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Abstract
This paper studies the behavior of the extragradient algorithm when applied to hypomonotone
operators, a class of problems that extends beyond the classical monotone setting. While the extra-
gradient method is widely known for its efficacy in solving variational inequalities with monotone
and Lipschitz continuous operators, we demonstrate that its convergence is not guaranteed in the
hypomonotone setting. We construct an example such that by choosing the starting point for all
every size the extragradient diverges. Our results highlight the necessity of stronger assumptions to
guarantee convergence of extragradient and to further develop the existing VI methods for broader
problems.

1. Introduction

We are interested in numerically solving the following Variational Inequality [VI, 5, 14] problem:

find x⋆ s.t. ⟨x− x⋆, F (x⋆)⟩ ≥ 0, ∀x ∈ Rn . (VI)

Special instances of (VI) include standard minimization with F ≡ ∇f, f : Rn → R, zero-sum min-
max, and general sum multi-player games. This problem has gained recent popularity in machine
learning, due to several instances that cannot be modeled by minimization only, such as Gener-
ative Adversarial Networks [6], robust versions of classification [e.g., 3, 11, 12, 15], actor-critic
methods [8], and multi-agent reinforcement learning [e.g., 1, 10].

The extragradient algorithm, introduced by Korpelevich [9] in 1976, is a fundamental iterative
method used to solve variational inequality problems involving monotone operators. For a detailed
description of the algorithm, refer to § 3. Unlike gradient descent, the latest output (last iterate) of
the extragradient method converges when applied to monotone and Lipschitz continuous operators;
definitions can be found in § 3. Its popularity is due to its simplicity and efficiency for this class of
problems.

However, in real-world applications, operators may not always exhibit strict monotonicity or co-
coercivity. Instead, they may demonstrate hypomonotonicity, which is a weaker form of the mono-
tonicity condition. Hypomonotone operators allow for the exploration of more general scenarios,
where finding solutions is more challenging, yet still feasible for analysis.

Hypomonotonicity appears in various settings, including equilibrium problems, optimization
involving non-convex structures, and certain game-theoretic models. The following inequality char-
acterizes this problem class:

⟨F (x)− F (y), x− y⟩ ≥ −µ∥x− y∥2, ∀x, y ∈ Rn, (HM)

© K. Alomar & T. Chavdarova.



ON THE HYPOMONOTONE CLASS OF VARIATIONAL INEQUALITIES

where F : Rn → Rn is the operator in question and µ ≥ 0 is a constant quantifying the degree of
hypomonotonicity.

2. Related Works

Monotonicity and sub-classes problems. The VI problem has been widely studied. The fun-
damental work by Korpelevich [9] assume monotonicity. According to Chavdarova [2] methods
such EG converges when the operator is monotone but not nessesarly for general operator. Beyond
monotone class, extragradient type of algorithm are studied [13] in setting where monotonicity is
not assumed. Two main classes are in our interest mentioned below.

Cohypomonotonicity. Cohypomontone operators on Hilbert spaces are considered a more wider
class of operator or extension of monotone operators. Combettes and Pennanen [4] studied the con-
vergence of proximal point algorithm in the cohypomontone setting. As mentioned in the appendix
we can see that an operator F is cohypomontone when it’s inverse of F−1 is hypomontone. This
relation lead us to study the class of hypomotone operators and see how can we characterize it with
the aim to understand the class more. In particular, we focus on establishing why the convergence
of the extragradient method is not guaranteed in the hypomonotone setting.

Hypomonotonicity. Hypomonotone class of operators are mentioned in this work [7], two vari-
ant classes are metnioned, ρ–hypomonotone and maximal ρ–hypomonotone. However, to our
knowledge, the convergence of the VI methods in this class has not been studied.

3. Preliminaries

This section describes the necessary definitions. Further used background and lemmas are given in
Appendix 7.1.
Notation. We denote (i) real-valued functions with small letters (ii) operators with capital letters,
(iii) matrices with curly capital letters. A† denotes the complex conjugate of the matrix A.
Extragradient [9]. We study the extragradient algorithm defined by the following update at itera-
tion k:

yk+1 = xk − γF (xk),

xk+1 = xk − γF (yk+1) .

Monotonicity is defined as follows.

Definition 1 (Monotonicity) An operator F : Rn → Rn is said to be monotone iff:

⟨F (x)− F (y), x− y⟩ ≥ 0 , ∀x, y ∈ Rn. (Mnt)

The following definition introduces a relaxed form of monotonicity where an operator’s inner
product with the difference of its arguments is bounded below by a negative value.

Definition 2 (Hypomonotonicity) An operator F : Rn → Rn is hypomonotone with modulus µ ≥
0 iff:

⟨F (x)− F (y), x− y⟩ ≥ −µ∥x− y∥2, ∀x, y ∈ Rn. (HM)

The following property ensures bounded changes in F with respect to changes in its input,
which is essential for proving convergence results in iterative algorithms.

2



ON THE HYPOMONOTONE CLASS OF VARIATIONAL INEQUALITIES

Definition 3 (Lipschitz operator) An operator F : Rn → Rn is Lipschitz continuous with con-
stant L > 0 if:

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn. (Lip)

4. Examples of non-monotone and Hypomonotone Operators

Example 1: concave problem. Consider the following operator T : R2− > R2, T (x) = −µx, µ >
0. Consider x = (1, 0)t, y = (0, 1)t ∈ R2, µ = 1. It follows that ⟨T (x)− T (y), x− y⟩ = −2 < 0.
Hence not monotone. Now to show that T is hypomontone consider ⟨−µx + µy, x − y⟩ =
−µ⟨x − y, x − y⟩ ≥ −µ∥x − y∥2, since µ > 0 then it is µ−hypomonotone. Furthermore
∥T (x)− T (y)∥ = | − µ|∥x− y∥ ≤ µ∥x− y∥, hence µ−Lipchitz.

Example 2: non-monotone problem. Consider the operator F (x, y) = (2x+y−1,−x−1.5y+1)
to show that F is not montone we use the vectors x1 = (0, 0)T , x2 = (0, 1)T we get ⟨F (x1) −
F (x2), x1 − x2⟩ = −3

2 < 0.

5. Main Results

While monotone problems have been extensively studied, the class of hypomonotone problems
remains less understood despite its practical importance. Furthermore, we study the convergence
behavior in the hypomonotone setting to uncover potential challenges and deviations from standard
monotone behavior.

5.1. Theorem: Hypomonotonicity of Operators with Negative Eigenvalues

Theorem 4 Let A ∈ Rn×n be a normal matrix with at least one eigenvalue whose real part is
negative. Then, the operator related to matrix A is hypomonotone but not monotone.

Step 1: Non-Monotonicity Since A has at least one eigenvalue with a negative real part, it cannot
be monotone. This follows directly from the definition of monotonicity.

Step 2: Diagonalization and Eigenbasis Representation Since A is normal, it can be diagonal-
ized as A = QΛQ⊤, where Λ is the diagonal matrix of eigenvalues, and Q is an orthogonal matrix.
Any vector x ∈ Cn can be written as a linear combination of eigenvectors:

x =
n∑

i=1

civi,

where vi are the eigenvectors of A, and ci are the complex coefficients.

Step 3: Inner Product Expansion Using Eigenbasis To prove hypomonotonicity, we analyze
the expression:

⟨x∗1 − x∗2, x1 − x2⟩ = Re(⟨A(x1 − x2), x1 − x2⟩),

where x1 =
∑

aivi and x2 =
∑

bivi. Expanding the inner product in terms of the eigenvalues λi,
we get:

Re

(
n∑

i=1

λi(|ai|2 + |bi|2 − 2Re(aibi))

)
.
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Step 4: Bounding the Inner Product We now bound the inner product using the real parts of the
eigenvalues:

Re

(
n∑

i=1

λi(|ai|2 + |bi|2 − 2Re(aibi))

)
≥

n∑
i=1

Re(λi)|ai − bi|2.

Since λmin denotes the eigenvalue of A with the smallest real part, we have:

n∑
i=1

Re(λi)|ai − bi|2 ≥ Re(λmin)∥x1 − x2∥2.

Step 5: Hypomonotonicity Conclusion Because the real part of the smallest eigenvalue Re(λmin)
is negative, we have:

⟨A(x1 − x2), x1 − x2⟩ ≥ −µ∥x1 − x2∥2

for some µ ≥ 0, proving that the operator related to A is hypomonotone. The operator is not
monotone because of the negative real part of λmin.

Theorem 5 Let γ > 0, x0 = (1, 0)⊤ the the initial point and F (x) = Ax to be an Operator such
that

A =

(
−2 0
−1 −2

)
Then the sequence ∥xn∥ diverges as n → ∞.

Proof By definition of extragradient, yk+1 = xk−γAxk and xk+1 = xk−γAyk+1 hence it follows
that xk+1 = xk(I − γA+ γ2A2).
Define M(γ) = I − γA+ γ2A2. By definition of A we can see that

M(γ) =

(
1 + 2γ + 4γ2 0

γ + 4γ2 1 + 2γ + 4γ2

)
.

Now consider x0 as defined above and x1 = M(γ)x0 = (1 + 2γ + 4γ2, γ + 4γ2).
let ∥.∥ to be the euclidean norm and ∀0 < γ < 1

∥x1∥2 = (1 + 2γ + 4γ2)2 + (γ + 4γ2)2 > 1,

now calculating x2 we see

x2 = M(γ)x1 =

(
(1 + 2γ + 4γ2)2

2(γ + 4γ2)(1 + 2γ + 4γ2)

)
,

and ∥x2∥ > ∥x1∥, furthermore iteratively

xn = M(γ)nx1 =

(
(1 + 2γ + 4γ2)n

n(γ + 4γ2)(1 + 2γ + 4γ2)n−1

)
,

thus ∥xn∥ > ∥xn−1∥, hence ∥xn∥ → ∞.
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6. Conclusion

In this paper, we characterized hypomonotone problems by analyzing their properties through the
eigenvalues of the associated operators. Additionally, We constructed a counterexample to demon-
strate divergence, showing that no matter how the step size is chosen, convergence cannot be guar-
anteed. This highlights the critical need for a deeper understanding of hypomonotone operators and
their unique challenges.
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7. Appendix

A similar structure to hypomonotonicity is cohypomonotonicity, which establishes a hypomono-
tonicity relationship with the inverse operators.

Definition 6 (Cohypomonotonicity) An operator F is cohypomonotone if its inverse F−1 is hy-
pomonotone with respect to a constant ρ ≥ 0 on the set F (C). For all x, y ∈ F (C):

⟨F−1(x)− F−1(y), x− y⟩ ≥ −ρ∥x− y∥2. (cHM)

7.1. Useful Lemmas

This section lists the necessary lemmas that we rely on.
Normal matrices play a crucial role in diagonalization and spectral analysis.

Definition 7 (Normal Matrix) A matrix A ∈ Cn×n is normal if it commutes with its conjugate
transpose: AA† = A†A .

The following is essential for spectral decomposition and understanding operator behavior via
eigenvalues.

Theorem 8 (Spectral Theorem) Any normal matrix A—as per Def. 7—can be diagonalized by a
unitary matrix S, yielding: A = SDS† , where D is a diagonal matrix of eigenvalues.

Theorem 9 Let A ∈ Rn×n be a normal matrix with at least one eigenvalue whose real part is
negative. Then, the operator related to matrix A is hypomonotone and not monotone.

Proof Since A has an eigenvalue with a negative real part, it is not monotone; which follows
straightforwardly from the spectral viewpoint of the monotonicity definition. The following shows
that A is a hypomonotone operator.

Given that A is diagonalizable, there exist eigenvalues λ1, . . . , λn and a corresponding set of lin-
early independent eigenvectors v1, . . . , vn. Any vector x ∈ Cn can be expressed as x =

∑n
i=1 civi,

where ci are complex coefficients.
To prove the hypomonotonicity of A, consider x1, x2 ∈ Cn with x∗1 = Ax1 and x∗2 = Ax2. We

write x1 =
∑n

i=1 aivi and x2 =
∑n

i=1 bivi, where vi are eigenvectors and ai, bi are coordinates in
this basis.
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Using the sesquilinearity of the inner product (which accommodates complex vectors), we have:
First we notice that the coordinates of x1 and x2 are real:

⟨x∗1 − x∗2, x1 − x2⟩ = Re(⟨x∗1 − x∗2, x1 − x2⟩)
= Re(⟨Ax1 −Ax2, x1 − x2⟩)
= Re(⟨Ax1, x1⟩ − ⟨Ax1, x2⟩ − ⟨Ax2, x1⟩+ ⟨Ax2, x2⟩)

= Re(

n∑
i=1

λi|ai|2 −
n∑

i=1

λiaibi −
n∑

i=1

λiaibi +

n∑
i=1

λi|bi|2)

= Re(

n∑
i=1

λi|ai|2 −
n∑

i=1

λiaibi −
n∑

i=1

λiaibi +

n∑
i=1

λi|bi|2)

= Re(

n∑
i=1

λi(|ai|2 + |bi|2 − (aibi + aibi))

= Re(

n∑
i=1

λi(|ai|2 + |bi|2))−Re(

n∑
i=1

λi2Re(aibi))

= Re(

n∑
i=1

λi(|ai|2 + |bi|2))−
n∑

i=1

Re(λi)2Re(aibi))

≥ Re(

n∑
i=1

λi(|ai|2 + |bi|2))−
n∑

i=1

Re(λi)2|aibi|)

= Re(

n∑
i=1

λi(|ai|2 + |bi|2 − 2|ai||bi|))

=
n∑

i=1

Re(λi)|ai − bi|2

≥ Re(λmin)
n∑

i=1

|ai − bi|2

= Re(λmin)∥x1 − x2∥2

where λmin denotes the eigenvalue of A with the smallest real part. Note that we use Re(λmin)
because the hypomonotonicity depends on the real part of the eigenvalues.

Therefore, since Re(λmin) is negative, the operator related to A is hypomonotone but not mono-
tone.
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