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Abstract

Samples with incorrect labels are common in
datasets, even annotated by humans. Some ap-
proaches have been proposed to alleviate the
negative impact of mislabeling on the training
process by removing erroneous data or reduc-
ing their weights. Unlike previous works, this
paper introduces a light yet effective denois-
ing method based on the relationship between
the samples within the dataset, namely inter-
nal guidance. We examine the method on five
datasets with mainstream models. The results
demonstrate that this light denoising approach
can obtain consistent improvement for all the
datasets and models. !

1 Introduction

Machine learning benefits from high-quality la-
beled data. However, datasets often contain sam-
ples with erroneous labels (Xiao et al., 2015; Li
et al., 2017b; Northcutt et al., 2021a) regardless of
whether they are labeled by humans or automatic
techniques. Since noisy labels inevitably bring neg-
ative impacts, the topic of mitigating the influences
of the erroneous labels has received much attention.

A series of denoising approaches have been
proposed to deal with the noisy samples, such
as removing or modifying some samples (Song
et al., 2019; Lyu and Tsang, 2019), or assigning
small weights to noisy labels (Patrini et al., 2017;
Hendrycks et al., 2018). However, most of these
methods are designed in a task-specific style, which
might lead to poor generalization capabilities. An-
other way of denoising focuses on effective and
robust representations (Ghosh and Lan, 2021; Cior-
tan et al., 2021; Fang et al., 2020; Wu et al., 2020).
For example, contrastive learning leverages data
augmentation to create similar samples that help
models to obtain robust representations. However,
most augmentations only pay attention to one sam-

!The source code will be released on https:/github.com.

ple and its variants but neglect the relations be-
tween different samples.

Chan et al. (2021) claim that samples in the
same class are inherently similar and correlated,
and there are apparent differences in samples of
different classes. Intuitively, in most situations,
two sentences with similar content should be clas-
sified into the same class in the text classification
task. However, we find that similar samples with
the same label are not always assigned to the same
class by models correctly. This problem could be
more serious when the training data faces a certain
level of noise, since the models are only supervised
by the labels. It naturally raises the question: in
addition to the label supervision, can we seek the
guidance from the relationship between the sam-
ples in the training process?

To offer the internal guidance, this paper firstly
proposes a novel representation of texts using
weighted contextual information, and then employs
the similarity between texts to guide the training
process. We conduct experiments on five text clas-
sification datasets with two widely-used models.
Empirical results show that this light denoising ap-
proach can achieve better performance than the ex-
isting label denoising methods. After introducing
our method, consistent improvements are observed
for all datasets and models, especially the tasks
without sufficient training data or the datasets with
high levels of noise. It should be noted that in our
method, both the representation and the guiding
process are built upon the dataset itself, without
involving any external resources or introducing any
extra parameters. Therefore, the internal guidance
is light, efficient, and can be easily generalized to
other datasets or tasks.

2 Related Work

Erroneous labels exist in most datasets, whether
they are labeled manually or by machines. A
straightforward method is reweighting contribu-



tions of samples in loss function from the train-
ing aspect (Liu and Tao, 2015; Wang et al., 2017,
2018). However, since these methods depend on
the manual design of weighting functions, it is dif-
ficult to apply them to other models and datasets
with different noisy rates. Another set of studies
handle the problem by improving the quality of
datasets. Shen and Sanghavi (2019) and Lyu and
Tsang (2019) update model parameters by select-
ing high-confident samples. Chen et al. (2019)
change the selection process by iteration with two
models, while Nguyen et al. (2019) leverage self-
ensembling. Northcutt et al. (2021b) propose con-
fident learning (Cleanlab) to estimate the joint dis-
tribution between noisy labels and unknown labels,
and prune noisy data with probabilistic thresholds.
However, these methods could possibly waste part
of the data, since some correct but complex sam-
ples might be removed. Another concern is time-
consuming because deleting samples needs to train
several models or train one model for several times.

Contrastive learning could help models learn
generalized and robust representations which could
alleviate the negative influences of noisy data to
some extent. One of the most important compo-
nent in contrastive learning is data augmentation
which generates positive and negative samples for
pre-training. Different from computer vision (Chen
et al., 2020), data augmentation in NLP focuses on
text modification, e.g., back-translation (Fang et al.,
2020), word/span deletion (Wu et al., 2020), and
embedding dropout (Yan et al., 2021; Gao et al.,
2021). Usually these methods require external cor-
pora, but it is not easy to obtain suitable corpora for
some downstream tasks. Meanwhile, contrastive
learning could not model the relations between dif-
ferent samples since only a sample and its variants
are considered similar in data augmentation.

3 Method

To illustrate the proposed label denoising method,
we take text classification task as an example, since
it is a classical task in NLP, and erroneous la-
bels are common in the datasets. In text classifi-
cation, a dataset with n samples can be denoted
as D = {($17y1)7 (1‘2, yQ)v ey (;Un’yn)}ayi S
{c1,¢a, ..., cm }, where x; is the i-th input text, y;
is its label and the dataset contains m categories.

3.1 Contextual Representation

Text representation is crucial for modeling the sim-
ilarities between samples. There are two typical

ways to compute text similarity in NLP. One is
based on symbolic representations, e.g. edit dis-
tance (Levenshtein et al., 1966), Jaccard similar-
ity coefficient (JSC) (Jain et al., 2017), and Earth
mover’s distance (EMD) (Rubner et al., 2000). The
other is to represent the texts in dense vectors
(Mikolov et al., 2013; Devlin et al., 2019), and
then obtain the vector similarities. However, the
first method rely too much on the token repetition,
and the second method requires representations pre-
trained from the external corpus, which might miss
the in-domain information within the dataset. Thus,
we propose a new contextual representation based
on Positive Pointwise Mutual Information (PPMI).

Firstly, we count the number of co-occurrences
of words in a dataset with a sliding window. The
co-occurrence matrix of words can be represented
by C, where C’wiwj is the number of a context word
w; appears as a neighbor of a center word w;. Then
we calculate the PPMI matrix E of the C:

E;; = mam(log%, 0) (1)
where P(w;), P(w;) and P(w;,w;) are the prob-
ability of w;, w; and their co-occurrence in the
dataset respectively. Lastly, the vector of £, is
the representation of word w;.

3.2 Word Weight

Since different words contribute to the meaning
of text differently, we are more interested in the
words that are helpful for classification than trivial
words that appear in most of the samples, such as
a, the and of. Different from Wang and Manning
(2012) and Li et al. (2017a), we propose a variant
to calculate the weight of word w; in a global view:

(e + @)/|lpellx
e+ )/l ?
where c is the class that word w; has the highest
frequency, p%* is the count of samples that contain
word wj in class ¢, p3* is the count of samples that
contain word wj in other classes, ||p.||1 is the num-
ber of samples in class c and « is a small value for
smoothing, e.g., 0.1. Since some rare words only
appear several times in the all dataset, they could
not reflect the distribution precisely. Therefore, ac-
cording to Zipf’s law, we set the weight to 0 when
the rank of a word is multiplied by its count beyond
the mean plus/minus one standard deviation.

qQu; =

3.3 Guiding the Training

Given two pieces of text a with d words and b with
e words, the similarity is



d e
Tsim(a,b) = cosine(z Gw; Es, Z qu; E;)  (3)
i=1 j=1

Obviously, Ty (a,b) is always greater than zero.

In a classification task with m categories, for
the ¢-th sample, a model predicts a probability
distribution of labels which can be denoted as
l, = [lz‘17li2, ...,l,’k,...,lim], where [;;; > 0 and
> opey lic = 1. The predicted similarity of two
samples a and b is calculated by

Lgim(a,b) = cosine(la, lv) )

In the training phase, the loss function of a batch
with s samples is

loss = ZCE(yk, lk) + Z Z’Y(Tezm(%]) - Lsi7n(i7j))2
k=1

i=1 j=1

1,if Toim (,5) > B
where 7 = {O,otherwi(se])
&)
where C'E' means cross entropy and -y is a fac-
tor to make similar samples prominent, i.e., the
similarity of two samples will be set to zero when

Tsim(i,7) < fand (3 is a small value.

4 Experiments

4.1 Datasets and Models

Five widely used text classification benchmarks
are selected for our experiments. MR A movie
review dataset (Pang and Lee, 2005) contains two
categories. SST-1 Stanford Sentiment Treebank
(Socher et al., 2013) contains five emotion cate-
gories. SST-2 A dataset removes the neutral label
from SST-1, only retaining positive and negative
emotions. CR A customer review dataset (Hu and
Liu, 2004) contains two categories. Subj Subjec-
tivity dataset (Pang and Lee, 2004) consists of the
sentences with subjective or objective labels.
Since the approach is model-independent, we
use two popular models with different architectures.
TextCNN A simple yet effective model is widely
used in text classification (Kim, 2014). BERT A
pre-trained language model with an excellent per-
formance in text classification (Devlin et al., 2019).

4.2 Experimental Setup

For TextCNN, we use the same hyperparameters
and settings as Kim (2014). For BERT, we use
[CLS] for classification following Devlin et al.
(2019), of which dropout rate is set to 0.1 and opti-
mizer is Adam with learning rate of 2e7°. /3 is set
to 0.03, 0.05, 0.05, 0.1 and 0.2 for 0%, 10%, 20%,
30% and 40% noisy rate respectively.

Standard test sets are used in SST-1 and SST-2.
10-fold cross-validation is used for other datasets.
Each experiment is repeated five times with differ-
ent random seeds. We finally report the mean of
them. All data pre-processing follow Kim (2014).

To conveniently observe the denoising perfor-
mance of models, we add random noise to clean
datasets. A label y; is randomly replaced by a
label y; with a probability p,.ise , Where y; €
{c1,¢2,...,cm } and y; # y;. Noisy labels are only
added to the training set and validation set. The
test set is clean and used to evaluate models.

4.3 Results and Analysis

As shown in Table 1, models do not benefit from
Cleanlab in most of the experiments. One possible
reason is that these datasets are too small for Clean-
lab to delete samples correctly. Actually, North-
cutt et al. (2021b) test it on one million samples,
and they point out that the larger a dataset is, the
more precisely Cleanlab estimates the probability
of wrong labels. R-Drop leverages data augmen-
tation to enhance representations, while it cannot
deal with noisy labels as it only maximizes the KL-
divergence of a sample and its variants rather than
models the distribution of the whole dataset. In
contrast, our method overcomes these drawbacks,
which focuses on the intrinsic relation of data and
does not need to remove any data. Thus it can
perform well and stably even with small datasets.
LLD achieves consistent improvement on all
datasets and gains more when the noisy rate in-
creases. For TextCNN, the margin is notable
whether in small datasets or in large datasets. Al-
though BERT is pre-trained on a huge corpus, LLD
also works when the size of data in downstream
tasks is small. It should be noted that LLD ob-
tains little advantage with BERT in large datasets
(SST1/2) since BERT could be finetuned to acquire
a good ability of generalization if there is sufficient
data. Meanwhile, we find that pre-trained embed-
dings gain little improvement, as the information in
PPMI totally comes from datasets which has less
noise than embeddings pre-trianed with general
corpus in similarity computation, which is similar
with the phenomenon observed by Roberts (2016).
To compare the similarity metric with those
based on explicit representation, e.g., edit distance,
JSC and EMD, we compute the coverage of them
by averaging the similarity of each sample with
others, as shown in Table 2. Considering two sam-
ples may not be similar when their similarity is



dataset size model TextCNN BERT
Pnoise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
Baseline | 48.61 46.73 45.19 4395 4346 | 55.82 55.68 54.65 5429 5293
Cleanlab | 48.17 4524 4280 4395 4223 | 5520 53.89 53.79 5198 51.78
SST1 168672 R-Drop - - - - - 55.82 54.85 53.54 5333 5235
LLD-DW | 49.09 47.54 46.14 45.10 4250 | 56.04 5491 53.71 53.30 51.71
LLD 49.57 4753 47.11 46.04 4538 | 56.60 5523 5445 538 52.16
Baseline | 87.89 86.43 8591 83.71 7645 | 93.06 9298 9146 89.7 78.72
Cleanlab | 86.56 84.97 8235 82.10 6798 | 9238 91.14 90.83 89.02 83.09
SST2 79654 R-Drop - - - - - 9330 92.6 9123 89.75 8247
LLD-DW | 87.60 86.27 85.32 8274 74.14 | 93.57 92.67 90.55 88.30 75.94
LLD 88.22 86.72 863 83.63 79.19 | 93.19 92.67 92.05 89.59 80.51
Baseline | 81.34 79.39 78.08 7479 67.49 | 86.69 85.27 8391 7992 70.58
Cleanlab | 79.19 77.30 75.84 72.67 6498 | 84.63 83.63 77.22 7428 61.81
MR 10662 R-Drop - - - - - 87.06 8542 83.63 78.99 66.89
LLD-DW | 81.29 79.54 78.23 7547 69.27 | 8635 8535 84.32 7558 6749
LLD 81.28 79.76 7839 759 70.25 | 86.87 85.65 84.38 82.22 72.48
Baseline | 84.17 82.54 79.18 7452 6585 | 9096 88.88 87.95 83.24 71.46
Cleanlab | 81.09 78.63 75.38 70.07 62.07 | 79.53 7476 72.59 65.88 62.10
CR 3773 R-Drop - - - - - 90.85 88.12 8480 769 64.57
LLD-DW | 84.12 8227 79.81 76.08 67.66 | 90.16 8897 86.55 81.65 63.11
LLD 8391 8229 79.77 75.86 67.51 | 91.04 89.59 88.02 85.00 73.33
Baseline | 93.17 9146 90.37 8835 82.13 | 96.59 9550 9493 9333 8898
Cleanlab | 91.65 90.19 88.74 86.70 8097 | 9525 94.04 9346 89.59 78.79
Subj 10000 R-Drop - - - - - 96.09 9520 94.09 9227 88.02
LLD-DW | 93.08 91.70 90.72 89.28 84.88 | 96.27 95.79 9472 9412 89.31
LLD 92.79 91.67 90.68 89.33 86.22 | 96.44 95.64 95.06 93.96 91.67
Baseline | 79.04 7731 75775 73.06 67.08 | 84.62 83.66 82.58 80.10 72.53
Cleanlab | 77.33 7527 73.02 71.10 63.65 | 81.40 7949 77.58 74.15 67.51
Avg. - R-Drop - - - - - 84.62 8324 8146 78.25 70.86
LLD-DW | 79.04 77.47 76.04 73773 67.69 | 8448 8354 81.97 78.59 69.51
LLD 7915 7759 7645 7415 69.71 | 84.83 83.76 82.79 8091 74.03

Table 1: Accuracy with different noisy rates. Each result is the mean of five runs. R-Drop is proposed by Liang
et al. (2021) which is based on contrastive learning without external corpus. Since scores are far lower than
baselines, approximately 50% of baselines, when R-Drop is applied to TextCNN, it is unnecessary to show them.
2To compare our method with data modification, we follow the official codes of Cleanlab to select data (Northcutt
et al., 2021b), where all CL methods are tested and C+NR is reported as the best. LLD is a light denoising method
proposed in this paper. LLD-DW uses the same processes with LLD except for replacing PPMI embeddings with
word2vec embeddings. SST training set consists of sentences and phrases according to Kim (2014).

B 0 0.3 0.5
explicit | 0.1988 | 0.0203 | 0.0201
LLD | 0.5109 | 0.3231 | 0.2134

Table 2: In SST-1, coverage of none-zero similarity
varies with different beta. Explicit method means that
the similarity is calculated by word overlap.

slightly greater than zero, we use 3 to filter con-
fusing samples. The explicit method can hardly
judge how similar two samples are because only
19% of sample pairs are given scores greater than
zero, and most of them actually are near zero when
we filter them by a small 5. However, scores of
our method could cover a large part of data, which
helps models classify similar samples into the same
category which are disturbed by noise.

>We use the same setting with Liang et al. (2021) and
get the similar result in SST2 with 0% pr.0ise. However, R-
Drop does not have the ability to overcome the noise in these
datasets, especially applied to TextCNN, although they claim

5 Conclusion

In this paper, we introduce a light yet effective
denoising method with the guidance within the
dataset. The aim is straightforward and intuitive,
which is to make similar samples be classified in
the same class. We firstly propose a new represen-
tation of texts based on weighted contextual infor-
mation, and then leverage the similarity of texts
to guide the training. Different from removing in-
correct data or contrastive learning, this approach
is built upon the dataset itself, without involving
any external corpus and extra model parameters.
The denoising method is model-independent, and
we examine it in five classification tasks with two
mainstream models. Empirical results illustrate
that this light denoising approach can obtain con-
sistent improvement on all datasets and models,
especially with high levels of noise.

R-Drop could help models to get better representations.
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