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Abstract—The emergence of Kinect facilitates the possibility of 
depth capture in real-time and with low cost by consumers. It 
also provides powerful tool and inspiration for researchers to 
engage in new array of technology development. However, the 
quality of the depth map captured from Kinect is still inade-
quate for many applications due to holes, noises and artifacts 
existing within the depth information. In this paper, we present 
a texture assisted Kinect depth inpainting framework, aiming at 
obtaining improved depth information. In this framework, the 
relationship between texture and depth is investigated, and the 
characteristics of depth are also exploited. More specifically, 
texture edge information is extracted to assist the depth inpaint-
ing. Furthermore, filtering and diffusion are designed for hole-
filling and edge alignment. Experiment results demonstrate that 
the Kinect depth can be appropriately repaired in both smooth 
and edge region. Comparing with the original depth, the 
inpainted depth information enhances the quality of advanced 
processing such as 3D reconstruction.  

I. INTRODUCTION 

With the emergence of Kinect, depth capture in real-time and 
with low cost comes true. With the Kinect depth map, the 
traditional research topics in many areas can be investigated, 
such as 3D reconstruction, segmentation, recognition, track-
ing, etc., and some improvements have been achieved [1] [2]. 
Different from the traditional depth generated from the stereo 
video or TOF, the Kinect depth is generated by the measure-
ment of the infrared structured light spackles variation. In 
more detail, the structured light in a pseudo random pattern is 
sent from the projector and received by the CMOS sensor 
after reflection. By comparing with the light pattern which is 
hardcoded in the memory, the horizontal offset can be meas-
ured easily, and the depth value of each point can be calculat-
ed in terms of the offset.  

However, the quality of the depth captured from Kinect is 
inadequate due to the holes, noises, artifacts existing in the 
depth map. All these will further result in distortions and even 
annoying effects if the depth is employed directly in related 
applications. To avoid these distortions and artifacts, the cap-
tured depth should be pre-processed first. As introduced 
above, though the principle of Kinect depth generating can be 
known, it is difficult to obtain the source images for the depth 
generating, like left view and right view in stereo video. What 
we can obtain are just the output texture image and depth 
image. Though these two types of images are captured by two  

independent sensors, the calibration can be implemented to 
match the texture with the depth in pixel level [3]. Based on 
this fact, the texture image can be employed as assistant in-
formation in the depth processing.  

In a sense, the imperfect depth can be regarded as a kind of 
damaged image with irregular holes and anamorphic edges. 
As we know, the normal damaged images are repaired by the 
image inpainting, which has been studied for years. Many 
models have been introduced for image inpainting, such as [4] 
[5], etc. These models cannot directly apply to depth images, 
since they are designed for texture images. There are also a 
wide range of stereo correspondence algorithms. Excellent 
survey can be found in [6]. However, these algorithms are not 
useful for Kinect depth due to different generating principles.  

In this paper, we propose one texture assisted Kinect depth 
inpainting framework, in which the depth map is inpainted 
with respect to its local spatial properties in both depth map 
and texture map. As the result, the invalid depth region can be 
filled in and the depth boundary is aligned with that of the 
texture. In our algorithm, the edges are extracted from texture 
image as the assistant information for depth inpainting. Based 
on the extracted texture edge, depth image is partitioned into 
two regions: smooth region and edge region. Diffusion algo-
rithms with different rules are designed for these two regions 
to conduct the depth inpainting. To the best of our knowledge, 
this is the first work that studies Kinect depth inpainting. The 
experiment results show that hole-filling and edge alignment 
are performed well by the texture assisted depth inpainting. 
The rendering quality of the processed depth map is substan-
tially improved in comparison with the original one.  

The remainder of this paper is organized as follows. In 
Section II, we introduce the framework of the proposed depth 
inpainting. Furthermore, the physical characteristic of depth 
map is discussed in this section. In Section III, the pre-
processing of the texture and depth image is introduced. The 
key techniques of the depth inpainting are described in Sec-
tion IV. The experimental results are demonstrated in Section 
V. Finally, we conclude this paper in Section VI.  

II. FRAMEWORK OF OUR DEPTH INPAINTING SCHEME  

On account of Kinect’s capturing principle, the Kinect depth 
possesses some special characteristics: First, the depth value 
is valid within a range which is between 800mm to 4000mm 
for Microsoft Kinect SDK. If out of this range, the depth val-
ue is invalid with zero value. Second, even if the depth value 
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lies in the valid range, it is possible that Kinect fails to derive 
the depth values due to lighting influence and imaging con-
straints. The invalid depth regions exhibit as irregular holes in 
the depth map, and the anamorphic edges are fattened or 
shrunk compared to the ground truth. Third, even in the 
smooth region there is fluctuation in depth value, and the 
jump size is nonlinear to the depth value.  
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Fig. 1 The framework of our proposed depth inpainting scheme. 

In terms of the characteristics of the Kinect depth, we propose 
a depth inpainiting scheme to repair the depth map. Fig. 1 
illustrates the architecture of the proposed depth inpainting 
scheme. In our framework, the edges are first extracted from 
the original texture image which assist the inpainting module 
to process the depth image. The denoising module is em-
ployed as the preprocessing to suppress the fluctuation effects. 
Based on the edges extracted from the texture, the depth im-
age is partitioned into two regions: smooth region and edge 
region. The partial differential equations (PDEs) method is 
employed in depth inpainting, and the different rules of PDEs 
are designed in these two regions to jointly conduct the edge 
alignment and hole-filling. 

III. TEXURE AND DEPTH IMAGE PRE-PROCESSING  

In this section, we will discuss the pre-processing of the tex-
ture and depth image in our framework.  

A. Depth Image De-noising 

As aforementioned, to avoid the fluctuation impact, the input 
depth image is first smoothed by the filter. There are many 
mature tools available to perform the de-noising. In our work, 
the bilateral filter [7] is adopted as the edge-preserving de-
noising filter. Bilateral filter provides a weighted average of 
nearby pixels as the filtered result, with two kernels defining 
the weight: a domain filter kernel and a range filter kernel. 
Domain filter kernel is used to describe the geometric close-
ness between two pixels, while range filter kernel is used to 
measure the photometric similarity. For a pixel p, the filtered 
depth value is: 
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where f is the spatial filter kernel with the pixel locations p, q 
as inputs; g is the range filter kernel with corresponding pixel 
values    ,    as inputs.    is the pixel sets used in calculat-

ing the filtered result and    is a normalization factor which 

is equal to the sum of the  ( )   ( )
 
filter weights. Bilateral 

filter can preserve edges since pixels belongs to different re-
gions are usually more different from each other on pixel 
value and thus leads to a small value for range filter kernel. 

B. Edge Extraction 

As discussed in Section II, texture edge information plays an 
important role in the proposed inpainting scheme. Since there 
is no need to extract complete and continuous edges to repre-
sent image’s topological properties, which is required in seg-

mentation or object restoration, Canny operator is adopted in 
our algorithm to extract texture edges with one-pixel width. 
Other edge extraction operators might be used, though satis-
factory results were already obtained with this very simple 
selection. 

IV. DEPTH INPAINTING 

Generally speaking, the ideal depth map should be continuous 
in most parts of the map besides the discontinuity between 
two objects. Based on this characteristic, in our work the 
smooth region is treated differently from the edge region. For 
smooth region, high-order partial differential equations 
(PDEs) model is employed in our scheme, since this model 
can predict smooth region well as shown by impressive re-
sults. For edge region, a revised PDEs method is designed for 
jointly considering hole-filling and edge alignment.  

Before the description of two region inpainting schemes, 
we will introduce the theory of the Laplace equation which is 
adopted as the inpainting method as one of the PDEs methods. 
The continuous form of the Laplace equation is as follow:  

                                
   

  
                                                 (2) 

where   (  ) (   )⁄  (  ) (   )⁄  is known as the Lapla-
cian operator. As shown in [8], in continuous case the solver 
is essentially convolving the initial state with a Gaussian ker-
nel with variance t 
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This relation reveals that the Laplace equation is capable in 
generating smooth regions. Specifically, the discrete form of 
(2) is 

                  (       )   (     )   (     )                (4) 

Until convergence, i.e., ‖ (   )   ( )‖
 
less than a thresh-

old, the state  (   ) is regarded as the solution. Note that 
 (     ) as the step size can vary in iterations but should 
only ensure the convergence. 

Now turn to realization, the Laplacian can be estimated by  

   (   )  ∑  (   )( (   )   (   ))(   )   (   )      (5) 

where   (   )
 
involves eight neighboring pixels of (x, y) and 

 (   ) is an indicator function that is evaluated to one for 
available pixels and zero for unavailable ones. By setting the 
step size to  

                 (     )   (   )  (∑  (   )(   )   (   ) )        (6) 

we get the final evolution 
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Texture image usually possesses an edge map similar to that 
of the corresponding depth but not exactly equivalent. If the 
object physical features are preserved in the texture map, it is 
possible that the depth and the texture share the same edges 
after calibration. However, the smooth surface could be cov-
ered by complicated texture, and the depth discontinuity 
might be neglected by low contrast in texture.  

Based on analysis, we categorized their edge relation to 
four cases. Case 1: Both texture edge and depth edge existing; 
Case 2: Texture edge existing, depth edge no existing; Case 3: 
Neither of them existing; Case 4: Texture edge no existing, 



depth edge existing. Since depth map is noisy and instable in 
comparison with the texture, we partition the depth map 
based on available texture edges. For the first two cases, the 
region is regarded as edge region no matter whether depth 
edges exist or not. Since our edge region inpainting is one 
more severe scheme than PDEs, it works well for the first 
case and obviously also well for the second. The designed 
smooth region inpainting for last two cases will be discussed 
in the next subsection. In realization, the inpainting scheme is 
conducted in block level. Based on whether the block con-
tains texture edge or not, the blocks are classified into two 
categories: edge region block and smooth region block. Next 
we will describe the inpainting schemes respectively.  

A. Smooth Region Inpainting 

For the smooth region block, the key problem is whether the 
information in the neighbors is enough and credible for 
inpainting. As discussed in section II, the holes exist due to 
several reasons.  
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Fig. 2 The conditions of the holes in smooth region 

For small size hole such as shown in Fig. 2(a), since there 
exist enough available pixels in neighbors, the hole can be 
filled by Laplaces equation similar to the inpainting in texture 
image. For the large size hole, if the pixel value of the 
neighbor is near the upper bound of depth range, the hole 
might be generated due to out of depth range as shown in Fig. 
2(c). Since the Laplace equation can describe the trend of 
signal in smooth region, we can predict the pixel value by 
expending the depth region from the available side. If the 
value of the neighbor is within the valid range as shown in 
Fig. 2(b), the light speckle of the hole region is missed due to 
depth discontinuity or specular reflection. That means this 
region might not be smooth in depth ground truth though 
there is no texture edge extracted as mentioned above in Case 
4. Therefore this region will not be inpainted since the 
information from the neighboring pixels is not enough to 
predict the real depth value. 
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Fig. 3. The Judgement of the information sufficiency 

Turn to realization, in order to judge if the neighboring 
information is enough for inpainting, we measure the available 
pixels number in the block. If the ratio is beyond a threshold 
(e.g. 20%) the block is set as available block otherwise it is set 
as unavailable block. For the available block, the average of 
pixel value in the block is calculated. If the average is near the 
upper bound of depth range, the block is named as upper 

bound block. Based on the above discussion, we investigate 
the eight neighboring blocks, and the following cases shown 
in Fig. 3 will be regarded as the information is enough in the 
neighbors. We need to point out that we investigate this prob-
lem in block level that is efficient to obtain the quasi-global 
information and to avoid wrong propagation in pixel level. 

B. Edge Region Inpainting 

The depth edge fattening or shrunk effects commonly exist 
along the boundary of the foreground object. Therefore, in the 
process of the inpainting, besides hole-filling the edge 
alignment should be also performed. An typical edge region 
block with edge fattening effect is illsustated in Fig. 4. The 
solid line within the block indicates the texture edge while the 
dash-dot line is the depth edge.   
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Fig. 4. Fluctuating Edge Region for edge region inpainting 

To address these problems, we introduce fluctuating edge 
region, which locates beside the texture edges with adaptive 
size for inplainting. As shown in Fig. 4, the fluctuating edge 
region is restricted by two pairs of parallel dashed lines. This 
region is generated as follow: for each texture edge in the 
edge region block, the edge direction   is figured out based 
on its slope. The fluctuating edge region is extended along the 
direction  ┴

, perpendicular to the direction  . The progress of 
the expansion will stop if another texture edge is met or the 
width is beyond a threshold. The pixels in this region are 
treated as “hole” before inpainting. The inpainting is 
performed in the direction  ┴ 

from outer pixel to interior 
pixel and is stopped when meeting the texture edge. The pixel 
updating process can be depicted by following formula: 

 (       )   (       )   (     )   

                              (   (       ))   (       ) 
(8) 

where  (       ) is the pixel value calculated based on 
PDEs as discribed in Eq. (7), and 

 (       )  {
        | (     )   (       )|   

                                                       
   (9) 

where   is the maximum tolerable difference. The final 
updated pixel value is the weighted sum of original value 
 (     ) and inpainting value  (       ). Here the weight 
coefficient is set as one indicator function  (       ). That 
means the pixel value is modified to the inpainting one if the 
difference is beyond the threshold, otherwise it is kept as 
original value. In this way, the pixel value will propagate 
from smooth region and stop beside the texture edge. Finally, 
the depth edge will match with the texture one. 



 
Fig. 5. The original texture image. 

 

 
Fig. 6 Comparison of the depth map. Left: depth image without 

inpainting. Right: depth image after inpainting.  

 

V. EXPERIMENT RESULTS 

We have carried out experiments to evaluate the effectiveness 
of the proposed depth inpainting scheme. We capture the tex-
ture image and depth image using the XBOX 360 Kinect. The 
resolutions of texture and depth are set as 640*480. Since 
there is no ground truth for depth, we adopt the subjective 
comparison which is selected as rendering results in our paper 
to compare the depth map quality. The 3D mesh is rendered 
using texture and depth image and shown by the MeshLab 
software [9].  

 

 
      Fig. 7. Comparison of the rendering results. Left: Rendering 
result using the depth map without inpainting. Right: Rendering 
result using the depth map with inpainting. 

The comparison of the depth image is shown in Fig. 6. The 
blue curves in these images represent the edge extracted from 
texture image. Comparing with the pair of the two images, we 

can see that small holes in the original depth map are filled in 
the processed one including the monitor screen region in the 
image. (As shown in Fig. 5) The huge holes of the glass and 
the roof region are not filled in our scheme since either there 
exist available blocks only in one side and these blocks are 
not upper bound one or the depth value is out of the range. 
Therefore the information is not enough for inpainting. The 
rendering results comparison is shown in Fig. 7. Note that 
rendering result using the processed depth map can achieve 
much better quality than that without depth inpainting subjec-
tively. The detail result is shown in Fig. 8. We can see there 
are foreground fattening or shrunk effects near depth discon-
tinuities between two objects. These effects in depth disconti-
nuities will lead to poor rendering quality. After rendering, 
the rendering quality is improved due to satisfactory edge 
alignment.   

 

 
Fig. 8. Comparison of the detail rendering results. Top: the partial 

mesh rendered from the original depth map. Bottom: the partial 
mesh rendered from the inpainted depth map 

VI. CONCLUSION 

In this paper, we have presented a novel Kinect depth inpaint-
ing framework. More specifically, we proposed a texture as-
sisted depth inpainting scheme in which the texture edge is 
extracted as assistant information. Based on the texture edge, 
smooth region and edge region in depth map will be per-
formed inpainting differently for edge alignment and hole-
filling. Experiment results have demonstrated that the pro-
cessed depth will improve the advanced processing quality. 
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