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ABSTRACT

We introduce a training objective for continuous normalizing flows that can be
used in the absence of samples but in the presence of an energy function. Our
method relies on either a prescribed or a learnt interpolation ft of energy functions
between the target energy f1 and the energy function of a generalized Gaussian
f0(x) = ||x/σ||pp. The interpolation of energy functions induces an interpolation
of Boltzmann densities pt ∝ e−ft and we aim to find a time-dependent vector
field Vt that transports samples along the family pt of densities. The condition of
transporting samples along the family pt can be translated to a PDE between Vt

and ft and we optimize Vt and ft to satisfy this PDE.

1 INTRODUCTION

We consider the task of estimating the expectation value Ex∼p[O(x)] of some observable O, under
a probability density p proportional to the unnormalized density e−f , where f : Rn → R is a given
energy function. In particular, we don’t have access to true samples from p, all we have is the ability
to evaluate f and its derivatives for any x ∈ Rn. A popular technique (Boyda et al., 2021; Albergo
et al., 2021a;b; 2022; Abbott et al., 2022; de Haan et al., 2021; Gerdes et al., 2022; Noé et al., 2018;
Köhler et al., 2020; Nicoli et al., 2020; 2021) for attacking this problem is to use a normalizing
flow to parametrize a variational density qθ and optimize the parameters θ to minimize the reverse
KL-divergence

KL[qθ, p] = Ex∼qθ

[
log qθ(x)− log p(x)

]
= Ex∼qθ

[
log qθ(x) + f(x)

]
+ Z. (1)

The use of normalizing flows for this problem is particularly attractive because qθ can be used
as a proposal for importance sampling, Ex∼p[O(x)] = Ex∼qθ

[
p(x)
qθ(x)

O(x)
]
, to account for the

inaccuracies of qθ.

Unfortunately, the reverse KL-divergence is mode-seeking, making the training prone to mode-
collapse (Fig. 1). We propose an alternative training objective based on infinitesimal deformations
of Boltzmann densities (Pfau & Rezende, 2020; Máté & Fleuret, 2022). The contributions of this
work can be summarised as follows.

• In §3 we describe our method which relies on either a prescribed or a learnt interpolation ft
of energy functions between the target energy f1 and the energy function of a generalized
Gaussian f0(x) = ||x/σ||pp. Given ft we optimize a vector field Vt to transport samples
along the family pt(x) ∝ e−ft(x) of Boltzmann densities. After translating this condition
to a PDE between Vt and ft we propose to minimize the amount by which this PDE fails
to hold.

• In §4 we run experiments on the Boltzmann densitiy of a quantum particle moving in a
double-well potential and report improvements in KL-divergence, effective sample size,
and mode coverage.

Consider the following multimodal density

1

3

(
2N ([−8 −8] , 1) +N ([4 4] , 1)

)
, (2)
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where N (µ, σ) denotes a normal density centered at µ with covariance matrix diag(σ2). Fig. 1
shows the mode-collapse of a normalizing flow trained with the reverse KL-divergence on this target.

Figure 1: Mode-seeking nature of the reverse KL-divergence. The figures from left to right show
how the latent gaussian is transformed by the continuous normalizing flow trained with the reverse
KL objective. The green blobs denote the target density (2), a mixture of two Gaussians.

2 BACKGROUND

Boltzmann densities. Let f : Rn → R be an energy function with a finite normalizing con-
stant Z =

∫
e−f(x)dnx. The function f then induces a Boltzmann density over the configurations

x ∈ Rn, p(x) = 1
Z e−f(x). Conversely, given a probability density function p : Rn → R+,0 the

corresponding energy function can be recovered up to a constant f = − log p− logZ.

The deformation equation. A probability density p0 ∝ e−f0 and a one-parameter family of vec-
tor field Vt generates a one-parameter family of probability densities pt ∝ e−ft simply by following
the integral curves of Vt. Conversely, given a one-parameter family of probability densities pt, we
are interested in finding the transport field or deformation field Vt. Once Vt is found, it can be used
to transform samples between different members of the family pt. Either way, the families ft and Vt

are related by
∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + Ct = 0, (3)

where Ct is a spatially constant function, i.e. it only depends on time. We refer the reader to the
works of Pfau & Rezende (2020, Eq. 6) and Máté & Fleuret (2022, Eq. 16) for details.

3 APPROXIMATING THE TRANSPORT FIELD

From here on, we will use the vector field Vt and the term “continuous normalizing flow” inter-
changably. Our goal is to sample from a target Boltzmann density ptarget ∝ e−ftarget by

1. defining a family of energy functions ft, 0 ≤ t ≤ 1 interpolating between the target energy
f1 = ftarget and the energy function of a generalized Gaussian f0(x) = ||x/σ||pp,

2. finding a transport field Vt such that (ft, Vt) “solves” the deformation equation (3).

If we succeed at both of these constructions, then we can obtain samples from ptarget by sampling
from p0 ∝ e−||x/σ||pp and let the samples follow the integral curves of Vt from t = 0 to t = 1.

Regarding the second item of the above list, an analytical expression for Vt is not easy to find if we
are given a family of energy functions ft. This would amount to solving (3), which is difficult in
general. Therefore we will parametrise Vt with a neural network and train it to minimize the amount
by which the pair (ft, Vt) fails to satisfy the deformation equation (3). In what follows, V θ

t and Cθ
t

are parametrized by neural networks and are optimized to minimize some monotonically increasing
function L1 of the pointwise deformation error

Eθ,x,t = |∂tft(x) + ⟨∇ft(x), V
θ
t (x)⟩ − ∇ · V θ

t (x) + Cθ
t |. (4)

The expression L(Eθ,x,t) measures the incompatibility of ft and Vt at a single (t, x) pair of coordi-
nates, we will need to optimize some sort of integral of this pointwise error over t and x.

1In our experiments we tried L : R+ → R+ ∈ {|E| 7→ |E|, |E| 7→ |E|2, |E| 7→ |E| + |E|2, |E| 7→
log(1 + |E|)}.
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The deformation loss. Suppose that we have an interpolation of energy functions ft. We propose
to train V θ

t and Cθ
t to minimize the deformation error (4) along the trajectories of V θ

t . Formally, let
qθ be a parametric density parametrized by a continuous normalizing V θ

t . We update the parameters
to minimalize the integral of L(Eθ,x,t) along the trajectories of the flow,

L(θ) = Ez∼B

[∫ 1

0

L
(
Eθ,γθ

t (z),t

)
dt

]
, (5)

where B denotes the base distribution and γθ
τ (z) is given by transporting z along the V θ

t between 0
and τ . The standard deviation of the base is an important hyperparameter, its role can be explained
as follows. Ideally, we would like to minimize the deformation error everywhere in space, but we
can only evaluate it along the trajectories of V θ

t . To provide better coverage, we can increase the
standard deviation of the base density during training.

Parametrizing the interpolation. We use a neural network to parametrize the interpolation ft as

ft(x) = (1− t)f0(x) + tf1(x) + t(1− t)fθ
t (x), 0 ≤ t ≤ 1, (6)

where fθ
t is parametrized by a neural network. This parametrization ensures that the boundary

conditions at t ∈ {0, 1} are satisfied, and allows for flexibility for 0 < t < 1. The parameters of
the interpolation are trained together with the those of the flow (and those of Ct) with the objective
of minimizing the deformation loss. Fig. 2 shows that this flexibility allows a flow trained with the
deformation loss to capture both modes of the distribution (2).

Figure 2: The same continuous normalizing flow as in Fig. 1 trained with the deformation loss using
the trainable interpolation. The green blobs denote the (unnormalized) target density (2), a mixture
of two Gaussians. The top row shows how the target density evolves under the learned interpolation,
while the bottom row shows how the samples from qθ evolve along Vt as t is varied.

4 QUANTUM PARTICLE IN A DOUBLE-WELL POTENTIAL

In this section we consider the trajectory of a quantum mechanical particle moving in a double-well
potential. The action associated to a discretised trajectory (ϕ1, ... , ϕN ) is

S(ϕ1, ... , ϕN ) =

N∑
i=1

(
(ϕi − ϕi+1)

2 + V (ϕi),
)
, V (ϕi) = −mϕ2

i + λϕ4
i (7)

where m and λ are numerical parameters and the subscript i+1 is to be understood modulo N . The
Boltzmann density then reads

e−S(ϕ1, ... ,ϕN ) =

N∏
i=1

e−(ϕi−ϕi+1)
2

N∏
i=1

e−V (ϕi). (8)

In all our experiments N = 16, λ = 1/16 and m ∈ {0.25, 0.50, 0.75, 1.00}. In all cases, the
one-dimensional Boltzmann density e−V (ϕ) has two modes. Their separation is controlled by m.
Intuitively, the second term in (8) encourages every node to follow the unnormalized density e−V (ϕ)

at every lattice site, while the first one penalizes neighbors that differ too much (i.e. jump between
the modes of e−V (ϕ)).
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Performance metrics. To quantify the results of the experiments, for each model we report a
subset of the following metrics. For all runs we report the reverse KL-divergence (minus logZ),
Ex∼qθ (log qθ(x)− log p(x)) and the effective sample size,

ESSr =

(
1
N

∑
i p(xi)/qθ(xi)

)2
1
N

∑
i(p(xi)/qθ(xi))2

, xi ∼ qθ, (9)

where N is the number of samples. These metrics capture how good a fit qθ is for p, but only in
those regions from which samples are available. They are therefore insensitive to mode collapse.
To compensate for this, we compute the Hausdorff distance between the means of the modes M =
{m1, ...,mk} and a batch of N samples X = {x1, ...xN} from the model,

H(M,X) = max
m∈M

min
x∈X

√
||m− x||2. (10)

The means are given (ϕ1, ϕ2, ..., ϕN ) = (a, a, ..., a) and (ϕ1, ϕ2, ..., ϕN ) = (b, b, ..., b) where a
and b are the two local minima of the double-well potential V (ϕ) = −mϕ2 + λϕ4. The Haus-
dorff distance is a good metric for measuring mode coverage but is insensitive to the shape of the
distributions.

Experiments. The quantitative results of our runs are summarized in Table 1. In Figure 3 we
compare e−V (ϕ) to the histogram of flattened samples from the trained models.

m = 0.25 m = 0.50

H(M,X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M,X) ↓ Rev. KL ↓ Rev. ESS ↑
KL(qθ, p) 1.074± .02 −9.777± .00 0.984± .00 0.879± .01 −18.70± .01 0.959± .00
Def. Loss 1.063± .02 −9.781± .00 0.996± .00 0.864± .01 −18.71± .00 0.987± .00

m = 0.75 m = 1.00

H(M,X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M,X) ↓ Rev. KL ↓ Rev. ESS ↑
KL(qθ, p) 16.59± .17 −36.18± .00 0.958± .01 20.13± .09 −62.82± .00 0.961± .01
Def. Loss 0.755± .02 −36.88± .00 0.967± .02 0.695± .02 −63.51± .00 0.963± .01

Table 1: Results of training the same flow with two different objectives: the reverse KL-divergence
and the deformation loss with the trainable interpolation. Mean and standard deviation values over
3 seeds are reported.
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Figure 3: Mode collapse of the reverse KL-divergence for higher values of m. The unnormalized
density p(ϕ) ∝ e−V (ϕ) (blue curve), compared to flattened samples ϕi (orange histogram). Note
that these two densities are were only supposed to perfectly match, if the ϕi at different time-steps
were independent of each other, i.e. if (8) didn’t involve the term comparing consecutive time-steps.
In our setup, these plots can only be used to detect mode-collapse of the flow.

5 CONCLUSION

We introduced an alternative training objective of continuous normalizing flows that uses an interpo-
lation of energy functions. We’ve demonstrated empirically that the proposed objective outperforms
the reverse KL-divergence when the target density has multiple modes.
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Michael S. Albergo, Gurtej Kanwar, Sé bastien Racanière, Danilo J. Rezende, Julian M. Urban,
Denis Boyda, Kyle Cranmer, Daniel C. Hackett, and Phiala E. Shanahan. Flow-based sampling for
fermionic lattice field theories. Physical Review D, 104(11), dec 2021b. doi: 10.1103/physrevd.
104.114507. URL https://doi.org/10.1103%2Fphysrevd.104.114507.

Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Sébastien
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A IMPLEMENTATION AND TRAINING DETAILS

Every trainable object in our experiments is parametrized by a weighted sum of MLPs. The weight-
ing is done by evenly spaced RBF time-kernels, one for each model. Importantly, our architecture
is completely oblivious to the Z2 ⋉ Cn-symmetry of the ϕ4 theory and computes the divergence
numerically. We leave the exploitation of symmetries and the use of architectures with analytic
expressions for the divergence of Vt (Köhler et al., 2020; Gerdes et al., 2022), as well as for ∇ft
and ∂tft, for future work. The choices of hyperparameters are given in Table 2. Everything was
implemented in JAX (Bradbury et al., 2018) and executed on one of eight A100 GPUs.

number of RBF-kernels in time 8
hidden layers per model 3
neurons per hidden layer 128

activation function swish

base distribution ∝ e−(x/2)4

bath size during training 256
batch size during evaluation 4096

number of train steps 104

initial learning rate 10−3

number of integration steps 50
deformation loss |Edef |+ |Edef |2

Table 2: Hyperparamers and desing choices for our experiments. The learning rate was initialized
to the value shown in the table and annealed to 0 following a cosine schedule.

Computational costs To optimize the “baseline” reverse KL objective one needs a parametriza-
tion of Vt and to integrate ∇ · Vt along the trajectories. In addition to this, the deformation loss
also needs a parametrization for Ct and one for ft and to integrate an expression depending on
∇·Vt, ∂tf,∇f and Ct. This means that the same number of training steps are more expensive com-
putationally when using the deformation loss. The experiments lasted ∼ 1.85-times longer when
using the deformation loss instead of KL-divergence.
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