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Abstract

Asynchronous federated learning (AFL) has
emerged as a promising solution to address sys-
tem heterogeneity and improve the training effi-
ciency of federated learning. However, existing
AFL methods face two critical limitations: 1) they
rely on strong assumptions about bounded data
heterogeneity across clients, and 2) they require
meticulous tuning of learning rates based on un-
known system parameters. In this paper, we tackle
these challenges by leveraging momentum-based
optimization and adaptive learning strategies. We
first propose MasFL, a novel momentum-driven
AFL framework that successfully eliminates the
need for data heterogeneity bounds by effec-
tively utilizing historical descent directions across
clients and iterations. By mitigating the staleness
accumulation caused by asynchronous updates,
we prove that MasFL achieves state-of-the-art
convergence rates with linear speedup in both
the number of participating clients and local up-
dates. Building on this foundation, we further
introduce AdaMasFL, an adaptive variant that
incorporates gradient normalization into local up-
dates. Remarkably, this integration removes all de-
pendencies on problem-specific parameters, yield-
ing a fully problem-parameter-free AFL approach
while retaining theoretical guarantees. Extensive
experiments demonstrate that AdaMasFL consis-
tently outperforms state-of-the-art AFL methods
in runtime efficiency and exhibits exceptional ro-
bustness across diverse learning rate configura-
tions and system conditions.
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1. Introduction
Recent years have witnessed an explosive growth in edge
computing and mobile applications, leading to massive
amounts of data being generated on distributed devices.
Federated learning (FL) has emerged as a transformative
paradigm that enables model training across these decentral-
ized data sources while preserving privacy and addressing
data sovereignty concerns (McMahan et al., 2017; Kairouz
et al., 2021; Li et al., 2020). By keeping data locally and
sharing only model updates, FL has become increasingly
crucial in numerous applications, from mobile services to
smart cities (Abreha et al., 2022; Pandya et al., 2023).

However, the practical deployment of FL faces significant
challenges due to system heterogeneity among participat-
ing clients. Devices vary substantially in their computing
capabilities, network conditions, and availability patterns
(Assran et al., 2020; Zhong et al., 2022). Traditional syn-
chronous FL protocols, such as the well-known FedAvg
(McMahan et al., 2017; Karimireddy et al., 2020b), which re-
quire all clients to complete their updates before proceeding
to the next round, suffer from the “straggler effect” where
the system’s progress is bottlenecked by the slowest par-
ticipants. This synchronization barrier severely impacts
training efficiency and system scalability.

Asynchronous federated learning (AFL) has emerged as a
promising solution to address the system heterogeneity chal-
lenge by allowing clients to communicate with the server
independently of other participants (Xie et al., 2019; Chen
et al., 2020; Zakerinia et al., 2022; Nguyen et al., 2022;
Wang et al., 2023; Fraboni et al., 2023; Wang et al., 2024c;a;
Leconte et al., 2024a;b). Despite its effectiveness in miti-
gating the straggler effect, existing AFL approaches face
two critical challenges: 1) Data Heterogeneity: In AFL,
faster clients contribute updates more frequently than slower
ones, resulting in a biased global model dominated by the
data distributions of those faster clients. This bias is exac-
erbated by local training, where clients perform multiple
updates before communicating with the server, leading to
the phenomenon of “client drift” (Karimireddy et al., 2020b).
To address this issue, existing AFL methods often rely on
strong assumptions of bounded data heterogeneity, restrict-
ing their applicability in real-world scenarios with highly
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diverse and arbitrary client distributions. 2) Algorithm Tun-
ing: The theoretical convergence of AFL algorithms relies
heavily on the correct selection of hyperparameters, such
as learning rates. However, in existing AFL approaches,
these hyperparameters are often functions of multiple un-
known parameters, including problem-specific constants
(e.g., smoothness constants), algorithmic variables (e.g.,
initial suboptimality gap, gradient variance bounds), and
system-dependent factors (e.g., client staleness). Since these
parameters are typically unavailable a priori, tuning learn-
ing rates becomes a highly challenging task. Furthermore,
the problem-specific learning rate configurations limit the
adaptability of these approaches to diverse and dynamic
AFL environments.

In light of the key challenges associated with AFL, it is
crucial to address the following questions:

(i) Can we design an AFL algorithm that removes the re-
strictive bounded heterogeneity assumption while preserv-
ing theoretical convergence guarantees?
(ii) Building upon such a framework, can we further elimi-
nate the need for manual hyperparameter tuning by intro-
ducing adaptive mechanisms that automatically adjust to
diverse system characteristics and data distributions?

These questions form the foundation of our systematic effort
to develop more robust and practical AFL methods.

1.1. Main Contributions

In this paper, we provide affirmative answers to the above
two questions by exploring the effects of momentum-based
optimization and adaptive learning strategies. Our main
contributions are summarized as follows:

• We develop two novel training approaches for AFL:
MasFL and AdaMasFL. MasFL incorporates a two-
level (both client- and server-side) momentum into the
AFL framework to mitigate client drift and accelerate
convergence, effectively addressing the challenges posed
by data heterogeneity. Building on this, AdaMasFL fur-
ther integrates local gradient normalization with local
momentum, enabling automatic adaptation to diverse sys-
tem characteristics and data distributions without manual
hyperparameter tuning.

• We establish strong theoretical guarantees for both al-
gorithms, achieving state-of-the-art convergence rates
with linear speedup with respect to the number of par-
ticipating clients and local updates per round. Notably,
MasFL eliminates the restrictive bounded data hetero-
geneity assumption commonly required in existing AFL
approaches, making it applicable to scenarios with arbi-
trarily heterogeneous data distributions. Beyond this the-
oretical advancement, AdaMasFL achieves convergence
without relying on any unknown system or algorithmic

parameters, eliminating the need for tedious hyperparam-
eter tuning.

• We conduct comprehensive empirical evaluations on deep
learning tasks using real-world datasets. The numerical
results demonstrate that our approaches consistently out-
perform state-of-the-art AFL algorithms in runtime effi-
ciency, even when their hyperparameters are well-tuned.
This improvement can be attributed to the acceleration
provided by our two-level momentum mechanism and
the per-step adaptation of our effective stepsizes. No-
tably, AdaMasFL exhibits exceptional robustness across
a wide range of learning rates and asynchrony levels,
maintaining nearly consistent performance despite vary-
ing degrees of delays. In contrast, the performance of
state-of-the-art baselines deteriorates significantly under
the same conditions.

1.2. Related Work

Our approaches extend the buffered asynchronous aggre-
gation mechanism introduced by FedBuff (Nguyen et al.,
2022) to enhance training efficiency and mitigate the adverse
effects of outdated gradients. To address the “client drift”
problem caused by data heterogeneity in FedBuff, Wang
et al. (2023) proposed CA2FL, which maintains cached up-
dates for each client to calibrate global aggregation. These
cached updates function similarly to the control variates in
our methods. However, CA2FL still relies on the bounded
data heterogeneity assumption to ensure convergence. To
accommodate arbitrary heterogeneous data in asynchronous
learning, a recent study (Wang et al., 2024b) proposed
DuDe-ASGD, which reuses the most recent gradients from
all clients in each round of global aggregation. While ef-
fective, DuDe-ASGD does not account for multiple local
updates. In contrast, our MasFL framework eliminates the
need for data heterogeneity bounds while achieving the best-
known communication efficiency, demonstrating an efficient
utilization of distributed resources.

Yu et al. (2024) identified that asynchrony introduces im-
plicit bias in momentum updates and proposed momentum
approximation for AFL, which optimally weights histori-
cal model updates to approximate synchronous momentum
behavior. FedAC (Zang et al., 2024) addresses both model
staleness and client drift through adaptive server updates
and corrective client training. Although these works demon-
strate empirical improvements, their algorithms lack theoret-
ical convergence guarantees. FADAS (Wang et al., 2024c)
introduces a global adaptive AFL framework by applying
adaptive optimization techniques at the server-side aggre-
gation while supporting asynchronous client updates. How-
ever, FADAS relies on stringent assumptions on bounded
data heterogeneity and bounded gradient norms. Moreover,
it still requires careful hyperparameter tuning. In contrast,

2



Momentum-Driven Adaptivity: Towards Tuning-Free Asynchronous Federated Learning

our method AdaMasFL integrates adaptive stepsizes with a
two-level momentum, eliminating these constraints while
maintaining theoretical convergence guarantees without
problem-specific hyperparameter tuning. Recent progress
in parameter-free FL algorithms has been marked by the
development of PAdaMFed (Yan et al., 2025), a pioneer-
ing algorithm that eliminates the need for manual tuning of
problem-specific parameters. While PAdaMFed represents a
significant breakthrough, it is designed for the synchronous
setting and cannot be directly extended to address the AFL
problem studied in this work. A comprehensive literature
review is presented in Appendix A.

2. Problem Setup
Consider a distributed learning system consisting of N
clients (edge devices) jointly optimizing a model param-
eterized by θ ∈ Rd under the coordination of a central
server. Each client i maintains a local dataset character-
ized by a distribution Di, from which samples ξi are drawn.
The local objective at client i is defined as the expected
loss: fi(θ) := Eξi∼Di

[F (θ; ξi)]. The global optimization
problem is formulated as:

min
θ∈Rd

f(θ) :=
1

N

N∑
i=1

fi(θ),

where each client’s raw data remains localized, inherently
preserving data privacy.

In real-world federated learning (FL) environments, clients’
data distributions often exhibit significant heterogeneity
(Di ̸= Dj for i ̸= j) due to factors such as diverse user be-
haviors, geographical disparities, and device-specific char-
acteristics. This heterogeneity manifests across multiple
dimensions, including feature distributions, label spaces,
and variations in local dataset sizes and qualities, leading
to substantially different optimization landscapes across
clients. Conventional approaches handle this heterogeneity
by imposing the following gradient dissimilarity bounds:

1

N

N∑
i=1

∥∇fi(θ)∥2 ≤ B∥∇f(θ)∥2 + σ2
g . (1)

However, such bounded heterogeneity assumptions are of-
ten restrictive and fail to capture real-world scenarios. In
practice, client gradient norms can vary significantly, and
the degree of heterogeneity may fluctuate unpredictably dur-
ing training. Moreover, existing nonconvex FL methods rely
on precise knowledge of system parameters (e.g., L, σ2, B,
σ2
g) for stepsize tuning. Accurate estimation of these param-

eters, especially smoothness constants and heterogeneity
bounds, requires global data access—a process that contra-
dicts the fundamental privacy principles of FL and becomes
increasingly intractable as data distributions evolve.

In this paper, we aim to address these challenges by lever-
aging momentum-based optimization and adaptive learning
strategies. Our theoretical analysis relies only on the follow-
ing assumptions.

Assumption 2.1 (L-Smoothness). For any i ∈ {1, · · · , N},
the local loss function fi is L-smooth that∥∥∇fi (θ)−∇fi

(
θ′
)∥∥ ≤ L∥θ − θ′∥, ∀θ,θ′ ∈ Rd.

Assumption 2.2 (Stochastic Gradient). The stochastic gra-
dients are unbiased estimators with bounded variance σ2,
such that

Eξi∼Di [∇F (θ; ξi)] = ∇fi(θ),

Eξi∼Di
∥∇F (θ; ξi)−∇fi(θ)∥2 ≤ σ2, ∀i.

Assumption 2.3 (Bounded Delay). Let τ ti represent the
delay of client i at the tth global round. Specifically, τ ti is
defined as the time interval between the current global round
t and the global round when client i began its local updates.
We assume that the maximum update delay is bounded, i.e.,
τmax := maxi,t τ

t
i < ∞. Correspondingly, the average

delay is also bounded, i.e., τ̄ := 1
NT

∑
i,t τ

t
i < ∞.

3. Momentum-Driven AFL
3.1. Algorithm Design

Momentum techniques have demonstrated remarkable effec-
tiveness in mitigating data heterogeneity and accelerating
convergence in synchronous FL. In the synchronous set-
ting, (Cheng et al., 2024) showed that momentum helps
remove data heterogeneity bounds (i.e., bound gradient dis-
similarity) for nonconvex FL, marking a first in the liter-
ature. However, integrating momentum into AFL poses
significant challenges due to fundamental conflicts between
momentum’s historical gradient accumulation and the in-
herent staleness of asynchronous updates. In asynchronous
settings, clients’ delayed updates compromise the integrity
of momentum calculations, as stale gradients introduce bi-
ases into the optimization trajectory, as demonstrated in
Yu et al. (2024). This issue is further exacerbated by the
heterogeneity of client data distributions, where the global
model may become biased toward the data distributions
of faster clients. Moreover, asynchronous updates disrupt
the maintenance of a coherent global momentum across all
clients, making it challenging to accurately capture the true
collective optimization trajectory of the distributed system.

To unlock the potential of momentum in asynchronous envi-
ronments, we propose a Momentum-driven asynchronous
Federated Learning (MasFL) framework, which effectively
harnesses the benefits of momentum while systematically
managing staleness accumulation. The complete server-
side and client-side procedures of MasFL are presented in
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Algorithm 1 MasFL: Procedures at Central Server

1: Require: Initial model θ0, control variates c0i =
1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c0 = 1

N

∑
i c

0
i ,

momentum g0 = c0, global learning rate γ, local learn-
ing rate η, and momentum parameter β

2: for t = 0, · · · , T − 1 do
3: Randomly selected a set of clients St

4: Update

ct+1
i =

{
c̃t+1
i , if i ∈ St

cti, otherwise
(2)

5: Aggregate momentum

gt+1 = β

(
1

S

∑
i∈St

(
ct+1
i − cti

)
+ ct

)
+ (1− β)gt

6: Update global model θt+1 = θt − γgt+1

7: Aggregate control variate

ct+1 = ct +
1

N

∑
i∈St

(
ct+1
i − cti

)
8: Send θt+1 and βct+1 + (1− β)gt+1 to all clients
9: end for

Algorithms 1 and 2, respectively. To address system asyn-
chrony and data heterogeneity, MasFL introduces several
key innovations, described as follows.

Asynchronous Local Training. Unlike synchronous FL
where the system waits for all participating clients to com-
plete their local updates before proceeding to the next round,
MasFL allows the server and clients operate asynchronously,
with the server maintaining a buffer for each client to store
their latest updates. At each global round t, the server ran-
domly selects a subset of clients, St, to participate in global
model aggregation. The aggregation uses the buffered up-
dates, ensuring that it is independent of the current progress
of the selected clients. Simultaneously, all clients performs
local updates at their own pace. Upon completing K local
iterations, clients send their updates, c̃t+1

i , to the server and
immediately begin the next round of local updates based on
the latest global model. This design naturally accommodates
variations in client computational speeds and communica-
tion delays while maintaining overall learning efficiency.

Our asynchronous training is inspired by the FedBuff
scheme proposed in (Nguyen et al., 2022), where the server
randomly selects an active client set of size Mc to perform
local updates simultaneously and accumulates the fastest S
clients for the global model update. This scheme assumes
uniform arrivals of gradient computation to ensure equal

Algorithm 2 MasFL: Procedures at Client i

1: Receive θt−τt
i and βct−τt

i + (1− β)gt−τt
i from server.

Set θt,0i = θt−τt
i

2: for k = 0, · · · ,K − 1 do
3: Compute

gt,ki =β
(
∇F

(
θt,ki ; ξt,ki

)
− c̃ti+ct−τt

i

)
+(1−β)gt−τt

i

4: Update local model θt,k+1
i = θt,ki − ηgt,ki

5: end for
6: Send c̃t+1

i = 1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
to the server

chances of client participation. In contrast, our scheme
maximally leverages clients’ parallel computing capabil-
ities while maintaining the uniformity of client selection.
When Mc = N and the uniform arrival assumption holds,
both schemes achieve equivalent effects. Nevertheless, we
emphasize that our asynchronous algorithm design is com-
patible with both buffer schemes.

Stale Control Variates. MasFL adopts a local control vari-
ate cti to track the gradient information of each client i. At
each round t, if client i is selected for global aggregation,
ct+1
i is updated using its latest buffered value c̃t+1

i ; Other-
wise, it retains its previous value. The global control variate,
ct+1, is computed as the aggregation of all local control vari-
ates (Line 7, Algorithm 1), ensuring ct+1 = 1

N

∑N
i=1 c

t+1
i

throughout the algorithm iteration. The difference between
global and local variates, cti − ct (Line 5, Algorithm 1),
serves as a correction term to mitigate “client drift” caused
by data heterogeneity. This design extends the control vari-
ate mechanism introduced in SCAFFOLD (Karimireddy
et al., 2020b), but it is specifically adapted for asynchronous
settings. On the client side, this correction term becomes
c̃ti − ct−τt

i , where the global control variate ct−τt
i is out-

dated due to system asynchrony. This inconsistency between
the client- and server-side quantities introduces additional
challenges in our theoretical analysis.

Two-Level Momentum. MasFL employs both global and
local momentum to effectively handle asynchronous up-
dates: i) Global Momentum (Line 5, Algorithm 1). The
server maintains a momentum gt+1, which aggregates client
updates with a parameter β. This term stabilizes the global
optimization trajectory by incorporating historical informa-
tion. The difference in control variates, ct+1

i − cti, captures
the progress of each client i. Since the participating clients
at each round are selected uniformly, for any t, we have

ESt

[
1

S

∑
i∈St

(
ct+1
i − cti

)
+ ct

]
=

1

N

N∑
i=1

ct+1
i = ct+1.

Thus, gt+1 represents a weighted average of the global
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Algorithm 3 AdaMasFL: Procedures at Central Server

1: Require: Initial model θ0, control variates c0i =
1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c0 = 1

N

∑
i c

0
i ,

momentum g0 = c0, global learning rate γ, local learn-
ing rate η, and momentum parameter β.

2: for t = 0, · · · , T − 1 do
3: Randomly selected a set of clients St

4: Update

ct+1
i =

{
c̃t+1
i , if i ∈ St

cti, otherwise
(3)

5: Aggregate local updates gt = 1
S

∑
i∈St

∆t
i

6: Update global model θt+1 = θt − γgt

7: Aggregate momentum

gt+1 = β

(
1

S

∑
i∈St

(
ct+1
i − cti

)
+ ct

)
+ (1− β)gt

8: Aggregate control variate

ct+1 = ct +
1

N

∑
i∈St

(
ct+1
i − cti

)
9: Download θt+1 and βct+1+(1−β)gt+1 to all clients

10: end for

control variate ct+1 and its previous value gt. ii) Local
Momentum (Line 3, Algorithm 2). Each client computes its
local momentum gt,ki at every step of its local training. This
local momentum combines the client’s current gradient with
the control variate correction, mitigating client drift and pro-
moting alignment with the global objective. This two-level
structure isolates all staleness representations on the client
side, ensuring that the global momentum is computed based
on the latest accumulators (ct and gt), which is critical for
our theoretical analysis.

3.2. Theoretical Analysis of MasFL

The following Theorem 3.1 presents the convergence rate
of MasFL, whose proof is deferred to Appendix C.

Theorem 3.1. Suppose that Assumptions 2.2 and 2.1 holds.
Let {θt}Tt=1 be the global iterates generated by MasFL. Set

β =
√

SK
T and γ = 1

4L

√
SK
T . Define a := τ2maxβ

2 +

20e2η2K2L2. If the condition 1 − 4a −
√

SK
T ≥ 0 is

Algorithm 4 AdaMasFL: Procedures at Client i

1: Receive θt−τt
i and βct−τt

i + (1− β)gt−τt
i from server.

Set θt,0i = θt−τt
i

2: for k = 0, · · · ,K − 1 do
3: Compute

gt,ki =β
(
∇F

(
θt,ki ; ξt,ki

)
−c̃ti+ct−τt

i

)
+(1−β)gt−τt

i

4: Update local model

θt,k+1
i = θt,ki − η

gt,ki

∥gt,ki ∥

5: end for
6: Send ∆t

i = 1
ηK

(
θt−τt

i − θt,Ki

)
and c̃t+1

i =

1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
to the server

satisfied, i.e., η ≤
√

T−
√
SKT−4SKτ2

max

4
√
5eKL

√
T

, then it holds that

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤O
(
L∆+ σ2

√
SKT

+
σ2

T
+

L2σ2

NKT

)
for sufficiently large T , where e denotes Euler’s number and
∆ := f(θ0)− f∗ represents the initial optimality gap with
f∗ = minθ f(θ) > −∞.

Theorem 3.1 demonstrates that MasFL achieves a conver-
gence rate of O

(
1√

SKT

)
in terms of E∥∇f (θ) ∥2 for suf-

ficiently large T . This rate matches the convergence rates
of traditional synchronous FL baselines (Karimireddy et al.,
2020b), demonstrating that the delays inherent in asyn-
chronous training do not degrade the asymptotic conver-
gence guarantees.

To maintain the convergence order of O
(

1√
T

)
as in the

synchronous case, MasFL requires the number of global
rounds to satisfy T ≥ O(τ2max). This condition is less re-
strictive than that required by CA2FL (Wang et al., 2023)
and FADAS (Wang et al., 2024c), which impose T ≥
O(τ4max) (since the convergence rates of both papers are
O( 1√

T
+ τmaxτ̄

T )).

Following the standard definition (Arjevani et al., 2023), a
point θ ∈ Rd is said to be an ϵ-stationary point of a function
f : Rd → R if ∥∇f (θ)∥ ≤ ϵ. Under this definition, MasFL
finds an ϵ-stationary point in expectation within O

(
1

SKϵ4

)
global rounds, indicating linear speedup with respect to both
the number of participating clients S and the number of local
steps K. Notably, this convergence guarantee holds with-
out requiring bounded gradient dissimilarity assumptions,
such as (1), benefit from the carefully designed two-level
momentum structure.
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4. Adaptive Momentum-Driven AFL
Although MasFL effectively leverages momentum in AFL
to accelerate convergence while eliminating data heterogene-
ity bounds, it requires careful tuning of the learning rates
that are theoretically dependent on the unkonwn smooth-
ness parameter L and delay bound τmax.Estimating these
parameters poses significant challenges and compromises
the fundamental privacy guarantees of FL. To address this
limitation, we further propose Adaptive Momentum-driven
asynchronous Federated Learning (AdaMasFL), which pre-
serves the benefits of MasFL while achieving problem-
parameter-free convergence.

4.1. Algorithm Design

AdaMasFL builds upon the framework of MasFL by seam-
lessly integrating momentum with adaptive learning rates.
The complete procedures of AdaMasFL are presented in Al-
gorithms 3 and 4. Compared to MasFL, the key innovation
of AdaMasFL lies in its adoption of momentum-driven gra-
dient normalization with a different server-side aggregation.

Momentum-Driven Adaptivity. AdaMasFL retains the
momentum design of MasFL while introducing normalized
gradients for local model updates (Line 4, Algorithm 4).
This gradient normalization mitigates sensitivity to learning
rate choices by automatically adjusting the effective step-
sizes based on local optimization landscape. Normalized
gradients ensure constant-magnitude updates regardless of
gradient scales, satisfying∥∥∥∥∥η gt,ki

∥gt,ki ∥

∥∥∥∥∥ = η,∀i, k, t.

By adapting the stepsize to gradient magnitudes, AdaMasFL
eliminates the need for problem-dependent tuning based on
unknown quantities such as the smoothness constant L.

However, gradient normalization alone is insufficient to
achieve convergence in stochastic optimization, as it dis-
cards magnitude information. Recent studies (Hazan et al.,
2015; Yang et al., 2023) have shown that normalized gra-
dients can hinder convergence due to the randomness of
stochastic gradient directions, even in simpler centralized
convex settings. This issue is further exacerbated in AFL,
where clients face heterogeneous gradient noise and delays.
To address this, the momentum term plays a critical role by
preserving consistent descent directions across clients and
iterations.

Server-Side Aggregation. Unlike MasFL, where the server
updates the global model based on the momentum gt+1

(Line 6, Algorithm 1), AdaMasFL updates the global model
using the aggregation of local update directions (Line 6,
Algorithm 3) that gt = 1

ηSK

∑
i∈St

(
θt−τt

i − θt,Ki

)
. This

formulation ensures bounded global progress that

∥γgt∥ =

∥∥∥∥∥ γS ∑
i∈St

∆t
i

∥∥∥∥∥ =

∥∥∥∥∥∥ γ

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥
∥∥∥∥∥∥ ≤ γ.

Nevertheless, the global momentum is still retained in
AdaMasFL to accelerate local model updates. These
designs collectively enable AdaMasFL to achieve both
normalization-induced stability and momentum-driven ac-
celeration.

4.2. Theoretical Analysis of AdaMasFL

The following Theorem 4.1 presents the convergence rate
of AdaMasFL, whose proof is deferred to Appendix D.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 holds.
Let {θt}Tt=1 be the global iterates generated by AdaMasFL.

Set γ = (SK)1/4

T 3/4 , η = 1
K

√
T

, and β =
√

SK
T , then it holds

that

1

T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥
≤ O

(
∆+ L+ σ +

√
Lσ

(SKT )
1
4

+ σ

√
SK

T
+

√
Lστmax

T
3
8 (SK)

1
8

+τ̄σ

√
S

T
+ τmaxL

(SK)
1
4

T
3
4

+ τ̄
√
Lστmax

(SK)
3
8

T
7
8

)
for sufficiently large T .

Theorem 4.1 demonstrates that AdaMasFL achieves a con-
vergence rate of O

(
1

(SKT )1/4

)
in terms of E ∥∇f (θ)∥.

Under the definition of ϵ-stationarity, AdaMasFL finds an
ϵ-stationary point within O

(
1

SKϵ4

)
global rounds, which

aligns with the communication complexity of MasFL. No-
tably, Theorem 4.1 explicitly determines all hyperparam-
eters, η, γ, and β based solely on algorithm-specific con-
stants: the number of participating clients S, local update
iterations K, and communication rounds T . This eliminates
the need for trial-and-error tuning or problem-parameter es-
timation, resulting in a completely problem-parameter-free
AFL approach.

5. Comparisons with Existing AFL Methods
We now compare MasFL and AdaMasFL with several rep-
resentative AFL approaches using various metrics, as listed
in Table 1. Prior AFL algorithms face different theoretical
and practical limitations. FedBuff (Nguyen et al., 2022),
CA2FL (Wang et al., 2023), and DeFedAvg-nIID (Wang
et al., 2024a) all require careful stepsize tuning based on the
maximum delay τmax. While CA2FL and DeFedAvg-nIID
improve upon FedBuff by achieving a better convergence
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Table 1: Comparisons of AFL algorithms for handling heterogeneous data.
(Convergence Rate = The convergence rate of different algorithms in terms of 1

T

∑T−1
t=0 E

∥∥∇f(θt)
∥∥; Additional Assump-

tions = Additional assumptions aside from Assumptions 2.1–2.3; BDH = Bounded data heterogeneity define in (1); BG =
Bounded gradient that ∥∇fi(θ)∥ ≤ G, ∀i,θ.)

Algorithms
Convergence

Rate1

Additional

Assumptions
Stepsize Restrictions

Stepsize-related

Problem-Parameters

FedBuff
(Nguyen et al., 2022)

O
(

K1/4σg

(ST )1/4
+

√
τmaxτ̄

T

)
BDH ηγ ≤ 1

4Kτ
3/2
max

τmax

CA2FL
(Wang et al., 2023)

O
(

1
(SKT )1/4

+
√

τmax
T

)
BDH ηγ ≤ S

36Kτ2
maxL

2 , η ≤ 1
36K

√
τmaxL

τmax, L

DeFedAvg-nIID
(Wang et al., 2024a)

O
(

1
(SKT )1/4

+ 1√
KT

)
BDH, BG ηγ ≤ 1

4LKτmax
, η ≤ 1

4
√
3LK

τmax, L

FADAS
(Wang et al., 2024c)

O
(

1
(ST )1/4

+
√

τmaxτ̄
T

)
BDH, BG

ηγ ≤ min

{
ϵ2S(N−1)

180C2
G
N(N−S)τ2

maxKL
,

√
ϵ3S(N−1)

12
√

CGN(N−S)τ2
maxKL

}
, η ≤

√
ϵ√

360CGτ2
maxKL

2

τmax, L, G

MasFL O
( √

κ

(SKT )1/4
+

√
κ
T

)
3 – β =

√
SK
T

, γ = β
4L

, η ≤
√

T−
√
SKT−4SKτ2

max

4
√
5eKL

√
T

τmax, L

AdaMasFL O
(

1
(SKT )1/4

+
√
τmax

T3/8

)
– β =

√
SK
T

, γ =
(SK)1/4

T3/4 , η = 1

K
√
T

–

1 For the convergence rate defined in terms of 1
T

∑T−1
t=0 ∥∇f(θt)∥2, we can readily obtained the corresponding rate with respect to

1
T

∑T−1
t=0 ∥∇f(θt)∥ by taking square root on both sides of the associated bound. This operator is verified by the following fact:

1
T

∑T−1
t=0 E∥∇f(θt)∥ = 1

T

∑T−1
t=0 E

√
∥∇f(θt)∥2 ≤ 1

T

∑T−1
t=0

√
E∥∇f(θt)∥2 ≤

√
1
T

∑T−1
t=0 E∥∇f(θt)∥2, where the first and

second inequalities utilizes Jensen’s inequality as the square root function is concave.
2 CG := ηKG+ ϵ and ϵ > 0 is an adaptive optimization parameter.
3 κ := 3−4a

1−4a−
√

SK/T
and a := τ2

maxβ
2 + 20e2η2K2L2.

rate of O
(

1
(SKT )1/4

)
and linear speedup with respect to

S and K, they still rely on bounded data heterogeneity as-
sumptions and knowledge of the smoothness parameter L.
FADAS (Wang et al., 2024c) employs the AMSGrad opti-
mizer at the server-side to enable adaptive stepsize in AFL.
However, its convergence guarantee relies on both bounded
gradients and bounded data heterogeneity assumptions, and
fails to achieve linear speedup with respect to local steps K.

In contrast, our algorithms achieve substantial improve-
ments over existing approaches. Specifically, MasFL elimi-
nates the bounded data heterogeneity assumption while at-
taining state-of-the-art communication efficiency. Building
on this foundation, AdaMasFL maintains the best-known
communication complexity while operating in a completely
problem-parameter-free manner, with all learning rates ex-
plicitly determined by algorithm-specific constants S, K,
and T . Collectively, these advancements mark a significant
step forward in achieving robust and adaptive AFL.

6. Numerical Experiments
We evaluate the performance of our algorithms on the image
classification task using two real-world datasets: CIFAR-10
(Li et al., 2017) and FMNIST (Xiao et al., 2017). For FM-
NIST, we utilize a convolutional neural network (CNN) con-
sisting of three convolutional layers and two fully connected
layers. For CIFAR-10, we adopt a ResNet-18 architecture
(He et al., 2016). We compare our algorithms against two
state-of-the-art AFL baselines: CA2FL (Wang et al., 2023)
and FADAS (Wang et al., 2024c). We simulate the practical
asynchronous conditions using FedBuff’s delay mechanism.
Specifically, at any given time, there are a total of Mc clients
performing local updates concurrently. The execution times
of all clients are sampled randomly from a uniform dis-
tribution. These varying execution times naturally create
different delays in global aggregation participation. Detailed
experimental setups and additional simulation results are
provided in Appendix E.

Figure 1 compares the test accuracy of various algorithms
versus the number of communication rounds on both the
CIFAR-10 and FMNIST datasets. For both datasets, we pro-
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(a) I.i.d. CIFAR10
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(b) Non-i.i.d. CIFAR10
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(c) I.i.d. FMNIST
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(d) Non-i.i.d. FMNIST

Figure 1: Test accuracy versus communication round on different datasets with i.i.d./non-i.i.d. data (Mc = 20).
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(a) Mc = 30
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(b) Mc = 40
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(c) Mc = 60
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(d) Mc = 100

Figure 2: Test accuracy on the non-i.i.d. FMNIST dataset under varying levels of asynchrony.
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Figure 3: Test accuracy versus learning rate with non-i.i.d.
data.

vide results for i.i.d. and non-i.i.d. data distributions. The
learning rates of our algorithms, MasFL and AdaMasFL,
are derived based on the theoretical guidance provided in
Theorem 3.1 and Theorem 4.1, respectively. To ensure fair
comparisons, the hyperparameters of the baseline methods,
CA2FL and FADAS, are optimally selected according to
the recommendations in their respective papers. The results
show that our proposed methods, MasFL and AdaMasFL,
significantly outperform the baselines, CA2FL and FADAS,
in both convergence speed and test accuracy. This im-
provement can be attributed to our two-level momentum
design, which accelerates optimization progress at each up-
date. Additionally, the momentum mechanism stabilizes
the optimization trajectory by accumulating historical gra-
dients, as evidenced by the results in the non-i.i.d. setting.
Notably, the advantages of our algorithms are particularly
pronounced in the more challenging task, CIFAR-10 with
non-i.i.d. data, as shown in Figure 1b.

Figure 2 illustrates the test accuracy of various algorithms
on the non-i.i.d. FMNIST dataset under different asyn-
chronous settings. Here, Mc denotes the number of clients
performing local updates concurrently. Since the server
updates the global model only after collecting a total of S
client updates, a larger Mc enables more frequent global
aggregations, resulting in greater asynchronous delays. In
Figure 2, we fix the learning rate settings of all algorithms
to those used in Figure 1d and evaluate their performance as
Mc increases. We observe that AdaMasFL demonstrates ex-
ceptional robustness to varying levels of asynchrony, main-
taining nearly consistent performance despite increasing
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delays. In contrast, the performance of other algorithms
deteriorates significantly, requiring reconfiguration to adapt
to changing environments. Similarly, Figure 3 illustrates
the test accuracy of various algorithms versus learning rate
on both the CIFAR-10 and FMNIST datasets with non-i.i.d.
data distributions. It is evident that AdaMasFL consistently
outperforms the baselines, CA2FL and FADAS, across the
displayed learning rate regions.

7. Conclusions
This paper proposed two novel training approaches for AFL:
MasFL and AdaMasFL. Specifically, MasFL introduced
a two-level momentum mechanism that eliminates the re-
quirement for data heterogeneity bounds in non-i.i.d. set-
tings while achieving the best-known communication effi-
ciency. Building on this foundation, AdaMasFL incorpo-
rated momentum-driven gradient normalization, removing
all dependencies on problem-specific parameters in algo-
rithm tuning while preserving the theoretical guarantees. Ex-
tensive numerical experiments demonstrated that our meth-
ods consistently outperform state-of-the-art AFL algorithms
in runtime efficiency and exhibit exceptional robustness
across a wide range of learning rates and asynchrony levels.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Works
Our work draws inspiration from and contributes to several active research areas in FL, including asynchronous optimization,
momentum techniques, and adaptive stepsize methods.

Asynchronous Training Paradigms. Traditional asynchronous SGD methods (Mishchenko et al., 2022; Koloskova et al.,
2022; Even et al., 2024) have established theoretical foundations for distributed optimization, particularly in addressing
client synchronization challenges. While these methods have demonstrated linear speedup convergence under independent
and indentically distributed (iid) settings and various objective functions, their effectiveness in non-iid scenarios has
been limited. Moreover, these approaches typically focus on immediate gradient computation without local iterations,
leading to increased communication overhead. Our work extends beyond these limitations by incorporating local training
while maintaining theoretical guarantees in non-iid settings. Recent AFL frameworks like FedBuff (Nguyen et al., 2022),
DeFedAvg-nIID (Wang et al., 2024a), and DuDe-ASGD (Wang et al., 2024b) have shown promising empirical results
in handling heterogeneous data distributions. Methods such as QuAFL (Zakerinia et al., 2022) and FAVANO (Leconte
et al., 2023) have explored different asynchrony models, including client interruption strategies, but face limitations in
theoretical guarantees or practical implementation. Our framework distinguishes itself by achieving linear speedup without
requiring bounded heterogeneity assumptions, while simultaneously providing robust performance across diverse learning
rate configurations.

Momentum-Based Techniques. Momentum has emerged as a powerful technique for addressing data heterogeneity in FL.
Various approaches, such as FedAvgM (Hsu et al., 2019) and SlowMo (Wang et al., 2019), have incorporated server-side
momentum to enhance convergence rates. More sophisticated methods like MIME (Karimireddy et al., 2020a) and FAFED
(Wu et al., 2023) have explored the combination of client- and server-side momentum with adaptive techniques. While these
methods have achieved improved convergence properties, they generally require careful tuning of multiple hyperparameters.
Recent work like FedSPS (Sohom Mukherjee, 2024) has attempted to minimize hyperparameter dependence but still
relies on restrictive assumptions about gradient bounds and data heterogeneity. Yu et al. (2024) identify that asynchrony
introduces implicit bias in momentum updates and propose momentum approximation for AFL, which finds optimal weights
for historical model updates to approximate synchronous momentum behavior. FedAC (Zang et al., 2024) addresses
both model staleness and client drift issues through adaptive server updates and corrective client training, though its
empirical improvements lack theoretical convergence guarantees. Our approach advances this line of research by providing
a fully adaptive framework that operates asynchronously without bounded heterogeneity assumptions or the need for
problem-specific parameter tuning.

Adaptive Learning Schemes. Adaptive learning rates have been extensively studied and proven highly successful in
single-machine learning scenarios (Duchi et al., 2011; Hazan et al., 2015; Reddi et al., 2018; Cutkosky & Mehta, 2020;
Yang et al., 2023), where they effectively address the challenges of learning rate tuning and gradient scaling. In recent
years, the critical need for hyperparameter-efficient training in federated learning has led to growing interest in extending
these adaptive methods to FL settings. Server-side adaptive methods, such as FedOpt (Reddi et al., 2020) and its variants
(FedAdaGrad, FedAdam, and FedYogi), have demonstrated enhanced convergence properties compared to traditional fixed
learning rate approaches. Recent developments in local adaptive methods, including FAFED (Wu et al., 2023) and FedDA
(Li et al., 2023), have explored client-side adaptation strategies. FADAS (Wang et al., 2024c) introduces a global adaptive
AFL framework that applies adaptive optimization techniques at the server-side aggregation while supporting asynchronous
client updates, and further proposes a delay-adaptive learning rate adjustment strategy to enhance resilience against large
client delays. While these approaches have shown promise, they typically require bounded data heterogeneity assumptions
and careful calibration of various hyperparameters. In contrast, our method integrates adaptive stepsizes with client-side
momentum in an asynchronous setting, eliminating these restrictions while maintaining theoretical convergence guarantees.

B. Technical Lemmas
Throughout the analysis, we use the following notation for summations:

•
∑

i denotes summation over all clients i ∈ {1, . . . , N};

•
∑

i∈St
denotes summation over selected clients in multiset St;

•
∑

k denotes summation over local steps k ∈ {0, . . . ,K − 1};

•
∑

t denotes summation over global rounds t ∈ {0, . . . , T − 1}.
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Lemma B.1. Given vectors ω1, · · · ,ωN ∈ Rd and ω = 1
N

∑N
i=1 ωi, if we sample S ⊂ {1, · · · , N} uniformly randomly

such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

ωi

∥∥∥∥∥
2
 ≤ ∥ω∥2 + 1

SN

N∑
i=1

∥ωi − ω∥2 .

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ S , we prove this lemma by direct calculation as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

ωi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

ωi1{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥ωi∥2 1{i ∈ S}+ 2
∑
i<j

ω⊤
i ωj1{i, j ∈ S}


=

1

SN

N∑
i=1

∥ωi∥2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

ω⊤
i ωj

=
1

SN

N∑
i=1

∥ωi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

ωi

∥∥∥∥∥
2

−
N∑
i=1

∥ωi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥ωi∥2 +
N(S − 1)

S(N − 1)
∥ω∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥ωi − ω∥2 + ∥ω∥2

≤ 1

SN

N∑
i=1

∥ωi − ω∥2 + ∥ω∥2,

where the last inequality uses the fact that N−S
N−1 ≤ 1 for any nonempty set S.

Lemma B.2. For any i, t, define ϕt
i := E

∥∥∥∇fi

(
θt−τt

i

)
− ct+1

i

∥∥∥2, ϕt := 1
N

∑
i ϕ

t
i, ω

t
i :=

1
K

∑
k E
∥∥∥θt,ki − θt−τt

i

∥∥∥2, and

ωt := 1
N

∑
i ω

t
i. We have

1

T

T−1∑
t=0

ϕt ≤4Nσ2

SKT
+

4L2ω0

T
+

4σ2

K
+

4L2

T

T−1∑
t=0

ωt

+
4N2γ2L2

S2T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2) .

where Et := ∇f(θt)− gt+1.

Proof. Since for any t, the S elements in St are uniformly sampled from {1, · · · , N}, we have

ct+1
i =

{
cti if i ∈ St (w.p. 1− S

N )
1
K

∑
k ∇F

(
θt,ki ; ξt,ki

)
if i /∈ St (w.p. S

N ).
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Using Young’s inequality repeatedly, we have

ϕt
i =

(
1− S

N

)
E
∥∥∥∇fi

(
θt−τt

i

)
− cti

∥∥∥2 + S

N
E

∥∥∥∥∥∇fi

(
θt−τt

i

)
− 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥
2

≤
(
1− S

N

)
E
∥∥∥∇fi

(
θt−τt

i

)
∓∇fi

(
θt−τt

i−1
)
− cti

∥∥∥2 + 2S

N

(
σ2

K
+ L2ωt

i

)
≤
(
1− S

N

)
E
[(

1 +
S

2N

)
ϕt−1

i +

(
1 +

2N

S

)
L2
∥∥∥θt−τt

i − θt−τt
i−1
∥∥∥2]+ 2S

N

(
σ2

K
+ L2ωt

i

)
≤
(
1− S

2N

)
ϕt−1

i +
4N

S
γ2L2

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2)+

2S

N

(
σ2

K
+ L2ωt

i

)
.

Summing up the above inequality over i and t yields

S

2N

1

T

T−1∑
t=0

ϕt ≤ϕ
0

T
+

4Nγ2L2

ST

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2)

+
2Sσ2

NK
+

2SL2

NT

T−1∑
t=0

ωt. (4)

Since for any i, c0i = 1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
and c1i = 1

K

∑K−1
k=0 ∇F

(
θ0,ki ; ξ0,ki

)
. Then, we have

ϕ0
i =

(
1− S

N

)
E
∥∥∇fi

(
θ0
)
− c0i

∥∥2 + S

N
E
∥∥∇fi

(
θ0
)
− c1i

∥∥2
≤ 2σ2

K
+

2S

N
L2ω0

i ,∀i.

Thus, ϕ0 = 1
N

∑
i ϕ

0
i ≤ 2σ2

K + 2S
N L2ω0. Plugging this inequality into (4) completes the proof.

Lemma B.3. For any i, t, k, define ωt
i := 1

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥2, ωt := 1
N

∑
i ω

t
i, ϕ

t
i := E

∥∥∥∇fi

(
θt−τt

i

)
− ct+1

i

∥∥∥2,

ϕt := 1
N

∑
i ϕ

t
i, and ζt,ki := E[θt,k+1

i − θt,ki |F t,k
i ] = −η

(
β
(
∇fi

(
θt,ki

)
− c̃ti + ct−τt

i

)
+ (1− β)gt−τt

i

)
. We have

1

T

T−1∑
t=0

ωt ≤5η2K2e2ηβKL
(
2β2γ2L2(1 + 2τ2max) + 1

) 1

T

T−1∑
t=0

(
E∥Et∥2 + E

∥∥∇f(θt)
∥∥2)

+ 10η2β2K2e2ηβKL 1

T

T−1∑
t=0

(
L2ωt + ϕt

)
+ (10e2ηβKL + 1)Kη2β2σ2

+ (1 + ηβL)K3η3β3Lσ2 +
ω0

T
,

where ω0 ≤ 3η2K2e2ηβKL
∥∥∇f

(
θ0
)∥∥2 + (3e2ηβKL

(
β2 + 1

N

)
+ β2

)
Kη2σ2 + (1 + ηβL)K3η3β3Lσ2.

Proof. From the definition of ζt,ki , we have

E
∥∥∥ζt,ki − ζt,k−1

i

∥∥∥2 = η2β2E
∥∥∥∇fi

(
θt,ki

)
−∇fi

(
θt,k−1
i

)∥∥∥2
≤ η2β2L2E

∥∥∥θt,ki − θt,k−1
i

∥∥∥2
= η2β2L2

(
E
∥∥∥ζt,k−1

i

∥∥∥2 + η2β2E
∥∥∥∇fi

(
θt,ki

)
−∇F

(
θt,ki ; ξk,ti

)∥∥∥2)
≤ η2β2L2

(
E
∥∥∥ζt,k−1

i

∥∥∥2 + η2β2σ2

)
.
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E
∥∥∥ζt,ji

∥∥∥2 ≤
(
1 +

1

ηβL

)
E
∥∥∥ζt,ji − ζt,j−1

i

∥∥∥2 + (1 + ηβL)E
∥∥∥ζt,j−1

i

∥∥∥2
≤ ηβL (1 + ηβL)E

∥∥∥ζt,j−1
i

∥∥∥2 + (1 + ηβL)E
∥∥∥ζt,j−1

i

∥∥∥2 + (1 + ηβL)η3β3Lσ2

= (1 + ηβL)
2 E
∥∥∥ζt,j−1

i

∥∥∥2 + (1 + ηβL)η3β3Lσ2

≤ (1 + ηβL)
2j E

∥∥∥ζt,0i

∥∥∥2 + j(1 + ηβL)η3β3Lσ2

≤ e2jηβLE
∥∥∥ζt,0i

∥∥∥2 + j(1 + ηβL)η3β3Lσ2,

where we use (1 + ηβL)
1

ηβL ≤ e. Then, we have

E
∥∥∥θt,ki − θt−τt

i

∥∥∥2 ≤ 2E

∥∥∥∥∥∥
k−1∑
j=0

ζt,ji

∥∥∥∥∥∥
2

+ 2kη2β2σ2

≤ 2k

k−1∑
j=0

E
∥∥∥ζt,ji

∥∥∥2 + 2kη2β2σ2

≤ 2k

k−1∑
j=0

(
e2jηβLE

∥∥∥ζt,0i

∥∥∥2 + j(1 + ηβL)η3β3Lσ2

)
+ 2kη2β2σ2

≤ 2k2e2ηβKLE
∥∥∥ζt,0i

∥∥∥2 + k3(1 + ηβL)η3β3Lσ2 + 2kη2β2σ2.

Summing up the above inequality over k yields

1

K

∑
k

E
∥∥∥θt,ki − θt−τt

i

∥∥∥2 ≤ K2e2ηβKLE
∥∥∥ζt,0i

∥∥∥2 + (1 + ηβL)K3η3β3Lσ2 +Kη2β2σ2. (5)

Based on the definitation of ζt,ki , ζt,0i = −η
(
β
(
∇fi

(
θt−τt

i

)
− c̃ti + ct−τt

i

)
+ (1− β)gt−τt

i

)
. Then, we have

E
∥∥∥ζt,0i

∥∥∥2 =η2E
∥∥∥β (∇fi

(
θt−τt

i

)
∓∇fi

(
θt−τt

i−1
)
− c̃ti

)
+ β

(
ct−τt

i −∇f
(
θt−τt

i−1
))

+(1− β)
(
gt−τt

i −∇f
(
θt−τt

i−1
))

+∇f
(
θt−τt

i−1
)∥∥∥2

≤5η2β2

(
L2E

∥∥∥θt−τt
i − θt−τt

i−1
∥∥∥2 + E

∥∥∥∇fi

(
θt−τt

i−1
)
− c̃ti

∥∥∥2 + E
∥∥∥∇f

(
θt−τt

i−1
)
− ct−τt

i

∥∥∥2)
+ 5η2(1− β)2E

∥∥∥Et−τt
i−1
∥∥∥2 + 5η2E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2 . (6)

We know that E
∥∥∥θt−τt

i − θt−τt
i−1
∥∥∥2 ≤ 2γ2

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2). Additionally, for any i, t, we have

E
∥∥∥∇fi

(
θt−τt

i

)
− c̃t+1

i

∥∥∥2 = E

∥∥∥∥∥∇fi

(
θt−τt

i

)
∓ 1

K

∑
k

∇F
(
θt,ki

)
− 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥
2

≤ 2L2ωt
i +

2σ2

K
.
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Further, for any t, we have

E
∥∥∇f

(
θt
)
− ct+1

∥∥2 = E

∥∥∥∥∥∇f(θt)∓ 1

N

∑
i

∇fi

(
θt−τt

i

)
− 1

N

∑
i

ct+1
i

∥∥∥∥∥
2

≤ 2
1

N

∑
i

E
∥∥∥∇fi

(
θt
)
−∇fi

(
θt−τt

i

)∥∥∥2 + 2ϕt

≤ 2L2

N

∑
i

τ ti

t−1∑
d=t−τt

i

E
∥∥∥θd+1 − θd

∥∥∥2 + 2ϕt

≤ 4γ2L2τmax

t−1∑
d=t−τmax

(
E∥Ed∥2 + E

∥∥∥∇f
(
θd
)∥∥∥2)+ 2ϕt.

Plugging the above results into (6), we have

E
∥∥∥ζt,0i

∥∥∥2 ≤5η2β2

(
2γ2L2

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2)+ 2L2ωt−1

i +
2σ2

K

)

+ 20η2β2γ2L2 τmax

N

∑
i

t−τt
i−1−1∑

d=t−τt
i−1−τmax

(
E∥Ed∥2 + E

∥∥∥∇f
(
θd
)∥∥∥2)+ 10η2β2ϕt

+ 5η2E
∥∥∥Et−τt

i−1
∥∥∥2 + 5η2E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2 .

Plugging the above inequality into (5) and summing over i, t yields

1

T

T−1∑
t=0

ωt ≤5η2K2e2ηβKL
(
2β2γ2L2(1 + 2τ2max) + 1

) 1

T

T−1∑
t=0

(
E∥Et∥2 + E

∥∥∇f(θt)
∥∥2)

+ 10η2β2K2e2ηβKL 1

T

T−1∑
t=0

(
L2ωt + ϕt

)
+ (10e2ηβKL + 1)Kη2β2σ2

+ (1 + ηβL)K3η3β3Lσ2 +
ω0

T
.

Since c0i = 1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c0 = 1

N

∑
i c

0
i , and g0 = c0, we have

E
∥∥∥ζ0,0i

∥∥∥2 = η2E
∥∥β (∇fi

(
θ0
)
− c0i + c0

)
+ (1− β)g0

∥∥2
= η2E

∥∥∥∥∥∥β
(
∇fi

(
θ0
)
− 1

K

∑
k

∇F
(
θ0; ξ−1,k

i

))
+

1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)
∓∇f

(
θ0
)∥∥∥∥∥∥

2

≤ 3η2
(
β2σ2

K
+

σ2

NK
+
∥∥∇f

(
θ0
)∥∥2) .

ω0
i ≤ K2e2ηβKL 1

N

∑
i

E
∥∥∥ζ0,0i

∥∥∥2 + (1 + ηβL)K3η3β3Lσ2 +Kη2β2σ2

≤ 3η2K2e2ηβKL
∥∥∇f

(
θ0
)∥∥2 + (3e2ηβKL

(
β2 +

1

N

)
+ β2

)
Kη2σ2 + (1 + ηβL)K3η3β3Lσ2.
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C. Proof of Theorem 3.1
Based on the L-smoothness of f(·) in Assumption 2.1 and Line 6 in Algorithm 1, we have

f(θt+1)− f(θt) ≤
〈
∇f(θt),θt+1 − θt

〉
+

L

2

∥∥θt+1 − θt
∥∥2

= −γ∥∇f(θt)∥2 + γ
〈
∇f(θt),∇f(θt)− gt+1

〉
+

γ2L

2

∥∥gt+1 ∓∇f(θt)
∥∥2

≤ −γ

2
∥∇f(θt)∥2 + γ

2

∥∥∇f(θt)− gt+1
∥∥2 + Lγ2

∥∥∇f(θt)− gt+1
∥∥2 + γ2L∥∇f(θt)∥2

= −γ

2
(1− 2γL)∥∇f(θt)∥2 + γ

2
(1 + 2γL)∥∇f(θt)− gt+1∥2.

Define Et := ∇f(θt)−gt+1 and ∆ := f(θ0)−f∗, where f∗ := minθ f(θ) > −∞. Then, f(θ0)−f(θT ) ≤ f(θ0)−f∗ =
∆. Summing the above inequality over t = 0, 1, . . . , T − 1 yields

1

T

T−1∑
t=0

∥∇f(θt)∥2 ≤ 2∆

γ(1− 2γL)T
+

1 + 2γL

1− 2γL

1

T

T−1∑
t=0

∥∥Et
∥∥2 . (7)

From the update rule of gt+1 given in Line 5 in Algorithm 1, we have

E∥Et∥2 = E

∥∥∥∥∥∥∥∥∥∥
(1− β)

(
∇f(θt)− gt

)
+ β

(
∇f(θt)− ct − 1

S

∑
i∈St

(
ct+1
i − cti

))
︸ ︷︷ ︸

=:vt

∥∥∥∥∥∥∥∥∥∥

2

= (1− β)2E
∥∥∇f(θt)− gt

∥∥2 + β2E∥vt∥2 + 2βE
〈
(1− β)

(
∇f(θt)− gt

)
,vt
〉

(a)
= (1− β)2E

∥∥∇f(θt)− gt
∥∥2 + β2E∥vt∥2 + 2βE

〈
(1− β)

(
∇f(θt)− gt

)
,∇f(θt)− 1

NK

∑
i,k

∇fi

(
θt,ki

)
︸ ︷︷ ︸

=:ψt

〉

≤ (1− β)2
(
1 +

β

2

)
E
∥∥∇f(θt)− gt

∥∥2 + β2E∥vt∥2 + 2βE
∥∥ψt

∥∥2 , (8)

where (a) is based on the fact that

E[vt|F t] = E{ξt,ki }∀i,k
,St

[vt]

= E{ξt,ki }∀i,k

∇f(θt)− ct − 1

NK

∑
i,k

(
∇F

(
θt,ki ; ξt,ki

)
− cti

)
= ∇f(θt)− 1

NK

∑
i,k

∇fi

(
θt,ki

)
=: ψt.
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To upper bound (1− β)2
(
1 + β

2

)
E
∥∥∇f(θt)− gt

∥∥2 in (8), we have

(1− β)2
(
1 +

β

2

)
E
∥∥∇f(θt)− gt

∥∥2
≤ (1− β)2

(
1 +

β

2

)
E
[(

1 +
β

2

)∥∥Et−1
∥∥2 + (1 + 2

β

)∥∥∇f(θt)−∇f
(
θt−1

)∥∥2]
≤ (1− β)E

∥∥Et−1
∥∥2 + 2L2

β

∥∥θt − θt−1
∥∥2

≤ (1− β)E
∥∥Et−1

∥∥2 + 4L2γ2

β

(
E
∥∥Et−1

∥∥2 + ∥∥∇f
(
θt−1

)∥∥2)
=

(
1− β +

4L2γ2

β

)
E
∥∥Et−1

∥∥2 + 4L2γ2

β
E
∥∥∇f

(
θt−1

)∥∥2 .
Define ϕt

i := E
∥∥∥∇fi

(
θt−τt

i

)
− ct+1

i

∥∥∥2, ϕt := 1
N

∑
i ϕ

t
i, ω

t
i := 1

K

∑
k E
∥∥∥θt,ki − θt−τt

i

∥∥∥2, and ωt := 1
N

∑
i ω

t
i. To

upper bound E∥vt∥2 in (8), it follows from Lemma B.1 that

E∥vt∥2

≤ E

∥∥∥∥∥∇f(θt)− 1

N

∑
i

ct+1
i

∥∥∥∥∥
2

+
1

S

1

N

∑
i

E

∥∥∥∥∥(ct+1
i − cti

)
−
∑
i′

(
ct+1
i′ − cti′

)∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥∇f(θt)− 1

NK

∑
i,k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥∥
2

+
1

S

1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
− cti

∥∥∥∥∥
2

≤ 2E
∥∥ψt

∥∥2 + 2σ2

NK
+

1

SN

∑
i

E

∥∥∥∥∥ 1

K

∑
k

(
∇F

(
θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

))
∓∇fi

(
θt−τt

i

)
∓∇fi

(
θt−τt

i−1
)
− cti

∥∥∥∥∥
2

≤ 2E
∥∥ψt

∥∥2 + 6σ2

SK
+

4L2

S
ωt +

4L2

SN

∑
i

∥∥∥θt−τt
i − θt−τt

i−1
∥∥∥2 + 4

S
ϕt−1

≤ E
∥∥ψt

∥∥2 + 6σ2

SK
+

4L2

S
ωt +

8γ2L2

SN

∑
i

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2)+

4

S
ϕt−1.

Plugging the above results into (8), we have

E∥Et∥2 ≤
(
1− β +

4L2γ2

β

)
E
∥∥Et−1

∥∥2 + 4L2γ2

β
E
∥∥∇f

(
θt−1

)∥∥2 + 2β(β + 1)E
∥∥ψt

∥∥2 + 6β2σ2

SK

+
4β2L2

S
ωt +

8β2γ2L2

SN

∑
i

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2)+

4β2

S
ϕt−1.

Additionally, for any t, we have

E
∥∥ψt

∥∥2 = E

∥∥∥∥∥∥∇f(θt)∓ 1

N

∑
i

∇fi

(
θt−τt

i

)
− 1

NK

∑
i,k

∇fi

(
θt,ki

)∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1

N

∑
i

(
∇fi(θ

t)−∇fi

(
θt−τt

i

))∥∥∥∥∥
2

+ 2L2ωt

≤ 2L2 1

N

∑
i

τ ti

t−1∑
d=t−τt

i

E
∥∥∥θd+1 − θd

∥∥∥2 + 2L2ωt

≤ 4τmaxγ
2L2

t−1∑
d=t−τmax

(
E∥Ed∥2 + E

∥∥∥∇f
(
θd
)∥∥∥2)+ 2L2ωt.
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Thus,

E∥Et∥2 ≤
(
1− β +

4L2γ2

β

)
E
∥∥Et−1

∥∥2 + 4L2γ2

β
E
∥∥∇f

(
θt−1

)∥∥2 + 4βL2

(
1 + β +

β

S

)
ωt

+
8β2γ2L2

SN

∑
i

(
E
∥∥∥Et−τt

i−1
∥∥∥2 + E

∥∥∥∇f
(
θt−τt

i−1
)∥∥∥2)+

4β2

S
ϕt−1

+ 16τmaxβγ
2L2

t−1∑
d=t−τmax

(
E∥Ed∥2 + E

∥∥∥∇f
(
θd
)∥∥∥2)+

6β2σ2

SK
.

Summing up the above inequality over t yields(
1− 4L2γ2

β2

)
1

T

T−1∑
t=0

E∥Et∥2

≤ E∥E0∥2

βT
+

4L2γ2

β2T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥2 + 4L2 1 + β + β
S

T

T−1∑
t=0

ωt +
4β

ST

T−1∑
t=0

ϕt

+ 8γ2L2

(
2τ2max +

β

S

)
1

T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2)+ 6βσ2

SK
. (9)

From Lemma B.2, we know that

1

T

T−1∑
t=0

ϕt ≤4Nσ2

SKT
+

4L2ω0

T
+

4σ2

K
+

4L2

T

T−1∑
t=0

ωt

+
4N2γ2L2

S2T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2) .

From Lemma B.3, we know that

1

T

T−1∑
t=0

ωt ≤5η2K2e2ηβKL
(
2β2γ2L2(1 + 2τ2max) + 1

) 1

T

T−1∑
t=0

(
E∥Et∥2 + E

∥∥∇f(θt)
∥∥2)

+ 10η2β2K2e2ηβKL 1

T

T−1∑
t=0

(
L2ωt + ϕt

)
+ (10e2ηβKL + 1)Kη2β2σ2

+ (1 + ηβL)K3η3β3Lσ2 +
ω0

T
.

Plugging the bound of 1
T

∑T−1
t=0 ϕ

t into 1
T

∑T−1
t=0 ω

t yields

1

T

T−1∑
t=0

ωt ≤5η2K2e2ηβKL

(
2β2γ2L2

(
1 + 2τ2max +

4N2

S2

)
+ 1

)
1

T

T−1∑
t=0

(
E∥Et∥2 + E

∥∥∇f(θt)
∥∥2)

+ 50η2β2K2L2e2ηβKL 1

T

T−1∑
t=0

ωt + (50e2ηβKL + 1)Kη2β2σ2

+ (1 + ηβL)K3η3β3Lσ2 +
ω0

T
+ 10η2β2K2e2ηβKL

(
4Nσ2

SKT
+

4L2ω0

T

)
.

Set β = O
(

1√
T

)
, γ = β

4L , and ηKL ≤ O (1). Then, e2ηβKL ≤ e2. Thus, we have

1

T

T−1∑
t=0

ωt ≲5η2K2e2
1

T

T−1∑
t=0

(
E∥Et∥2 + E

∥∥∇f(θt)
∥∥2)+ 50e2Kη2β2σ2 +

ω0

T
.
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where ≲ means “less than or asymptotically equal to” in order sense.

Similarly, plugging the above bound back into 1
T

∑T−1
t=0 ϕ

t, we have

1

T

T−1∑
t=0

ϕt ≲
8L2ω0

T
+

4σ2

K
+ 4L2

(
5η2K2e2 +

N2

S2
γ2

)
1

T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2) .

Plugging the above bounds on 1
T

∑T−1
t=0 ω

t and 1
T

∑T−1
t=0 ϕ

t into (9), we have

3

4

1

T

T−1∑
t=0

E∥Et∥2 ≲
E∥E0∥2

βT
+

1

4T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥2 + 22βσ2

SK
+ 200e2Kη2β2L2σ2 +

4L2ω0

T

+
(
τ2maxβ

2 + 20η2K2L2e2
) 1

T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2) .

Since c0i = 1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c0 = 1

N

∑
i c

0
i , and g0 = c0, we have

E
∥∥E0

∥∥2 = E

∥∥∥∥∥∇f(θ0)− β

(
1

S

∑
i∈S0

(
c1i − c0i

)
+ c0

)
− (1− β)g0

∥∥∥∥∥
2

= E

∥∥∥∥∥∥∇f(θ0)− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)

+
β

SK

∑
i∈S0,k

(
∇F

(
θ0i ; ξ

−1,k
i

)
∓∇fi

(
θ0i
)
∓∇fi

(
θ0,ki

)
−∇F

(
θ0,ki ; ξ0,ki

))∥∥∥∥∥∥
2

≤ 4σ2

NK
+

8β2σ2

SK
+

β2

S

∑
i∈S0

ω0
i .

From Lemma B.3, we know that, for any i,

ω0
i ≤ 3η2K2e2ηβKL

∥∥∇f
(
θ0
)∥∥2 + (3e2ηβKL

(
β2 +

1

N

)
+ β2

)
Kη2σ2 + (1 + ηβL)K3η3β3Lσ2

≲ 3η2K2e2
∥∥∇f

(
θ0
)∥∥2 + 3e2Kη2σ2

N
.

Thus, we have

1

T

T−1∑
t=0

E∥Et∥2 ≲
1

3T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥2 + ( 2

βT
+ 11β

)
8σ2

3SK
+

800e2β2σ2

3K
+

64L2σ2

3NKT

+
4

3

(
τ2maxβ

2 + 20η2K2L2e2
) 1

T

T−1∑
t=0

(
E
∥∥Et
∥∥2 + E

∥∥∇f
(
θt
)∥∥2) .

Denote by a := τ2maxβ
2 + 20η2K2L2e2, We require a < 1

4 . Then, we have

1

T

T−1∑
t=0

E∥Et∥2 ≲
1 + 4a

3− 4a

1

T

T−1∑
t=0

E
∥∥∇f

(
θt
)∥∥2 + ( 2

βT
+ 11β

)
4σ2

SK
+

400e2β2σ2

K
+

16L2σ2

NKT
.

where we use 3− 4a ≥ 2. Plugging the above bound into (7) yields

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≲
2∆

γ(1− 2γL)T
+

1 + 2γL

1− 2γL

1 + 4a

3− 4a

1

T

T−1∑
t=0

E
∥∥∇f

(
θt
)∥∥2

+
1 + 2γL

1− 2γL

((
2

βT
+ 11β

)
4σ2

SK
+

400e2β2σ2

K
+

16L2σ2

NKT

)
.
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1− (1 + 2γL)(1 + 4a)

(1− 2γL)(3− 4a)

)
1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≲
2∆

γ(1− 2γL)T
+

1 + 2γL

1− 2γL

(
2

βT
+ 11β

)
4σ2

SK

+
1 + 2γL

1− 2γL

(
400e2β2σ2

K
+

16L2σ2

NKT

)
.

When 2− 8a− 8γL ≥ 0 holds, let β =
√

SK
T and γ = β

4L = 1
4L

√
SK
T . Then, we have

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≲
(3− 4a)(4L∆+ 26σ2)(
1− 4a−

√
SK
T

)√
SKT

+
3− 4a

1− 4a−
√

SK
T

(
200e2Sσ2

T
+

8L2σ2

NKT

)
.

Note that we require 1− 4a−
√

SK
T ≥ 0, i.e., a := SK

T τ2max + 20η2K2L2e2 ≤ 1
4

(
1−

√
SK
T

)
.

D. Proof of Theorem 4.1
We first present the following inequalities that are frequently used in our analysis.

Lemma D.1. For any i, t, we have

1

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥2 ≤ 1

3
η2K2 and

1

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥ ≤ 1

2
ηK.

Proof. From the update rule of local model, for any i, k and t, we have

∥∥∥θt,k+1
i − θt,ki

∥∥∥ = η

∥∥∥∥∥∥ gt,ki∥∥∥gt,ki

∥∥∥
∥∥∥∥∥∥ ≤ η.

Then,

∥∥∥θt,ki − θt−τt
i

∥∥∥2 =

∥∥∥∥∥∥
k−1∑
j=0

(
θt,j+1
i − θt,ji

)∥∥∥∥∥∥
2

≤ k

k−1∑
j=0

∥∥∥θt,j+1
i − θt,ji

∥∥∥2 ≤ η2k2.

Summing the above inequality over i and k yields

1

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥2 ≤ η2

K

K−1∑
k=0

k2 ≤ η2

6K
(K − 1)K(2K − 1) ≤ 1

3
η2K2.

Similarly, we have

1

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥ =
1

K

∑
k

(∥∥∥θt,ki − θt
∥∥∥2) 1

2

≤ η

K

K−1∑
k=0

k ≤ 1

2
ηK.

Moreover, we have

∥∥θt − θt−1
∥∥ =

∥∥∥∥∥∥ γ

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥
∥∥∥∥∥∥ ≤ γ

SK

∑
i∈St,k

∥∥∥∥∥∥ gt,ki∥∥∥gt,ki

∥∥∥
∥∥∥∥∥∥ ≤ γ,

and correspondingly ∥θt − θt−τt
i ∥ ≤

∑t
τ=t−τt

i+1 ∥θ
τ − θτ−1∥ ≤ τ ti γ.
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From the L-smoothness of f(·) in Assumption 2.1, we have

f(θt+1)− f(θt)

≤ ∇f(θt)⊤
(
θt+1 − θt

)
+

L

2

∥∥θt+1 − θt
∥∥2 (10)

= −γ∇f(θt)⊤

 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥
+

γ2L

2

= −γ
(
∇f(θt)− gt+1

)⊤ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥
− γ

(
gt+1

)⊤ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥
+

γ2L

2

≤ γ
∥∥∇f(θt)− gt+1

∥∥− γ
(
gt+1

)⊤ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥ − gt+1

∥gt+1∥

− γ
∥∥gt+1

∥∥+ γ2L

2

(a)

≤ 2γ
∥∥∇f(θt)− gt+1

∥∥− γ
∥∥∇f(θt)

∥∥+ γ
∥∥gt+1

∥∥∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥ − gt+1

∥gt+1∥

∥∥∥∥∥∥+ γ2L

2

(b)

≤ 2γ
∥∥∇f(θt)− gt+1

∥∥− γ
∥∥∇f(θt)

∥∥+ 2γ

SK

∑
i∈St,k

∥∥∥gt,ki − gt+1
∥∥∥+ γ2L

2
. (11)

where (a) is based on γ
∥∥∇f(θt)

∥∥− γ
∥∥gt+1

∥∥ ≤ γ
∥∥∇f(θt)− gt+1

∥∥ and (b) is based on the following result.

∥∥gt+1
∥∥∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥ − gt+1

∥gt+1∥

∥∥∥∥∥∥
=
∥∥gt+1

∥∥∥∥∥∥∥∥ 1

SK

∑
i∈St,k

 gt,ki∥∥∥gt,ki

∥∥∥ ∓ gt,ki

∥gt+1∥

− gt+1

∥gt+1∥

∥∥∥∥∥∥
≤
∥∥gt+1

∥∥
SK

∥∥∥∥∥∥
∑

i∈St,k

gt,ki∥∥∥gt,ki

∥∥∥ − gt,ki

∥gt+1∥

∥∥∥∥∥∥+ ∥∥gt+1
∥∥∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki

∥gt+1∥
− gt+1

∥gt+1∥

∥∥∥∥∥∥
=

∥∥gt+1
∥∥

SK

∥∥∥∥∥∥
∑

i∈St,k

∥∥gt+1
∥∥− ∥∥∥gt,ki

∥∥∥
∥gt+1∥

∥∥∥gt,ki

∥∥∥ gt,ki

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki − gt+1

∥∥∥∥∥∥
≤
∥∥gt+1

∥∥
SK

∑
i∈St,k

∣∣∣∥∥gt+1
∥∥− ∥∥∥gt,ki

∥∥∥∣∣∣
∥gt∥

∥∥∥gt,ki

∥∥∥
∥∥∥gt,ki

∥∥∥+ 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt+1
∥∥∥

≤ 2

SK

∑
i∈St,k

∥∥∥gt,ki − gt+1
∥∥∥ .

Summing up (11) over t yields

1

T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥ ≤ ∆

γT
+

2

T

T−1∑
t=0

E
∥∥∇f(θt)− gt+1

∥∥
+

2

SKT

T−1∑
t=0

E

 ∑
i∈St,k

∥∥∥gt,ki − gt+1
∥∥∥
+

γL

2
.
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D.1. Analysis of 1
T

∑T−1
t=0 E

∥∥∇f(θt)− gt+1
∥∥

Define Et := ∇f(θt)− gt+1. ut := ∇f
(
θt
)
−∇f

(
θt−1

)
and vt :=

(
∇f(θt)− ct − 1

S

∑
i∈St

(
ct+1
i − cti

))
. From the

update rule of gt+1 given in Step 9 of Algorithm 3, we have

Et =(1− β)
(
∇f(θt)− gt

)
+ β

(
∇f(θt)− ct − 1

S

∑
i∈St

(
ct+1
i − cti

))
=(1− β)Et−1 + (1− β)ut + βvt

=(1− β)tE0 +

t∑
d=1

ud(1− β)t+1−d +

t∑
d=1

βvd(1− β)t−d.

Based on the triangle inequality of ℓ2 norm and the concavity of the square root (·) 1
2 , we have

E
∥∥Et
∥∥ ≤(1− β)tE

∥∥E0
∥∥+ t∑

d=1

E
∥∥ud

∥∥ (1− β)t+1−d +

E

∥∥∥∥∥
t∑

d=1

βvd(1− β)t−d

∥∥∥∥∥
2
 1

2

. (12)

Since c0i = 1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c0 = 1

N

∑
i c

0
i , and g0 = c0, we have

E
∥∥E0

∥∥ = E

∥∥∥∥∥∥∇f(θ0)− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)
+

β

SK

∑
i∈S0,k

(
∇F

(
θ0i ; ξ

−1,k
i

)
−∇F

(
θ0,ki ; ξ0,ki

))∥∥∥∥∥∥
≤ σ√

NK
+ E

∥∥∥∥∥∥ β

SK

∑
i∈S0,k

(
∇F

(
θ0i ; ξ

−1,k
i

)
∓∇fi

(
θ0i
)
∓∇fi

(
θ0,ki

)
−∇F

(
θ0,ki ; ξ0,ki

))∥∥∥∥∥∥
≤ σ√

NK
+

βσ√
SK

+
β

SK
E

 ∑
i∈S0,k

∥∥∥∇fi
(
θ0
)
−∇fi

(
θ0,ki

)∥∥∥
+

βσ√
SK

≤ βL

NK

∑
i,k

E
∥∥∥θ0,ki − θ0

∥∥∥+ 3σ√
SK

≤ 1

2
ηβKL+

3σ√
SK

. (13)

Additionally, for any t, we have

∥∥ut
∥∥ =

∥∥∇f(θt+1)−∇f(θt)
∥∥ ≤ L

∥∥θt+1 − θt
∥∥ ≤ γL

∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki

∥gt,ki ∥

∥∥∥∥∥∥ ≤ γL. (14)

Further, we have

E

∥∥∥∥∥
t∑

d=1

βvd(1− β)t−d

∥∥∥∥∥
2

=

t∑
d=1

β2E
∥∥vd∥∥2 (1− β)2(t−d)

+
∑

1≤d1,d2≤t,d1 ̸=d2

E
〈
βvd1(1− β)t−d1 , βvd2(1− β)t−d2

〉
.
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Since ct+1
i = 1

K

∑K
k=1 ∇F

(
θt,ki ; ξt,ki

)
for i ∈ St and ct = 1

N

∑N
i=1 c

t
i, for any t, we have

E[vt|F t] = E{ξt,ki }∀i,k
,St

[vt]

= E{ξt,ki }∀i,k

∇f(θt)− ct − 1

NK

∑
i,k

(
∇F

(
θt,ki ; ξt,ki

)
− cti

)
= ∇f(θt)− 1

NK

∑
i,k

∇fi

(
θt,ki

)
:= ψt.

E
∥∥ψt

∥∥ =
1

N

∑
i

E

∥∥∥∥∥∥∇f(θt)∓∇f
(
θt−τt

i

)
− 1

NK

∑
i,k

∇fi

(
θt,ki

)∥∥∥∥∥∥
≤ L

N

∑
i

E
∥∥∥θt − θt−τt

i

∥∥∥+ L

NK

∑
i,k

E
∥∥∥θt−τt

i − θt,ki

∥∥∥
≤ γL

N

∑
i

τ ti +
1

2
ηKL

≤ γτmaxL+
1

2
ηKL.

We also have

E

∥∥∥∥∥∥∇f(θt)− 1

SK

∑
i∈St,k

∇fi

(
θt,ki

)∥∥∥∥∥∥
2

≤ 2

S

∑
i∈St

E
∥∥∥∇f(θt)−∇f

(
θt−τt

i

)∥∥∥2 + 2L2

SK

∑
i∈St,k

E
∥∥∥θt−τt

i − θt,ki

∥∥∥2
≤ 2γ2τ2maxL

2 + η2K2L2.

Similarly, we have E
∥∥ψt

∥∥2 = E
∥∥∥∇f(θt)− 1

NK

∑
i,k ∇fi

(
θt,ki

)∥∥∥2 ≤ 2γ2τ2maxL
2 + η2K2L2.

For any 0 ≤ t1 < t2 ≤ T − 1, we have

E
〈
vt1 ,vt2

〉
= E

〈
vt1 ,E

[
vt2 |F t2

]〉
= E

〈
∇f

(
θt1
)
− 1

SK

∑
i∈St,k

∇fi

(
θt1,ki

)
,ψt2

〉
+ E

〈
ESt

[
ct − 1

S

∑
i∈St

cti

]
,ψt2

〉

+ E

〈
1

SK

∑
i∈St,k

(
∇fi

(
θt1,ki

)
−∇F

(
θt1,ki ; ξt1,ki

))
,ψt2

〉

≤ 1

2
E

∥∥∥∥∥∥∇f
(
θt1
)
− 1

SK

∑
i∈St1

,k

∇fi

(
θt1,ki

)∥∥∥∥∥∥
2

+
1

2
E
∥∥ψt2

∥∥2 + σ√
SK

E
∥∥ψt2

∥∥
≤ 2γ2τ2maxL

2 + η2K2L2 +
Lσ√
SK

(
γτmax +

1

2
ηK

)
.
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Further, based on Lemma B.1, we have

E
∥∥vt∥∥2 =E

∥∥∥∥∥∇f(θt)− ct − 1

S

∑
i∈St

(
ct+1
i − cti

)∥∥∥∥∥
2

≤E

∥∥∥∥∥∇f(θt)− 1

N

∑
i

ct+1
i

∥∥∥∥∥
2

+
1

S

1

N

∑
i

E

∥∥∥∥∥(ct+1
i − cti

)
− 1

N

∑
i

(
ct+1
i − cti

)∥∥∥∥∥
2

≤E

∥∥∥∥∥∇f(θt)− 1

N

∑
i

ct+1
i

∥∥∥∥∥
2

+
1

S

1

N

∑
i

E
∥∥ct+1

i − cti
∥∥2 .

Note that ct+1
i = 1

K

∑
k ∇F

(
θt,ki ; ξt,ki

)
, i.e., client i is selected in the tth round. We have

E

∥∥∥∥∥∥∇f(θt)− 1

NK

∑
i,k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇fi

(
θt
)
∓∇fi

(
θt−τt

i

)
∓∇fi

(
θt,ki

)
−∇F

(
θt,ki ; ξt,ki

))∥∥∥∥∥∥
2

≤ 3L2E
∥∥θt − θt−τmax

∥∥2 + 3L2

NK

∑
i,k

E
∥∥∥θt,ki − θt−τt

i

∥∥∥2 + 3σ2

NK

≤ 3γ2τ2maxL
2 + η2K2L2 +

3σ2

NK
,∀t.

From Lemma D.2, we know that

E
∥∥ct+1

i − cti
∥∥2 ≤ 28σ2

K
+

28

3
η2K2L2 + 4γ2L2

(
1 +

4N2

S2

)
.

Thus, we have

E∥vt∥2 ≤ 3γ2τ2maxL
2 + η2K2L2 +

3σ2

NK
+

28σ2

SK
+

28

3S
η2K2L2 +

4γ2L2

S

(
1 +

4N2

S2

)
≤ γ2L2

(
3τ2max +

4

S
+

4N3

S3

)
+

31σ2

SK
+

(
1 +

28

3S

)
η2K2L2.

Then, we have

E

∥∥∥∥∥
t∑

d=1

βvd(1− β)t−d

∥∥∥∥∥
2

≤βE∥vd∥2 +
〈
vd1 ,vd2

〉
≤β

(
γ2L2

(
3τ2max +

4

S
+

4N3

S3

)
+

31σ2

SK
+

(
1 +

28

3S

)
η2K2L2

)
+ 2γ2τ2maxL

2 + η2K2L2 +
Lσ√
SK

(
γτmax +

1

2
ηK

)
.

E

∥∥∥∥∥
t∑

d=1

βvd(1− β)t−d

∥∥∥∥∥
2
 1

2

≤γL

(
(
√
2 +

√
3β)τmax + 2

√
β

S

(
1 +

N
√
N

S

))
+

√
31βσ2

SK

+ ηKL

(
1 +

√
β +

√
28β

3S

)
+

√
Lσ(2γτmax + ηK)

2
√
SK

. (15)

25



Momentum-Driven Adaptivity: Towards Tuning-Free Asynchronous Federated Learning

Plugging (13), (14) and (15) into (12), we have

E
∥∥Et
∥∥ ≤(1− β)t

(
1

2
ηβKL+

3σ√
SK

)
+

γL

β
+ γL

(
(
√
2 +

√
3β)τmax + 2

√
β

S

(
1 +

N
√
N

S

))

+

√
31βσ2

SK
+ ηKL

(
1 +

√
β +

√
28β

3S

)
+

√
Lσ(2γτmax + ηK)

2
√
SK

. (16)

Summing up the above inequality over t yields

1

T

T−1∑
t=0

E
∥∥Et
∥∥ ≤ηKL

2T
+

3σ

βT
√
SK

+
γL

β
+ γL

(
(
√
2 +

√
3β)τmax + 2

√
β

S

(
1 +

N
√
N

S

))

+

√
31βσ2

SK
+ ηKL

(
1 +

√
β +

√
28β

3S

)
+

√
Lσ(2γτmax + ηK)

2
√
SK

.

D.2. Analysis of 1
SKT E

[∑
i∈St,k,t

∥∥∥gt,ki − gt+1
∥∥∥]

Recall that gt,ki and gt+1 are respectively updated by gt,ki = β
(
∇F

(
θt,ki ; ξt,ki

)
− c̃ti + ct−τt

i

)
+ (1 − β)gt−τt

i and

gt+1 = β
(
1
S

∑
i∈St

(
ct+1
i − cti

)
+ ct

)
+ (1− β)gt. Then, we have

gt,ki − gt+1 =β
(
∇F

(
θt,ki ; ξt,ki

)
− c̃ti

)
− β

S

∑
i∈St

(
ct+1
i − cti

)
+ β

(
ct−τt

i − ct
)
+ (1− β)

(
gt−τt

i − gt
)
.

∥∥∥gt,ki − gt+1
∥∥∥ ≤β

∥∥∥∇F
(
θt,ki ; ξt,ki

)
− c̃ti

∥∥∥+ β

S

∑
i∈St

∥∥ct+1
i − cti

∥∥
+ β

∥∥∥ct−τt
i − ct

∥∥∥+ (1− β)
∥∥∥gt−τt

i − gt
∥∥∥

≤β
∥∥∥∇F

(
θt,ki ; ξt,ki

)
− c̃ti

∥∥∥+ β

S

∑
i∈St

∥∥ct+1
i − cti

∥∥
+

β

N

∑
i

t−1∑
d=t−τt

i

∥∥cd+1
i − cdi

∥∥+ t−1∑
d=t−τt

i

∥∥gd+1 − gd
∥∥ . (17)

For any i, t, we have

1

K

∑
k

E
∥∥∥∇F

(
θt,ki ; ξt,ki

)
− c̃ti

∥∥∥
=

1

K

∑
k

E
∥∥∥∥∇F

(
θt,ki ; ξt,ki

)
∓ fi

(
θt,ki

)
∓ fi

(
θt−τt

i

)
∓ fi

(
θt−τt

i−1−τ
t−τt

i−1

i

)

∓ 1

K

∑
k

∇F
(
θ
t−τt

i−1,k
i

)
− 1

K

∑
k

∇F
(
θ
t−τt

i−1,k
i ; ξ

t−τt
i−1,k

i

)∥∥∥∥∥
≤ σ +

L

K

∑
k

∥∥∥θt,ki − θt−τt
i

∥∥∥+ (τmax + 1)γL+
L

K

∑
k

∥∥∥∥θt−τt
i−1,k

i − θt−τt
i−1−τ

t−τt
i−1

i

∥∥∥∥+ σ√
K

≤ 2σ + ηKL+ (τmax + 1)γL. (18)
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Moreover, we have

E
∥∥gt+1 − gt

∥∥ = βE

∥∥∥∥∥ 1S ∑
i∈St

(
ct+1
i − cti

)
+ ct ∓∇f

(
θt−1

)
− gt

∥∥∥∥∥
≤ β

S

∑
i∈St

E
∥∥ct+1

i − cti
∥∥+ βE

∥∥∇f
(
θt−1

)
− ct

∥∥+ βE∥Et−1∥. (19)

From Lemma D.2, for any t, i ∈ St, we have

E
∥∥ct+1

i − cti
∥∥ ≤ 2σ

√
7

K
+ 2

√
7

3
ηKL+ 2γL

(
1 +

2N

S

)
(20)

E
∥∥∇f

(
θt
)
− ct+1

∥∥ ≤ 2σ

√
6

K
+ 2γL

(∑
i

τ ti
N

+
2N

S

)
+ 2

√
2ηKL. (21)

Plugging (18), (19), (20), and (21) into (17), we have

1

K

∑
k

E
∥∥∥gt,ki − gt+1

∥∥∥ ≤β(2σ + ηKL+ γ(τmax + 1)L)

+ (1 + 2τ ti )β

(
2

√
7

K
σ + 2

√
7

3
ηKL+ 2γL

(
1 +

2N

S

))

+ βτ ti

(
2σ

√
6

K
+ 2γL

(∑
i

τ ti
N

+
2N

S

)
+ 2

√
2ηKL

)
+ βτ tiE∥Et−1∥.

1

SKT
E

 ∑
i∈St,k,t

∥∥∥gt,ki − gt+1
∥∥∥


≤ β(2σ + ηKL+ γ(τmax + 1)L) + (1 + 2τ̄)β

(
2

√
7

K
σ + 2

√
7

3
ηKL+ 2γL

(
1 +

2N

S

))

+ βτ̄

(
2σ

√
6

K
+ 2γL

(
τmax +

2N

S

)
+ 2

√
2ηKL

)
+

β

NT

∑
i,t

τ tiE∥Et−1∥.

where τ̄ := 1
NT

∑
i,t τ

t
i .

From (16), we have

β

NT

∑
i,t

τ tiE
∥∥Et−1

∥∥ ≤βτmax

T

∑
t

(1− β)t
(
1

2
ηβKL+

3σ√
SK

)
+ βγτ̄L

(
(
√
2 +

√
3β)τmax + 2

√
β

S

(
1 +

N
√
N

S

))

+ γτ̄L+ βτ̄

√
31βσ2

SK
+ βητ̄KL

(
1 +

√
β +

√
28β

3S

)
+ βτ̄

√
Lσ(2γτmax + ηK)

2
√
SK

≤τmax

2
βηKL+

3τmaxσ

T
√
SK

+ γβτ̄L

(
(
√
2 +

√
3β)τmax + 2

√
β

S

(
1 +

N
√
N

S

))

+ γτ̄L+ βτ̄

√
31βσ2

SK
+ βητ̄KL

(
1 +

√
β +

√
28β

3S

)
+ βτ̄

√
Lσ(2γτmax + ηK)

2
√
SK

.
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D.3. Combination

Let β =
√

SK
T , γ = (SK)

1
4

T
3
4

and η = 1
K

√
T

, we have

1

T

T−1∑
t=0

E
∥∥Et
∥∥ ≲

γL

β
+
√
2τmaxγL+

√
31βσ2

SK
+

√
Lσ(2γτmax + ηK)

2
√
SK

≲
L

(SKT )
1
4

+
τmaxL(SK)

1
4

T
3
4

+
σ

(SKT )
1
4

+

√
Lστmax

T
3
8 (SK)

1
8

+

√
Lσ

(SKT )
1
4

.

Similarly, we have

1

SKT
E

 ∑
i∈St,k,t

∥∥∥gt,ki − gt
∥∥∥


≲ βσ

(
1 +

τ̄√
K

)
+

β

NT

∑
i,t

τ tiE
∥∥Et
∥∥

≲

(
1 +

τ̄√
K

)
σ

√
SK

T
+ τ̄ τmaxL

(SK)
3
4

T
5
4

+
(
σ +

√
Lσ
) τ̄(SK)

1
4

T
3
4

+ τ̄
√
Lστmax

(SK)
3
8

T
7
8

.

Then, we have

1

T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥ ≤ ∆

γT
+

2

T

T−1∑
t=0

E
∥∥Et
∥∥+ 2

SKT

T−1∑
t=0

E

 ∑
i∈St,k

∥∥∥gt,ki − gt+1
∥∥∥
+

γL

2

≲
∆+ L+ σ +

√
Lσ

(SKT )
1
4

+ σ

√
SK

T
+

√
Lστmax

T
3
8 (SK)

1
8

+ τ̄σ

√
S

T

+ τmaxL
(SK)

1
4

T
3
4

+ τ̄
√
Lστmax

(SK)
3
8

T
7
8

+ τ̄ τmaxL
(SK)

3
4

T
5
4

.

Lemma D.2. Assume that the delay of client i at the tth round is τ ti . For any t, i ∈ St, we have

i) E
∥∥ct+1

i − cti
∥∥2 ≤ 28σ2

K + 28
3 η2K2L2 + 4γ2L2

(
1 + 4N2

S2

)
;

ii) E
∥∥ct+1

i − cti
∥∥ ≤ 2

√
7
Kσ + 2

√
7
3ηKL+ 2γL

(
1 + 2N

S

)
;

iii) E
∥∥∇f

(
θt
)
− ct+1

∥∥ ≤ 2σ
√

6
K + 2γL

(∑
i
τt
i

N + 2N
S

)
+ 2

√
2ηKL.

Proof. Define ϕt
i := E

∥∥∥∇fi

(
θt−τt

i

)
− ct+1

i

∥∥∥2. Since for any t, the S elements in St are uniformly sampled from
{1, · · · , N}, we have

ct+1
i =

{
cti if i ∈ St (w.p. 1− S

N )
1
K

∑
k ∇F

(
θt,ki ; ξt,ki

)
if i /∈ St (w.p. S

N ).
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Using Young’s inequality repeatedly, we have

ϕt
i =

(
1− S

N

)
E
∥∥∥∇fi

(
θt−τt

i

)
− cti

∥∥∥2 + S

N
E

∥∥∥∥∥ 1

K

∑
k

(
∇fi

(
θt−τt

i

)
−∇F

(
θt,ki ; ξt,ki

))∥∥∥∥∥
2

≤
(
1− S

N

)
E
∥∥∥∇fi

(
θt−τt

i

)
∓∇fi

(
θt−τt

i−1
)
− cti

∥∥∥2 + S

N

(
2σ2

K
+

2L2

K

∑
k

E
∥∥∥θt,ki − θt−τt

i

∥∥∥2)

≤
(
1− S

N

)
E
[(

1 +
S

2N

)
ϕt−1

i +

(
1 +

2N

S

)
γ2L2

]
+

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(
1− S

2N

)
ϕt−1

i +
2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(
1− S

2N

)t

ϕ0
i +

(
2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)) t−1∑
τ=0

(
1− S

2N

)τ

≤
(
1− S

2N

)t

ϕ0
i + 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
.

Since c0i = 1
K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
, we have

ϕ0
i =

(
1− S

N

)
E
∥∥∇fi

(
θ0
)
− c0i

∥∥2 + S

N
E

∥∥∥∥∥∇fi
(
θ0
)
− 1

K

∑
k

∇F
(
θ0,ki ; ξ0,ki

)∥∥∥∥∥
2

≤
(
1− S

N

)
σ2

K
+

2S

N

(
L2E

∥∥∥θ0 − θ0,ki

∥∥∥+ σ2

K

)
≤
(
1 +

S

N

)
σ2

K
+

2S

3N
η2K2L2

≤ 2σ2

K
+

2S

3N
η2K2L2.

Then, we have

ϕt
i ≤
(
2σ2

K
+

2S

3N
η2K2L2

)(
1− S

2N

)t

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
≤6σ2

K
+ 2η2K2L2 +

4N2

S2
γ2L2,∀i, t. (22)

Since i ∈ St, we have ct+1
i = 1

K

∑
k ∇F

(
θt,ki ; ξt,ki

)
. Then,

E
∥∥ct+1

i − cti
∥∥2

= E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

)
∓∇fi

(
θt−τt

i

)
∓∇fi

(
θt−τt

i−1
)
− cti

∥∥∥∥∥
2

≤ 4σ2

K
+

4L2

K

∑
k

E
∥∥∥θt,ki − θt−τt

i

∥∥∥2 + 4L2E
∥∥∥θt−τt

i − θt−τt
i−1
∥∥∥2 + 4E

∥∥∥∇fi

(
θt−τt

i−1
)
− cti

∥∥∥2
≤ 4σ2

K
+

4

3
η2K2L2 + 4γ2L2 + 4ϕt−1

i . (23)

Plugging (22) into (23), we have

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
− cti

∥∥∥∥∥
2

≤ 28σ2

K
+

28

3
η2K2L2 + 4γ2L2

(
1 +

4N2

S2

)
,
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which proves i). Moreover, based on the concavity of function (·) 1
2 , taking square root on the both sides of i) directly yields

ii) that
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Further, we have
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E. Additional Numerical Results
E.1. Simulation Setup

Tasks and Networks. We evaluate the performance of our algorithms on the image classification task with two real-world
dateset: CIFAR-10 (Li et al., 2017) and FMNIST (Xiao et al., 2017). For FMNIST, we utilize a convolutional neural network
(CNN) consisting of three convolutional layers and two fully connected layers. For CIFAR-10, we adopt a ResNet-18
architecture.

Federated Setting. Our experiments consider a federated learning system with N = 100 clients cooperating to train a
shared model. At each global communication round, a fraction of 0.1 clients are randomly selected to participate, resulting
in S = 10 active clients per round. Each selected client trains locally for 2 epochs with a batch size of 100 using stochastic
gradient descent (SGD) as the optimization algorithm. These settings are consistent across all experiments unless otherwise
stated.

Data Heterogeneity. To evaluate the robustness of our algorithms under varying data distributions, we consider both i.i.d.
and non-i.i.d. data settings. For the i.i.d. case, data samples are uniformly distributed across the clients. For the non-i.i.d.
case, we simulate realistic data heterogeneity using a Dirichlet distribution Dir(α). Specifically, we set α = 0.5, where
smaller α values correspond to higher degrees of non-i.i.d. distribution.

Asynchronous Setting. We simulate asynchronous environments using FedBuff (Nguyen et al., 2022) as the baseline
framework. The concurrency level is set to Mc = 20, meaning that the server can aggregate results from up to 20 clients
concurrently. The delay time for each client is sampled from a uniform distribution U(0, Tmax), where Tmax = 20 seconds
by default. The delayed communication round τ correlates with the concurrency Mc. Specifically, when Mc = 20, the
average delay τavg = 0.9184, and the maximum delay τmax = 4, as analyzed in CA2FL. We run all experiments for a total of
T = 600 global communication rounds.

Baselines. We compare our proposed algorithms against two state-of-the-art asynchronous federated learning baselines:
CA2FL (Wang et al., 2023) and FADAS (Wang et al., 2024c). For the main results, we adopt the hyperparameter settings
recommended by their respective papers. In cases where these settings fail under challenging asynchronous conditions, we
adjust them appropriately to ensure functionality.

E.2. Additional Results
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(a) I.i.d. CIFAR-10 dataset
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(b) Non-i.i.d. CIFAR-10 dataset
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(c) I.i.d. FMNIST dataset
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(d) Non-i.i.d. FMNIST dataset

Figure 4: Test loss versus communication round on different datasets with i.i.d./non-i.i.d. data.
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(a) Mc = 30
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(b) Mc = 40
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(c) Mc = 60
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Figure 5: Test loss versus communication round on non-i.i.d. FMNIST dataset under varying levels of asynchrony.
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(a) CIFAR-10 dataset
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(b) FMNIST dataset

Figure 6: Test accuracy versus communication round for ablation studies on non-i.i.d. CIFAR-10/FMNIST dataset.
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(a) Non-i.i.d. CIFAR-10 dataset
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(b) Non-i.i.d. FMNIST dataset

Figure 7: Test accuracy compared with baselines using momentum under different momentum parameter β.
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