
Under review as a conference paper at ICLR 2024

ROSA: RANDOM ORTHOGONAL SUBSPACE ADAPTERS
FOR EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model training requires significantly more memory, compared with inference.
Parameter efficient fine-tuning (PEFT) methods provide a means of adapting large
models to downstream tasks using less memory. However, existing methods
such as adapters, prompt tuning or low-rank adaptation (LoRA) either introduce
latency overhead at inference time or achieve subpar downstream performance
compared with full fine-tuning. In this work we propose Random Orthogonal
Subspace Adapter (ROSA), a method that outperforms previous PEFT methods by
a significant margin, while maintaining a zero latency overhead during inference
time. In contrast to previous methods, ROSA is able to adapt subspaces of arbitrarily
large dimension. We demonstrate both theoretically and experimentally that this
makes ROSA strictly more expressive than LoRA, without consuming additional
memory during runtime. As PEFT methods are especially useful in the natural
language processing domain, where models operate on scales that make full fine-
tuning very expensive, we evaluate ROSA in two common NLP scenarios: natural
language generation (NLG) and natural language understanding (NLU) with GPT-2
and RoBERTa, respectively. We show that on almost every GLUE task ROSA
outperforms LoRA by a significant margin, while also outperforming LoRA on
NLG tasks. Our code will be made publicly available on acceptance.

1 INTRODUCTION

The advent of large language models pre-trained on web-size corpora (pre-trained LMs, or PLMs)
has led to remarkably performant models in the domain of natural language processing (Brown et al.,
2020; Devlin et al., 2019). As the size of such models ranges from hundreds of millions to hundreds
of billions of parameters (Touvron et al., 2023), adapting them to downstream tasks is challenging and
computationally expensive Peng et al. (2023). Compared to inference, training requires substantially
more memory (2x-4x as much). For example, the GPT-2 base model (128M parameters) together
with an input batch of 8 sequences of length 512 requires 670MB and 1139MB during inference and
training, respectively (Radford et al., 2019).

To alleviate the burdensome memory requirements of adapting PLMs to downstream tasks, various
memory efficient methods have been proposed (Houlsby et al., 2019; Lin et al., 2020; Guo et al.,
2021; Hu et al., 2022; Li & Liang, 2021; Lester et al., 2021; Sung et al., 2021; Liu et al., 2022b;a).
The commonality among these methods is the maintenance of fixed PLM weights while introducing
a minimal quantity of trainable parameters. Although solutions like LoRA (Hu et al., 2022) and
(IA)3 (Liu et al., 2022a) are effective and do not impose any additional inference latency, they
implicitly limit the expressivity of adapted models. For instance, LoRA adapts low-rank matrices that
are added in parallel to fixed pre-trained weights. While this approach makes it possible to fine-tune
large PLMs with reduced memory footprint compared to full fine tuning, it introduces an unavoidable
bias: the pre-trained weight matrices can only be fine-tuned to matrices that are “a low-rank matrix
away” from the initial weights.

In this work, we propose ROSA: Random Orthogonal Subspace Adapter, which expands the ex-
pressivity of adapted models, while remaining as memory efficient as LoRA. Similarly to LoRA,
ROSA satisfies memory constraints by selectively fine-tuning low-rank matrices in parallel to fixed
pre-trained weight matrices. Thus allowing users to fine-tune models in resource constrained settings.
At the same time, ROSA alleviates the expressivity limitation of LoRA by continuously sampling

1



Under review as a conference paper at ICLR 2024

W =
SVD

= +

Wfixed A

B

h

Wfixed ∇(A,B)LFactorize
W = Wfixed + AB

B

A

x

Figure 1: Illustration of ROSA. Parameter matrix W is factorized using the singular value decom-
position (SVD) and split into smaller trainable matrices (A,B) and a larger fixed matrix (Wfixed).
Gradients during back-propagation are only computed with respect to (A,B). The split is then
merged after a specified number of training iterations, and the process is repeated. ROSA updates an
increasingly larger subspace of W over the course of training while remaining memory efficient.

different low-rank trainable subspaces and iteratively merging learned information into fixed weights
throughout fine-tuning, as depicted in Figure 1. From a theoretical perspective, we formally charac-
terize the implicit low rank bias of LoRA, show how this bias can be detrimental even on a simple
regression task, and demonstrate that ROSA does not suffer from this limitation (see Theorem 1).
Even further, our results show that (i) ROSA can fine-tune pre-trained weights to arbitrary target
weights (i.e. is as expressive as full fine-tuning), and (ii) while LoRA trades expressivity for lower
memory requirements, ROSA instead trades convergence speed for the same. These results are clearly
and intuitively illustrated on a simple synthetic experiment presented in Section 4.1.

From a practical perspective, we show that ROSA achieves performance on par with full fine-tuning
and consistently outperforms state-of-the-art methods such as LoRA and (IA)3 (Liu et al., 2022a) on
natural language understanding (GLUE) (Wang et al., 2019b) and natural language generation (E2E)
(Novikova et al., 2017) tasks by significant margins. Lastly, we note that ROSA carries a significant
advantage over approaches such as adapters (Houlsby et al., 2019) and prompt tuning (Li & Liang,
2021; Lester et al., 2021), as it introduces no additional latency overhead during inference time.

In summary, our key contributions are:

• Demonstrating both empirically and theoretically, that the low rank nature of LoRA can
detrimentally limit its expressiveness.

• Introducing ROSA, a PEFT method that circumvents the low rank limitation of LoRA while
remaining as memory efficient as LoRA.

• Proving that ROSA is more expressive than LoRA and can be as expressive as full fine-
tuning.

• Conducting extensive experiments showing that ROSA consistently outperforms LoRA by
a significant margin on natural language understanding (GLUE) and on natural language
generation (E2E) benchmarks.

2 RELATED WORK

PEFT defines a class of methods to alleviate memory and compute requirements during adaptation
of large models to downstream tasks by tuning only a relatively small number of added parameters,
rather than the tuning all the parameters of the model itself.

Adapters: Adapter methods such as in Houlsby et al. (2019) inject layers in between certain
modules of each transformer block. These layers have relatively few parameters, as they project the
original features down into a smaller set of dimensions, then scale them back up after applying the
adapter’s feed-forward layer. This structure necessarily leads to a latency overhead.

2



Under review as a conference paper at ICLR 2024

Prompt and prefix tuning: Prompt and prefix tuning are an efficient means of adapting models via
continuous optimization of prefixes added to input prompts (Li & Liang, 2021; Lester et al., 2021;
Liu et al., 2022b). While such approaches are memory efficient, they require reserving a portion of
the available sequence length during downstream adaptation. Moreover, prompt tuning methods can
be challenging to optimize as pointed out in Hu et al. (2022).

LoRA: Our work is most similar to LoRA (Hu et al., 2022), which has been shown to outperform
the aforementioned approaches and to mitigate limitations such as increased inference latency and
reduced sequence length capacity. LoRA adds a trainable low rank matrix to the frozen original
weight matrix. The low rank matrix, parameterized as the product of two small matrices, is then
fine-tuned instead of the original model weights. The authors of LoRA hypothesize that during
task-specific fine-tuning, the model weight updates have a low “intrinsic dimension” and thus can be
effectively approximated by low-rank matrices. While this may be true for some downstream tasks,
we show both theoretically and empirically that this is not always the case and that restricting the
weights update to a low intrinsic dimension can be detrimental.

(IA)3: Another widely known PEFT method is (IA)3 (Liu et al., 2022a). (IA)3 (Infused Adapter by
Inhibiting and Amplifying Inner Activations) adds learned vectors to the attention and feedforward
layers of the transformer, which are used to rescale the activations of these modules. (IA)3 further
reduces the number of trainable parameters from LoRA, and makes the proportion of trainable
parameters fixed, as the size of the rescaling vectors is directly dependent on the dimensions of the
transformer’s weight matrices.

AdaLoRA: Another competitive approach, AdaLoRA (Zhang et al., 2023) allocates a fixed parame-
ter budget across the layers of a model dynamically by manipulating the rank, providing a lower rank
to less important modules and vice versa. This is done via a novel importance metric that quantifies
the contribution of a given module to the model’s overall performance.

Other methods: BitFit (Ben Zaken et al., 2022) freezes all parameters except bias terms. FISH Sung
et al. (2021) optimizes a sparse difference vector to be summed with the original model parameters.

3 METHOD

In this section we describe our proposed approach, ROSA: Random Orthogonal Subspace Adapter.
The purpose of ROSA is to provide a means for fine-tuning large models in memory constrained
settings while remaining competitive with full fine-tuning in terms of performance. After introducing
ROSA and demonstrating its memory efficiency in Section 3.1, we provide a theoretical analysis
showing that ROSA is provably more expressive than LoRA in Section 3.2.

3.1 ROSA

In LoRA (Hu et al., 2022), pre-trained models are adapted to alternative tasks by adding low rank
matrices A ∈ RM×R,B ∈ RR×N in parallel to pre-trained weights W ∈ RM×N . The output of the
LoRA layer is given by

ϕ(x) = Wx+ABx. (1)
The adapter weights A and B are initialized such that AB = 0 and are the only parameters being
updated during training. LoRA is memory efficient as W remains fixed during training (no gradient
buffers necessary for the full weights) and typically R≪ MIN(M,N). The rank (R) of the trainable
matrices is chosen such that the training procedure satisfies device memory constraints.

Constraining the updates to a fixed low rank subspace initialized at zero induces two limitations. First,
the low rank nature of LoRA is such that the difference between the fine-tuned weight matrix W+AB
and the pre-trained weights W is constrained to be a low rank matrix. This significantly hinders the
ability of LoRA to fine-tune a given model to an arbitrary target model/task. Note that even in the
case where the target weights W∗ are close to the pre-trained weights W (w.r.t. e.g., the Frobenius
norm), this low-rank constraint creates an unavoidable bias when the difference W∗ −W is not low
rank. We formally characterize this bias in Section 3.2 and empirically demonstrate it in Section 4.1.
Second, initializing the adapter AB to zero can be thought of as learning new representations from

3



Under review as a conference paper at ICLR 2024

scratch separately from the pre-trained ones (ϕ(x) = Wx+ABx := ϕpre-trained(x) + ϕtrainable(x)),
rather than leveraging the pre-trained features the model already has to initialize the adapter.

To address these limitations, ROSA continuously samples new weight subspaces to finetune through-
out the training procedure. This offers several advantages. First, iteratively re-sampling new subspaces
effectively expands the dimension of the fine-tuned subspace. Hence, ROSA does not suffer from the
low rank bias of LoRA (which we theoretically show in Section 3.2). This allows us to decouple the
adapted model’s expressivity from device memory constraints. Second, by iteratively focusing the
weight updates to a given randomly chosen weight subspace, we utilize the pre-trained knowledge to
successively initialize the adapter weights to a different subspace of the pre-trained weights.

To achieve this, ROSA adapters successively factorize W into trainable and fixed weight subspaces
using SVD. More precisely, let W = UΣV⊤ be the SVD of W, let UR ∈ RM×R be the matrix
obtained by selecting a random subset of R columns of U and let ΣR ∈ RR×R and VR ∈ RR×N

denote the matrices obtained by selecting the same subset of singular values and right singular vectors.
The ROSA factorization step is defined by

W = Wfixed +AB, where A = URΣR ∈ RM×R, B = VR ∈ RR×N and Wfixed = W−AB.
(2)

During training, gradients are computed only with respect to the R dimensional subspace which
consists of R(M +N) parameters. In contrast, full fine-tuning requires optimizing MN parameters.
Thus, ROSA leads to a reduction in the number of trainable parameters, given by

ρtrain =
MN

R(M +N)
. (3)

The factorization step is repeated throughout training at a pre-determined frequency (e.g., after
each epoch of fine-tuning). The overall ROSA procedure is illustrated in Figure 1 and described in
Algorithm 1. In practice, ROSA is applied simultaneously to all weight matrices of the model to
fine-tune. While each subspace sampling step is expensive, O(max(N,M)3), it is only performed
once every epoch. We show in the experiment section that the sample step adds negligible time to the
training procedure in practice (see Table 1).

Since the weight matrix is factorized using SVD, the two resulting weight subspaces are orthogonal at
initialization. Thus, each factorization step of ROSA can be seen as decomposing the corresponding
layer’s feature space into two orthogonal subspaces: a low-dimensional one to be fine tuned and a
larger one which will be frozen until the next factorization step. More precisely, if we let ϕ(x) = Wx
be the output of the layer to be fine-tuned using ROSA, the factorization step decomposes ϕ(x) in
ϕ(x) = ϕfixed(x) + ϕtrainable(x) where ⟨ϕfixed(x), ϕtrainable(x)⟩ = ⟨Wfixedx,ABx⟩ = 0. The trainable
feature map ϕtrainable is then optimized until the next factorization step, while ϕfixed remains fixed.
Note that the orthogonality is not enforced during fine-tuning, it is only satisfied at the initialization
of the factorization step. Hence, ROSA can be seen as iteratively initializing adapters to random low
dimensional projections of the full feature space and fine-tuning them.

3.2 THEORETICAL ANALYSIS

In this section we formally show how the low rank parameterization of LoRA limits its expressiveness
and how ROSA circumvents this limitation.

First, It is easy to see that, by construction, the residual matrices obtained by fine-tuning weight
matrices using LoRA are constrained to be low rank:
Proposition 1. Let W0 be a weight matrix of a pre-trained model to be fine-tuned. Then, any
fine-tuned weight matrix WLoRA obtained using LoRA with rank parameter R will be such that
rank(W0 −WLoRA) ≤ R.

Proof. This directly follows from the fact that WLoRA = W0 +AB and rank(AB) ≤ R.

As a consequence, fine-tuning using LoRA suffers an unavoidable estimation bias which is not present
in ROSA. In the following theorem, we (i) formally characterize this bias on a simple multivariate
linear regression fine-tuning problem and (ii) derive a convergence rate of ROSA for linear regression
demonstrating that it does not suffer from the same limitation.

4



Under review as a conference paper at ICLR 2024

Algorithm 1 ROSA

Input: W ∈ RM×N , R (desired rank), K (factorization frequency), L (loss function)
1: [A,B]← [0,0]

2: for t = 1 to T do
3: if tmodK == 0 then
4: W←W +AB

5: U,Σ,V⊤ ← SVD(W)

6: (i1, · · · , iR)← RANDINTS(R,min(M,N))

7: [A,B]← [U:,(i1,··· ,iR)Σ(i1,··· ,iR),(i1,··· ,iR),V
⊤
(i1,··· ,iR),:]

8: W←W −AB

9: end if
10: [A,B]← [A,B]−∇[A,B]L(W +AB)

11: end for

Theorem 1. Consider a simple multivariate least-square regression problem:

argmin
W

∥XW −Y∥2F

where X ∈ Rn×d and Y ∈ Rn×p are the input and output data matrices, respectively. We assume
that there exists a solution achieving zero error*.

Consider the sequence of fine-tuned weight matrices obtained by ROSA with rank parameter R
starting from a pre-trained weight matrix W0, assuming that each intermediate minimization problem
is solved exactly:

Wt = Wt−1 +AtBt where At,Bt = argmin
A∈Rn×R,B∈RR×n

∥X(Wt−1 +AB)−Y∥2F .

Then, ROSA will converge to a fine-tuned matrix achieving zero error in at most

T =

⌈
rank(XW0 −Y)

R

⌉
steps. That is, ∥XWt −Y∥2F = 0 as soon as t ≥ T .

In contrast, the error achieved by LoRA with rank parameter R is lower bounded as

∥XWLoRA −Y∥2F ≥
min(d,p)∑
i=R+1

σi(ΠXY −XW0)
2

where σi(M) denotes the ith singular value of a matrix M (ordered decreasingly) and ΠX is the
matrix of the orthogonal projection onto the range of X.

Proof. See Appendix A.

Several observations are in order. First, Theorem 1 shows that even with rank parameter R = 1,
ROSA will converge to the optimal solution of the linear regression fine-tuning problem (assuming
that ROSA exactly solves the minimization problem between each factorization step). Second,
increasing the rank parameter will lead to faster convergence. This suggests that the rank parameter
R in ROSA controls a trade-off between memory requirement and convergence speed. This is in stark
contrast to LoRA, where the rank parameter controls the trade-off between memory requirement and
expressiveness, as demonstrated in the previous theorem.

In the next section, we empirically demonstrate that this theoretical result also holds in practice when
using LoRA and ROSA to fine-tune non-linear models trained using gradient based methods.

*This is only to simplify the theorem’s statement. In the appendix we show a more general version of this
theorem without this assumption

5



Under review as a conference paper at ICLR 2024

(a) (b)

Figure 2: Validation loss curves of the training procedure for (a) 1-layer MLP and (b) 2-layer MLP
(with ReLU activation). Both models are trained and evaluated on synthetic data that is generated
from a randomly initialized MLP and a random low-rank adapter of rank 24. The models are trained
to fit the synthetic data using the mean squared error loss function.This figure demonstrates that
ROSA can find solutions with similar performance to full fine-tuning (FT) in practice.

4 EXPERIMENTS

In this section we compare the downstream performance of a model adapted using ROSA compared
with LoRA (Hu et al., 2022) and (IA)3 (Liu et al., 2022a) (as all three methods add zero latency
overhead at inference time). For better comparison, in all experiments we use our own implementation
for LoRA and (IA)3 (detailed in Appendix B). In Section 4.1 we evaluate the performance of MLP
models adapted to synthetic data, while Sections 4.2 & 4.3 evaluate the performance of RoBERTabase
(Liu et al., 2019) and GPT-2 (Radford et al., 2019) on the GLUE and E2E benchmarks, respectively.
In our experiments using transformer models, we only apply the PEFT methods to the attention layers,
following a similar approach to Hu et al. (2022).

4.1 SYNTHETIC DATA

We first design two simple regression experiments with synthetic data to validate that the increased
expressiveness of ROSA, illustrated in Theorem 1 for linear models, indeed leads to better results
when fine-tuning non-linear models via Stochastic Gradient Descent.

To generate the synthetic data, we start by randomly initializing an MLP model f . We then add low
rank matrices (rank=24), which are also randomly initialized, in parallel to the weights of f . This
gives us the true model f∗, which we want to approximate. The synthetic data D = {(x,y)}n is
generated by sampling x ∼ N (0, σI) and y = f∗(x).

The results are summarized in Figure 2, where we compare the evolution of the validation loss
of ROSA and LoRA for fine-tuning the original MLP model f to the data D generated from the
target task f∗. As observed in Figure 2, ROSA at different rank values finds solutions with similar
performance to full fine-tuning. This demonstrates that even in a more practical setting than the one
of Theorem 1(namely with non-linear models trained by gradient descent) ROSA can match the
performances of full fine-tuning. Moreover, for both 1-layer and 2-layers MLPs, we see that the rank
limitation of LoRA prevents it from fully adapting to the target task: while increasing the rank leads
to better validation loss, the unavoidable low-rank bias is clearly demonstrated by the convergence to
a sub-optimal loss. In contrast, ROSA always converges towards the optimal loss, even with rank
parameter set to 1, and increasing the rank parameter leads to faster convergence to the optimal loss.
Notably, using ROSA to adapt a two layer MLP containing a non-linearity recovers a model that well
approximates the true model used to generate the data. This suggests that the formal result shown in
Theorem 1 holds beyond the simple linear regression setting.

6



Under review as a conference paper at ICLR 2024

ROSA/LoRA FT
0

500

1,000

1,500

2,000

Method

M
em

or
y

(M
B

)

Figure 3: Memory usage during fine-
tuning of RoBERTabase on the CoLA
GLUE benchmark task, using ROSA
compared with LoRA and full fine-
tuning.

Table 1: Runtime of one epoch of fine-tuning of
RoBERTabase (125M parameters) on the CoLA
task, using ROSA and full fine-tuning. The ex-
periment is conducted on a single GPU (NVIDIA
A100-SXM4) with an input batch of 32 sequences
of length 512. At every epoch a ROSA factorize
step is performed, which adds negligible latency
to the runtime during training.

Factorize Time (s) Epoch Time (s)

FT - 157±0.16

LoRA - 152±0.56

ROSA 4.03±3.67 153±0.16

Table 2: Performance of RoBERTabase fine-tuned using various PEFT methods (ROSA, LoRA and
(IA)3) on the GLUE benchmark tasks.We report the matched validation accuracy for MNLI, Matthew’s
correlation coefficient for CoLA, Pearson correlation for STS-B and accuracy for all other tasks.

Method Params CoLA MRPC QNLI RTE STS-B MNLI SST2 BoolQ QQP

FT 125 63.50 89.95 92.60 77.62 90.69 86.296 94.38 82.11 91.81

(IA)3 0.1 55.18 87.50 82.52 68.59 88.41 77.06 92.55 73.85
LoRA (r=2) 0.2 53.42 88.72 92.10 72.56 83.91 85.37 93.69 72.96 88.97
ROSA (r=2) 0.2 62.08 89.46 92.20 73.64 89.32 86.25 92.55 76.78 89.09

LoRA (r=8) 0.6 54.27 88.24 92.20 69.31 82.10 85.88 93.57 68.37
ROSA (r=8) 0.6 64.80 88.73 92.80 72.56 90.11 87.09 93.11 77.31 89.72

4.2 GLUE EXPERIMENTS

In this section we compare ROSA against LoRA and (IA)3, by adapting RoBERTabase (125M) (Liu
et al., 2019) on various tasks taken from the GLUE and SuperGLUE natural language understanding
benchmarks (Wang et al., 2019b;a). These benchmarks cover a wide variety of natural language
understanding tasks, including logical entailment, grammatical acceptability, question-answering,
textual similarity, and sentiment analysis. The pre-trained model weights for RoBERTabase are taken
from the Huggingface library (Wolf et al., 2020). A description of the specific subset of GLUE and
SuperGLUE tasks tested on is available in Appendix B. Unlike some previous works which initialize
the weights for MRPC, RTE, and STS-B with fine-tuned MNLI task-specific weights, we initialize
the weights for all tasks with only the pre-trained RoBERTa weights for a fair comparison.

These tasks were selected to give a broad overview of ROSA’s performance across a variety of
different natural language tasks. We report development set performance for all tasks.

In Table 2 we show that ROSA outperforms LoRA and (IA)3 by a significant margin on multiple
tasks. Most notably, on CoLA using rank equal to eight we obtain Matthew’s correlation coefficients
of 64.80 for ROSA, 54.27 for LoRA and 55.18 for (IA)3. Furthermore, ROSA remains as memory
efficient as LoRA (Figure 3), and the factorization steps in ROSA add negligible latency (Figure 1).
(See Appendix for training curves of RoBERTabase fine-tuned on CoLA for 10 epochs.)

4.3 NLG EXPERIMENTS

In this section we investigate the performance of ROSA in the natural language generation (NLG)
setting. Namely, we compare the performance of GPT-2 Radford et al. (2019) using ROSA compared
with LoRA and (IA)3, when finetuned on the E2E NLG task Novikova et al. (2017). The E2E NLG

7



Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40
Singular Value Index

La
ye

r

0.2

0.4

0.6

0.8

(a)

0 5 10 15 20 25 30 35 40
Singular Value Index

La
ye

r

0.2

0.4

0.6

0.8

(b)

Figure 4: Plot of the cumulative sum of singular values of residual matrices. The residual matrices
in these plots are obtained from fine-tuning RoBERTabase on CoLA for 10 epochs and achieving
a Matthew’s Correlation score of (a) 64.80 with ROSA and (b) 54.27 with LoRA. The figure
demonstrates that the rank of the residual matrices obtained when adapting the RoBERTabase using
ROSA, is indeed far greater than the rank of the residuals obtained when fine-tuning using LoRA.

Table 3: Performance of GPT-2 finetuned
on the End-to-End natural language gener-
ation task (E2E) Novikova et al. (2017), using
ROSA, LoRA and (IA)3.

Name # Trainable BLEU
Parameters (M)

FT 355 68

(IA)3 0.2 65
LoRA (r=4) 0.9 64
ROSA (r=4) 0.9 68

LoRA (r=8) 1.7 67
ROSA (r=8) 1.7 67

Table 4: Performance of RoBERTabase using vari-
ants of ROSA r=8 , finetuned on the CoLA and STS-B
GLUE benchmark tasks.

Name CoLA STS-B

FT 63.52 90.69

LoRA(Random Init) 54.27 82.10
ROSA(SVD Init) 57.08 89.19
ROSA(SVD Init + Ortho) 60.32 89.42
ROSA(SVD Init + Ortho + Resampling) 64.80 90.11

task involves producing a fluent natural language description of a restaurant given a logical form
describing its various attributes. The model’s generations are compared against multiple reference
texts to account for variations in wording. The score provided is the maximum BLEU score across all
the reference texts for a given input.

In Table 3 we show that ROSA outperforms LoRA and (IA)3 by a significant margin in the BLEU
score.

4.4 WHAT COMPONENTS OF ROSA LEADS TO ITS PERFORMANCE?

In this section we empirically study several aspects of ROSA. We highlight three key components of
ROSA, on which we perform ablation studies. The key components of ROSA are:

• SVD Initialization: ROSA adapters are initialized using SVD, as opposed to the random
initialization of LoRA.

• Orthogonality: In ROSA, pre-trained weight matrices are decomposed such that the
trainable adapter weights are initially orthogonal to the fixed weights.

• Resampling: In ROSA the difference between the pre-trained weights and the final weights
is not constrained to be low-rank, due to resampling and merging of subpsaces throughout
training.

We study the effects of progressively adding these components to ROSA in Table 4. We find that the
progressive addition of the aforementioned components to ROSA is beneficial to its performance.
The most drastic improvement is seen when resampling is added. This observation aligns with our
theoretical analysis, demonstrating that the rank flexibility of ROSA, which increases the expres-
siveness of adapted models, leads to improved performance. Note also that the gain from LoRA to
ROSA (SVD Init) aligns with our intuition that leveraging the pre-trained features to initialize

8



Under review as a conference paper at ICLR 2024

Table 5: Performance of RoBERTabase using different sampling schemes for ROSA, on the CoLA
GLUE benchmark task. Top/Bottom/Random sampling indicate the method used for selecting the
singular vectors to initialize the trainable subspace.

Name # Trainable Params MRPC

FT 125 63.52

ROSA r=8 (Top) 0.6 58.88
ROSA r=8 (Bottom) 0.6 60.57
ROSA r=8 (Random) 0.6 60.32

the adapter is beneficial, compared to initializing the adapter to zero and learning new features from
scratch.

We further investigate the rank structure of the matrices of the most performant RoBERTAbase that
achieved 64.80 on CoLA (with resampling). Specifically, we plot the singular values of residual
matrices (defined as the difference between the initial pre-trained weights and the final weights upon
completion of fine-tuning) in Figure 4. As shown in the figure, the ranks of the difference matrices
achieved using ROSA (Figure 4a) are significantly larger than than the ranks of the difference matrices
achieved using LoRA (Figure 4b).

4.5 INVESTIGATING DIFFERENT LOW-RANK SUBSPACE SAMPLING SCHEMES

In this section, we compare the random subspace sampling of ROSA with two other subspace
selection strategies: selecting the top-R or bottom-R singular vectors . In doing so, we validate that
performing random selection of singular vectors is as performant as selection based on singular value
information. In Table 5, we report the performance of RoBERTabase fine-tuned on CoLA using the
different sampling strategies, which confirm that, on this task, random sampling performs similarly
or better than other schemes.

4.6 LIMITATIONS OF ROSA

While ROSA achieves better performance than previous state-of-the-art adaptation methods such
as LoRA and (IA)3, it bears one main limitation compared with other methods. Namely, it requires
storage of the whole model after it is adapted for a downstream task.

Other adapter methods try to simultaneously address two challenges (1) reducing memory usage
during training to ease the hardware barrier when adapting large models to a single downstream task
and (2) reducing disk space usage when adapting a base model to many downstream tasks.

ROSA primarily focuses on addressing point (1), making it more suitable for scenarios involving a
single downstream task. In comparison, other PEFT methods are better suited for scenarios involving
multiple downstream tasks. ROSA excels in its specific domain, offering the same level of expressivity
as full fine-tuning while requiring less GPU memory. This eliminates the need for (1) layerwise
training, which would prolong training time, and (2) model sharding that necessitates more GPUs,
thereby increasing training costs.

4.7 CONCLUSION & FUTURE WORK

In this work we introduced ROSA: Random Orthogonal Subspace Adapters. We first showed both
theoretically and empirically that the low-rank nature of LoRA can often detrimentally affect its
performance. In contrast, we demonstrate that ROSA can theoretically achieve the same solution
as full fine-tuning. Furthermore, we demonstrate that on synthetic data ROSA indeed converges
the same solution as full fine-tuning when using gradient based optimization. We evaluated ROSA
against LoRA and (IA)3 on both natural language understanding and natural language generation
tasks. Our experiments showed that ROSA achieved performance similar to full fine-tuning and
outperformed other state-of-the-art methods such as LoRA and (IA)3 by significant margins. As our
analysis was limited to adapting linear layers present in transformer models, adapting the parameters
of convolution operations is an area for future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2019.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022.

Alan Julian Izenman. Reduced-rank regression for the multivariate linear model. Journal of
multivariate analysis, 5(2):248–264, 1975.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, 2021.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model via
parameter-efficient transfer learning. In Findings of the Association for Computational Linguistics:
EMNLP 2020, 2020.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning.
arXiv preprint arXiv:2205.05638, 2022a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics, 2022b.

Yinhan Liu et al. Roberta: A robustly optimized bert pretraining approach. 2019.

Jekaterina Novikova, Ondrej Duvsek, and Verena Rieser. The E2E dataset: New challenges for
end-to-end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, 2017.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

10



Under review as a conference paper at ICLR 2024

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In
Advances in Neural Information Processing Systems, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems, 2019a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2019b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, 2020.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

APPENDIX

A THEOREM PROOFS

You may include other additional sections here.
Theorem 1. Consider a simple multivariate least-square regression problem:

argmin
W

∥XW −Y∥2F

where X ∈ Rn×d and Y ∈ Rn×p are the input and output data matrices, respectively.

Consider the sequence of fine-tuned weight matrices obtained by ROSA with rank parameter R
starting from a pre-trained weight matrix W0, assuming that each intermediate minimization problem
is solved exactly:

Wt = Wt−1 +AtBt where At,Bt = argmin
A∈Rn×R,B∈RR×n

∥X(Wt−1 +AB)−Y∥2F .

Then, ROSA will converge to a fine-tuned matrix achieving the optimal error in at most T =

⌈ rank(XW0−Y)
R ⌉ steps. That is, ∥XWt −Y∥2F = ∥ΠXY −Y∥2F as soon as t ≥ T , where ΠX is

the matrix of the orthogonal projection onto the range of X.

In contrast, the error achieved by LoRA with rank parameter R is lower bounded as

∥XWLoRA −Y∥2F ≥
min(d,p)∑
i=R+1

σi(ΠXY −XW0)
2

where σi denotes the ith singular value (ordered decreasingly).

Proof. First observe that the minimization problem optimized by LoRA,

argmin
A,B

∥X(W0 +AB)−Y∥2F

11



Under review as a conference paper at ICLR 2024

is an instance of the Reduced Rank Regression problem Izenman (1975)

argmin
A∈Rn×R,B∈RR×n

∥XAB− (Y −XW0)∥2F

whose optimal solution satisfies

AB = ((X⊤X)−1XY −W0)

R∑
i=1

viv
⊤
i (4)

where the vi’s are the first R right singular vectors of the matrix (ΠXY − XW0) and ΠX =
X(X⊤X)−1X⊤. The cost of the solution computed by LoRA can thus be lower bounded by

∥XWLoRA −Y∥2F = ∥XWLoRA −ΠXY∥2F + ∥ΠXY −Y∥2F
≥ ∥ΠXY −XWLoRA∥2F

≥ ∥ΠXY −X

(
W0 + ((X⊤X)−1XY −W0)

R∑
i=1

viv
⊤
i

)
∥2F

= ∥(ΠXY −XW0)(I−
R∑
i=1

viv
⊤
i )∥2F

=

min(d,p)∑
i=R+1

σi(ΠXY −XW0)
2

where we used the fact that ⟨XWLoRA −ΠXY,ΠXY −Y⟩ = 0 for the first equality, and the fact
that WLoRA is of the form W0 +AB for the second inequality. This shows the second part of the
theorem.

For the first part of the theorem, first observe that W1 = W0 +AB where AB is the solution of the
reduced rank regression problem defined in Eq. (4). Similarly, one can show that the solution for the
second step of ROSA is given by

W2 = W1 + ((X⊤X)−1X⊤Y −W1)

R∑
i=1

ṽiṽ
⊤
i

where the ṽi are the first R right singular vectors of the matrix (ΠXY −XW1). However, we have

ΠXY −XW1 = ΠXY −X

(
W0 + ((X⊤X)−1XY −W0)

R∑
i=1

viv
⊤
i

)

= (ΠXY −XW0)− (ΠXY −XW0)

R∑
i=1

viv
⊤
i

= (ΠXY −XW0)

min(d,p)∑
i=R+1

viv
⊤
i

Hence the top R right singular vectors of (ΠXY −XW1) are equal to the right singular vectors
vR+1,vR+2, · · · ,v2R of the matrix (ΠXY −XW0).

12



Under review as a conference paper at ICLR 2024

It follows, by recurrence, that

Wt = Wt−1 + ((X⊤X)−1X⊤Y −Wt−1)

tR∑
i=(t−1)R+1

viv
⊤
i

= Wt−1(I−
tR∑

i=(t−1)R+1

viv
⊤
i ) + (X⊤X)−1X⊤Y

tR∑
i=(t−1)R+1

viv
⊤
i

= W0(I−
tR∑
i=1

viv
⊤
i ) + (X⊤X)−1X⊤Y

tR∑
i=1

viv
⊤
i

= W0 + ((X⊤X)−1X⊤Y −W0)

tR∑
i=1

viv
⊤
i

Hence, as soon as t > ⌈ rank(XW0−Y)
R ⌉, we have

XWt = XW0 + (ΠXY −XW0)
tR∑
i=1

viv
⊤
i = ΠXY

hence ∥XWt −Y∥ = ∥ΠXY −Y∥, which concludes the proof.

B EXPERIMENTAL SETUP

B.1 IMPLEMENTATION OF ROSA, LORA AND (IA)3

For better comparison, we re-implement the LoRA and (IA)3 PEFT to share the same structure as
ROSA. For all methods we use a vanilla implementation to focus on only comparing their core
aspects. We list out the key differences between our implementation and those of LoRA Hu et al.
(2022) and (IA)3 Liu et al. (2022a).

• We apply adapters to all attention matrices. In contrast, LoRA tunes the attention matrices
to which its adapter should be applied.

• We do not add additional dropout modules inside the adapter, as is done in the LoRA paper.
• We do not apply adapters to MLP layers as done so in (IA)3.
• We use the same number of epochs across all model types (full fine-tuning, adapter). In

contrast, LoRA and (IA)3 experiments are typically run for far more epochs (roughly 3X)
than the full fine-tuning experiments.

B.2 GLUE EXPERIMENTS

For each experiment on GLUE we tune the LR for all three PEFT models for each selection of rank.
Specifically, for a given task, model, PEFT method and rank value, we report the model that obtains
the best validation set accuracy using LRs in {2e−2, 2e−3, 2e−4, 2e−5}. We use a factorization
frequency of 2 in ROSA for all GLUE experiments (i.e., we merge then factorize the weight matrices
once every two epochs.) We use the AdamW optimizer with β1, β2 = (0.9, 0.98), ϵ = 1e− 6 and
weight decay of 0.1. Our batch size is selected from the set {16, 32} and we use a sequence length of
512. We train all models for 10 epochs.

Below is a description of each of the GLUE/SuperGLUE tasks selected for evaluation:

1. CoLA: a single-sentence classification task, where each sentence is labelled as either
grammatical or not in English. The Matthews correlation coefficient is the reported metric.

2. MRPC: a sentence-pair classification task, where each pair of sentences is labelled as either
semantically equivalent (i.e. paraphrases of each other), or not.

3. QNLI: QNLI is a sentence-pair classification task, where each pair of sentences corresponds
to a paragraph from Wikipedia and a question, and the model must predict if the answer to
the question is contained within the paragraph.

13



Under review as a conference paper at ICLR 2024

2 4 6 8 10
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

FT
ROSA (R=8) 
ROSA (R=2) 
LoRA (R=2)
LoRA (R=8)

(a)

0 2 4 6 8 10
Steps

0

10

20

30

40

50

60

M
CC

FT
ROSA (R=8)
ROSA (R=2)
LoRA (R=2)
LoRA (R=8)

(b)

Figure 5: Plots of (a) Train loss and (b) and Validation Matthew’s Correlation Coefficient. The plots
are obtained from fine-tuning RoBERTabase on CoLA for 10 epochs.

4. RTE: The input for RTE is a pair of sentences, where the model must predict if the second
sentence can logically be inferred from the first, or if it contradicts/is unrelated to it (binary
classification).

5. STS-B: The only regression task in the GLUE Benchmark, for STS-B the model must
predict the similarity between a pair of sentences on a continuous scale of 1 to 5. The
reported metric is the Pearson correlation coefficient.

6. MNLI: The input for MNLI is a premise and a hypothesis, and the model must predict if the
premise entails, contradicts, or is neutral toward the hypothesis. This is the same as RTE but
with a separate neutral (unrelated) class. We report accuracy for the in-domain (matched)
set.

7. SST2: SST2 is a binary (positive/negative) sentiment classification dataset of movie reviews.
8. BoolQ: BoolQ is a question-answering task where the input is a Wikipedia paragraph and a

yes/no question where the answer is contained within the Wikipedia paragraph. The model
must predict the answer to the question.

9. WiC (Words-in-Context): WiC is a binary sentence-pair classification task of disambiguating
word senses. Two sentences are provided to the model that contain the same word,, and the
model must predict if the same sense of the word is used in both cases.

B.3 E2E NLG EXPERIMENTS

The E2E experiments are all carried out for 5 epochs. We also tune the LR in for each PEFT
model by searching the space {2e−2, 2e−3, 2e−4, 2e−5}. We use the AdamW optimizer with
β1, β2 = (0.9, 0.999), ϵ = 1e− 8, weight decay of 0.1, batch size of 10 and a sequence length of
512.

An example input and output for E2E is provided.

Input: name[The Vaults], eatType[pub], priceRange[more than £30],
customer rating[5 out of 5], near[Café Adriatic]

Output: “The Vaults pub near Café Adriatic has a 5 star rating. Prices start at £30.”

B.4 TRAINING CURVES FOR GLUE EXPERIMENTS

In Figure 5, we plot the training loss and validation curves for the fine-tuning of RoBERTabase on
CoLA for 10 epochs.

14


	Introduction
	Related Work
	Method
	ROSA
	Theoretical Analysis

	Experiments
	Synthetic Data
	GLUE Experiments
	NLG Experiments
	What components of ROSA leads to its performance?
	Investigating different low-rank subspace sampling schemes
	Limitations of ROSA
	Conclusion & Future Work

	Theorem Proofs
	Experimental setup
	Implementation of ROSA, LoRA and (IA)3
	GLUE Experiments
	E2E NLG Experiments
	Training Curves For GLUE Experiments


