
A Light Label Denoising Method with the Internal Data Guidance

Anonymous ACL submission

Abstract

Samples with incorrect labels are common in001
datasets, even annotated by humans. Some ap-002
proaches have been proposed to alleviate the003
negative impact of mislabeling on the training004
process by removing erroneous data or reduc-005
ing their weights. Unlike previous works, this006
paper introduces a light yet effective denois-007
ing method based on the relationship between008
the samples within the dataset, namely inter-009
nal guidance. We examine the method on five010
datasets with mainstream models. The results011
demonstrate that this light denoising approach012
can obtain consistent improvement for all the013
datasets and models. 1014

1 Introduction015

Machine learning benefits from high-quality la-016

beled data. However, datasets often contain sam-017

ples with erroneous labels (Xiao et al., 2015; Li018

et al., 2017b; Northcutt et al., 2021a) regardless of019

whether they are labeled by humans or automatic020

techniques. Since noisy labels inevitably bring neg-021

ative impacts, the topic of mitigating the influences022

of the erroneous labels has received much attention.023

A series of denoising approaches have been024

proposed to deal with the noisy samples, such025

as removing or modifying some samples (Song026

et al., 2019; Lyu and Tsang, 2019), or assigning027

small weights to noisy labels (Patrini et al., 2017;028

Hendrycks et al., 2018). However, most of these029

methods are designed in a task-specific style, which030

might lead to poor generalization capabilities. An-031

other way of denoising focuses on effective and032

robust representations (Ghosh and Lan, 2021; Cior-033

tan et al., 2021; Fang et al., 2020; Wu et al., 2020).034

For example, contrastive learning leverages data035

augmentation to create similar samples that help036

models to obtain robust representations. However,037

most augmentations only pay attention to one sam-038

1The source code will be released on https://github.com.

ple and its variants but neglect the relations be- 039

tween different samples. 040

Chan et al. (2021) claim that samples in the 041

same class are inherently similar and correlated, 042

and there are apparent differences in samples of 043

different classes. Intuitively, in most situations, 044

two sentences with similar content should be clas- 045

sified into the same class in the text classification 046

task. However, we find that similar samples with 047

the same label are not always assigned to the same 048

class by models correctly. This problem could be 049

more serious when the training data faces a certain 050

level of noise, since the models are only supervised 051

by the labels. It naturally raises the question: in 052

addition to the label supervision, can we seek the 053

guidance from the relationship between the sam- 054

ples in the training process? 055

To offer the internal guidance, this paper firstly 056

proposes a novel representation of texts using 057

weighted contextual information, and then employs 058

the similarity between texts to guide the training 059

process. We conduct experiments on five text clas- 060

sification datasets with two widely-used models. 061

Empirical results show that this light denoising ap- 062

proach can achieve better performance than the ex- 063

isting label denoising methods. After introducing 064

our method, consistent improvements are observed 065

for all datasets and models, especially the tasks 066

without sufficient training data or the datasets with 067

high levels of noise. It should be noted that in our 068

method, both the representation and the guiding 069

process are built upon the dataset itself, without 070

involving any external resources or introducing any 071

extra parameters. Therefore, the internal guidance 072

is light, efficient, and can be easily generalized to 073

other datasets or tasks. 074

2 Related Work 075

Erroneous labels exist in most datasets, whether 076

they are labeled manually or by machines. A 077

straightforward method is reweighting contribu- 078
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tions of samples in loss function from the train-079

ing aspect (Liu and Tao, 2015; Wang et al., 2017,080

2018). However, since these methods depend on081

the manual design of weighting functions, it is dif-082

ficult to apply them to other models and datasets083

with different noisy rates. Another set of studies084

handle the problem by improving the quality of085

datasets. Shen and Sanghavi (2019) and Lyu and086

Tsang (2019) update model parameters by select-087

ing high-confident samples. Chen et al. (2019)088

change the selection process by iteration with two089

models, while Nguyen et al. (2019) leverage self-090

ensembling. Northcutt et al. (2021b) propose con-091

fident learning (Cleanlab) to estimate the joint dis-092

tribution between noisy labels and unknown labels,093

and prune noisy data with probabilistic thresholds.094

However, these methods could possibly waste part095

of the data, since some correct but complex sam-096

ples might be removed. Another concern is time-097

consuming because deleting samples needs to train098

several models or train one model for several times.099

Contrastive learning could help models learn100

generalized and robust representations which could101

alleviate the negative influences of noisy data to102

some extent. One of the most important compo-103

nent in contrastive learning is data augmentation104

which generates positive and negative samples for105

pre-training. Different from computer vision (Chen106

et al., 2020), data augmentation in NLP focuses on107

text modification, e.g., back-translation (Fang et al.,108

2020), word/span deletion (Wu et al., 2020), and109

embedding dropout (Yan et al., 2021; Gao et al.,110

2021). Usually these methods require external cor-111

pora, but it is not easy to obtain suitable corpora for112

some downstream tasks. Meanwhile, contrastive113

learning could not model the relations between dif-114

ferent samples since only a sample and its variants115

are considered similar in data augmentation.116

3 Method117

To illustrate the proposed label denoising method,118

we take text classification task as an example, since119

it is a classical task in NLP, and erroneous la-120

bels are common in the datasets. In text classifi-121

cation, a dataset with n samples can be denoted122

as D = {(x1, y1), (x2, y2), ..., (xn, yn)}, yi ∈123

{c1, c2, ..., cm}, where xi is the i-th input text, yi124

is its label and the dataset contains m categories.125

3.1 Contextual Representation126

Text representation is crucial for modeling the sim-127

ilarities between samples. There are two typical128

ways to compute text similarity in NLP. One is 129

based on symbolic representations, e.g. edit dis- 130

tance (Levenshtein et al., 1966), Jaccard similar- 131

ity coefficient (JSC) (Jain et al., 2017), and Earth 132

mover’s distance (EMD) (Rubner et al., 2000). The 133

other is to represent the texts in dense vectors 134

(Mikolov et al., 2013; Devlin et al., 2019), and 135

then obtain the vector similarities. However, the 136

first method rely too much on the token repetition, 137

and the second method requires representations pre- 138

trained from the external corpus, which might miss 139

the in-domain information within the dataset. Thus, 140

we propose a new contextual representation based 141

on Positive Pointwise Mutual Information (PPMI). 142

Firstly, we count the number of co-occurrences 143

of words in a dataset with a sliding window. The 144

co-occurrence matrix of words can be represented 145

byC, whereCwiwj is the number of a context word 146

wj appears as a neighbor of a center wordwi. Then 147

we calculate the PPMI matrix E of the C: 148

Eij = max(log
P (wi, wj)

P (wi) · P (wj)
, 0) (1) 149

where P (wi), P (wj) and P (wi, wj) are the prob- 150

ability of wi, wj and their co-occurrence in the 151

dataset respectively. Lastly, the vector of Ewi is 152

the representation of word wi. 153

3.2 Word Weight 154

Since different words contribute to the meaning 155

of text differently, we are more interested in the 156

words that are helpful for classification than trivial 157

words that appear in most of the samples, such as 158

a, the and of. Different from Wang and Manning 159

(2012) and Li et al. (2017a), we propose a variant 160

to calculate the weight of word wi in a global view: 161

162
qwi = log

(pwi
c + α)/||pc||1

(pwi
c̃ + α)/||pc̃||1

(2) 163

where c is the class that word wi has the highest 164

frequency, pwi
c is the count of samples that contain 165

word wi in class c, pwi
c̃ is the count of samples that 166

contain word wi in other classes, ||pc||1 is the num- 167

ber of samples in class c and α is a small value for 168

smoothing, e.g., 0.1. Since some rare words only 169

appear several times in the all dataset, they could 170

not reflect the distribution precisely. Therefore, ac- 171

cording to Zipf’s law, we set the weight to 0 when 172

the rank of a word is multiplied by its count beyond 173

the mean plus/minus one standard deviation. 174

3.3 Guiding the Training 175

Given two pieces of text a with d words and b with 176

e words, the similarity is 177
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Tsim(a, b) = cosine(

d∑
i=1

qwiEi,

e∑
j=1

qwjEj) (3)178

Obviously, Tsim(a, b) is always greater than zero.179

In a classification task with m categories, for180

the i-th sample, a model predicts a probability181

distribution of labels which can be denoted as182

li = [li1, li2, ..., lik, ..., lim], where lik > 0 and183 ∑m
k=1 lik = 1. The predicted similarity of two184

samples a and b is calculated by185

Lsim(a, b) = cosine(la, lb) (4)186

In the training phase, the loss function of a batch187

with s samples is188

loss =

s∑
k=1

CE(yk, lk) +

s∑
i=1

s∑
j=1

γ(Tsim(i, j)− Lsim(i, j))2

where γ =

{
1, if Tsim(i, j) > β

0, otherwise
(5)189

where CE means cross entropy and γ is a fac-190

tor to make similar samples prominent, i.e., the191

similarity of two samples will be set to zero when192

Tsim(i, j) ≤ β and β is a small value.193

4 Experiments194

4.1 Datasets and Models195

Five widely used text classification benchmarks196

are selected for our experiments. MR A movie197

review dataset (Pang and Lee, 2005) contains two198

categories. SST-1 Stanford Sentiment Treebank199

(Socher et al., 2013) contains five emotion cate-200

gories. SST-2 A dataset removes the neutral label201

from SST-1, only retaining positive and negative202

emotions. CR A customer review dataset (Hu and203

Liu, 2004) contains two categories. Subj Subjec-204

tivity dataset (Pang and Lee, 2004) consists of the205

sentences with subjective or objective labels.206

Since the approach is model-independent, we207

use two popular models with different architectures.208

TextCNN A simple yet effective model is widely209

used in text classification (Kim, 2014). BERT A210

pre-trained language model with an excellent per-211

formance in text classification (Devlin et al., 2019).212

4.2 Experimental Setup213

For TextCNN, we use the same hyperparameters214

and settings as Kim (2014). For BERT, we use215

[CLS] for classification following Devlin et al.216

(2019), of which dropout rate is set to 0.1 and opti-217

mizer is Adam with learning rate of 2e−5. β is set218

to 0.03, 0.05, 0.05, 0.1 and 0.2 for 0%, 10%, 20%,219

30% and 40% noisy rate respectively.220

Standard test sets are used in SST-1 and SST-2. 221

10-fold cross-validation is used for other datasets. 222

Each experiment is repeated five times with differ- 223

ent random seeds. We finally report the mean of 224

them. All data pre-processing follow Kim (2014). 225

To conveniently observe the denoising perfor- 226

mance of models, we add random noise to clean 227

datasets. A label yi is randomly replaced by a 228

label ŷi with a probability pnoise , where ŷi ∈ 229

{c1, c2, ..., cm} and ŷi 6= yi. Noisy labels are only 230

added to the training set and validation set. The 231

test set is clean and used to evaluate models. 232

4.3 Results and Analysis 233

As shown in Table 1, models do not benefit from 234

Cleanlab in most of the experiments. One possible 235

reason is that these datasets are too small for Clean- 236

lab to delete samples correctly. Actually, North- 237

cutt et al. (2021b) test it on one million samples, 238

and they point out that the larger a dataset is, the 239

more precisely Cleanlab estimates the probability 240

of wrong labels. R-Drop leverages data augmen- 241

tation to enhance representations, while it cannot 242

deal with noisy labels as it only maximizes the KL- 243

divergence of a sample and its variants rather than 244

models the distribution of the whole dataset. In 245

contrast, our method overcomes these drawbacks, 246

which focuses on the intrinsic relation of data and 247

does not need to remove any data. Thus it can 248

perform well and stably even with small datasets. 249

LLD achieves consistent improvement on all 250

datasets and gains more when the noisy rate in- 251

creases. For TextCNN, the margin is notable 252

whether in small datasets or in large datasets. Al- 253

though BERT is pre-trained on a huge corpus, LLD 254

also works when the size of data in downstream 255

tasks is small. It should be noted that LLD ob- 256

tains little advantage with BERT in large datasets 257

(SST1/2) since BERT could be finetuned to acquire 258

a good ability of generalization if there is sufficient 259

data. Meanwhile, we find that pre-trained embed- 260

dings gain little improvement, as the information in 261

PPMI totally comes from datasets which has less 262

noise than embeddings pre-trianed with general 263

corpus in similarity computation, which is similar 264

with the phenomenon observed by Roberts (2016). 265

To compare the similarity metric with those 266

based on explicit representation, e.g., edit distance, 267

JSC and EMD, we compute the coverage of them 268

by averaging the similarity of each sample with 269

others, as shown in Table 2. Considering two sam- 270

ples may not be similar when their similarity is 271
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dataset size model TextCNN BERT
pnoise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

SST1 168672

Baseline 48.61 46.73 45.19 43.95 43.46 55.82 55.68 54.65 54.29 52.93
Cleanlab 48.17 45.24 42.80 43.95 42.23 55.20 53.89 53.79 51.98 51.78
R-Drop - - - - - 55.82 54.85 53.54 53.33 52.35

LLD-DW 49.09 47.54 46.14 45.10 42.50 56.04 54.91 53.71 53.30 51.71
LLD 49.57 47.53 47.11 46.04 45.38 56.60 55.23 54.45 53.8 52.16

SST2 79654

Baseline 87.89 86.43 85.91 83.71 76.45 93.06 92.98 91.46 89.7 78.72
Cleanlab 86.56 84.97 82.35 82.10 67.98 92.38 91.14 90.83 89.02 83.09
R-Drop - - - - - 93.30 92.6 91.23 89.75 82.47

LLD-DW 87.60 86.27 85.32 82.74 74.14 93.57 92.67 90.55 88.30 75.94
LLD 88.22 86.72 86.3 83.63 79.19 93.19 92.67 92.05 89.59 80.51

MR 10662

Baseline 81.34 79.39 78.08 74.79 67.49 86.69 85.27 83.91 79.92 70.58
Cleanlab 79.19 77.30 75.84 72.67 64.98 84.63 83.63 77.22 74.28 61.81
R-Drop - - - - - 87.06 85.42 83.63 78.99 66.89

LLD-DW 81.29 79.54 78.23 75.47 69.27 86.35 85.35 84.32 75.58 67.49
LLD 81.28 79.76 78.39 75.9 70.25 86.87 85.65 84.38 82.22 72.48

CR 3773

Baseline 84.17 82.54 79.18 74.52 65.85 90.96 88.88 87.95 83.24 71.46
Cleanlab 81.09 78.63 75.38 70.07 62.07 79.53 74.76 72.59 65.88 62.10
R-Drop - - - - - 90.85 88.12 84.80 76.9 64.57

LLD-DW 84.12 82.27 79.81 76.08 67.66 90.16 88.97 86.55 81.65 63.11
LLD 83.91 82.29 79.77 75.86 67.51 91.04 89.59 88.02 85.00 73.33

Subj 10000

Baseline 93.17 91.46 90.37 88.35 82.13 96.59 95.50 94.93 93.33 88.98
Cleanlab 91.65 90.19 88.74 86.70 80.97 95.25 94.04 93.46 89.59 78.79
R-Drop - - - - - 96.09 95.20 94.09 92.27 88.02

LLD-DW 93.08 91.70 90.72 89.28 84.88 96.27 95.79 94.72 94.12 89.31
LLD 92.79 91.67 90.68 89.33 86.22 96.44 95.64 95.06 93.96 91.67

Avg. -

Baseline 79.04 77.31 75.75 73.06 67.08 84.62 83.66 82.58 80.10 72.53
Cleanlab 77.33 75.27 73.02 71.10 63.65 81.40 79.49 77.58 74.15 67.51
R-Drop - - - - - 84.62 83.24 81.46 78.25 70.86

LLD-DW 79.04 77.47 76.04 73.73 67.69 84.48 83.54 81.97 78.59 69.51
LLD 79.15 77.59 76.45 74.15 69.71 84.83 83.76 82.79 80.91 74.03

Table 1: Accuracy with different noisy rates. Each result is the mean of five runs. R-Drop is proposed by Liang
et al. (2021) which is based on contrastive learning without external corpus. Since scores are far lower than
baselines, approximately 50% of baselines, when R-Drop is applied to TextCNN, it is unnecessary to show them.
2To compare our method with data modification, we follow the official codes of Cleanlab to select data (Northcutt
et al., 2021b), where all CL methods are tested and C+NR is reported as the best. LLD is a light denoising method
proposed in this paper. LLD-DW uses the same processes with LLD except for replacing PPMI embeddings with
word2vec embeddings. SST training set consists of sentences and phrases according to Kim (2014).

β 0 0.3 0.5
explicit 0.1988 0.0203 0.0201

LLD 0.5109 0.3231 0.2134

Table 2: In SST-1, coverage of none-zero similarity
varies with different beta. Explicit method means that
the similarity is calculated by word overlap.

slightly greater than zero, we use β to filter con-272

fusing samples. The explicit method can hardly273

judge how similar two samples are because only274

19% of sample pairs are given scores greater than275

zero, and most of them actually are near zero when276

we filter them by a small β. However, scores of277

our method could cover a large part of data, which278

helps models classify similar samples into the same279

category which are disturbed by noise.280

2We use the same setting with Liang et al. (2021) and
get the similar result in SST2 with 0% pnoise. However, R-
Drop does not have the ability to overcome the noise in these
datasets, especially applied to TextCNN, although they claim

5 Conclusion 281

In this paper, we introduce a light yet effective 282

denoising method with the guidance within the 283

dataset. The aim is straightforward and intuitive, 284

which is to make similar samples be classified in 285

the same class. We firstly propose a new represen- 286

tation of texts based on weighted contextual infor- 287

mation, and then leverage the similarity of texts 288

to guide the training. Different from removing in- 289

correct data or contrastive learning, this approach 290

is built upon the dataset itself, without involving 291

any external corpus and extra model parameters. 292

The denoising method is model-independent, and 293

we examine it in five classification tasks with two 294

mainstream models. Empirical results illustrate 295

that this light denoising approach can obtain con- 296

sistent improvement on all datasets and models, 297

especially with high levels of noise. 298

R-Drop could help models to get better representations.
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