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Abstract

Synthetic data generation for tabular datasets requires a balance of fidelity, ef-
ficiency, and adaptability to address real-world applications. We present a syn-
thetic data framework based on the Tabular Auto-Regressive Generative Network
(TabularARGN), a flexible architectural framework for modeling tabular data.
TabularARGN learns the joint distribution of tabular features by training on en-
coded representations of the original data and using randomly sampled variable
orderings to fit an auto-regressive model. This design naturally supports condi-
tional sampling across arbitrary feature subsets, enabling use cases such as class
rebalancing, missing value imputation, and controllable sampling strategies. Al-
though the architectural flexibility of the framework allows for these extensions,
our focus in this work is on evaluating the fidelity and efficiency of the generated
data. We demonstrate state-of-the-art utility performance with low computational
overhead across established benchmarks, making TabularARGN a practical so-
lution for scalable tabular data generation. The framework code is available at
https://github.com/mostly-ai/mostlyai-engine.

1 Introduction

Deep neural networks enable the modeling of complex distributions of original data by capturing
its underlying patterns, dependencies, and relationships. This capability forms the foundation of
synthetic data generation, where models are trained to produce samples that are structurally consistent,
statistically representative, and novel. Synthetic data has emerged as a powerful tool for privacy-
preserving data sharing and analysis. Beyond privacy, it has potential for scaling data volume,
addressing class imbalance, imputing missing values, and supporting fairness-aware evaluations
[van der Schaar et al., 2021]. Although not all of these use cases are explored in this work, they
highlight the versatility that synthetic data generation frameworks must support [van Breugel and
van der Schaar, 2023].

Despite significant progress in tabular data synthesis, most existing approaches are narrowly tailored
to specific data regimes. Many methods focus on flat, i.i.d. tabular datasets using GANs [Park et al.,
2018, Xu et al., 2019, Zhao et al., 2021, Qian et al., 2023, Li et al., 2023, Zhao et al., 2024] or
VAEs [Akrami et al., 2022, Liu et al., 2023], while others target time-series synthesis with sequence
models [Yoon et al., 2019, Lin et al., 2020, Desai et al., 2021, Zhicheng et al., 2024, Yuan and Qiao,
2024, Suh et al., 2024]. Approaches for multi-table synthesis remain comparatively scarce and are
often designed for predictive tasks [Fey et al., 2023]. As a result, few solutions can accommodate the
diversity of real-world tabular data within a unified framework.

In this work, we introduce a simple and flexible generative modeling approach capable of handling
a wide variety of tabular data structures and types. Our framework supports flat and sequential
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tables, accommodates mixed-type features, including categorical, numerical, datetime, geolocation,
and text fields and can model multi-table scenarios with arbitrary relationships. To ensure privacy,
training incorporates regularization, early stopping, value range constraints, and can optionally apply
differentially private stochastic gradient descent (DP-SGD) for formal privacy guarantees [Dwork
et al., 2014, Abadi et al., 2016]. Rather than relying on architectural complexity, the framework
leverages a modular design that enables broad adaptability. In this paper, we focus our evaluation
on two settings: single-table generation for flat data and a multi-table scenario involving two linked
tables, one of which contains sequential records. We assess the performance of our model by
comparing it to established baselines using low-order marginal distributions as a proxy for data
fidelity, along with runtime efficiency. Additionally, we report results under differential privacy
constraints to highlight our framework’s practical trade-offs between privacy and utility. We also
provide a tested and maintained reference implementation of TabularARGN under a fully permissive
Apache v2 Open Source license2.

2 TabularARGN Framework

In this section, we introduce TabularARGN, an auto-regressive generative model framework designed
for flexible and scalable tabular data synthesis. The framework supports any-order (column-order
agnostic) training and sampling along the column dimension, enabling it to adapt to a variety of
conditional generation tasks, including data imputation and generating datasets where some variables
are already provided.

2.1 Model Overview

In the simplest scenario, we are given a d-dimensional tabular dataset of n observations, where rows
represent independent and identically distributed (i.i.d.) records, and each variable corresponds to
a column in the dataset. Prior to training, we pre-process the original records to derive a privacy-
aware representation of the data domain. For categorical columns, infrequent values are grouped
into a common category. Numerical features are either binned into percentiles or decomposed into
individual digits, while datetime values are broken down into components such as year, month, and
day. To reduce sensitivity to outliers, numerical and datetime ranges are clipped. Geospatial data,
represented by latitude and longitude, is encoded as sequences of quad-tiles. As a result, each original
column is transformed into one or more categorical sub-columns, which serve as inputs to the model.

Let D denote the total number of sub-columns in the pre-processed dataset. During training, the
model employs an auto-regressive mechanism that factorizes the joint distribution p(x) of a record
x ∈ RD using the chain rule:

p(x) =

D∏
i=1

p(xi | x1, . . . , xi−1).

This reduces joint density estimation to a series of simpler conditional predictions. To support flexible
conditioning, we adopt an any-order training scheme that randomly permutes column orderings for
each training batch. This strategy enables the model to learn conditional distributions over arbitrary
feature subsets, that is a key requirement for tasks such as imputation, conditional sampling, and
fairness-aware generation.

Architecture. The model architecture consists of three main components: an embedding layer, a
regressor block, and a predictor layer. Each sub-column is assigned an embedding whose dimension
is heuristically determined based on its cardinality. These embeddings are concatenated into a single
feature vector. A permutation masking layer then zeroes out entries not permitted by the current auto-
regressive context, based on a randomly sampled feature ordering. Each regressor is implemented as
a feed-forward neural network with ReLU activations and dropout regularization. The predictor layer
applies a softmax transformation to produce a probability distribution over the valid categories, with
output dimensionality matching the feature’s cardinality. An illustrative example of the architecture
is provided in Appendix A.

2https://github.com/mostly-ai/mostlyai-engine
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Training. TabularARGN is trained to minimize the sum of categorical cross-entropies across all
sub-columns. With randomly sampled feature orderings, this corresponds to minimizing the expected
negative log-likelihood:

max
θ

Eσ∈Uniform(SD)

[
D∑
i=1

log pθ
(
xσ(i) | xσ(<i)

)]
,

where σ is a random permutation over the D features. Teacher forcing is used during training, with
ground-truth values from preceding features provided as inputs. This setup naturally casts training as
a multi-task prediction problem, one per sub-column. To ensure efficient convergence, we monitor
validation loss at each epoch on a held-out split. We apply a learning rate scheduler with patience
when progress stalls, and training stops when further reductions yield no improvement. The model
parameters with the lowest validation loss are retained as the final checkpoint.

2.2 Extension to Sequential Tables

For sequential tables, TabularARGN extends its auto-regressive modeling across the time dimension.
It estimates conditional probabilities of the form:

p̂xj ,t=T (xj | xi<j,t=T ,H0:T−1),

where H0:T−1 denotes the encoded history of all previous time steps. It uses an LSTM-based encoder
to capture the history of previous time steps, applying a causal temporal shift to ensure proper
auto-regressive conditioning. The encoded history is combined with masked current-step sub-column
embeddings to condition predictions at each time step.

Training proceeds similarly to the flat table scenario, but the loss is aggregated across both columns
and time steps, treating each feature at each time step, x(t)

i , as a separate predictive task. This enables
TabularARGN to model complex temporal dependencies while maintaining flexibility.

The model supports sequences of arbitrary and irregular lengths without requiring equidistant time
steps or specific timestamp formats and allowing it to model both time series and unordered event
sequences. A diagram and further architectural details are provided in Appendix B.

2.3 Conditional Sequence Generation

TabularARGN supports multi-table setups, where specific tables are generated conditionally based
on related tables previously defined as parent tables or context. In this work, we focus on a simple
two-table scenario involving a sequential table linked to a flat table. In this setting, the model
generates each sequential record conditioned not only on column values and time-series history,
but also on the associated flat-table row, which provides time-independent context (e.g., a customer
profile linked to their transaction history).

A context processor module encodes the flat table into a context embedding ccontext, which is concate-
nated with the column and history embeddings of the sequential table. The full input to the regressor
at time step t = T for feature j is then

[
exi<j ;t=T ,H0:T−1, ccontext

]
, where i, j = 1, . . . , D and exi

is the embedding corresponding to xi. This pipeline is described in more detail in Appendix B, and
depicted in Figure 3.

In a two-table setup, the flat and sequential tables can be trained independently. However, during
generation, the flat table must be sampled first to provide context for the sequential model. In
this sense, the auto-regressive approach is extended along the table dimension, complementing its
application across columns and time.

3 Empirical Results

We evaluate the performance of TabularARGN through a comparative study against state-of-the-art
(SOTA) baselines. This section focuses on two scenarios: a single flat-table setting and a two-table
setting involving linked sequential data. For each case, we select a representative dataset and report
results in terms of data quality and computational efficiency.
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Figure 1: Training time (top) and accuracy (bottom) for the flat Adult (left) and sequential Baseball
(right) datasets. Values are averaged over three or more runs; error bars indicate min/max. Tabu-
larARGN is shown both with and without DP training.

Data quality is assessed using low-order statistics that capture univariate and bivariate marginal
accuracy, along with a coherence metric for sequential data. Our evaluation metrics follow the
approach proposed in Sidorenko et al. [2025]. A detailed description of these metrics is provided in
Appendix D. In addition to quality metrics, we report runtime for all models. Core results for the flat
and sequential datasets appear in Figure 1, with extended benchmarks presented in Appendix E.

We also include results for TabularARGN trained with DP-SGD. Although a comprehensive study of
privacy guaranties is beyond the scope of this work, these results illustrate that good performance
can be retained even under strong privacy constraints, as discussed in Sidorenko and Tiwald [2025].
Further experimental details, including information about datasets and benchmarks for both scenarios,
are provided in Appendix C.

Flat Tables We conducted experiments on the Adult dataset [Dua and Graff, 2019], a census dataset
comprising 48k rows with eight categorical and six numerical variables. As baseline models, we
include CTGAN [Xu et al., 2019], STaSy [Kim et al., 2023], TabSyn [Zhang et al., 2024], TabMT
[Gulati and Roysdon, 2023], and Unmasking Trees [McCarter, 2024].

Results are shown in Figure 1, left. Notably, our model is on-a-par with TabSyn and TabMT, which
achieve top accuracy, while outperforming all baselines in terms of runtime. We note that when
employing DP-SGD(ε ∼ 2.5), accuracy drops slightly and runtime increases modestly, yet remains
far below that of other methods.

Sequential Tables For the sequential table scenario we use the Baseball dataset [Lahman, 2023],
which comprises a flat table that serves as context for a second sequential table. We compare
TabularARGN to REalTabFormer [Solatorio and Dupriez, 2023], RC-TGAN [Gueye et al., 2023],
and ClavaDDPM [Pang et al., 2024].

Results are displayed in Figure 1, right. We observe that TabularARGN outperforms all baselines by
nearly 10 percentage points in terms of accuracy. In terms of runtime we remain the top performing
model along with ClavaDDPM.

4 Conclusion

We introduced TabularARGN, an auto-regressive framework for generating synthetic data from flat
and sequential tables. Its modular design supports flexible conditional generation, enabling use cases
such as rebalancing, imputation, and sequence modeling. Empirical results show that the model
delivers competitive data quality with strong runtime performance, making it a practical tool for
synthetic data generation in real-world analytical workflows.
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A The Flat Table Model

This appendix illustrates the flat table model in TabularARGN using a simplified three-column
example and accompanying architecture diagram, shown for a particular training batch where the
column order is fixed as x1, x2, x3.

In a three-column example (see fig. 2a), the regressor for column x1 receives a vector of zeros,
0[ex1

,ex2
,ex3 ]

, with dimensions matching [ex1
, ex2

, ex3]. The regressor for column x2 receives[
ex1 ,0ex2

,0ex3

]
, where 0ex2

and 0ex3
represent zero vectors of sizes equal to ex2 and ex3 , re-

spectively. The regressor for column x3 receives
[
ex1

, ex2
,0ex3

]
, allowing it to condition on the

embeddings of both preceding columns.

Outputs of the regressor layers are passed through predictor layers—dense layers with softmax
activation that output conditional probabilities. Each predictor’s output size matches the cardinality
of its corresponding feature.

During generation (see fig. 2b), a zero vector initializes the process. Given a selected feature order
(defaulting to the original), the model predicts the distribution of the first feature, samples a category,
embeds it, and passes it to the next regressor. This process continues sequentially, with each feature
conditioned on embeddings of all previously sampled features, generating one row feature by feature.

B The Sequential Table Model

For sequential tables, TabularARGN estimates conditional probabilities of the form:

p̂xj ,t=T (xj | xi<j,t=T ,H0:T−1),

where H0:T−1 denotes the encoded history of all previous time steps (see blue part in fig. 3). This
history is produced by an LSTM-based encoder Hochreiter and Schmidhuber [1997], which receives
temporally shifted embeddings of all sub-columns from t = 0 to T − 1. The sequence is padded at
the beginning (t = 0), and the final time step (t = T ) is excluded from the encoder input.

The resulting history vector is concatenated with masked feature embeddings at t = T and passed to
the column-specific regressors, enabling conditioning on both time and feature dimensions.

(a) (b)

Figure 2: (a) Model components and information flow in the training phase of a three-column
TabularARGN flat model with the current column order [1,2,3]. Input features xi are embedded and
sent through the permutation masking layer to condition predictions on preceding columns. The
permutation masking layer randomly shuffles the column order for each training batch. (b) Model
components and information flow in the generation phase. The input to the model and starting point
of the generation is a vector of zeros (blue) triggering the successive generation of synthetic features.
Due to the permutation of column orders during training, any column order can be realized in the
generation phase.
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Figure 3: Model components and information flow in the training phase of a three-column sequential
table with a two-column flat context. Feature embeddings pass through a permutation mask and
LSTM-based history encoder (blue) for column- and time-wise conditioning. Flat context features
(orange) are processed and used to condition all sequence steps.

For the conditional sequence generation, the context processor module (see orange part in fig. 3)
encodes the flat table into a compressed context embedding. This context is combined with the
temporal and feature-level embeddings before being passed to the regressor layers, allowing the
model to capture correlations between the flat and sequential tables.

C Experimental setup

Compute: We perform almost all experiments on AWS g5.2xlarge instances with 8 vCPUs, 32 GiB
system RAM, and one NVIDIA A10G (24 GiB of GPU memory). As a non-deep learning method,
UnmaskingTrees is specifically designed to run on CPU and we opted for an AWS p3.2xlarge
instance with 8 vCPUs and 61 GiB of system RAM.

Data sets: The Adult data set [Dua and Graff, 2019] has around 48k rows with eight categorical and
six numerical features. ACS-Income Ding et al. [2021], Flood et al. [2020] has about 1.5 million rows,
containing 28 categorical and four numerical features—making it roughly 30 times larger and twice
as wide as Adult, and thus a challenging real-world benchmark. Default [Yeh, 2009] contains 30,000
financial records of credit card users labeled by default status, and Shoppers [Sakar and Kastro,
2018] consists of 12,330 user sessions, capturing browsing behavior and transaction outcomes on
an e-commerce platform. We initially considered an even larger data set with more columns, but all
baseline methods were either too slow or required excessive GPU memory.

For sequential modeling, we present results on a two-table subset (players and fielding) of the
Baseball dataset [Lahman, 2023], the California dataset [Pace and Barry, 1997] consisting of a table
of households and a table of individuals, and Berka dataset [Berka, 1999], where we only consider
the accounts and transactions tables. For Baseball, the players table (flat context) has about 20
thousand rows, and the sequential fielding table has 140 thousand, resulting in an average sequence
length of seven. With over 600 thousand rows, the household table has about 30 times more records
than the players table, resulting in almost 1.7 million rows and an average sequence length of 2.8
in the individuals table. The accounts table has only 4,500 records, but the transactions table is
notably larger, encompassing around 1 million rows. All sequence tables have a comparable number
of features: 9 (Berka), 11 (Baseball) and 15 (California)

Baselines: The baseline methods included in this study can be grouped depending on whether they
process flat tables or sequential tables.

For flat tables, we include CT-GAN, a generative model introduced by Xu et al. [2019] that applies
mode-specific normalization to handle multi-modal data while generating numerical features con-
ditioned on categorical ones. STaSy [Kim et al., 2023] builds on score-based generative modeling,
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incorporating self-paced learning and fine-tuning strategies to improve the stability of denoising score
matching. TabSyn [Zhang et al., 2024] adopts a VAE to project mixed data types into a common
latent space, allowing a diffusion model to better capture the underlying data distribution. Unmasking
Trees, proposed by McCarter [2024], is an alternative route to deep learning models. This framework
leverages gradient-boosted decision trees to incrementally unmask individual features.

For sequential tables, we consider REalTabFormer [Solatorio and Dupriez, 2023], a transformer-based
framework that generates flat records auto-regressively using a GPT-2 model while employing a
sequence-to-sequence approach to synthesize child tables conditioned on parent data. SDV [Patki
et al., 2016] takes a different approach by iteratively modeling relationships across a relational
database, enabling flexible data synthesis. ClavaDDPM [Pang et al., 2024] introduces a cluster-guided
diffusion mechanism that captures inter-table dependencies via latent representations, improving the
modeling of complex multi-relational structures. Finally, RC-TGAN [Gueye et al., 2023] conditions
the generation of child table rows on parent data, extending its modeling capacity to high-order
relationships across multiple interconnected tables.

Code repositories: Table 1 lists the repositories containing implementations of all methods used
for the benchmarks in this paper. Throughout this benchmark, we use the default settings of
TabularARGN as implemented in x. TabSyn and STaSy are implemented in https://github.com/
amazon-science/tabsyn. For implementation details of these baselines, we refer to appendix G.2
of Zhang et al. [2024].

Method Repository
TabSyn https://github.com/amazon-science/tabsyn
STaSY https://github.com/amazon-science/tabsyn
CT-GAN https://github.com/vanderschaarlab/synthcity
UnmaskingTrees https://github.com/calvinmccarter/unmasking-trees
SDV https://github.com/sdv-dev/SDV
RC-TGAN https://github.com/croesuslab/RCTGAN
REaLTabFormer https://github.com/worldbank/REaLTabFormer
ClavaDDPM https://github.com/weipang142857/ClavaDDPM

Table 1: List of benchmark methods and their repositories.

D Metrics

The metrics used for the evaluation of synthetic-data quality follow the general approach of Platzer
and Reutterer [2021] and are available in a well-maintained and documented open-source GitHub
repository MOSTLY AI [2024]. We include metrics for measuring low-dimensional marginal statistics
and a distance-based metric to measure the novelty, i.e. privacy of the synthetic data.

D.1 Low-Order Marginal Statistics

Low-order marginal statistics are evaluated by comparing univariate (column-wise) distributions
and the pairwise correlations between columns. To handle mixed-type data, numerical and datetime
columns are discretized by grouping their values into deciles defined by the original training data,
resulting in 10 groups per column (equally sized for the original data). For categorical columns,
only the 10 most frequent categories are retained, with the remaining categories disregarded. This
approach ensures comparability across data types while focusing on the most significant features of
the data.

For each feature, we derive a vector of length 10 from the training (original) data and another from
the synthetic data. For numerical and DateTime columns, the vectors represent the frequencies of
the groups defined by the original deciles. For categorical columns, the vectors reflect the frequency
distribution of the top 10 categories after re-normalization. These feature-specific vectors are denoted
as X(m)

trn and X
(m)
syn , corresponding to the training and synthetic data, respectively. m is the feature

index, running from 1 to d.
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The univariate accuracy of column m is then defined as

acc
(m)
univariate =

1

2

(
1− ∥X(m)

trn −X(m)
syn ∥1

)
(1)

and the overall univariate accuracy, as reported in the results section, is defined by

accunivariate =
1

D

D∑
m

accunivariate(m) , (2)

where D is the number of columns.

For bi-variate metrics, we evaluate the relationships between pairs of columns by constructing
normalized contingency tables. These tables capture the joint distribution of two features, m and n,
allowing us to assess pairwise dependencies.

The contingency table between columns m and n is denoted as C
(m,n)
trn for the training data and

C
(m,n)
syn for the synthetic data. Each table has a maximum dimension of 10×10, corresponding to

the (discretized) values or the top 10 categories of the two features. For columns with fewer than
10 categories (categorical columns with cardinality <10), the dimensions of the table are reduced
accordingly.

Each cell in the table represents the normalized frequency with which a specific combination of
categories or discretized values from columns m and n appears in the data. This normalization
ensures that the contingency table is comparable across features and datasets, regardless of their
absolute scale or size.

The bivariate accuracy of the column pair m,n is defined as

acc
(m,n)
bivariate =

1

2

(
1− ∥C(m,n)

trn −C(m,n)
syn ∥1,entrywise

)
=

1

2

1−
∑
i

∑
j

=
∣∣∣C(m,n)

trn −C(m,n)
syn

∣∣∣
i,j


(3)

and the overall bivariate accuracy, as reported in the results section, is given by

accbivariate
2

D(D − 1)

∑
1≤m<n≤D

acc
(m,n)
bivariate , (4)

the average of the strictly upper triangle of acc(m,n)
bivariate.

Note that due to sampling noise, both accunivariate and accbivariate cannot reach 1 in practice. The
software package reports the theoretical maximum alongside both metrics.

There is no difference in calculating the univariate and bivariate accuracies between flat and sequential
data. In both cases, vectors X(m) and contingency tables C(m,n) are based on all entries in the
columns, irrespective of which data subject they belong to.

The coherence metric, specific to sequential data, evaluates the consistency of relationships between
successive time steps or sequence elements. It is conceptually similar to the bi-variate accuracy
metric but adapted for sequential datasets. The process is as follows:

• For each data subject, we randomly sample two successive sequence elements (time steps)
from their sequential data.

• These pairs of successive time steps are transformed into a wide-format dataset. To illustrate,
consider a sequential dataset of N subjects and original columns A,B,C, represented as
K > N rows. After processing, the resulting dataset has six columns: A,A′, B,B′, C, C ′.
The unprimed columns correspond to the first sampled sequence element, the primed
columns correspond to the successive sequence element. The number of rows in this wide-
format dataset is equal to N , irrespective of the sequence lengths in the original dataset.

Using this wide-format dataset, we construct contingency tables C(m,m′) for each pair of correspond-
ing unprimed and primed columns (m,m′). These tables are normalized and used to calculate the
coherence metric for column m as:

acc
(m,m′)
coherence =

1

2

(
1− ∥C(m,m′)

trn −C(m,m′)
syn ∥1,entrywise

)
(5)
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Figure 4: Accuracy (top row) and Training Time (bottom row) for the flat datasets Adult, ACS-
Income, Default, and Shoppers and various generative models - TabularARGN, TabularARGN with
DP, TabMT, TabSyn, CTGAN, STaSy, and UnmaskingTree. Reported values are averages over
five full training and generation runs, error bars indicate the minimum and maximum values. As
UnmaskingTrees is a non-Deep Learning approach, it is run on CPU. For comparison, Training of
TabularARGN on the Adult with a CPU takes approximately 2.5 minutes.

and the overall coherence metric, as reported in the results section

acccoherence =
1

D

D∑
m

acc
(m,m′)
coherence . (6)

We summarize the overall accuracy of a data set as

1

2
(accunivariate + accbivariate) (7)

and
1

3
(accunivariate + accbivariate + acccoherence) (8)

for flat and sequential data, respectively.

E Further Results

This section provides an overview of results not included in the main text. Specifically, we report
results on additional data sets (see description in C for both flat and sequential tables.)

Similar to the Adult data set, TabularARGN performs on par concerning accuracy on the ACS-Income,
Default, and Shoppers data set with SOTA models (see Fig. 4). For some data sets, it marginally
surpasses them. Throughout all data sets, the training time of TabularARGN is the smallest, often by
a large margin.

For sequential data (see Fig. 5), TabularARGN achieves the highest accuracy values across all methods.
In terms of runtime, it outperforms almost all of them with the only exception of ClavaDDPM for
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Figure 5: Accuracy (top row) and Training Time (bottom row) for the sequential datasets Base-
ball, California, and Berka and various generative models - TabularARGN, TabularARGN with DP,
ClavaDDPM, RCTGAN, RealTabFormer, and SDV/ParSynthesizer. Reported values are averages
over at least three full training and generation runs, error bars indicate the minimum and maximum
values. RCTGAN and SDV/ParSynthesizer fail to train on the Berka and California datasets, respec-
tively, due to out-of-memory (OOM) issues.

the California data set. However, ClavaDDPM lags in accuracy underpinning the strong accuracy-
efficiency trade-off of TabularARGN. RC-TGAN fails on the Berka and SDV on the California data
set with an OOM error.
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