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Abstract

Traditional scalar-based error metrics, while quick for assessing machine learning
(ML) model performance, often fail to expose weaknesses or offer fair evaluations,
particularly with limited test data. To address this growing issue, we introduce
Non-Equivariance Revealed on Orbits (NERO), a novel evaluation procedure that
enhances model analysis through assessing equivariance and robustness. NERO
combines a task-agnostic interactive interface with a suite of visualizations to
deeply analyze and improve model interpretability. We validate the effectiveness of
NERO across various applications, including 2D digit recognition, object detection,
particle image velocimetry (PIV), and 3D point cloud classification. Our case
studies demonstrate the ability of NERO to clearly depict model equivariance
and provide detailed insights into model outputs. Additionally, we introduce
consensus as an alternative to traditional ground truths, expanding NERO to
unlabeled datasets and enabling broader applications in diverse ML contexts.

1 Introduction
Machine learning (ML) has significantly advanced various research fields [Voulodimos et al., 2018,
Kelleher, 2019]. The evaluation process in ML is unfortunately largely unchanged, hindering
interpretation and further innovation. Model quality is typically measured with a scalar, such
as accuracy for classification tasks, precision and recall for object detection, and mean squared
error for more quantitative tasks. Comparing models via scalar metrics can miss important details,
limiting insight for ML researchers, and creating uncertainty for practitioners. Two models can be
quantitatively similar on average, but respond very differently to meaningfully changing individual
inputs. For example, Fig. 1 illustrates two models for finding humans crossing streets. A model
that responds erratically to translating the field of view (which should only translate the predicted
bounding box) may be less trustworthy even if it performs better on average on a fixed test set.

Empirical science is especially challenging for applied ML. Specialized instrumentation means data
is expensive to gather and labor-intensive to label. Popular ML models, however, need large training
and testing datasets, in part due to the simplicity of their scalar metric evaluations. For example, the
popular Microsoft COCO [Lin et al., 2015] dataset for object detection has 328,000 labeled images;
Object365 [Shao et al., 2019] has over 2 million. The ubiquity of ML for object detection justifies and
amortizes the cost of creating such datasets, but this scaling does not generally apply to experimental
science. Also, scientists value robustness, predictability and interpretability in their computational
tools [Oviedo et al., 2022], unlike the black-box nature of deep learning. These issues have catalyzed
research in interpretable machine learning (IML) [Molnar, 2020, Saranya and Subhashini, 2023],
which seeks to reveal ingredients of model predictions. Appendix A reviews related work.

Our work complements IML research by depicting ML model response in terms of equivari-
ance, a mathematically grounded way to relate changes in model inputs to changes in outputs.
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In Fig. 1, for example, translating the input image should consistently correspond to transla-
tions of the output bounding box. We organize our visualization of model equivariance around a
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Figure 1: Scalar metric evaluations can be mislead-
ing, seen here with models A and B for pedestrian
localization. Despite Model A on average outper-
forming B with Intersection Over Union (IOU), it
fails in critical edge cases where B excels, show-
ing the need for more nuanced assessments.

mathematical group of input transformations
and the set of all transformations (the orbit)
of a given input. This is captured in our pro-
posed Non-Equivariance Revealed on Orbits
(NERO) Evaluation, which shows how equivari-
ant a model is, and the structure of its equivari-
ance failures. In settings where practitioners can
reason about their analysis task in terms of math-
ematically predictable responses to data trans-
forms, NERO evaluation gives an informative
and detailed picture of ML model performance
that scalar summary metrics elide. NERO pro-
vides a data-efficient way of testing ML models,
making thorough and fair evaluations possible
without the acquisitions of large datasets.

The contributions of this paper, are (1) NERO Evaluation, an integrated workflow that visualizes
model equivariance in an interactive interface to facilitate ML model testing, troubleshooting, evalua-
tion, comparison, and to provide better interpretation of model behaviors; and (2) consensus, a proxy
for ground truth that helps evaluate model equivariance with unlabeled data.

2 Methodology
2.1 Overview

Appendix B outlines mathematical basics of groups, group actions. We say generally that a model is
equivariant if it responds to a change in input with a correctly corresponding change in output (the
intent illustrated in Fig. 1). Real models often fall short of this; and NERO evaluations visualize how.
Fig. 2 defines the NERO plot in terms of how a change from x to x′ in input space X corresponds
to a change from y to y′ in output space Y . The NERO plot visualizes the gap between h(x′) (the
model applied to the transformed input) and y′ (the correspondingly transformed ground truth y).
This abstractly depicts group G to schematically indicate the orbits G(x) of x and G(y) of y, but
some particular spatial layout of G necessarily determines the shape of the NERO plot. If the model
is equivariant, then h(x′) = y′, so the NERO plot is a flat constant. The visual structure of a
non-constant NERO plot reveals the model non-equivariance over the group orbit. The quantity
shown in a NERO plot is any scalar metric (understandable to practitioners) that measures the gap
between h(x′) and y′, including prediction confidence, accuracy, mean square error (MSE), or other
error metrics. The NERO plot illustrated in Fig. 2 (right) is an individual NERO plot (§2.3), as it
depicts model non-equivariance along the group orbit G(x) around an individual input sample x.

While §1 critiqued single scalars to summarize model results over a large dataset, informative NERO
plots can also involve averaging. An aggregate NERO plot (§2.2) visualizes the average scalar
metric over a dataset, or a subset of it, at each point along the group orbit (i.e. with the same domain as
the individual NERO plot), to show trends in the model’s response to transformed inputs. Like PDP
and ICE plots (§A.2), aggregate NERO plots evaluate the model within some neighborhood around a
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Figure 2: Overview of NERO. An ML model has inputs X and outputs Y . G is a transformation
group acting on X with ϕ, and on Y with ϕ̃. The group element g ∈ G transforms x to x′ = ϕ(g, x);
the set of all possible transforms is the orbit G(x). The ground truth y = f(x) ∈ Y is transformed by
g to y′ = ϕ̃(g, y), which serves as ground truth to evaluate (here with loss function l) the result h(x′)
of evaluating the model on transformed input x′. NEROG,x visualizes loss over the orbit G(x).
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given sample, but instead of varying features in isolation, we traverse the orbit of some interpretable
transform group. To try to see degrees of freedom lost in the aggregate NERO plot, we can also treat
the individual NERO plots as n-vectors, and use dimensionality reduction. The resulting dimension
reduction (DR) scatter plot (§2.4) organizes data points according to the similarity of their patterns
of non-equivariance, to help localize abnormal model behavior and identify the connections between
worse-performing cases. All of these visualizations are linked together in the interactive NERO
interface (Appendix C) that provides users with both the convenience to see model equivariance in a
high-level view across a whole dataset through the aggregate NERO plot, and navigating into details
through the individual NERO plot, e.g., a specific place in the orbit where the model has trouble.

The following subsections illustrate the components of NERO Evaluation through a digit
recognition task on MNIST [Lecun et al., 1998], with the group action being continuous ro-
tations around the image center. More specifically, NERO Evaluation is presented via an

Aggregated
NERO Plot

Dimension
Reduction Plot

Input Image

Individual
Detailed Plot

Individual
NERO Plot

Figure 3: The five sections of the NERO interface are (left to
right): aggregate NERO plot, dimension reduction (DR) plot,
individual NERO plot, input image, and individual detailed
plot. Each section name is labeled here only for illustration
purposes. The sections are interactively controlled, with
linked views.

interactive NERO interface; Fig. 3
shows an example. We use this task
and the MNIST dataset to first con-
cretely illustrate NERO evaluation in
a well-known setting, not because this
task exemplifies the scientific tasks for
which we created NERO. §3 show-
cases more representative tasks and
applications.

For the proposed NERO evaluation
to be effective, the first criterion is
to ensure that the associated NERO
plots are distinguishable enough when
evaluated on two models with differ-
ent equivariance. To illustrate how
NERO plots differ on equivariant and
non-equivariant models, a simple neu-
ral network consisting of six cascaded
convolutional layers with batch nor-
malization [Ioffe and Szegedy, 2015] and ReLU [Glorot et al., 2011] is purposefully trained twice,
first without and then with rotational augmentation, to create two models that differ predictably.
That is, the data augmented (DA) model should have better invariance, although the total amount
of training with or without rotation augmentation is the same. Notably, the reason why using data
augmentations to generate different ML models is not to prove the effectiveness of data augmentation,
but to generate models with clear, controllable behaviors so that the correctness as well as expected
behavior from NERO can be verified.

2.2 Aggregate NERO Plot

Figure 4: Aggregate NERO plots for the
original (blue) model reflect the average ro-
tational symmetry of each digit.

Aggregate NERO plots provide an overview of equiv-
ariance across a dataset, using consistent visual encod-
ing as in individual plots (more details in §2.3). These
plots, such as those shown in Fig. 4, demonstrate rota-
tional symmetry for each digit in the MNIST dataset.
For example, digit “0” exhibits rotational invariance,
while “1” shows symmetry at 0◦ and 180◦, and dig-
its like “2” and “3” lack symmetry. The DA model
(magenta) is more equivariant than the original (blue),
indicating smoother, circular NERO plots. Although
NERO plots do not explain model predictions, they
highlight patterns in model behavior.

2.3 Individual NERO Plot

Individual NERO plots (Fig. 3 third from left) visualize model equivariance for a sin-
gle sample, using confidence as the metric (probability of correct classification). These
plots show confidence over rotation angle θ; a perfect circle indicates perfect rotational
equivariance, while dips reveal non-equivariance. As expected, the DA model (magenta)
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shows near-perfect equivariance, while the original model (blue) has higher confidence at
small angles. A bar chart displays model confidences for all digits at a selected an-
gle, showing the DA model’s higher accuracy for “4” compared to the original model.

170° rotation X

Figure 5: Individual NERO and detail
plots of original (blue) and DA (ma-
genta) models.

Individual NERO plots offer insights into data structure
and task performance, such as for digits “6” and “9”
(Fig. 5). Both the original and DA models perform sim-
ilarly at small rotation angles, but the original model’s
performance drops significantly at larger angles, leading
to mis-classifications (e.g., confusing a rotated “6” with a
“9”). The DA model, while not perfectly equivariant like
with digit “4”, still maintains better performance across
all angles, correctly identifying rotated “6”s and “9”s with
moderate confidence. These plots, combined with de-
tail views, help visualize model equivariance and inter-
pret model behavior, revealing that even rotated digits in
MNIST can be distinguished due to their unique shapes.
Further examples in §3 will demonstrate these capabilities.

2.4 Dimension Reduction (DR) Plot

Figure 6: DR plot color-mapped by
mean confidence, annotated with associ-
ated individual NERO plots, with input
digits shown at top-left corners.

Conceptually, DR plots bridge the aggregate and individ-
ual NERO plots they are positioned between in the NERO
interface (Fig. 3, second column from the left). By apply-
ing dimensionality reduction to the high-dimensional data
vector underlying individual NERO plots, the DR plot
lays out data points in a 2D scatterplot. Similar patterns
of non-equivariance appear near each other, providing
an overview of model performance and highlighting out-
liers. The scatterplot dots are color-coded by the mean
or variance of the individual NERO plot values, aiding
in trend identification or pinpointing extremes in equiv-
ariance. Users can interactively click on a dot to view
corresponding individual and detail plots, as shown by
the red circle in Fig. 3. Fig. 6 offers an expanded view,
demonstrating that nearby points have similar non-equivariance patterns, while distant points show
distinct patterns, even if their plots are similarly shaped but differ in orientation.

2.5 Consensus

Our intent with using existing scalar metrics (accuracy, confidence) for making NERO plots is to
ease their interpretation and adoption by practitioners. However, NERO can in principle also apply to
unlabeled data, since (Fig. 2) equivariance is revealed through the gap between h(x′) and y′, which
need not depend on having ground truth. However, given that existing metrics all require ground truth,
an additional modest contribution of this work is consensus, which serves as a proxy for ground truth
in the metric evaluation, when making NERO evaluations to assess model equivariance or covariance
(as opposed to invariance). The consensus for input x is roughly the average of the untransformed
model outputs on all transformed inputs within the orbit. Relative to Fig. 2, we have

consensus(x) =
〈
ϕ̃(g−1, h(ϕ(g, x)))

〉
g∈G

(1)

The average ⟨·⟩G depends on the structure of output space Y , while G depends on the equivariance
of interest. For object detection, Y is the set of bounding boxes defined by corners, and an element
(tx, ty) of translation group G acts on the bounding box by component-wise addition. In this case,
Eq. (1) can be computed by simple arithmetic mean of the translated bounding box corners.

3 Experimental Case Studies
As previously stated, NERO evaluation is model- and task-agnostic. This section showcases
its application across different research areas: object detection in 2D photographic images
(§3.1), velocity measurements in fluid dynamics via particle image velocimetry (§3.2), and clas-
sification in 3D computer vision with point clouds (§3.3). Additionally, we evaluate consensus in §3.4.
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3.1 Object Detection

Figure 7: Key objects are shifted by cropping the original
MSCOCO image to shifted bounds (the non-masked square).

As shown in Fig. 1, scalar-metric
evaluations do not directly address
corner-case performance in object de-
tection, which is crucial for applica-
tions like autonomous driving. This
section demonstrates how NERO of-
fers a superior evaluation pipeline us-
ing Faster R-CNN [Ren et al., 2015]
and MSCOCO [Lin et al., 2015],
though NERO’s application is model-
agnostic.

100%

0%

33%

66%

Figure 8: NERO interface for object detection, for models
trained with 0% (upper row) and 100% (lower row) jittering.
Sections for aggregate, dimension reduction, individual, and
detail plots are organized as in the MNIST interface (Fig. 3).
Two aggregate NERO plots on left edge show intermediate
jittering levels for comparison.

The architecture of Faster R-CNN
does not guarantee translational equiv-
ariance, so models with different
equivariance properties can be ob-
tained by training with datasets with
different augmentations, as we show
here. We selected 5 out of the
80 MSCOCO classes for demonstra-
tion: car, bottle, cup, chair and
book. We selected objects that be-
long to these 5 classes as key ob-
jects and cropped the original im-
ages to a 128 × 128 window around
these objects. As showed in Fig. 7,
translational shifts (by between −64
and 64 pixels in both directions) are
achieved by cropping with shifted
bounds, so that the key object posi-
tions change within the field of view. To ensure interesting cropped images, the MSCOCO
images are filtered with following criteria: (1) include a key object whose ground truth class
label is in the 5 selected classes; (2) ensure that for all shifts the cropped fields of view
does not extend past the original image edges; and (3) ensure that the key object’s ground
truth bounding box is not less than 1% or more than 50% of the cropped 128 × 128 region.

(a)

(b)

Figure 9: Individual NERO plots exam-
ine a 100% jittering model: (a) explores
a dark spot, while (b) analyzes a nearby
spot with better results.

We hypothesize that varying levels of model equivariance
can be induced by adjusting random shifts, or “jittering",
during training. At 0% jittering, key objects remain cen-
tered in cropped images, whereas at 100% jittering, objects
are randomly shifted within a [−64, 64] range. Models
trained with 0% jittering are expected to perform well
only on unshifted images, while those trained with 100%
jittering should exhibit higher equivariance.

Fig. 8 displays the complete NERO interface for models
trained with 0% and 100% jittering. Similar to the MNIST
example (Fig. 3), model equivariance is evaluated using
both aggregate and individual NERO plots, connected via
DR plots, with task-specific detail plots on the right. The
left edge of Fig. 8 also includes aggregate NERO plots
for two intermediate jittering levels. As expected, jittering levels correlate visually with the width
of the NERO plot peak, indicating high equivariance in the 100% jittering model (lower row) and
non-equivariance in the 0% jittering model (upper row).

While aggregate NERO plots provide a quick overview of model equivariance, individual NERO
plots allow for deeper investigation. For instance, in Fig. 8, the 100% jittering model’s individual
NERO plot reveals dark regions on the left edge, suggesting poorer performance at specific shifts.
Practitioners can click on these spots for detailed analysis, as demonstrated in Fig. 9, which explores
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a small shift change in the same model. At both shifts, the model produces three bounding box
predictions with a high IOU of about 0.7, but the confidence ranking differs between the two locations.
The individual NERO plot focuses on the IOU for the most-confident prediction, highlighting dark
regions that guide practitioners in exploring and understanding model edge cases.

User study. A researcher with knowledge in both computer vision and equivariant ML, tried our
NERO evaluation for object detection. The evaluation was semi-guided, meaning that the expert
was free to explore himself after we walked him through examples similar to those earlier in this
section. The ensuing discussion focused on the NERO plot idea itself and its value; quotes below
from the expert are in italics. It is intuitive to present equivariance with simple group theories – the
expert understood how we transform samples along group orbits, and measure results on transformed
samples. Aggregate NERO plots are quick to look at when comparing two models – the expert felt
that NERO plots do not create excessive visual complexity for users. clicking on these dots to locate
single samples is very helpful ... – the expert said about the DR plots – ... now I can see what are the
reasons behind the different performance – the expert looking at the corresponding individual and
detail plots. After using the interface for about 10 minutes, the expert concluded: Using equivariance
as an evaluation strategy is interesting. Everyone knows there is more going on underneath the
average errors we see everyday, but we are not able to easily, systematically capture and compare
them until using NERO. I think NERO would benefit anyone who cares about model equivariance or
develops better ENN.

3.2 Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV) is essential for studying fluid dynamics, using video frames of
particles to estimate velocity flow fields [Raffel et al., 2018]. While traditional PIV algorithms handle
simple flows, ML-based methods promise faster and more complex computations. However, thorough
evaluation beyond metrics like RMSE is needed to trust the ML models. This section demonstrates
how NERO can effectively evaluate equivariance in ML applications, comparing the traditional
Gunnar-Farneback [Farnebäck, 2003] with the ML-based PIV-LiteFlowNet-en [Cai et al., 2019].

In total, 8,794 pairs of images covering 6 different types of flows, namely Uniform, Back-
step, Cylinder, SQG, DNS, and Isotropic, are used during training. 120 image pairs are
used in testing when generating the NERO plots. As expected, Gunnar-Farneback shows
near-perfect equivariance, while PIV-LiteFlowNet-en has less. NERO plots (Fig. 10) high-
light these differences, with detail plots allowing deeper investigation into model outputs.

Figure 10: The NERO interface for PIV comparing an ML
method (top) with a non-ML method (bottom).

User study. A physicist with exper-
tise in PIV tried our NERO PIV in-
terface and gave qualitative feedback.
We followed the same procedure as
in §3.1. It is very good to see so
much more information than an aver-
age value, ..., for a turbulence flow the
interesting and hard part is not every-
where, often much less than the boring
part, so the average error really does
not help much. – the expert likes that
NERO plots show richer information
than conventional scalar metrics. Be-
ing able to locate high-variance (less-
equivariant) samples from the DR plot
is great – the expert said when look-
ing at the DR plots – it is important to bring out the actual interesting samples to investigate – the
expert thinks the design is effective in helping user traverse through samples and locate the interesting
one. Yes, definitely, NERO would save me so much time analyzing PIV model outputs. – the expert
said when asked about if he would personally use the evaluation method in his research.

3.3 3D Point Cloud Classification

Point cloud classification assigns semantic labels to 3D point clouds, with a focus on addressing
performance issues from object rotations through equivariant models. NERO is used here to evaluate
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these models. Rotations are visualized in 2D NERO plots using a subset of rotations represented in
axis-angle form within three 2D slicing planes. The Point Transformer model, which is invariant
to point cloud permutations, was trained with and without rotation augmentation for comparison.

Figure 11: NERO interface for 3D point cloud classifica-
tion comparing Point Transformer model trained without
(top row) and with (bottom row) rotation augmentations.

We utilize the ModelNet10 subset from
the widely recognized ModelNet40
dataset [Wu et al., 2015]. More specifi-
cally, the ModelNet40 dataset comprises
12,311 CAD models across 40 categories,
divided into 9,843 training and 2,468
testing samples. ModelNet10, a subset of
ModelNet40, includes 10 categories with
3,991 training and 908 testing samples.
This data preparation process involves
uniformly sampling point clouds from
the CAD models as described by Qi et al.
[2017]. As shown in Fig. 11, the original
model performs well only with small
rotations, while the augmented model shows greater invariance across all rotations. Individual NERO
plots further illustrate these differences, such as in the case of a bathtub, where the augmented model
consistently recognizes the object across all rotations.

User study. We invited the same expert from §3.1 to give us evaluations again. This time, we focused
more on collecting how it feels going from one interface (application) to another. It feels very similar,
I am still able to quickly navigate myself to the places I am interested in – the expert agrees that the
similar high-level interface design successfully helps researchers quickly adapt from one application
to another – it is showing evaluation results way beyond scalar metrics, which could be very useful
when evaluating and debugging model behaviors – the expert agrees again that NERO evaluation
provides more thorough and informative results than standard scalar metrics.

3.4 Consensus Evaluation

Figure 12: Consensus boxes (left),
NERO plots from ground truth (middle),
and from consensus (right).

We evaluate the proposed consensus within an object de-
tection scenario. In this context, the consensus of Eq. (1)
represents the average of unshifted bounding box predic-
tions, derived from shifted images. Fig. 12 illustrates the
individual NERO plots generated from both the ground
truth and the consensus. The notable similarity between
these two plots suggests that the degree and structure of
equivariance exhibited by the NERO plots are comparably
effective with or without ground truth, suggesting that con-
sensus enhances the utility of NERO plots when ground
truth labels are not available.

4 Conclusions and Future Work
NERO represents a novel, interactive ML evaluation system that is built on model equivariance and
basic group theory to address the inadequacies of evaluating ML models with scalar metrics. The
examples we have showed in Section 2, 3.1 , 3.2, and 3.3 demonstrate four settings where NERO
evaluations better assess model performance by revealing model equivariance and making black-box
models more interpretable. In principle, the idea of using aggregate, dimension reduction, and
individual NERO plots, linked in an interactive interface, extends natively to many other areas of
ML research as well, facilitating findings and explorations of various model behaviors. In future,
we plan to further study the idea of consensus (§2.5, Fig. 12), as it potentially frees ML evaluation
from needing ground truth. And, as we briefly mentioned in §A.2, NERO plots can be a drop-in
replacement for the conventional scalar-based evaluations that are widely employed in current ENN
and surrogate model studies. Last but not least, we believe NERO could also be applied and improved
to better assess model behaviors under adversarial attacks, which have been empirically proved to be
devastating to neural networks performance. Other future work may also include conducting a more
thorough user survey, and making NERO evaluation a standard library for common ML applications.
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Appendix
A Related Work
A.1 Equivariant Neural Networks (ENNs)

Equivariant neural networks (ENN) [Krüger and Gottschalk, 2023] has become a popular research
topic because models that are more equivariant have better generalization capability [Weiler and
Cesa, 2021], an important goal of ML research. Equivariance sometimes occurs naturally [Olah
et al., 2020], but guaranteeing equivariance requires more dedicated efforts. Various works focus
on improving equivariance with respect to rotations [Weiler and Cesa, 2021, Assaad et al., 2022],
shifts [Chaman and Dokmanić, 2021, Ding et al., 2023], and scales [Wimmer et al., 2023, Rahman and
Yeh, 2024] through network architectural designs. Data augmentation during training is also effective
for improving equivariance [Chen et al., 2020], with examples in generative models [Antoniou
et al., 2018], Bayesian methods [Tran et al., 2017], and reinforcement learning [Ratner et al., 2017,
Cubuk et al., 2019]. Existing work often implicitly assumes that more equivariant models will have
lower errors when tested on large datasets, due to the close relationship between equivariance and
robustness [Engstrom et al., 2019, Lagrave and Barbaresco, 2021]. While equivariance is indeed a
close proxy for model robustness, the absence of evaluations directly showing it hinders more accurate
understanding of model behaviors, which inspired our work on developing NERO evaluation.

A.2 Interpretable Machine Learning (IML)

Interpretable machine learning (IML) tackles the black-box nature of deep neural networks [Doshi-
Velez and Kim, 2017] by employing various strategies focused on model components, model sensitiv-
ity, and surrogate models [Molnar et al., 2020]. Of the three, surrogate models [Ribeiro et al., 2018] is
not described further here since they have little methodological connection to our work. Visualizations
in IML seek to transform abstract data relationships into meaningful visual representations [Hohman
et al., 2018]. Studies have shown that interactive visualization is a key aspect of sense-making when
it comes to combining visual analytics with ML systems, which shapes our designs in presenting
NERO evaluation through an interactive interface [Chatzimparmpas et al., 2020].

IML via Model Components. Existing IML works that focus on model components visualize the
internals of a neural network. Abadi et al. [2016] developed the dataflow graphs in TensorFlow.
Following this work, Smilkov et al. [2017] improved the dataflow graph by using visualization cues
to represent weights sent between neurons. Beyond static visualizations, Yosinski et al. [2015]
designed interactive visualizations of learned convolutional filters in neural networks, and Kahng
et al. [2017] designed interactive system ActiVis for visualizing neural network responses to a subset
of instances. While NERO evaluation does not visualize model components, it employs similar
interactive visualization components.

IML via Feature Importance. Instead of visualizing model components, other approaches show
feature importance by analyzing how model predictions change in response to changes in input data,
in a way that is agnostic to the choice of ML model. Partial Dependent Plot (PDP) [Friedman, 2001]
reveals the relationship between model predictions and one or two features by plotting the average
change in model prediction when varying the feature value. Goldstein et al. [2014] built on this with
Individual Conditional Expectation (ICE) plots that show model prediction changes due to changing
features in individual data points, rather than the average. More recent works visualize expected
conditional feature importance [Casalicchio et al., 2019], conduct sensitivity analysis [Štrumbelj
and Kononenko, 2014], and further improve PDP with less computation cost [Apley and Zhu, 2019].
Lundberg and Lee [2017] present SHapley Additive exPlanations (SHAP) that assigns each feature
an importance value to explain why a certain prediction is made. Zhang et al. [2021] derived a more
robust, model-agnostic method from high-dimensional representations to measure global feature
importance, which facilitates interpreting internal mechanisms of ML models. While NERO similarly
employs data transformation and a response-recording mechanism, it does not visualize feature
importance per se. Instead, it collects model responses with respect to data transformed by group
actions as a whole, and supports visualizations at both aggregate (group) and instance levels.
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B Mathematical Preliminaries
B.1 Group Action and Group Orbit

In this section, we give a concise summary of some elements of group theory, a rich topic meriting
deeper consideration [Rotman, 2012]. A group G is a set with an operation “·”: G×G → G that
is associative ((f · g) · h = f · (g · h)), with an identity element e (g · e = e · g = e), and with
inverses (g · g−1 = g−1 · g = e). A group action of group G on set X is a function ϕ : G×X → X
that transforms an x ∈ X by g, h ∈ G according to ϕ(g, ϕ(h, x)) = ϕ(g · h, x) and ϕ(e, x) = x.
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Figure 13: The group G of 2-D rotations, left,
acts on the set X of images, right. An x ∈ X ,
a “4” digit, is rotated to ϕ(g, x) for a g ∈ G via
group action ϕ, part of the orbit G(x) ⊂ X of all
rotations of x.

The orbit of x ∈ X under a group action ϕ is
the set of all possible transformations G(x) =
{ϕ(g, x)|g ∈ G}. We use group orbits to gen-
erate a mathematically coherent family of ML
model inputs, with which (human) users of the
model can predict and reason about correspond-
ing model outputs. For example, Fig. 13 illus-
trates a single 28 × 28 MNIST [Lecun et al.,
1998] digit image x, and its orbit under the ro-
tation group SO(2) through the space X of all
possible 28 × 28 images. We currently make
NERO plots for spatial transformation group
actions (shifts, rotations, flips), which have nat-
ural spatial layouts (e.g. the circular domain of
SO(2)), but we want to highlight that NERO plots should in principle work with any group.

B.2 Equivariance

Three terms – invariance, equivariance, covariance – for describing the relationship between
changes in inputs and outputs of ML models [Marcos et al., 2017], can be introduced via
a commutative diagram (2). The ML model hypothesis h maps from inputs X to outputs
Y . For some group element g, actions ϕ(g) and ϕ̃(g) transform X and Y , respectively. As-
suming (2) is true for some model (i.e., hypothesis h and transform ϕ̃(g) always reach the
same output as input transform ϕ(g) followed by h), the following definitions describe how.

X
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(2)

The model is invariant with respect to the group action
ϕ if ϕ̃ = I , the identity transform on Y . In classification
tasks, invariance means that the classification result is
unchanging while inputs are transformed in some way. A
model is equivariant when the model inputs and outputs
are transformed in the same way: ϕ = ϕ̃. For example, in object detection, where model outputs
are object bounding boxes, if the object is shifted 5 pixels to the right, an equivariant model would
predict the bounding box 5 pixels to the right. Covariance is an extension of equivariance in which ϕ
and ϕ̃ are mathematically distinct (because X and Y have distinct types), but have a semantic linkage
necessitated by the structure of group G. For example, in optical flow, rotating the image inputs
to a covariant model will produce an output in which both the vector field domain and the vectors
themselves are correspondingly rotated. By a slight abuse of terminology, we use “equivariance” in
this work to refer to all three commutative diagram properties.
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C NERO Interface
While the specific components of the NERO interface are discussed and illustrated in §2, in this
section we provide more design philosophy behind the actual interface. First of all, all the interfaces
across different application domains as seen in §3 are designed with the general logic of overview on
the left and details on the right. All sections are individually controllable and interactively linked.
On the left, the dataset and subset of interest are selected via drop-down menus, with the resulting
aggregate NERO plot below. The DR plot section supports choosing the scatterplot layout and
coloring, and selection of individual data points within the scatterplot updates individual and detail
views to the right. The individual NERO plot domain is the group orbit, and the interface permits
moving within the orbit to look at a particular transform of a single sample, with real-time updates
of the model output. In the MNIST interface, for example, clicking and dragging within the polar
plot selects and changes the rotation angle, and updates the resulting rotated digit image and the
models’ outputs from it. Our interface is implemented in PySide (Python bindings for QT) as a
desktop application, running on the same machine as the model.
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