
Texture-assisted Kinect Depth Inpainting

 Dan Miao
*

Dept. of EEIS, University of Science

and Technology of China

Hefei, China

miaodan@mail.ustc.edu.cn

Jingjing Fu, Yan Lu, Shipeng Li

Media Computing Group

Microsoft Research Asia

Beijing, China

{jifu,yanlu,spli}@microsoft.com

Chang Wen Chen

Dept. of CSE, State University of

New York at Buffalo

Buffalo, NY, USA

 chencw@buffalo.edu

Abstract—The emergence of Kinect facilitates the possibility of
depth capture in real-time and with low cost by consumers. It
also provides powerful tool and inspiration for researchers to
engage in new array of technology development. However, the
quality of the depth map captured from Kinect is still inade-
quate for many applications due to holes, noises and artifacts
existing within the depth information. In this paper, we present
a texture assisted Kinect depth inpainting framework, aiming at
obtaining improved depth information. In this framework, the
relationship between texture and depth is investigated, and the
characteristics of depth are also exploited. More specifically,
texture edge information is extracted to assist the depth inpaint-
ing. Furthermore, filtering and diffusion are designed for hole-
filling and edge alignment. Experiment results demonstrate that
the Kinect depth can be appropriately repaired in both smooth
and edge region. Comparing with the original depth, the
inpainted depth information enhances the quality of advanced
processing such as 3D reconstruction.

I. INTRODUCTION

With the emergence of Kinect, depth capture in real-time and
with low cost comes true. With the Kinect depth map, the
traditional research topics in many areas can be investigated,
such as 3D reconstruction, segmentation, recognition, track-
ing, etc., and some improvements have been achieved [1] [2].
Different from the traditional depth generated from the stereo
video or TOF, the Kinect depth is generated by the measure-
ment of the infrared structured light spackles variation. In
more detail, the structured light in a pseudo random pattern is
sent from the projector and received by the CMOS sensor
after reflection. By comparing with the light pattern which is
hardcoded in the memory, the horizontal offset can be meas-
ured easily, and the depth value of each point can be calculat-
ed in terms of the offset.

However, the quality of the depth captured from Kinect is
inadequate due to the holes, noises, artifacts existing in the
depth map. All these will further result in distortions and even
annoying effects if the depth is employed directly in related
applications. To avoid these distortions and artifacts, the cap-
tured depth should be pre-processed first. As introduced
above, though the principle of Kinect depth generating can be
known, it is difficult to obtain the source images for the depth
generating, like left view and right view in stereo video. What
we can obtain are just the output texture image and depth
image. Though these two types of images are captured by two

independent sensors, the calibration can be implemented to
match the texture with the depth in pixel level [3]. Based on
this fact, the texture image can be employed as assistant in-
formation in the depth processing.

In a sense, the imperfect depth can be regarded as a kind of
damaged image with irregular holes and anamorphic edges.
As we know, the normal damaged images are repaired by the
image inpainting, which has been studied for years. Many
models have been introduced for image inpainting, such as [4]
[5], etc. These models cannot directly apply to depth images,
since they are designed for texture images. There are also a
wide range of stereo correspondence algorithms. Excellent
survey can be found in [6]. However, these algorithms are not
useful for Kinect depth due to different generating principles.

In this paper, we propose one texture assisted Kinect depth
inpainting framework, in which the depth map is inpainted
with respect to its local spatial properties in both depth map
and texture map. As the result, the invalid depth region can be
filled in and the depth boundary is aligned with that of the
texture. In our algorithm, the edges are extracted from texture
image as the assistant information for depth inpainting. Based
on the extracted texture edge, depth image is partitioned into
two regions: smooth region and edge region. Diffusion algo-
rithms with different rules are designed for these two regions
to conduct the depth inpainting. To the best of our knowledge,
this is the first work that studies Kinect depth inpainting. The
experiment results show that hole-filling and edge alignment
are performed well by the texture assisted depth inpainting.
The rendering quality of the processed depth map is substan-
tially improved in comparison with the original one.

The remainder of this paper is organized as follows. In
Section II, we introduce the framework of the proposed depth
inpainting. Furthermore, the physical characteristic of depth
map is discussed in this section. In Section III, the pre-
processing of the texture and depth image is introduced. The
key techniques of the depth inpainting are described in Sec-
tion IV. The experimental results are demonstrated in Section
V. Finally, we conclude this paper in Section VI.

II. FRAMEWORK OF OUR DEPTH INPAINTING SCHEME

On account of Kinect’s capturing principle, the Kinect depth
possesses some special characteristics: First, the depth value
is valid within a range which is between 800mm to 4000mm
for Microsoft Kinect SDK. If out of this range, the depth val-
ue is invalid with zero value. Second, even if the depth value

*This work was done while the author was with Microsoft Research
Asia as a research intern.

lies in the valid range, it is possible that Kinect fails to derive
the depth values due to lighting influence and imaging con-
straints. The invalid depth regions exhibit as irregular holes in
the depth map, and the anamorphic edges are fattened or
shrunk compared to the ground truth. Third, even in the
smooth region there is fluctuation in depth value, and the
jump size is nonlinear to the depth value.

Egde
ExtractionTexture

Depth

Image
Analysis

Smooth Region
InpaintingDe-noising

Inpainted
Depth

Edge Region
Inpainting

Fig. 1 The framework of our proposed depth inpainting scheme.

In terms of the characteristics of the Kinect depth, we propose
a depth inpainiting scheme to repair the depth map. Fig. 1
illustrates the architecture of the proposed depth inpainting
scheme. In our framework, the edges are first extracted from
the original texture image which assist the inpainting module
to process the depth image. The denoising module is em-
ployed as the preprocessing to suppress the fluctuation effects.
Based on the edges extracted from the texture, the depth im-
age is partitioned into two regions: smooth region and edge
region. The partial differential equations (PDEs) method is
employed in depth inpainting, and the different rules of PDEs
are designed in these two regions to jointly conduct the edge
alignment and hole-filling.

III. TEXURE AND DEPTH IMAGE PRE-PROCESSING

In this section, we will discuss the pre-processing of the tex-
ture and depth image in our framework.

A. Depth Image De-noising

As aforementioned, to avoid the fluctuation impact, the input
depth image is first smoothed by the filter. There are many
mature tools available to perform the de-noising. In our work,
the bilateral filter [7] is adopted as the edge-preserving de-
noising filter. Bilateral filter provides a weighted average of
nearby pixels as the filtered result, with two kernels defining
the weight: a domain filter kernel and a range filter kernel.
Domain filter kernel is used to describe the geometric close-
ness between two pixels, while range filter kernel is used to
measure the photometric similarity. For a pixel p, the filtered
depth value is:

∑

 () () (1)

where f is the spatial filter kernel with the pixel locations p, q
as inputs; g is the range filter kernel with corresponding pixel
values , as inputs. is the pixel sets used in calculat-

ing the filtered result and is a normalization factor which

is equal to the sum of the () ()

filter weights. Bilateral

filter can preserve edges since pixels belongs to different re-
gions are usually more different from each other on pixel
value and thus leads to a small value for range filter kernel.

B. Edge Extraction

As discussed in Section II, texture edge information plays an
important role in the proposed inpainting scheme. Since there
is no need to extract complete and continuous edges to repre-
sent image’s topological properties, which is required in seg-

mentation or object restoration, Canny operator is adopted in
our algorithm to extract texture edges with one-pixel width.
Other edge extraction operators might be used, though satis-
factory results were already obtained with this very simple
selection.

IV. DEPTH INPAINTING

Generally speaking, the ideal depth map should be continuous
in most parts of the map besides the discontinuity between
two objects. Based on this characteristic, in our work the
smooth region is treated differently from the edge region. For
smooth region, high-order partial differential equations
(PDEs) model is employed in our scheme, since this model
can predict smooth region well as shown by impressive re-
sults. For edge region, a revised PDEs method is designed for
jointly considering hole-filling and edge alignment.

Before the description of two region inpainting schemes,
we will introduce the theory of the Laplace equation which is
adopted as the inpainting method as one of the PDEs methods.
The continuous form of the Laplace equation is as follow:

 (2)

where () ()⁄ () ()⁄ is known as the Lapla-
cian operator. As shown in [8], in continuous case the solver
is essentially convolving the initial state with a Gaussian ker-
nel with variance t

 () () () (3)

This relation reveals that the Laplace equation is capable in
generating smooth regions. Specifically, the discrete form of
(2) is

 () () () (4)

Until convergence, i.e., ‖ () ()‖

less than a thresh-

old, the state () is regarded as the solution. Note that
 () as the step size can vary in iterations but should
only ensure the convergence.

Now turn to realization, the Laplacian can be estimated by

 () ∑ ()(() ())() () (5)

where ()

involves eight neighboring pixels of (x, y) and

 () is an indicator function that is evaluated to one for
available pixels and zero for unavailable ones. By setting the
step size to

 () () (∑ ()() ()) (6)

we get the final evolution

 () ()∑ () ()() () (7)

Texture image usually possesses an edge map similar to that
of the corresponding depth but not exactly equivalent. If the
object physical features are preserved in the texture map, it is
possible that the depth and the texture share the same edges
after calibration. However, the smooth surface could be cov-
ered by complicated texture, and the depth discontinuity
might be neglected by low contrast in texture.

Based on analysis, we categorized their edge relation to
four cases. Case 1: Both texture edge and depth edge existing;
Case 2: Texture edge existing, depth edge no existing; Case 3:
Neither of them existing; Case 4: Texture edge no existing,

depth edge existing. Since depth map is noisy and instable in
comparison with the texture, we partition the depth map
based on available texture edges. For the first two cases, the
region is regarded as edge region no matter whether depth
edges exist or not. Since our edge region inpainting is one
more severe scheme than PDEs, it works well for the first
case and obviously also well for the second. The designed
smooth region inpainting for last two cases will be discussed
in the next subsection. In realization, the inpainting scheme is
conducted in block level. Based on whether the block con-
tains texture edge or not, the blocks are classified into two
categories: edge region block and smooth region block. Next
we will describe the inpainting schemes respectively.

A. Smooth Region Inpainting

For the smooth region block, the key problem is whether the
information in the neighbors is enough and credible for
inpainting. As discussed in section II, the holes exist due to
several reasons.

0

Depth
Value

Upper
Bound

(a) (b) (c)

Fig. 2 The conditions of the holes in smooth region

For small size hole such as shown in Fig. 2(a), since there
exist enough available pixels in neighbors, the hole can be
filled by Laplaces equation similar to the inpainting in texture
image. For the large size hole, if the pixel value of the
neighbor is near the upper bound of depth range, the hole
might be generated due to out of depth range as shown in Fig.
2(c). Since the Laplace equation can describe the trend of
signal in smooth region, we can predict the pixel value by
expending the depth region from the available side. If the
value of the neighbor is within the valid range as shown in
Fig. 2(b), the light speckle of the hole region is missed due to
depth discontinuity or specular reflection. That means this
region might not be smooth in depth ground truth though
there is no texture edge extracted as mentioned above in Case
4. Therefore this region will not be inpainted since the
information from the neighboring pixels is not enough to
predict the real depth value.

(a) (b) (c) (d)

(e) (f) (g) (h)

Available Block

Upper Bound Block

Current Block

Fig. 3. The Judgement of the information sufficiency

Turn to realization, in order to judge if the neighboring
information is enough for inpainting, we measure the available
pixels number in the block. If the ratio is beyond a threshold
(e.g. 20%) the block is set as available block otherwise it is set
as unavailable block. For the available block, the average of
pixel value in the block is calculated. If the average is near the
upper bound of depth range, the block is named as upper

bound block. Based on the above discussion, we investigate
the eight neighboring blocks, and the following cases shown
in Fig. 3 will be regarded as the information is enough in the
neighbors. We need to point out that we investigate this prob-
lem in block level that is efficient to obtain the quasi-global
information and to avoid wrong propagation in pixel level.

B. Edge Region Inpainting

The depth edge fattening or shrunk effects commonly exist
along the boundary of the foreground object. Therefore, in the
process of the inpainting, besides hole-filling the edge
alignment should be also performed. An typical edge region
block with edge fattening effect is illsustated in Fig. 4. The
solid line within the block indicates the texture edge while the
dash-dot line is the depth edge.

Texture

Edge

Fluctuating

Edge Region

Inpainting

direction

Scan order

Available pixel

Unavailable pixel

Inpainting pixel

Depth

Edge

Propagation &

correction

Fig. 4. Fluctuating Edge Region for edge region inpainting

To address these problems, we introduce fluctuating edge
region, which locates beside the texture edges with adaptive
size for inplainting. As shown in Fig. 4, the fluctuating edge
region is restricted by two pairs of parallel dashed lines. This
region is generated as follow: for each texture edge in the
edge region block, the edge direction is figured out based
on its slope. The fluctuating edge region is extended along the
direction ┴

, perpendicular to the direction . The progress of
the expansion will stop if another texture edge is met or the
width is beyond a threshold. The pixels in this region are
treated as “hole” before inpainting. The inpainting is
performed in the direction ┴

from outer pixel to interior
pixel and is stopped when meeting the texture edge. The pixel
updating process can be depicted by following formula:

 () () ()

 (()) ()
(8)

where () is the pixel value calculated based on
PDEs as discribed in Eq. (7), and

 () {
 | () ()|

 (9)

where is the maximum tolerable difference. The final
updated pixel value is the weighted sum of original value
 () and inpainting value (). Here the weight
coefficient is set as one indicator function (). That
means the pixel value is modified to the inpainting one if the
difference is beyond the threshold, otherwise it is kept as
original value. In this way, the pixel value will propagate
from smooth region and stop beside the texture edge. Finally,
the depth edge will match with the texture one.

Fig. 5. The original texture image.

Fig. 6 Comparison of the depth map. Left: depth image without

inpainting. Right: depth image after inpainting.

V. EXPERIMENT RESULTS

We have carried out experiments to evaluate the effectiveness
of the proposed depth inpainting scheme. We capture the tex-
ture image and depth image using the XBOX 360 Kinect. The
resolutions of texture and depth are set as 640*480. Since
there is no ground truth for depth, we adopt the subjective
comparison which is selected as rendering results in our paper
to compare the depth map quality. The 3D mesh is rendered
using texture and depth image and shown by the MeshLab
software [9].

 Fig. 7. Comparison of the rendering results. Left: Rendering
result using the depth map without inpainting. Right: Rendering
result using the depth map with inpainting.

The comparison of the depth image is shown in Fig. 6. The
blue curves in these images represent the edge extracted from
texture image. Comparing with the pair of the two images, we

can see that small holes in the original depth map are filled in
the processed one including the monitor screen region in the
image. (As shown in Fig. 5) The huge holes of the glass and
the roof region are not filled in our scheme since either there
exist available blocks only in one side and these blocks are
not upper bound one or the depth value is out of the range.
Therefore the information is not enough for inpainting. The
rendering results comparison is shown in Fig. 7. Note that
rendering result using the processed depth map can achieve
much better quality than that without depth inpainting subjec-
tively. The detail result is shown in Fig. 8. We can see there
are foreground fattening or shrunk effects near depth discon-
tinuities between two objects. These effects in depth disconti-
nuities will lead to poor rendering quality. After rendering,
the rendering quality is improved due to satisfactory edge
alignment.

Fig. 8. Comparison of the detail rendering results. Top: the partial

mesh rendered from the original depth map. Bottom: the partial
mesh rendered from the inpainted depth map

VI. CONCLUSION

In this paper, we have presented a novel Kinect depth inpaint-
ing framework. More specifically, we proposed a texture as-
sisted depth inpainting scheme in which the texture edge is
extracted as assistant information. Based on the texture edge,
smooth region and edge region in depth map will be per-
formed inpainting differently for edge alignment and hole-
filling. Experiment results have demonstrated that the pro-
cessed depth will improve the advanced processing quality.

 REFERENCES

[1] T. Weise, S. Bouaziz, H. Li, and M. Pauly, “Realtime performance-
based facial animation,” in Proc. ACM SIGGRAPH, 2011

[2] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. CVPR, 2011, pp. 1297-1304.

[3] http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
inpainting,” in Proc. ACM SIGGRAPH, 2000, pp. 417-424

[5] T. F. Chan, and J. Shen, “Mathematical models for local nontexture
inpaintings,” SIAM J Appl. Math., vol. 62, no. 3, pp. 1019-1043, 2002.

[6] D. Scharstein, and R. Szeliski “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, 47(1-3): 7-42, Apr.-Jun. 2002.

[7] C. Tomaso, and R. Manduchi, “Bilateral Filtering for Gray and Color
Images,” in Proc. ICCV, pp. 839-846.

[8] P. Perona and J. Malik. “Scale-space and edge detection using
anisotropic diffusion.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629-639, Jul. 1990.

[9] http://meshlab.sourceforge.net

http://meshlab.sourceforge.net/

