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Abstract

The ACPBench dataset provides atomic reasoning tasks re-
quired for efficient planning. The dataset is aimed at distilling
the complex plan generation task into separate atomic reason-
ing tasks in their easiest possible form, boolean or multiple-
choice questions, where the model has to choose the right
answer from the provided options. While the aim of ACP-
Bench is to test the simplest form of reasoning about action
and change, when tasked with planning, a model does not
typically have options to choose from and thus the reasoning
required for planning dictates an open-ended, generative form
for these tasks. To that end, we introduce ACPBench Hard, a
generative version of ACPBench, with open-ended questions
which the model needs to answer. Models that perform well
on these tasks could in principle be integrated into a planner
or be used directly as a policy. We discuss the complexity of
these tasks as well as the complexity of validating the cor-
rectness of their answers and present validation algorithms
for each task. Equipped with these validators, we test the per-
formance of a variety of models on our tasks and find that for
most of these tasks the performance of even the largest mod-
els is still subpar. Our experiments show that no model out-
performs another in these tasks and with a few exceptions all
tested language models score below 65%, indicating that even
the current frontier language models have a long way to go
before they can reliably reason about planning. In fact, even
the so-called reasoning models struggle with solving these
reasoning tasks.
ACPBench Hard collection is available at the following link:
https://ibm.github.io/ACPBench.

Introduction
The ability to reason and plan is the cornerstone of artificial
intelligence. With the introduction of large language mod-
els, a major focus in the field is on testing their abilities
in these two fields, reasoning and planning. For reasoning,
the majority of work focuses on the mathematical reasoning
(Cobbe et al. 2021) and logical inference (Saparov and He
2023). For planning, most work focused on the ability to pro-
duce or validate a plan (Valmeekam et al. 2023a; Stein et al.
2024). The downside of focusing on the end-to-end planning
is the inability to pinpoint the reason for a black-box plan-
ner, such as an LLM-based one, to not be able to produce
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Figure 1: Task-wise accuracy of large size language models.

a solution. To tackle this gap, recent work introduced an
ACPBench dataset (Kokel et al. 2025), a benchmark for test-
ing the reasoning abilities about action, change, and plan-
ning, separating the planning process into the atomic rea-
soning tasks performed by planners. The dataset featured 7
tasks of various reasoning types about action applicability,
progression, reachability, sub-goals, plan justification and
validation. For each of these tasks, two types of questions
were constructed, boolean and multiple choice. The initial
investigation aimed at devising the questions in the simplest
form possible. However, the simplicity meant that the ques-
tions included additional information, which planners do not
typically have, making the use of such models in planning
harder. For instance, the applicability task either asks about
applicability of a given action in the boolean case or chooses
an applicable action among 4 variants. Even if we make the
assumption that the model can answer such questions with
high precision, it is not clear how this capability can be ef-
ficiently exploited for the task of generating all applicable



Model app areach just land nexta prog reach val
Granite 3.1 8B base 0.00 0.01 0.20 0.09 0.18 0.42 0.32 0.12
Granite 3.1 8B 0.00 0.00 0.21 0.08 0.22 0.36 0.33 0.09
Llama 3.1 8B 0.00 0.00 0.22 0.06 0.25 0.40 0.33 0.13
DeepSeek coder 33B 0.02 0.02 0.21 0.10 0.17 0.42 0.18 0.15
Granite 34B code 0.02 0.00 0.17 0.11 0.18 0.43 0.28 0.12

Table 1: Small and medium size language models perfor-
mance, best results bolded.

actions in a given state.
In this work, we build upon ACPBench to alleviate the

limitations that were originally imposed. We devise open-
ended, generative versions of questions for the same 7 tasks.
Further, we introduce another, challenging task of finding an
action that takes us closer to the goal, a task that corresponds
to the ability to perform optimal planning (Bylander 1994).
For each of these tasks, we introduce an evaluator, which
scores a possible answer to the open-ended questions. We
generate an evaluation set of questions based on a wide col-
lection of 13 Planning Domain Definition Language (PDDL)
(McDermott 2000) domains from ACPBench, which we call
ACPBench Hard, in an attempt to evaluate the ability of
large language models to produce reliable components for
automated planners, as models that perform well on these
tasks could in principle be integrated into a planner or be
used directly as a policy. For all tasks, we discuss their com-
putational complexity, as well as the complexity of validat-
ing their solutions. We devise validators for each task, based
on the symbolic description of the questions. With the help
of these validators, we test the performance on ACPBench
Hard of a collection of modern large language models of
various sizes, ranging from a few billion parameters to hun-
dreds of billions if not trillions of parameters. We find that
the performance of language models, even the largest ones,
is still insufficient to be reliably used in planners, see Table
1 and Figure 1. We observe that there is no single model that
outperforms all other models on all tasks of the ACPBench
Hard dataset. Further, on half of the tasks, namely “atom
reachability” (reach), “action reachability” (areach), “land-
marks” (land), and “applicability” (app), all tested language
models exhibit a very low accuracy. All tested language
models score below 65% on most tasks, indicating that even
the current frontier language models have a long way to
go before they can reliably reason about planning. Further,
even the so-called reasoning models o1 perform poorly on
half of these tasks. The o1-preview model achieves 89%
on the “progression” (prog) task and 80% on the “next ac-
tion” (nexta) task, with the rest of the results being 66% and
below, and the smaller o1-mini model outperforms it only
on the “plan validation” (val) task with 78% accuracy. The
much higher computational effort of the reasoning models
compared to the language models do not seem to justify the
somewhat moderate increase in accuracy. We note that the
goal of ACPBench Hard is not simply to measure the per-
formance of existing models - it is to provide benchmarks
that help the community build efficient smaller models that
can be used to plan; performance of state of the art com-
putationally expensive models such as o1-preview and large

LLMs are provided mostly as a reference.
In the rest of the paper, we will first discuss the back-

ground and related work, then in Section 4 discuss how the
ACPBench Hard dataset is constructed, describing in detail
all the 8 tasks. Then in Section 5, discuss how these open-
ended answers are evaluated for each of the 8 tasks. Our
extensive experimental evaluation is in Section 6, followed
by observations we obtained from our experiments. We con-
clude with conclusion and next steps.

Background
We consider planning tasks Π = 〈F,A, s0, s?〉 in the
(propositional) STRIPS formalism (Bylander 1994). In such
a task, F is a set of Boolean propositions. Each subset s ⊆ F
is called a state, and S = 2F is the state space of Π. The
state s0 is the initial state of Π. The goal s? ⊆ F is a set
of propositions, where a state s is a goal state if s? ⊆ s.
The set A is a finite set of actions. Each action a ∈ A has
an associated set of preconditions pre(a) ⊆ F , add effects
add(a) ⊆ F and delete effects del(a) ⊆ F .

The semantics of STRIPS planning is as follows. An action
a is applicable in the state s if pre(a) ⊆ s. Applying a
in s results in the state sJaK := (s \ del(a)) ∪ add(a). A
sequence of actions π = 〈a1, . . . , an〉 is applicable in s if
there exists a sequence of states s = s1, . . . , sn+1 such that
for each 1 ≤ i ≤ n we have ai is applicable in the state
si and applying it results in the state si+1. If it exists, such
sequence is uniquely defined, and its end state sn is denoted
by sJπK. An applicable action sequence is a plan for s if sJπK
is a goal state. A plan for s with minimal length is called
optimal. The perfect heuristic for s, denoted by h∗(s), or
h∗(s,Π) if the planning task is not clear from context, is
the cost of an optimal plan for s. The objective of (optimal)
planning is to find an (optimal) plan for the state s0.

Related Work
The most relevant to our work is the ACPBench dataset
(Kokel et al. 2025), which we build upon. ACPBench fea-
tures 7 core reasoning tasks about planning, testing the abil-
ity of language models to make decisions that automated
planners make. ACPBench introduces the simplest versions
of these tasks in the form of boolean and multiple choice
questions. While creating a simple evaluation setting, this
form does not capture the decisions that the automated plan-
ners need to make, as these decisions are generative in their
nature. For instance, automated planners do not check ev-
ery candidate ground action whether it is applicable in the
given state, they generate the set of applicable actions. In
this work, therefore, we present the generative form of these
tasks, requiring producing precisely the answers that au-
tomated planners produce and consume. Additionally, we
present a new task, not considered by previous work, requir-
ing to produce an action that takes us closer to the goal.

Other notable work in similar direction includes TRAC
(He et al. 2023), featuring 4 tasks: projection, execu-
tion, planning, and goal recognition, as well as PlanBench
(Valmeekam et al. 2023b), with 8 planning tasks including
plan generation, reasoning about plan execution, and plan



verification. Both benchmarks focus on a small number of
planning domains (mostly BlocksWorld and variants). Both
use templates to generate natural language text. AutoPlan-
Bench (Stein et al. 2024) alleviates the dependence on tem-
plates, leveraging LLMs to generate these natural language
template and therefore were able to scale up the dataset to 12
domains. While scaling the number of domains, they limit
their focus to one single task - plan generation.

Another notable dataset is ActionReasoningBench
(Handa et al. 2024), featuring six tasks: fluent tracking, state
tracking, action executability, effects of actions, numerical
RAC, and composite questions. These tasks reason about
action sequences and therefore two of the tasks overlap with
three of the tasks we consider in our work. Specifically,
action executability deals with questions that fall under
applicability and validation tasks in our case, which we
separate. The effects of actions task overlaps with our
progression task.

The line of work on testing planning abilities of agents
(Liu et al. 2023; Ma et al. 2024) is also somewhat relevant.
In this work we focus on each individual decision instead
of the overall planning abilities of agents. Having said that,
our new “next action” prediction task does takes us in that
direction, while focusing on optimality.

Dataset Construction
We build upon ACPBench, using the same underlined mech-
anisms (Kokel et al. 2025). We keep the same 13 planning
domains and 7 tasks, adding one more task. In what follows,
we describe the generative versions of the tasks. For each
task, we describe the data stored in order to enable or speed
up the evaluation of the correctness of a potential answer. To
enable the evaluation, we also store the PDDL planning task
Π = 〈F,A, s, s?〉 with the current state as an initial state
with the question, where needed.

1. Applicability (App) The first task deals with identify-
ing which actions are applicable in a state. For an action to
be applicable, its preconditions must hold in the state. Given
a state s and the set of actionsA, the subset of applicable ac-
tions would be A(s) = {a ∈ A | pre(a) ⊆ s}, easily com-
putable by iterating over the actions. The complexity of such
an iterative algorithm isO(|F ||A|), since |F | is a theoretical
upper bound on the precondition size. In practice, planning
problems typically have small preconditions size. We there-
fore can create a generative question by simply asking the
model to produce all applicable actions in a given state. For
practical reasons, we impose a bound on the number of ap-
plicable actions in a state, generating questions only in cases
when |A(s)| is under that bound. In such cases, we can keep
all applicable actions names for answer validation.

2. Progression (Prog) The next task evaluates LLMs abil-
ity to understand how the world state changes by action
application. Performing an action changes the state in the
following manner: The delete effects will no longer hold
and the add effects will hold. Everything else remains un-
changed. Given a state s and an action a, the next state is
t = (s \ del(a)) ∪ add(a). The complexity of the straight-
forward computation is O(|F |) worst case, but in practice

Context: There are several cities, each
containing several locations, some of
which are airports. There are also
trucks, which can drive within a single
city, and airplanes, which can fly
between airports. The goal is to get
some packages from various locations to
various new locations. There are 2
trucks and 1 airplane, as well as 4
packages. There are 4 locations across 2
cities. The locations are in cities as
follows: l1-1 and l1-0 are in c1; l0-1
and l0-0 are in c0. Currently, p2, t1,
p1, p3, a0, and p0 are at l1-0, t0 is at
l0-1. The available propositions are:
(at ?obj ?loc) - ?obj is at ?loc and (in
?obj1 ?obj2) - ?obj1 is in ?obj2.

Inputs: Break down the outcomes of
performing the action "load object p3
into truck t1 at location l1-0" into two
lists, positive effects and negative
effects. Positive effects are the
propositions that are false in the
current state but will become true after
performing the action. Negative effects
are the propositions that are true in
the current state and will become false
after performing the action.

Figure 2: Example of a question for the progression task in
ACPBench Hard. The question is composed out of the con-
text, which contains the domain and the problem descrip-
tion, as well as the current state description, and the inputs,
the actual question.

the add and delete effects of planning problems are typi-
cally small. We construct a single generative question, ask-
ing what propositions are false in the current state but will
become true after performing the action and asking which
ones are true and become false. The first set is t \ s, and the
second one is s \ t. We can keep the relevant sets for answer
validation. Figure 2 shows a sample example of a progres-
sion question.

3. Reachability (Reach) The reachability task evaluates if
a specific fact can eventually become true by taking (possi-
bly multiple) actions in the given state. This is a multi-step
reasoning task that can help avoid exploring unfeasible op-
tions. The generative version of this question is quite simple:
what proposition can never hold in any potentially reachable
state. If no such propositions exist, we instruct to reply None.

While reachability is PSPACE-hard to answer in general
(Bylander 1994) for a specific fact, we can generate some
negative examples by either finding groundings of static
predicates (unchanged by any action) that do not hold in
the given state, or by (under)approximating the reachabil-
ity with poly-time computable delete-relaxed reachability
(Hoffmann and Nebel 2001). For practical reasons, we keep
a subset of generated negative examples for speeding up an-
swer validation. We generate question only in cases when we



either know at least one unreachable fact or we know that all
facts are reachable. In case of doubt, we skip generating the
question.

4. Action Reachability (AReach) The action reachabil-
ity task is closely related to the atom reachability, checking
whether there is a reachable state where the action is appli-
cable. Computationally, this problem is PSPACE-hard, for
the same reason as atom reachability. The generative ver-
sion of the question is: what action can never become ap-
plicable, in any state reachable from the current state? For
answer validation, we keep example unreachable actions,
based on the evidence as in the previous case, when such
actions are found. Here as well, we generate question only
in cases when we either know at least one unreachable ac-
tion or we know that all actions are reachable. In case of
doubt, we skip generating the question.

5. Validation (Val) The validation task aims at checking
whether the specified sequence of actions π is a plan. In
other words, whether π is valid, applicable, and successfully
achieves the intended goal from the given state s. The gen-
erative version of this question aims at identifying where the
check fails. In other words, we ask to identify the first inap-
plicable action in a given sequence of actions. For validation
purposes, we keep the index of such action.

6. Justification (Just) Action justification (Fink and Yang
1992; Salerno, Fuentetaja, and Seipp 2023) deals with the
question of whether the given plan can be simplified by re-
moving some actions. While the problem is NP-hard in gen-
eral, checking whether a single action or a pair of conse-
quent actions can be removed can be done in polynomial
time. The generative version of the justification task ques-
tion asks to simplify the plan by removing one or two con-
secutive actions and to produce the resulting simplified plan.
To produce such a sequence, we start with a plan for the ini-
tial state, computed with a top-quality planner (Katz and Lee
2023a) or a diverse planner (Katz and Sohrabi 2020) when
no optimal solution could be found within the bound. We
check whether the plan can be simplified by removing a sin-
gle or two consecutive actions. If not, we try to extend the
plan by adding such an action or a pair of actions, keeping
the resulting sequence a plan.

For answer validation, we keep the action or pair of ac-
tions that can be removed, together with the appearance
number, for actions that appear more than once on the plan.

7. Landmarks (Land) Landmarks task tests LLMs ability
to identify subgoals that are necessary to achieve the goal.
In planning literature such subgoals are often called land-
marks (Porteous, Sebastia, and Hoffmann 2001). Landmarks
are facts that must become true sometime along every plan.

While checking whether a proposition is a landmark is
PSPACE-hard (Porteous, Sebastia, and Hoffmann 2001),
there are several methods that can find a subset of land-
marks (Keyder, Richter, and Helmert 2010; Hoffmann, Por-
teous, and Sebastia 2004; Richter, Helmert, and Westphal
2008; Zhu and Givan 2003). We use the so-called RHW
method (Richter, Helmert, and Westphal 2008). Further,
negative evidence can be obtained from a collection of plans

- a proposition that does not appear on a plan is not a land-
mark. We keep the sets of facts that are known to be land-
marks and of facts that are known to be non-landmarks for
speeding up answer validation.

8. Next Action (NextA) An additional task that does not
appear in the original ACPBench is the next action task. This
generative question asks what is the next action that takes
us towards the goal. This task is closely related to optimal
planning, since optimal plans can be produced by iteratively
obtaining such actions.

While even non-optimal planning is PSPACE-hard (By-
lander 1994), modern planners can often quickly find col-
lections of optimal plans (Katz, Sohrabi, and Udrea 2020;
Katz and Lee 2023b). Clearly, the first actions of these plans
would be correct answers. Further, the cost of these optimal
plans can be used to check other applicable actions in the
state, by producing an optimal plan for the states obtained
by applying these actions in the question state. We keep the
sets of actions that are correct answers and of actions that are
known to not take us closer to the goal for speeding up an-
swer validation. Further, we can store the optimal cost h∗(s)
of achieving the goal from the current state.

Answer Evaluation
Evaluating answers to boolean or multiple-choice questions
simply amounts to looking up the correct answer and com-
paring. Evaluating open-ended answers, on the other hand,
might not be as easy. This is due to the fact that sometimes,
there is not one single correct answer that can be stored with
the question. Looking at the tasks at hand, while in some
cases we can store the complete correct answer, in other we
must resort to performing some computation in order to eval-
uate whether the returned answer is correct. In what follows,
we describe how the answer is evaluated for each task.

1. Applicability (App) In this task, we store all applicable
action names per question. The answer evaluation therefore
amounts to a simple comparison between the given answer
and the correct one. Since we ask for all applicable actions,
we chose to assign a score 1 if the set of all actions in the
answer equals to the set of all applicable actions. Other-
wise, we assign 0. The complexity of validating the answer
is therefore O(1) if we impose a constant threshold on the
number of applicable actions when the question is created,
otherwise it is O(|A|).

2. Progression (Prog) Here, we store both correct sets of
propositions per question. An answer validation amounts to
a simple comparison between the given answer and the cor-
rect one. Since we test the ability to produce all action ef-
fects, we score 1 if both all positive and all negative effects
were correctly identified. Otherwise, we give the score 0.
The complexity of validating the answer is thereforeO(|F |).

3. Reachability (Reach) If the answer P is None, we
score it as 1 if the set of kept negative examples is empty
and otherwise as 0. This is due to the fact that if the set of
kept negative examples N is not empty, we know that there
exist unreachable propositions. If, however, N is empty, we



know that there exists no unreachable proposition, otherwise
we would not create a question. Otherwise, if P is in the sub-
set of kept propositionsN that are known to be unreachable,
we can return the score 1. In case P is not None and is not
in N , in order to check whether P is reachable, we need to
solve a planning task Π′ = 〈F,A, s0, {P}〉, where the goal
is to achieve the atom P and the rest as in the planning task
in the question. We can use any off-the-shelf planner to gen-
erate a plan for this task. If a plan exists, we score the answer
0, otherwise 1. The answer validation is therefore PSPACE-
complete in this case.

4. Action Reachability (AReach) For an action a, we
construct a planning task Π′ = 〈F,A, s0, pre(a)〉 with the
goal being the preconditions of the action a, and the rest as in
the planning tasks in the question. We run a planner on this
task, checking if a plan exists. If yes, we score the answer 0,
otherwise 1. If the answer is None, we score it as 0 if there
exist unreachable actions and otherwise as 1. As in the previ-
ous case, if no unreachable actions are kept, we know that all
actions are reachable, otherwise we would not create a ques-
tion. The answer validation is therefore PSPACE-complete
in this case as well.

5. Validation (Val) In this case, we only need to compare
the index in the answer to the correct index of the first inap-
plicable action. We give a 0/1 score based on that compar-
ison. The complexity of validating the answer is therefore
O(1).

6. Justification (Just) To check whether the returned se-
quence is correct, we slightly relaxed the constraint in the
question. We check whether it is a proper subsequence of
the provided plan and whether it is a plan. If both are true,
we give a score of 1, otherwise, we score the answer 0. The
complexity of validating the answer is therefore O(|π||F |)
for the plan π.

7. Landmarks (Land) Invalid propositions are scored 0.
A proposition p ∈ s0 ∪ s? is a trivial landmark and is also
scored 0. Given a valid proposition p ∈ F \ (s0 ∪ s?),
if it is known not to be a landmark (e.g., there exists a
plan that does not traverse any state in which p holds),
we assign it a score of 0. Otherwise, in order to check if
p is a non-trivial landmark, we construct a planning task
Π′ = 〈F ′, A′, s′0, s′?〉 as follows. The set of propositions is
extended with a proposition pach that is intended to indi-
cate that p was never achieved along a sequence of actions.
F ′ = F ∪ {pnach} Thus, for each action a ∈ A such that
p ∈ add(a), we construct a new action with extended delete
effect to include pnach. Formally, for an action a, a′ is de-
fined as follows. pre(a′) = pre(a), add(a′) = add(a),
and del(a′) = del(a) ∪ {pnach} if p ∈ add(a), other-
wise del(a′) = del(a). The extended action set is there-
fore A′ = {a′) | a ∈ A. Finally, both the initial state
and the goal are extended with pnach: s′0 = s0 ∪ {pnach},
s′? = s?∪{pnach}, indicating that we are interested in plans
that do not achieve p along their path, as any action that
achieves p will delete pnach from the state, making the goal
not reachable. We use an off-the-shelf planner to check if
there is a plan for Π′. If there is one, it corresponds to a

NAME: /[a-zA-Z][a-zA-Z0-9-_]*/
LPAR : "("
RPAR : ")"
LSPAR: "["
RSPAR: "]"
COMMA: ","
WS: /[ \n]/
action_none : "None"
action_name : LPAR NAME (WS NAME)* RPAR
action_list : (action_name WS?)*
prog_list : action_name* (COMMA
action_name)*
progression_list : LSPAR prog_list RSPAR
LSPAR prog_list RSPAR
act : action_name | action_none
index: /[0-9]+[0-9]*/

Figure 3: Grammar used for parsing the model response.

plan for Π that does not make p true and therefore p is not
a landmark, and we assign the score of 0. If Π′ is found un-
solvable, then p is a landmark and we assign the score of 1.
The answer validation is therefore PSPACE-complete in this
case as well.

8. Next Action (NextA) For an action a, if it is in the set
of kept correct answers, we score it 1 and if it is in the set
of known incorrect answers, we score it 0. Otherwise, if it
is applicable, we apply it to the current state s and obtain
the state t. We find the optimal plan costs h∗(s) and h∗(t)
for these two states with the help of an optimal planner and
score the answer 1 if h∗(s)−h∗(t) = 1. Otherwise, we score
it 0. The answer validation is therefore PSPACE-complete in
this case as well.

Experiments
We evaluated the following 14 language/reasoning mod-

els, with the aim to cover small, medium, and large models:
• small size: Granite 3.1 8B base and Granite 3.1 8B (in-

struct) (Granite Team 2024), as well as Llama 3.1 8B (in-
struct) (Dubey et al. 2024),

• medium size: DeepSeek coder 33B (instruct) (Guo et al.
2024) and Granite 34B code (instruct) (Mishra et al.
2024),

• large: Mixtral 8x22B (instruct) (MistralAI 2024), Llama
3.1 70B (instruct) and Llama 3.1 405B (instruct) (Dubey
et al. 2024), DeepSeek V3 (DeepSeek-AI et al. 2025b)
and DeepSeek R1 (DeepSeek-AI et al. 2025a) GPT-4o
mini and GPT-4o (OpenAI et al. 2024a), o1 mini and o1-
preview (OpenAI et al. 2024b).

All models were either accessed using API or hosted lo-
cally using hugging face transformer library on machines
with 2 A100 80 GB GPU. It is important to note that there is
a significant difference in the energy consumption and eval-
uation cost between various models. While smaller mod-
els are relatively cheap, the larger language models such as
Llama 3.1 405B and GPT-4o are prohibitively expensive to
be used as planner components. The reasoning models such
as o1 and even the cheaper DeepSeeek R1 are even more



Model app areach just land nexta prog reach val
Mixtral 8x22B 0.10 0.02 0.31 0.26 0.32 0.68 0.37 0.23
Llama 3.1 70B 0.12 0.02 0.44 0.20 0.42 0.65 0.28 0.20
GPT-4o mini 0.07 0.01 0.14 0.04 0.35 0.59 0.22 0.27
Llama 3.1 405B 0.14 0.04 0.59 0.15 0.48 0.74 0.26 0.48
GPT-4o 0.25 0.01 0.54 0.29 0.55 0.78 0.32 0.62
DeepSeek V3 0.21 0.05 0.65 0.12 0.47 0.76 0.32 0.56
DeepSeek R1 0.05 0.01 0.52 0.20 0.36 0.77 0.24 0.53
o1 mini 0.38 0.06 0.44 0.38 0.64 0.70 0.60 0.78
o1-preview 0.44 0.12 0.46 0.56 0.80 0.89 0.66 0.26

Table 2: Large size language and reasoning models accu-
racy. Bold entries indicate the best overall model, while the
underlined entries indicate the best language model.

expensive than the language models. Therefore, our experi-
ments with these reasoning models are intended mostly for
providing a frame of reference.

For each task, we evaluated a 2-shot prompting with static
examples from outside the evaluation set. The two exam-
ples come from the grid and logistics domains, one each per
task. This allows to exemplify the expected response format.
Additionally, we instructed the language models to produce
their response in a particular format. Still, the tested lan-
guage models do not necessarily adhere to the instructions
or the example format. Therefore, to be able to extract the
answer from the response, we developed a lenient grammar
based parser, which would discard tokens if they did not fit
expected token values. Figure 3 shows the grammar used for
parsing the responses for our 8 tasks. For example, in the
progression task, the response is a progression list,
which is two lists, one for the positive effects and one for
the negative effects. The response for the justification task
is a action list, which is a list of actions (or the up-
dated plan) and the response for the validation task is an
index which is the index of the first inapplicable action.
Using the grammar with a parser that discards tokens that
were not consistent with the grammar helps significantly in
post-processing these open-ended responses.

Focusing first on the small and medium size language
models, Table 1 shows the accuracy of these models on the
8 tasks in our dataset. A conclusion we can draw from the
figure is that there are three categories of tasks according to
model performance. First, progression seems to be the eas-
iest tasks among the 8 tasks. Even so, the highest accuracy
reached is 43% by Granite 34B code. The second category
is the hard tasks of applicability and action reachability. In
fact, none of these models could score above 2% for these
two tasks. The third category includes the other 5 tasks with
an average performance between 8.8% and 28.8%. Hence,
ACPBench Hard seems to be a difficult dataset for the small
and medium size language models.

Moving on to large size models, Table 2 shows the ac-
curacy of the tested large language and reasoning models.
Looking first at the language models, the top part of the fig-
ure, we observe that there is no single model that outper-
forms all other models. GPT-4o is the top performer, with
best results in 5 out of 8 tasks, but it is outperformed by
5% by Mixtral 8x22B on the atom reachability task, and by

Figure 4: Domain-wise accuracy of GPT-4o.

DeepSeek V3 on the action reachability task by 4% and on
the justification task by 11%. While large reasoning models
show a better performance across most tasks, on the justi-
fication task the DeepSeek V3 model remains the top per-
former. The second observation we can make is that similar
to the small and medium size language models, there are
tasks such as progression that is relatively easy for all mod-
els, and there are tasks such as action reachability that is
difficult for all models, and even o1-preview achieves only
12%. For other tasks, some models do better than others. Our
third observation is that with the exception of what seems to
be the easiest for these models progression task, there are
only three scores above 65%, and all of them are of reason-
ing models, indicating that the ACPBench Hard dataset is
difficult even for large models.

One of these tasks, specifically the new next action task
shows a higher than expected accuracy for such a compu-
tationally hard task. In an attempt to better understand the
phenomena, Table 3 shows the per-domain split. The bolded
and underlined values depict the top accuracy values per do-
main across the tested models. Note that the accuracy is not
uniform across domains. Some more complex domains like
depot showing better performance across models than than
easy domains such as grippers, that is hard for all models.
There are some domains, like logistics and ferry that are hard
for some models and easy for other. There are domains like
floortile and alfworld that are very hard for almost all mod-
els.

Going deeper, we look into performance across differ-
ent domains. Figure 4 presents the performance of the top-
performing language model GPT-4o on various tasks, across
the existing domains. For other models performance we re-
fer to the supplementary material. Observe that GPT-4o ex-
hibits high performance on the progression task across most



Model depot goldminer satellite swap alfworld ferry logistics blocks grid floortile grippers rovers visitall
Mixtral 8x22B 0.4 0.2 0.4 0.8 0.1 0.3 0.4 0.3 0.3 0.1 0.2 0.4 0.3
Llama 3.1 70B 0.6 0.4 0.5 0.7 0.1 0.2 0.4 0.5 0.5 0.4 0.3 0.3 0.5
GPT-4o mini 0.4 0.4 0.4 0.7 0.0 0.5 0.1 0.4 0.6 0.1 0.2 0.3 0.5
DeepSeek V3 0.5 0.4 0.2 1.0 0.2 0.7 0.8 0.6 0.6 0.0 0.1 0.5 0.5
Llama 3.1 405B 0.6 0.4 0.4 1.0 0.4 0.4 0.6 0.2 0.6 0.0 0.3 0.6 0.7
GPT-4o 0.6 0.7 0.5 0.9 0.4 0.7 0.6 0.6 0.7 0.1 0.2 0.8 0.4
DeepSeek R1 0.4 0.5 0.2 0.9 0.0 0.4 0.6 0.5 0.4 0.0 0.1 0.2 0.5
o1 mini 0.9 0.8 0.5 0.9 0.5 1.0 0.4 0.6 0.9 0.3 0.2 0.4 0.9
o1-preview 0.8 0.9 0.8 0.9 0.9 1.0 0.8 0.8 0.9 0.8 0.1 0.9 0.8

Table 3: Accuracy of large size models on the next action task, split by domain. Bold entries indicate the best overall model,
while the underlined entries indicate the best language model.

Figure 5: Comparison of prediction error for GPT-4o on dif-
ferent question formats.

domains, showing somewhat lower accuracy in satellite,
alfworld, and floortile. Action reachability and landmarks
tasks, on the other hand, pose significant challenges to the
model. Notably, the model consistently generated accurate
answers for the visitall and grid domains across most tasks.
In the remaining domains, however, the performance varied
across tasks, indicating that none of these domains are par-
ticularly easy for the language model.

Finally, we evaluate the hardness of our proposed open-
ended variants by comparing the performance of GPT-4o on
these questions (gen) to the two formats from ACPBench:
boolean (bool) and multiple choice (mcq). Figure 5 depicts
the comparison in terms of model errors, the complement
of the accuracy. As can be seen, model error in generative
format of the task is significantly higher than bool and mcq
except for the validation task. Note that we are showing re-
sults from one of the largest models for this analysis. The
gap in performance is even more prolonged in other models.

Observations
In this section, we provide some observations obtained from
looking at individual answers provided by the models.

The 2-shot setting seemed to be sufficient for the language
models to mostly follow the instructions on the answer syn-
tax. The number of parsing errors was typically negligible,

with a single exception of Llama 3.1 8B on the applicable
actions task, where in 4 cases the model made up objects
that did not follow the naming convention in the question
and in 5 cases the model ran out of context generating the
same actions over and over again.

While atom and action reachability are very much related
tasks, the latter seems to be much harder for the tested mod-
els. It is not surprising, as action reachability requires an ad-
ditional reasoning step about the atoms in the action pre-
conditions and their reachability. Further, while atom reach-
ability focuses on single atoms, action reachability requires
reasoning about the entire precondition, that often consists
of multiple atoms. The reasoning should now account for
their interplay, as they need to hold in the same reachable
state. In fact, action reachability seems to be consistently the
most difficult task across the tested models. Here, the mod-
els needed to provide an action that can never become ap-
plicable, in any reachable state or None if there are no such
actions. Interestingly, only the OpenAI models were able to
correctly identify the latter case, and these were the majority
of their correct answers. For instance, 9 out of 16 correct an-
swers of o1-preview and all the 8 correct answers of o1 mini
were None. Most of the other correct answers recognized
that a block cannot be (un)stacked on itself, which accounts
for 5 out of 6 correct answers for DeepSeek V3, 4 out of 5
for Llama 3.1 405B, and 4 out of 16 for o1-preview.

Surprisingly, the second hardest task is action applicabil-
ity. While one of the core tasks in planning, it seems to be
quite challenging even for the reasoning models, the largest
of which scored 44%, while DeepSeek R1 scoring only 5%.
The smaller language models fail miserably on this task,
with only DeepSeek coder 33B and Granite 34B code show-
ing performance slightly above 0. Even the largest language
models barely reach 25%. One reason for that is the strict
requirement for producing precisely the set of all applica-
ble actions. While missing actions can hinder completeness
and cause missing existing solutions, extra made up actions
can lead to producing incorrect solutions, which is arguably
worse. Interestingly, if we only required not to make up ac-
tions, but allowed producing subsets of real answers, scor-
ing according to Jaccard similarity, the score of the best per-
forming model o1 preview would go up to 57%. The largest



absolute increase would be for Mixtral, going from 10% to
38%. Using such action generation in a planner would corre-
spond to loosing completeness, while keeping the soundness
of the planner.

Looking at the landmarks task, among the smaller models,
the best performing is Granite 34B. It gives quite uniform
answers. Most of its correct answers are in the ferry domain,
where it correctly identifies the ferry location as a landmark.
In logistics, it recognizes a package need to be in the truck
in the goal city before it can be delivered. The best perform-
ing large language model GPT-4o achieves 29% accuracy,
producing a diverse set of answers. In ferry, it sometimes
correctly identifies ferry being empty as a landmark, some-
times the need for a car to be onboard, and sometimes a ferry
location was identified as a landmark. In logistics, trucks
or packages at particular locations were identified as land-
marks. In grid, it was more uniform, reporting in most cases
holding a key as a landmark. In goldminer, all correctly iden-
tified landmarks were some location being clear. The best
performing reasoning model o1-preview achieves 56% ac-
curacy. It correctly reports twice in satellite and 6 times in
swap the absence of non-trivial landmarks. The model that
is best at recognizing that is o1 mini, with 3 cases in visitall,
4 cases in satellite, 5 in swap, and once in alfworld. The only
other model that can identify such cases is Mixtral 8x22B,
with 3 cases in visitall.

The justification task is among the few tasks where
the best among the language models is not GPT-4o, but
DeepSeek V3. In fact, it performs much better than even
the reasoning models. The second best performer is Llama
3.1 405B. Interestingly, in multiple cases, the Llama model
produces a valid plan, which is shorter than the given plan,
but not its subsequence, and therefore not a correct answer.
In some cases, the Llama model produced a valid plan that
changes the order of the given plan actions. The aim of the
justification task, however, is not to produce a valid plan, but
to recognize unnecessary actions on a sequence.

The validation task requires an index to be returned,
which makes it harder to investigate the source of the mis-
takes made. Most language models do not perform well on
this task, with only the largest models go above 30%. Inter-
estingly, the reasoning model o1-preview scores much lower
than o1 mini (26% vs 78%). To investigate the source of
its mistakes, we check the absolute difference between the
given answer and the correct one. In 86% of the cases that
o1-preview incorrectly answered the question, it errored by
1. It is important to note that it was mistaken in both direc-
tions, giving both lower and higher than the correct indices.
An additional observation is that several models favor the
answers 1, 10, and 100. For the majority of smaller models,
most their answers are one of these three numbers.

The progression task is mostly simple for the reasoning
model o1-preview, which reaches 89%, but even this model
makes mistakes. For example, it does not recognize reason-
able positive effects, such as stacking a block on top of an-
other block makes the top block clear. Not surprisingly, it
misses less reasonable negative effects, such as taking a pic-
ture with a rover camera makes the camera not calibrated.
Surprisingly, it invents unreasonable effects such as commu-

nicating the rock data from rover to the lander would empty
the rover’s store and delete the effect of rocks being analyzed
at the waypoint.

Conclusions and Future Work
In this work, we have extended the existing benchmark
dataset ACPBench with an additional computationally chal-
lenging task of finding an action that takes us closer to
the goal, as well as with open-ended questions for all the
tasks, old and new. These open-ended questions reflect pre-
cisely the questions answered by symbolic planners during
the planning process and therefore we believe that this new
dataset, ACPBench Hard is a good benchmark for testing
reasoning abilities that are required for planning. We per-
formed an empirical investigation of a collection of large
language models of various sizes and found that this new
benchmark set is significantly more challenging for these
models. In fact, on some of the tasks, the performance of
all these models drops to 0% and on most tasks it is below
60%. For smaller and medium size models the average per-
formance is around 16%, while for largest language models
the average performance is around 40%. Even the largest
reasoning model o1-preview only reaches 52% on average.
We conclude that even the largest and best performing mod-
els have a very long way to go before they can be reliably
used for planning.

We see these results as an opportunity for improvement.
By identifying which tasks need more focus, we pave the
way to better performance of future models on these tasks,
possibly with advanced prompting techniques, beyond mul-
tiple shots, as multiple shots were often found detrimental
in our experiments. Another way to improve models’ per-
formance on these tasks would be fine-tuning on training
data, similarly to what was done in ACPBench. There, a
fine-tuned on boolean and multiple-choice questions train-
ing data smaller model has performed on par with the largest
and best-performing frontier models. In our preliminary ex-
periments, however, that model did not perform well on our
dataset, tending to return answers that it was trained on -
yes/no, A, B, C, or D. Creating training data for generative
questions, possibly with a chain of thought, would therefore
be a promising area of future research. Another avenue for
future research would be extending the benchmark to addi-
tional new tasks such as object counting in a current state.
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A Domain-wise Accuracy of Tested Models
Figures 6 and 7 show the domain-wise accuracy of tested
small and medium language models, while Figure 8 presents
the domain-wise accuracy of tested large language and rea-
soning models.

(a) Granite 3.1 8B base.

(b) Granite 3.1 8B.

(c) Llama 3.1 8B.

Figure 6: Domain-wise accuracy of small size language
models.

(a) DeepSeek coder 33B.

(b) Granite code 34B.

Figure 7: Domain-wise accuracy of small and medium size
language models.



(a) Mixtral 8x22B. (b) GPT-4o mini. (c) Llama 3.1 70B.

(d) GPT-4o. (e) Llama 3.1 405B.
(f) DeepSeek V3.

(g) DeepSeek R1. (h) o1 mini. (i) o1 preview.

Figure 8: Domain-wise accuracy of large language and reasoning models.


