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ABSTRACT

Generative adversarial imitation learning (GAIL) is a powerful framework for
model-free imitation learning. GAIL extracts a policy from expert demonstrations
by training the parameterized policy to fool a discriminator for the state-action
pairs generated by the learned policy and experts. However, the training process
of GAIL has oscillating behaviors, which spoils its performance and efficiency. In
this paper, we study the stability of GAIL from the perspective of control theory.
We first formulate the training process of GAIL as a system of differential equa-
tions and formally prove that GAIL never approaches the desired equilibrium. We
then leverage methodologies from control theory to design control functions that
not only push GAIL to the desired equilibrium but also achieve asymptotic stabil-
ity in theory. Motivated by the theoretical results, we propose a controlled GAIL
algorithm with a modified learning objective for the discriminator. We evaluate
our algorithm for MuJoCo tasks. While the vanilla GAIL is unstable and cannot
acquire the expert return on some tasks, our controlled GAIL can approach expert
returns on all the tasks.

1 INTRODUCTION

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) is an effective method to
learn sequential decision-making policies such as controlling autonomous vehicles or robots (Choi
et al., 2021; Bhattacharyya et al., 2022), modeling real-life agents (Song et al., 2018), and even
text generation (Muthukumar et al., 2021). GAIL is an imitation learning (IL) method, which is
a class of methods that includes behavioral cloning (BC) (Pomerleau, 1991; Esmaili et al., 1995)
and inverse reinforcement learning (IRL) (Ng et al., 2000; Abbeel & Ng, 2004; Hadfield-Menell
et al., 2016). Despite its straightforward implementation, BC suffers from accumulating distribution
shifts (Codevilla et al., 2019) as a supervised learning algorithm. On the other hand, IRL requires
high computational costs for bi-level optimization since it searches for the optimal reward function
in the outer loop and explicitly solves the RL subproblem in the inner loop. Even though Ziebart
et al. (2008) employs the max entropy IRL to improve the efficiency of IRL, the optimal reward
function of IRL may not be unique. To resolve the issues of IRL, GAIL combines IRL with gener-
ative adversarial networks (GANs) (Goodfellow et al., 2014) and solves the inner-loop RL problem
via minimax optimization. Given expert trajectories τE sampled from expert policy πE , GAIL al-
ternatively trains a policy generator π and a discriminator D, and ultimately, the policy generator
approaches the expert policy, and the discriminator becomes indistinguishable for the expert policy
and generated policy. Similar to GANs, the training process of GAIL can be formulated as a min-
imax optimization problem, where the policy generator and the discriminator compete with each
other in order to reach equilibrium.

Unfortunately, GAIL inherits the notorious and well-known issue of GANs–unstable in training
(Mescheder et al., 2018; Luo et al., 2023b). While some theoretical work suggests that GAIL can
attain global convergence under linear settings (Zhang et al., 2020; Guan et al., 2021), empirically, it
is well observed that GAIL has oscillating training curves and is unable to approach expert policy. In
this paper, we formally identify the issue that GAIL exhibits unstable training behaviors and cannot
converge to the minimax equilibrium as desired by transforming GAIL into a dynamic system and
proving its incompetence to reach optimal points. To address this matter, we design a controller to
alter GAIL’s training dynamic and push it to the desired equilibrium. We theoretically prove that

1



Under review as a conference paper at ICLR 2024

our controlled GAIL achieves asymptotic stability and illustrate the effectiveness of our controlled
GAIL under the IMITATION framework (Gleave et al., 2022).

1.1 RELATED WORK

Previous works have been done to improve the performance of GAIL in terms of sample efficiency
and robustness in different environments. For example, Kostrikov et al. (2018) uses a discriminator-
actor-critic algorithm to improve the sample efficiency of GAIL and reduce the bias for the reward
function. Fu et al. (2017) present adversarial inverse reinforcement learning (AIRL) that designs
a different discriminator based on GAIL to represent the reward function of IRL so that its reward
function is more robust to variations in environments. Wang et al. (2017) combine variational au-
toencoder (VAE) on demonstration trajectories to improve the robustness and avoid mode collapse.

Convergence of GAIL Some theoretical works are conducted for the stability analysis of GAIL.
Syed et al. (2008) analyze the convergence and stability of apprenticeship learning. Chen et al.
(2020) show that GAIL approaches a stationary point (may not be the optimal solution) with the
gradient-based algorithm on general MDP and general reward function. Zhang et al. (2020) intro-
duces a natural policy gradient (NPG) algorithm and claims to achieve sublinear convergence to the
global optimal solution. However, this work has restrictive theoretical assumptions on linear MDP
and linear reward function, which are not applicable to real-life environments. Guan et al. (2021)
extend the convergence analysis to nonlinear MDP and nonlinear reward function. However, its
convergence guarantee is under the assumption that the objective function is strongly concave. Both
works of Zhang et al. (2020) and Guan et al. (2021) lack empirical evidence to show that GAIL
converges as claimed.

Stability Analysis with Control Theory In GANs, many stabilizing methods are proposed with
control theory. Xu et al. (2020) propose a linear controller and locally stabilizes GANs. Luo et al.
(2023b) utilize Brownian motion controller and globally exponentially stabilize GANs.

2 MODELING GAIL AS A DYNAMIC SYSTEM

In this section, we transform the training process of GAIL into a system of differential equations
named dynamic system. Given an action space A and a state space S, a policy generator πθ(a|s) ∈ Π
and a discriminator function Dω : S×A → (0, 1), GAIL alternatively updates between parameters θ
and ω. In this work, we instead directly consider the updates of π and D in their respective function
spaces. We leverage the variational method to compute the differential equation from the objective
function of the generator and discriminator to get the training dynamic of GAIL.

Notice that the objective function for GAIL is

Eπ[log(D(s, a))] + EπE
[log(1−D(s, a))]− λH(π), (1)

where D is the discriminator that takes a state-action pair and outputs the probability of this state-
action pair from the expert policy. π is the policy representing the generator, πE is the given expert
policy, and H(π) ≡ Eπ[− log π(a|s)] is the casual entropy of policy π. Respectively, the objective
functions for the discriminator and generator can be written as

max
D

V1(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))] (2)

min
π

V2(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]. (3)

Similarly to Luo et al. (2023a), we can use the variational method to take the derivative of the
above objective functions with respect to time t to get the differential equations representing the
training dynamic of the discriminator and the generator. Let D(s, a, t) and π(a|s, t) represent the
discriminator and generator networks, respectively, at training time t. We introduce time t into this
notation because both the generator and discriminator network vary with respect to the time t. Since
πE is constant through the training dynamic, we intentionally omit the symbol t for expert policy.
The training dynamic of GAIL can be written as (detailed in appendix A.2)
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dD(s, a, t)

dt
=

∂V1(D,π)

∂D
=

ρπt
(s, a)

D(s, a, t)
− ρπE

(s, a)

1−D(s, a, t)
(4)

dπ((a|s), t)
dt

=
∂V2(D,π)

∂π
= ρπt

(s)Aπt(s, a), (5)

where ρπt(s, a) is the occupancy measure of policy πt, and Aπt is the advantage function, such that

ρπt
(s, a) := π(a|s, t)ρπt

(s) := π(a|s, t)
∞∑

n=0

γnP (sn = s|πt)

Eπ[c(s, a)] =

∫
s

∫
a

ρπ(s, a)c(s, a)dads

Qπt(s, a) := Eπt
[r(s̄, ā) + λ log πt(ā|s̄)|s0 = s, a0 = a]

Aπt(s, a) := Qπt(s, a)− EsQ
πt(s, a).

3 PRELIMINARY

In this section, we present definitions and theorems on stability analysis for a dynamic system in
the form of Ordinary Differential Equations (ODE). We first define the concepts of equilibrium and
stability for a dynamic system. Then, we present the related theorem in control theory for the criteria
of a stable dynamic system.

3.1 CONVERGENCE OF A DYNAMIC SYSTEM

Suppose we have a dynamic system of ODE with initial value x(0) = x0:

dx(t)

dt
= f(x(t)) (6)

Definition 3.1. (Equilibrium) (Ince, 1956) A point x̄ is an equilibrium of system 6 if f(x̄) = 0.
Such an equilibrium is also called a fixed point, critical point, steady state.

When we are considering the convergence behavior of a dynamic system 6, we first need to make
sure such an equilibrium exists, which is a necessary condition for a dynamic system to converge.
Remark 3.2. A dynamic system is unable to converge if an equilibrium does not exist.

3.2 STABILIZING DYNAMIC SYSTEM WITH CONTROL THEORY

In control theory, a controller can be added into a dynamic system to alter performance. Given a
dynamic system that does not converge, a controller can be designed to push the dynamic to the
required equilibrium and boost the stability of this dynamic system.
Definition 3.3. (Controller) (Brogan, 1991) A controller to a dynamic system is a function u(t)
such that

dx(t)

dt
= f(x(t)) + u(t) (7)

Suppose {x(t)}t≥0 is a solution of above system 7 with equilibrium x̄. We define two types of
stability: Lyapunov stability and asymptotic stability.
Definition 3.4. (Lyapunov Stability) (Glendinning, 1994) System 7 is Lyapunov Stable if given
any ϵ > 0, there exists a δ > 0 such that whenever ∥x(0)− x̄∥ ≤ δ, we have ∥x(t)− x̄∥ < ϵ for
0 ≤ t ≤ ∞.
Definition 3.5. (Asymptotic Stability) (Glendinning, 1994) System 7 is asymptotic stable if given
any ϵ > 0, there exists a δ > 0 such that whenever ∥x(0)− x̄∥ ≤ δ, we have limt→∞ ∥x(t)− x̄∥ =
0.
Remark 3.6. A dynamic system can be Lyapnuov stable but not asymptotic stable. However, every
asymptotic stable dynamic system is Lyapnuov stable.
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To evaluate controller u(t) in terms of stability, the following theorem establishes stability analysis
with regard to dynamic system 7 on equilibrium x̄.

Theorem 3.7. (Principle of Linearized Stability) (La Salle, 1976) Given a dynamic system 7 with
equilibrium x̄, this system is asymptotically stable if all eigenvalues of J(f(x̄)+u(t)) have negative
real parts, where J(f(x̄) + u(t)) represents the Jacobian of f(x(t)) + u(t) evaluated at x̄.

Corollary 3.8. If J(f(x̄) + u(t)) has positive determinate and negative trace, all eigenvalue of
J(f(x̄) + u(t)) have negative real parts, therefore theorem 3.7 also holds.

4 CONVERGENCE AND STABILITY OF GAIL

In this section, we start with the dynamic system of GAIL derived in section 2 and prove that
GAIL is unable to converge the policy generator to the expert policy. We then further analyze the
training dynamic for one step of update for a state-action pair and propose controllers for both
the discriminator and the policy generator, which not only successfully converge to the desired
equilibrium but also achieve asymptotic stability.

4.1 GAIL DOES NOT CONVERGE

Throughout the training process of GAIL, we expect our policy generator to estimate expert policy,
and our discriminator becomes indistinguishable between the expert and generated policy. In this
manner, We define the goal functions for the discriminator and the policy generator to be

D∗(t) =
1

2
, π∗(t) = πE , (8)

We substitute the goal functions of Eq. 8 for the discriminator and the policy generator to the
dynamic system (Eq. 4 and Eq. 5) and get (detailed in appendix A.3)

dD∗(t)

dt
=

ρπ∗(t)(s, a)

D∗(s, a, t)
− ρπE

(s, a)

1−D∗(s, a, t)
= 0, (9)

dπ∗(t)

dt
= ρπ∗

t
(s)Aπ∗

t (s, a) ̸= 0. (10)

Since Eq. 10 does not equal 0, according to def. 3.1, our goal functions are not equilibrium points
for GAIL’s training dynamic. Therefore, as suggested in remark 3.2, GAIL is unable to converge to
the goal functions, which means the policy generator cannot converge to the expert policy.

4.2 CONTROLLING THE TRAINING PROCESS OF GAIL

To further analyze the stability of GAIL, we zoom in on our objective function for policy within one
step. Considering step k of the trajectory with state sk and taking action ak, and letting p(s) be the
probability of the state at s on time step k, then the objective functions for the discriminator and the
policy generator at step k can be written as

VD =

∫
ak

∫
sk

p(sk)π(ak|sk) logD(sk, ak)dsda+

∫
ak

∫
sk

p(sk)πE(ak|sk) log(1−D(sk, ak))dsda

Vπ =

∫
ak

∫
sk

p(sk)π(ak|sk) logD(sk, ak)dsda+ λ

∫
ak

∫
sk

p(sk)π(ak|sk) log(π(ak|sk))dsda

(11)

We compute the one-step training dynamic for policy generator by taking derivative with respect to
function D and policy generator π to get

dD(t)

dt
=

∂VD

∂D
=

p(s)π(a|s, t)
D(s, a, t)

+
p(s)πE(a|s, t)
D(s, a, t)− 1

(12)

dπ(t)

dt
=

∂Vπ

∂π
= p(s)(log(D(s, a, t)) + log(π(a|s), t) + 1), (13)
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where p(s) is the probability of state s at step k. We define x(t) = D(t), y(t) = π(t), πE = E,
p(s) = c, and rewrite our dynamic system as

dx(t)

dt
=

cy(t)

x(t)
+

cE

x(t)− 1
(14)

dy(t)

dt
= c log x(t) + cλ log y(t) + cλ (15)

The training dynamic of GAIL in Eq. 4 and Eq. 5 does not converge to the goal functions. Fortu-
nately, in control theory, we can design controllers to push a dynamic system to given goal functions.
For example, a linear negative feedback control (Boyd & Barratt, 1991) can be applied to a dynamic
system to reduce the oscillation of the system. We introduce our controlled system as

dx(t)

dt
=

cy(t)

x(t)
+

cE

x(t)− 1
+ u1(t) (16)

dy(t)

dt
= c log x(t) + cλ log y(t) + cλ+ u2(t), (17)

where u1(t) and u2(t) are the controllers for the discriminator and policy generator respectively.
Since the derivative of the discriminator with respect to time evaluated at the goal function in Eq.
9 already equals 0, the discriminator is possible to approach its goal function. Therefore, we only
need to design a linear negative feedback controller u1(t) for the discriminator to keep Eq. 16 equal
to 0 at the goal function. On the other hand, the derivative of the policy generator with respect to
time evaluated at its goal function in Eq. 10 does not equal 0. Therefore, u2(t) should be able to
adjust Eq. 17 to 0 evaluated at the goal function. Here we define u1(t) and u2(t) to be the following
functions

u1(t) = −k(x(t)− 1

2
) (18)

u2(t) = −cλ logE − c log
1

2
− cλ+ α

y(t)

E
− α (19)

where k, α are hyper-parameters introduced. Intuitively, as k gets larger, the discriminator will get
a higher punishment as it deviates from the optimal value, so the discriminator would converge at
a faster speed but may also have a larger radius of oscillation. For a detailed convergence behavior
analysis of controlled GAIL and specific bound on the range of k and α, we need to conduct stability
analysis with respect to the controlled dynamic system.

4.3 ASYMPTOTICALLY STABLE OF CONTROLLED GAIL

In this section, we formally prove that our controlled training dynamic of GAIL in Eq. 16 and Eq.
17 is asymptotically stable and derive the bound of the relationship between λ and k.

For simplicity, let us define z(t) = (x(t), y(t))⊤, and a function f such that

f(z(t)) =

(
cy(t)
x(t) + cE

x(t)−1 − k(x(t)− 1
2 )

c log x(t) + cλ log y(t)− cλ logE − c log 1
2 + α y(t)

E − α

)
(20)

Therefore, our controlled training dynamic of GAIL in Eq. 16 and Eq. 17 can be transformed to the
following vector form

d(z(t)) = f(z(t))dt. (21)
Assumption 4.1. We assume α, k ∈ R, k > 0, such that
(a)

ckλ+ kα < 0

(b)
−8c2λ− 8cα− 4c2 − ckλ− kα > 0

(c)
k2 + 32c(cλ+ α)

32c
< 0
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Theorem 4.2. Let assumption 4.1 holds. The training dynamic of GAIL in Eq.21 is asymptotically
stable.

Proof. To analyze the convergence and stability behavior of system 21, first we need to verify def-
inition 3.1 to make sure our goal functions are equilibrium points. Then we apply theorem 3.7 to
prove system 21 is asymptotically stable. Notice that z∗(t) = ( 12 , E)⊤, then we substitute this goal
function to system 21

d(z∗(t)) = f(z∗(t)) = 0

We the compute the linearized system near the goal function such that

d(z(t)) = Jf(z∗(t))z(t)dt, (22)

where J is the Jacobian of function f . Therefore,

Jf(z∗(t)) =

(
− cy(t)

x(t)2 − cE
(x(t)−1)2 − k c

x(t)
c

x(t)
cλ
y(t) +

α
E

)
( 1
2 ,E)

=

(
−8cE − k 2c

2c cλ+α
E

)
(23)

Then we compute the determinate and trace of Jf(z∗(t)), which

det(Jf(z∗(t))) =
(−8c2λ− 8cα− 4c2)E + (−ckλ− kα)

E
(24)

trace(Jf(z∗(t))) =
−8cE2 − kE + cλ+ α

E
(25)

Since E = πE(a|s) has range [0, 1], therefore we have det(Jf(z∗(t))) > 0, if

ckλ+ kα < 0 (26)

−8c2λ− 8cα− 4c2 − ckλ− kα > 0 (27)

The graph of trace(Jf(z∗(t))) is also a downward hyperbola with middle point
(−k
16c ,

k2+32c(cλ+α)
32c ). Therefore, trace(Jf(z∗(t))) < 0, if

k2 + 32c(cλ+ α)

32c
< 0. (28)

As a result, system 21 is asymptotically stable if assumptions 4.1 hold.

4.4 FROM CONTROLLER TO LOSS FUNCTION

Our controllers are designed for GAIL’s training dynamic. However, we are particularly interested
in reflecting controllers in loss functions. To do so, we take the integration of the dynamic system
to get the controlled loss functions for the discriminator and generator and get

V ′
1(D,π) = V1(D,π)− k

2
D2(s, a) +

k

2
D(s, a) (29)

V ′
2(D,π) = V2(D,π)− (c log

1

2
+ cλ logE − α)π(a|s) + α

2E
π2(a|s), (30)

where the value of hyperparameters k and α should be bounded by assumption 4.1. Now we are
concerning reflecting the new loss function into our algorithm. In practice, we are unaware of
the expert policy for the generator’s controller, so in the evaluation section, we only include the
controller for the discriminator. In original GAIL, we sample τ and τE from policy π and πE

respectively and update the discriminator with function Êτ [logD(s, a)] + ÊτE [log(1 − D(s, a))].
As a result, we modify the discriminator update with our controller as shown in Algorithm 1 below.
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Algorithm 1 The algorithm for controlled GAIL

1: Input: Expert trajectory τE sampled from πE , initial parameters θ0, and ϕ0 for generator and
discriminator.

2: while True do
3: Sample trajectory τ from πθ.
4: Update discriminator parameter ϕ with gradient

Êτ [logD(s, a)−k

2
D2(s, a)+

k

2
D(s, a)]+ÊτE [log(1−D(s, a))−k

2
D2(s, a)+

k

2
D(s, a)] (31)

5: Update policy generator parameter θ as usual
6: end while

5 EXPERIMENT

In this section, we implement our designed controller in section 4.2 and evaluate its performance in
different environments. Our experiments are based on the IMITATION framework (Gleave et al.,
2022), which provides reliable baselines for imitation learning methods including BC, AIRL, GAIL,
and dataset aggregation (DAgger) (Ross et al., 2011), simulated on various MuJoCo environments
(Todorov et al., 2012). We evaluate and compare the performance of our controlled GAIL on Ant,
Half Cheetah, Hopper, Swimmer, and Walker2d.
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Figure 1: Normalized returns curves for controlled GAIL with k = 0.1, k = 1, and k = 10
on MuJoCo environments, where on the y-axis, 1 represents expert policy return and 0 represents
random policy return

We replicate the exact experimental setup as reported in Gleave et al. (2022) for GAIL, BC, AIRL,
and DAgger baselines. We modify the loss function of GAIL as in section 4.4 and evaluate our
controlled GAIL with the same settings as in GAIL.

Ant Half Cheetah Hopper Swimmer Walker2d
Random −349± 31 −293± 36 −53± 62 3± 8 −18± 75
Expert 2408± 110 3465± 162 2631± 19 298± 1 2631± 112

Controlled GAIL 2411± 21 3435± 50 2636± 8 298± 0 2633± 12
GAIL 2087± 187 3293± 239 2579± 85 295± 3 2589± 121

BC 1937± 227 3465± 151 2830± 265 298± 1 2672± 95
AIRL −121± 28 1837± 218 2536± 142 269± 8 1329± 134

DAgger 3027± 187 1693± 74 2751± 11 344± 2 2174± 132

Table 1: Mean and standard deviation for returns of various IL algorithms and environments
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As shown in figure 1, we evaluate and compare the performance of our controlled GAIL with naive
GAIL for different hyperparameters of controllers with k = 0.1, k = 1, and k = 10. We normalize
the return on the y-axis such that 0 refers to the random policy return and 1 refers to the expert policy
return. The training curves of our controlled GAIL approaches to the expert policy at an earlier stage
than GAIL and have a smaller range of osculations around the expert policy return.

We then compare our controlled GAIL with other IL methods, including BC, AIRL, and DAgger.
From table 1, we can see that in each environment, the mean returns for controlled GAIL are closer
to expert policy returns, and the standard deviations for controlled GAIL are smaller than other IL
methods.

6 CONCLUSION AND DISCUSSION

In this work, 1) we formally establish the issue of unstable training for GAIL with control the-
ory. 2) We formulate GAIL’s training as a dynamic system and design a controller to stabilize and
converge this dynamic system to the desired equilibrium. 3) Our controlled system achieves asymp-
totic stability in theory and successfully speeds up and stabilizes the training process of GAIL in
experiments.

Future Work Even though our controller theoretically and empirically converges and stabilizes
the return of GAIL to expert policy return, we are looking forward to maximizing return in
reinforcement learning. Our controller may restrict the growth of generator policy return by forcing
it to converge to expert policy return. In addition, when transforming GAIL’s training to a dynamic
system in section 2, we consider the training process of GAIL as a continuous dynamic system,
whereas the alternative updating between the generator and the discriminator should be discrete in
practice. Furthermore, we implement our controller only on the loss function of the discriminator
for our evaluation since we are unaware of the expert policy included in the controller for the policy
generator. However, future work can explore estimating the expert policy with numerical methods
and add the controller for the policy generator as well.

Border Impact This work confronts the same social-ethical problem as other imitation learning
methods, such as the potential invasion of privacy when collecting expert data and learning unwanted
or unlawful behaviors from expert data. Additionally, when an agent performs an action that may
be harmful, the legal responsibility is still unclear.
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A APPENDIX

max
D

V1(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))] (32)

min
π

V2(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]. (33)

Lemma A.1. Given that πθ is a parameterized policy. Define the training objective for entropy-
regularized policy optimization as

J(θ) = Eπθ
[r(s, a)]− λEπθ

[− log πθ(a|s)].
Its gradient satisfies

∂

∂θ
J(θ) = Eπθ

[
∂ log πθ(a|s)

∂θ
Qπθ (s, a)] = Eπθ

[
∂ log πθ(a|s)

∂θ
Aπθ

E (s, a)],

where Qπθ (s, a) and Aπθ
E (s, a) are defined as

Qπθ (s, a) := Eπθ
[r(s̄, ā)+λ log πθ(ā|s̄)|s0 = s, a0 = a], Aπθ (s, a) := Qπθ (s, a)−EsQ

πθ (s, a).

Proof.

∂

∂θ
J(θ) =

∂

∂θ
Eπθ

[r(s, a)]− λEπθ
[− log πθ(a|s)]

=
∂

∂θ

∫
ρπθ

(s, a)r(s, a)dads+ λ
∂

∂θ

∫
ρπθ

(s, a) log πθ(a|s)dads

=

∫
∂ρπθ

(s, a)

∂θ
r(s, a)dads+ λ

∫
∂ρπθ

(s, a)

∂θ
log πθ(a|s)dads+ λ

∫
ρπθ

(s, a)
∂ log πθ(a|s)

∂θ
dads

=

∫
∂ρπθ

(s, a)

∂θ
[r(s, a) + λ log πθ(a|s)]dads+ λ

∫
ρπθ

(s)πθ(a|s)
1

πθ(a|s)
∂πθ(a|s)

∂θ
dads

=

∫
∂ρπθ

(s, a)

∂θ
[r(s, a) + λ log πθ(a|s)]dads+ λ

∫
ρπθ

(s)
∂

∂θ

∫
πθ(a|s)dads

=

∫
∂ρπθ

(s, a)

∂θ
[r(s, a) + λ log πθ(a|s)]dads

=
∂Eπθ

[r(s, a) + λ log πθ′(a|s)]
∂θ

|θ′=θ
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The above derivation suggests that we can view the entropy term as an additional fixed reward
r′(s, a) = λ log πθ(a|s). Applying the Policy Gradient Theorem, we have

∂

∂θ
J(θ) = Eπθ

[
∂ log πθ(a|s)

∂θ
Qπθ (s, a)] = Eπθ

[
∂ log πθ(a|s)

∂θ
Aπθ (s, a)],

where Qπθ is similar to the classic Q-function but with an extra “entrophy reward” term.

Lemma A.2. The functional derivative for the optimization objective

V (D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]
satisfies

∂V

∂π
= ρπ(s)A

π(s, a).

where Aπ follows the same definition as in Lemma A.1.

Qπ(s, a) := Eπ[logD(s̄, ā)+λ log π(ā|s̄)|s0 = s, a0 = a], Aπ(s, a) := Qπ(s, a)−EsQ
π(s, a).

Proof. Suppose π is parameterized by θ. The chain rule for functional derivative states

∂V

∂θ
=

∫
∂V

∂π

∂π

∂θ
dads.

According to Lemma A.1, we have

∂V

∂θ
=Eπ[

∂ log π(a|s)
∂θ

Aπ(s, a)]

=

∫
ρπ(s, a)

∂ log π(a|s)
∂θ

Aπ(s, a)dads

=

∫
ρπ(s)

∂π(a|s)
∂θ

Aπ(s, a)dads.

Therefore, we have

∂V

∂π
= ρπ(s)A

π(s, a) = ρπ(s)[Q
π(s, a)− EsQ

π(s, a)].

Proposition A.3. The constrained optimization problem

min
π

V (D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)] s.t.

∫
π(a|s) = 1

does not converge when π = πE and D(s, a) = 1
2 for ∀s, a. Namely,

∂V

∂π
|π(s,a)=πE(s,a),D(s,a)= 1

2
̸= 0.

When π = πE and D(s, a) = 1
2 , we have

Qπ(s, a) =EπE [λ log πE(ā|s̄)− log 2|s0 = s, a0 = a]

=

∞∑
n=0

γn

∫
p(sn = s̄|s0 = s, a0 = a)

∫
πE(ā|s̄)[λ log πE(ā|s̄)− log 2]dāds̄

=−
∞∑

n=0

γn

∫
p(sn = s̄|s0 = s, a0 = a)[λH(πE(·|s̄)) + log 2]ds̄

Aπ(s, a) =Qπ(s, a)− EsQ
π(s, a)

=

∞∑
n=0

γn[p(sn = s̄|s0 = s)− p(sn = s̄|s0 = s, a0 = a)]λH(πE(·|s̄))

11
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According to Lemma A.2,

∂V

∂π
= ρπE

(s)AπE (s, a) = ρπE
(s)AπE (s, a)

Apparently for different actions a1 ̸= a2, we cannot guarantee (sn = s̄|s0 = s, a0 = a1) =
(sn = s̄|s0 = s, a0 = a2). Thus ∂V

∂π is not a constant and relies on action a. We have
∂V
∂π |π(s,a)=πE(s,a),D(s,a)= 1

2
̸= 0.
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