the compressibility guidance
scenario with SVDD-PM(η) for N = [20, 30, 40, 100], where reward over-optimization occurs. As
can be seen in Fig. 19, higher values of N for SVDD-PM(η)’s guidance lead to degenerate generation
of images, where the text prompt and reference image alignment is compromised at the cost of high
compressibility reward. The generated images roughly follow the color palette of the reference image
but fail to meaningfully incorporate the style and aesthetics of the reference image. Moreover, the
images also do not resemble natural images, empirically corroborating the high KL-divergence w.r.t.
the base distribution in Fig. 3.

Figure 19: Qualitative examples of reward over-optimized images from SVDD-PM(η) for N =
[20, 30, 40, 100], in the compression guidance scenario.
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O UG WITH A HIGH GUIDANCE SCALE OFFERS LOW TEXT ALIGNMENT

Following section 5.3, Fig. 5, we illustrate a few generated samples of UG across four settings
for style guidance with higher guidance scales of 12 and 24 to qualitatively corroborate their low
text-alignment. As can be seen in Fig. 20, the generated images offer high alignment with respect to
the reference image but fail to incorporate any meaningful features of the text prompts. None of the
generated images resemble the Eiffel tower or the portrait of a woman.

Figure 20: Qualitative examples of low text-alignment (T-CLIP) for UG with higher guidance scales,
in the style guidance scenario.
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P MISCELLANEOUS RESULTS

In this section, we illustrate several additional generated images across all baselines and guidance
scenarios. We also provide additional results for CoDe, CoDe(η) across various different reference
images and text prompt pairs, that are different from the ones already explored in the main manuscript,
in Figs. 21, 22, 23.

Figure 21: Quality evaluation across methods for style guidance on additional settings without
noise-conditioning.

Figure 22: Quality evaluation of CoDe for style guidance on additional settings.
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Figure 23: Quality evaluation of CoDe for face guidance on additional settings.
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