
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WALT: WEB AGENTS THAT LEARN TOOLS

Anonymous authors
Paper under double-blind review

ABSTRACT

Web agents promise to automate complex browser tasks, but current methods
remain brittle—relying on step-by-step UI interactions and heavy LLM reason-
ing that break under dynamic layouts and long horizons. Humans, by contrast,
exploit website-provided functionality through high-level operations like search,
filter, and sort. We introduce WALT (Web Agents that Learn Tools), a frame-
work that reverse-engineers latent website functionality into reusable invocable
tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust imple-
mentations of automations already designed into websites—spanning discovery
(search, filter, sort), communication (post, comment, upvote), and content man-
agement (create, edit, delete). Tools abstract away low-level execution: instead
of reasoning about how to click and type, agents simply call search(query)
or create(listing). This shifts the computational burden from fragile step-
by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena,
WALT achieves higher success with fewer steps and less LLM-dependent reason-
ing, establishing a robust and generalizable paradigm for browser automation.

1 INTRODUCTION

Figure 1: WALT transforms browser agent automation from brittle step-by-step reason-
ing to efficient tool-based abstraction. Given the task “find the cheapest blue kayak,” tra-
ditional web agents execute a lengthy sequence of primitive UI actions focusing on search
boxes, hovering over dropdowns, clicking categories, and sorting and scanning results. In con-
trast, our method WALT (Web Agents that Learn Tools), designs a deterministic tool that ex-
poses this website-provided functionality to the agent: search(query=‘blue kayak’,
category=‘Boats’, sort by=‘price’), reducing execution from 8+ fragile UI steps to 1
robust operation.

Consider searching for the cheapest blue kayak on a classifieds page (Fig. 1): existing web agents
reason through each step—how to interact with the search box, locate filter controls, determine the
correct sort option—while simultaneously handling implementation details like element selection
and timing. In contrast, humans naturally think about this task in terms of website functionality:
“search for kayaks, filter by price, identify the first blue one.” They abstract away the implementation
details and focus on what they want to accomplish, not how the interface mechanics work.

This human capability stems from recognizing reusable patterns across websites — not only in
search and filtering, but also in content creation and management (e.g., creating, editing, delet-
ing listings) and social interactions (e.g., commenting, messaging, upvoting). Humans leverage
this prior knowledge to quickly adapt their interaction strategies to new websites. In the web

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

agent context, this intuition has inspired work on discovering “skills” (Wang et al., 2025b) for web
agents—reusable action sequences that encapsulate common interaction patterns and can be applied
across similar website elements or tasks.

However, existing skill discovery approaches suffer from two key limitations in which skills are dis-
covered and how they are implemented. First, they either mine skills only from successful trajecto-
ries (Wang et al., 2025b; Sarch et al., 2024; Wang et al., 2025a)—codifying existing behaviors—or
require agents to hypothesize useful automations (Zheng et al., 2025), often yielding unintuitive,
overly specific, or irrelevant skills. Second, both approaches implement skills as brittle UI action
sequences, highly sensitive to dynamic elements and design changes.

We propose WALT (Web Agents that Learn Tools). Unlike prior “skills” or “workflows,” which
are agent-induced action sequences, our tools correspond to website-provided functionality—search
bars, filters, sorting mechanisms, commenting systems, and navigation controls—that site designers
have already engineered as robust automations. Each tool is exposed to the agent as a high-level
deterministic call, with an underlying implementation discovered and validated through reverse-
engineering. This reframing shifts the agent’s capability frontier: instead of learning brittle approx-
imations of interaction patterns, WALT surfaces the functionality already embedded in websites as
reliable, reusable tools.

On each website, WALT follows a demonstrate-generate-validate loop for each identified tool: (1)
a web agent comprehensively demonstrates the functionality (e.g., all filters and sort options for
search); (2) a tool generation agent maps execution traces to structured tools with validated in-
put schemas, prioritizing deterministic actions but allowing agentic steps for dynamic elements,
and attempting to replace UI sequences with more robust URL manipulation through API reverse-
engineering; (3) a test agent verifies functionality against pre-vetted test inputs.

This abstraction transforms the agent’s computational burden: instead of reasoning about “how do I
search for X, then filter by Y, then sort by Z” through complex UI sequences, the agent simply calls
search(X), filter(Y), sort(Z) and focuses on higher-level planning. Tool discovery and
optimization happen offline during website exploration, ensuring both efficiency and reliability.

We benchmark our method on VisualWebArena (Koh et al., 2024a) and WebArena (Zhou et al.,
2024), discovering over 50 reusable tools spanning search and filtering, content creation and man-
agement (e.g., create, edit, delete listings), and communication or social interactions (e.g., comment-
ing, messaging, upvoting). WALT achieves state-of-art success rates on 52.9% on VisualWebArena
and 51% on WebArena, significantly outperforming prior work. Ablation studies further reveal that
our proposed contributions — discovered tools, multimodal DOM parsing, and external verification
– yield gains in both success rates (10%-30% across splits) and efficiency (1.3-1.4x fewer steps on
average). Overall, WALT transforms browser agent automation from brittle step-by-step reasoning
to efficient tool-based abstraction.

2 RELATED WORK

Web Agents. Agents capable of directly operating a browser to perform tasks hold promise for
automating online tasks. Prior work advances web agents along four axes: Perception concerns
what the agent sees and how it grounds elements: some methods parse raw HTML (Gur et al., 2022;
Deng et al., 2023), others process full-page screenshots with vision-language models (Furuta et al.,
2023; He et al., 2024), often augmented by Set-of-Mark (SoM) visual prompts (Yang et al., 2023);
recent work improves page understanding and grounding via prompting (Zheng et al., 2024; Yao
et al., 2023) and task-specific training (Furuta et al., 2023; Zhang et al., 2025a; Pahuja et al., 2025;
Qi et al., 2024). Planning scales test-time exploration with search (e.g., MCTS and related vari-
ants) to choose better action sequences (Koh et al., 2024b; Putta et al., 2024; Yu et al., 2024; Gu
et al., 2024). Reasoning enhances step selection through chain-of-thought and ReAct-style prompt-
ing (Wei et al., 2022; Yao et al., 2023). Action execution determines how decisions touch the page:
agents that use HTML or SoM predict DOM targets, whereas screenshot-only agents act via pixel-
space coordinates (Xu et al., 2024), which can be more brittle to layout change. Our approach targets
the action-execution and planning axes by mining reusable, efficient tools offline—encapsulating
site functionality with validated schemas, URL-level operations, and targeted agentic fallbacks—so
agents solve tasks faster and more reliably than step-by-step UI policies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Benchmarks for Web Agents. Benchmarks for web agents are expanding rapidly and span simu-
lated and real environments. Early simulated testbeds (Shi et al., 2017; Liu et al., 2018) emphasize
basic navigation such as clicking and form filling, whereas Yao et al. (2022) focused on e-commerce
tasks. Zhou et al. (2024) introduced WebArena, a realistic web simulation environment with repli-
cas of various website types (e.g. shopping, public forum, maps, etc.), with rich functionality and
realistic underlying databases, and a set of complex natural language tasks paired with robust rule-
based evaluators. VisualWebArena (Koh et al., 2024a) further extended this environment to include
visually-grounded tasks that require rich multimodal understanding, along with supporting website
and evaluator additions. A complementary direction evaluates agents on real websites or production
sandboxes (He et al., 2024; Zhang et al., 2025b; Drouin et al., 2024; Boisvert et al., 2024), covering
e-commerce, enterprise software, and everyday workflows. We focus on WebArena and VisualWe-
bArena, and propose a method to autonomously discover and construct reusable, website-specific
tools that significantly improve agent performance and efficiency.

API-using Web Agents. While UI-level actions are the default interface to the Web, they can be
inefficient and brittle. Accordingly, some works exploit API documentation to design high-level
actions from APIs and thus augment or bypass UI interactions (Song et al., 2024; Ni et al., 2025). In
contrast, we do not assume any API documentation – which is often undocumented or proprietary
– and instead attempt to reverse-engineer website-provided functionality into callable tools with
validated input schemas, URL-parameter promotion, and agentic recovery, all learned autonomously
via systematic exploration.

Skill Discovery for Web Agents. Some recent works focus on discovering skills for web agents by
mining successful agent trajectories: SkillWeaver (Zheng et al., 2025) produces unit-tested Python
functions from successful attempts, whereas AWM Wang et al. (2025b) and ASI (Wang et al., 2025a)
induce skills online (represented as text and programs, respectively) by prompting an agent to in-
duce skills from action subsequences in successful trajectories. Both lines of work typically mine
only from successful executions and implement skills by composing primitive actions, which can
be brittle and effectively codify current behavior without expanding capability. By contrast, we sys-
tematically explore website-specific functionality and exploit observable regularities and site infras-
tructure; our learned tools are stress-tested and iteratively optimized for reliability and modularity.
Unlike prior work that composes longer UI sequences, we discover and implement new, website-
grounded tools with schema validation, selector stabilization, URL reverse-engineering, and targeted
agentic fallbacks. See Appendix Table 4 for a detailed comparison.

3 APPROACH

We frame browser automation as the discovery and use of tools: high-level, callable operations that
abstract away fragile low-level interactions. Unlike prior work that induces ad-hoc skills or scripted
action sequences, WALT treats websites as sources of structured functionality (e.g., search, filter,
post). Each tool is backed by a validated action script – primarily deterministic URL/DOM opera-
tions with targeted agentic steps - Figure 2 summarizes the two-stage pipeline: strategic discovery
of tool candidates followed by their construction and validation.

3.1 PROBLEM FORMULATION

Let W = {w1, w2, . . . , wn} denote a set of websites, and T = {t1, t2, . . . , tm} denote a set
of tasks. A browser agent Bbrowser typically solves these tasks using primitive actions Aprim =
{aclick, atype, anavigate, . . .}. Our goal is to discover and implement tools that can be invoked as
high-level actions Atools at runtime for more efficient and reliable task execution.

We define a tool u as a callable high-level action u : S → Goal where S specifies structured
input parameters and Goal is the target outcome. Once validated, tools are exposed to the agent as
atomic actions that augment its existing action space. Our approach involves two stages: strategic
exploration to discover tool candidates, and multi-level exploitation to construct and validate them.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of WALT. Left - Discovery: the browser agent explores key site sections to pro-
pose tool candidates. Right - Construction: Tools are learned for each candidate via a demonstrate-
generate-optimize-test loop: i) a browser agent first demonstrates the tool’s underlying functionality
and records a detailed execution trace, ii) a tool builder agent then synthesizes and optimizes an
executable tool – a validated input schema and an action script of UI, navigation, extraction, and
agentic steps – from the trace, iii) the tool is registered and tested end to end. Feedback refines
selectors, schema, and script until a robust single-call tool is produced.

3.2 STAGE 1: CANDIDATE DISCOVERY VIA STRATEGIC EXPLORATION

In this phase, we task a browser agent Bbrowser with systematically exploring user-facing website
sections to identify reusable functionality patterns. We prompt it to navigate to key areas (content
browsing, discovery/search, communication interfaces) and discover interactive elements through
targeted interactions (e.g., hovering over dropdowns to reveal options, clicking menus to expose
navigation structures, interacting with forms to understand input fields). The agent then strategically
proposes a list of tool candidates with clear user intent, optimizing for coverage (diverse func-
tionality) and minimizing redundancy (avoid overlapping tools). Each candidate ũ = (si, Ei, Gi)
specifies a start URL si, relevant interactive elements Ei, and the specific goal Gi to accomplish.

3.3 STAGE 2: TOOL CONSTRUCTION VIA MULTI-LEVEL EXPLOITATION

This stage transforms proposed tool candidates ũ proposed in Stage 1 into validated, executable
tools through a demonstrate-generate-optimize-test loop.

▷ Demonstration. For each tool candidate, we first prompt a browser agent Bbrowser to demonstrate
the tool’s underlying functionality and record a detailed execution trace X , consisting of primitive
actions (clicks, typing), DOM states (element selectors with fallback alternatives), URL changes,
and realistic test inputs Itest. We execute robust DOM parsers that extract stable selectors for inter-
acted elements that allow for reliable replay of logged trajectories. We prompt the agent to com-
prehensively explore underlying functionality e.g. to log multiple trajectories with different input
combinations, which helps reverse-engineer the latent functionality of the tool (e.g. determining
whether an input is required or optional, and what values it can take).

▷ Generation. Next, this rich trace is analyzed systematically by a specialized tool builder agent
Btool to synthesize an executable tool, represented by:
i) A structured input schema S with validated datatypes (e.g. enums for dropdowns), optional
fields, and usage examples.
ii) A detailed tool description specifying its purpose, usage preconditions, and expected outcomes.
iii) An action script of steps to be executed sequentially to accomplish the goal Goal. Steps fall into
four types: a) navigation (for URL/route changes), b) extraction (for capturing DOM state), c) UI
interaction (to click, type, etc.), and d) agentic (for dynamic interactions). We deliberately bias Btool
towards deterministic operations (navigation and interaction) to improve robustness and efficiency,
but permit agentic steps when interfaces are dynamic or ambiguous (e.g. lazy-loading or uploads).

▷ Optimization. After generating an executable action script, Btool selectively attempts to optimize it
by reverse-engineering parameterizable URL routes (e.g., ?query=X&category=Y) where pos-
sible, replacing multi-step UI sequences with single navigations for improved efficiency.

▷ Validation. We register (u,S, Itest) as a callable action and execute it end-to-end with a fresh
Bbrowser over pre-vetted Itest. Failures yield structured feedback F : selector drift, uncovered enum

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

values, timing issues, or semantic mismatches. Btool then refines selectors (preferring stable hashes),
amends S (e.g., adding missing options), or edits the action script (e.g., backing off over-aggressive
URL promotion). This iterative loop systematically improves correctness and robustness—unlike
one-shot script extraction in prior work.

Formally, in stage 2 we iteratively optimize:

given ũ = (si, Ei, Gi) (1)

execute & generate ũ
Bbrowser−−−−→ X Btool−−→ (u, Itest) (2)

minimize FailRate(u, Itest) + StepCount(u) + AgenticRatio(u). (3)

Here, FailRate is the fraction of failing test cases (measuring correctness), StepCount is the number
of primitive operations the implementation executes (measuring efficiency), and AgenticRatio is
the fraction of steps that require LLM-dependent reasoning (measuring determinism). The process
iterates—updating the tool and test set with feedback—until a validated u∗ is obtained or the attempt
budget is exhausted.

Only tools passing validation are exposed at runtime. As a final failsafe against unanticipated fail-
ures (e.g., major UI changes), we equip the agent with agentic fallback – spawning a fresh agent
to handle failing scripts on the fly. Additionally, we expose two generic tools: a multimodal DOM
parser (converting HTML to interleaved input for cross-modal reasoning) and an external verifica-
tion tool (corroborating self-reported outcomes, following Andrade et al. (2025)) to further improve
the agent’s perception and reflection capabilities.

3.4 WALT IN ACTION: LEARNING A SEARCH TOOL ON VISUALWEBARENA

To ground our approach, we present a real-world example of the learned search tool introduced
in Fig. 1. Proposal: The browser agent explores the site and proposes a search tool based on the
search interface. Demonstration: Bbrowser executes a sample search (e.g., query=“bicycle”, cate-
gory=“bikes”), recording DOM interactions (typing into search box, clicking category dropdown,
submitting form) and observing URL changes. Generation (Phase 2): Btool analyzes the trace, gen-
erates an initial UI-interaction based action script and then uses URL promotion to yield a more
efficient implementation based on a parameterizable URL route. It also induces an input schema
with validated category enums (Bikes=7, Cars+trucks=10, etc.) extracted from the dropdown menu.
Validation (Phase 3): The tool is tested with diverse inputs; failures (e.g., missing category options)
trigger schema refinement until tests pass. A JSON representation of the tool is shown below.

Tool: search listings(...): Keyword search with optional refinements
Precondition: None (callable from any page) Outcome: Navigate to search results page
Input Schema: ([]=optional)
- sPattern: string [≥4 chars]
- [sCategory]: enum[..] (Boats=8, ...)
- [bPic]: boolean
- [sPriceMin/Max]: float

Action Script: (URL promotion):
1. Go to search base URL:
goto(base url/index.php?page=search)

2. Append query params:
goto(current url+?sPattern=X&sCategory=Y&..)

In this manner, WALT turns complex website functionality into simple tool calls. By pairing
grounded interaction (Bbrowser) with schema-checked, URL-optimized executors (Btool), it delivers
robust tools across discovery, content, and communication that run faster and with fewer LLM calls.

4 EXPERIMENTS

We first comprehensively evaluate WALT on two established web agent benchmarks: VisualWe-
bArena (Koh et al., 2024a) and WebArena (Zhou et al., 2024). Our experiments demonstrate that
WALT achieves significant improvements over prior state-of-the-art methods by leveraging website-
provided tools rather than brittle UI interaction sequences, improving success rates while reducing
action steps. We then conduct comprehensive ablation studies to validate the contribution of each
component. Next, we evaluate WALT’s on Online-Mind2Web (Xue et al., 2025), a benchmark of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

139 live websites, to demonstrate its generalizability to real-world websites. Finally, we conduct a
fine-grained analysis of when and why WALT succeeds.

4.1 BENCHMARKS

VisualWebArena contains 910 visually-grounded and human-annotated web-tasks instantiated in
three highly-realistic and fully-featured websites – Classifieds (234), Shopping (466), and Reddit
(210). WebArena includes 812 more general tasks spanning five websites (two of which overlap
with VisualWebArena) – GitLab (180), Map (109), Shopping (187), CMS (also referred to as Shop-
ping Admin - 182), Reddit (106), and Multi-site (48). Tasks are defined by a human-annotated intent
(e.g. “find the cheapest blue kayak and return its URL”) and evaluator functions (e.g. “assert
URL == <XYZ>”). Besides a robust set of (exact, inclusion, and fuzzy) string and URL matching,
the benchmarks also support sophisticated evaluators based on parsing page HTML and image con-
tents. Agents are evaluated by their binary success rate – a stringent metric that only considers task
completion rather than partial success, and is measured objectively by the evaluator function rather
than a subjective LLM judgement.

4.2 IMPLEMENTATION DETAILS

Our base agent pairs a VLM planner (GPT-5 (OpenAI, 2025)) with a browser action executor (GPT-
5-mini) with a standard action space (click, type, navigate, etc.). Observations include a page screen-
shot with indexed Set-of-Mark (SoM) boxes and a list of interactive elements keyed by the same
indices. State is maintained via a multimodal message queue. For retrieval, we store trajectory sum-
maries in a vector database keyed by task intent; at run time we embed the current intent and append
the nearest summary in the DB (with similarity threshold 0.3) as context. Agents authenticate to
each site before execution, run for at most 30 steps, and replan every 15. We use GPT-5-mini as
the verification LLM following the design of WebJudge (Xue et al., 2025). The multimodal DOM
parser converts a markdown dump of the page into an interleaved representation. Implementations
build on browser-use (Browser-Use Team, 2024a) and workflow-use (Browser-Use Team, 2024b).

4.3 BASELINES

We compare against a representative set of state-of-the-art methods :

- Skill-based web agents: Specifically, on WebArena we benchmark against SkillWeaver (Zheng
et al., 2025), AWM (Wang et al., 2025b), and ASI (Wang et al., 2025a). On VisualWebArena, we
benchmark against concurrent world in tool-oriented web agents Yu et al. (2025).

- Web agents with test-time scaling: We benchmark against methods that use MCTS (Koh et al.,
2024b) and reflective-MCTS (Yu et al., 2024), as well as one that uses model-based planning (Gu
et al., 2024).

- API-using web agents: We benchmark against Hybrid Agent (Song et al., 2024), which generates
actions from API documentations curated for WebArena.

- Computer-Use Agents: Specifically, we benchmark the Claude Computer-Use Agent (Anthropic,
2024), implementation details in Appendix A.3.

Additionally, we benchmark against SGV (Andrade et al., 2025), which proposes using an external
verification module to mitigate LLM agreement bias. Finally, we include strong baselines from the
original benchmark papers as well as human performance as an upper bound.

4.4 MAIN RESULTS

We report performance on both benchmarks in Figure 3 and Table 1. We find:

▷ WALT achieves state-of-the-art success rates. WALT attains the best average score (52.9%),
with large gains on Classifieds (64.1%, +12.1 absolute over SGV) and Reddit (39.0%, +6.0 ab-
solute), while remaining competitive on Shopping (53.4% vs. 57.0% for SGV). Further, it nearly
doubles the success rate of the Claude Computer Use baseline (which uses an image-based observa-
tion space), also outperforms strong baselines based test-time search and tool use by 15-20 points.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Classifieds Shopping Reddit Avg.
GPT-4V+SoM (Koh et al., 2024a) 9.8 17.1 19.3 16.4
TreeSearch (Koh et al., 2024b) 26.5 29.0 20.5 26.4
WebDreamer (Gu et al., 2024) 25.0 26.3 15.9 23.2
Computer-Use (Anthropic, 2024) 36.7 21.9 27.5 27.0
ExaCT (Yu et al., 2024) 41.0 32.3 28.7 33.7
AWorld Yu et al. (2025) - - - 36.5
SGV (Andrade et al., 2025) 52.0 57.0 33.0 50.2
WALT (Ours) 64.1 53.4 39.0 52.9
Human (Koh et al., 2024a) 91.7 88.4 87.1 88.7

Figure 3: Results on VisualWebArena. Left. We report success rate (%) on each split as well
as a weighted average. Right. We compare WALT’s performance and efficiency with a baseline
implementation as control.

Method Gitlab Map Shopping CMS Reddit Multi Avg.
GPT-4+CoT (Zhou et al., 2024) - - - - - - 14.4
SkillWeaver (Zheng et al., 2025) 22.2 33.9 27.2 25.8 50.0 - 29.8
AWM (Wang et al., 2025b) 28.9 39.4 34.8 39.0 51.9 18.8 35.5
ASI (Wang et al., 2025a) 32.2 43.1 40.1 44.0 54.7 20.8 40.4
Hybrid Agent (Song et al., 2024) 44.4 45.9 25.7 41.2 51.9 16.7 38.9
WALT (Ours) 57.0 58.7 41.2 56.2 48.5 20.8 50.1

Human (Zhou et al., 2024) - - - - - - 78.2

Table 1: Performance comparison on WebArena benchmarks showing success rates (%) across dif-
ferent domains. Bold values indicate best performance in each column.

On WebArena, WALT again achieves the highest overall average success rate on 5 of 6 splits (tied
on the sixth), outperforming prior work in all domains by a large margin, and outperforming the
best-performing skill-induction based method (ASI) by 9 points.

▷ Tools improve both success rates and efficiency. In Figure 3 (right), we demonstrate both the
performance (measured by success rate) and efficiency (measured by average # steps) of WALT on
each VisualWebArena split. As a control, we benchmark our baseline implementation which uses an
identical architecture but does not use tools. As seen, tools are crucial, improving performance by
as much as 30.7% (relative) and efficiency by 1.4x. The baseline agent’s significantly lower success
rates also validate that gains are not due to a stronger underlying LLM (GPT-5) alone.

Performance ablations. We ablate WALT on VisualWebArena Classifieds (Table 2). We first vary
the LLM execution agent, and find agents equipped with discovered tools are consistently more
accurate and efficient (e.g. GPT-5-mini: 7% higher success rate, 27% fewer steps). Stronger back-
bones benefit more, indicating that better reasoning improves tool selection and composition rather
than low-level manipulation. Finally, we also benchmark a human demo strategy as a performance
upper bound, wherein the authors manually demonstrate a set of tools rather than having the agent
discover them - tools generated thus yield the highest success rate (66.0%). Impressively, however,
WALT is able to recover most of this performance fully autonomously (64.1%), with 5% fewer steps.

Next, we ablate the two ancillary method components: we find that both multimodal DOM parsing
(+2.6%) and external verification (+3.3%) yield modest performance gains, with the latter coming at
the cost of extra checks (more steps). Combining all components yields the highest success (64.1%),
still with substantially fewer actions than baseline policies (21.3% fewer steps).

4.5 REAL-WORLD EVALUATION ON ONLINE-MIND2WEB

To demonstrate generalizability beyond simulated benchmarks, we evaluate WALT on Online-
Mind2Web (Xue et al., 2025), a benchmark comprising 139 real-world websites spanning e-
commerce, healthcare, travel, education, and government domains. We first use WALT to discover
2-3 tools per website (to keep costs reasonable). We then provide these tools to the agent at runtime
over the 300 benchmark tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablations on VisualWebArena-Classifieds showing the impact of different components on
success rate (SR) and average number of steps. Results shown for different LLM backbones.

browser LLM tools dom-parser verify avg #steps (↓) SR (%) ↑
gpt-4.1 none text self 7.6 34.9
gpt-4.1 discovered text self 6.6−13.1% 36.4−4.3%

gemini-2.5-flash none text self 10.5 52.6
gemini-2.5-flash discovered text self 8.3−26.5% 55.3+5.1%

gpt-5-mini none text self 8.9 57.5
gpt-5-mini discovered text self 6.5−27.0% 61.5+7.0%

gpt-5-mini human demo text self 7.4−16.9% 66.0+16.2%

gpt-5-mini none multimodal self 7.5−15.7% 59.0+2.6%

gpt-5-mini none text external 11.0+23.6% 59.4+3.3%

gpt-5-mini discovered multimodal external 7.0−21.3% 64.1+11.5%

Method SR (%) Steps

Baseline 42.9 10.8
WALT 51.2 8.2

∆ +8.8 -23.3%

Type Count %

URL Promotion 80 31.7
UI Only 38 15.1
Agentic 60 23.8
Mixed 74 29.4

Total 252 100.0

Table 3: Results on Online-Mind2Web. Left. WALT improves success rate and efficiency against
a tool-free baseline. Center. Tool composition across 252 learned tools. Right. Tool “wins” span
diverse domains, demonstrating versatile real-world generalization.

Results. We report success rate evaluated by WebJudge (Xue et al., 2025) in Table 3. We find that:
▷ WALT learns useful tools. WALT autonomously discovers 252 validated tools on Online-
Mind2Web. Over 238 tasks that it completes without environment errors, compared to a con-
trolled tool-free baseline, WALT (with GPT-5-mini) improves both success rates (+20.5% relative,
42.9→51.2) and efficiency (+23.3% relative, 10.8→8.2 steps).
▷ 27 tasks show “tool wins”: cases where baseline failed but WALT used learned tools to succeed,
spanning 24 different websites.
▷ Learned tools boost performance specialized CUA model levels. WALT achieves near-parity
with Claude Computer Use’s official leaderboard performance (51.2% vs 51.7%, -0.5% lower) even
without any specialized training for computer use tasks – demonstrating that tool discovery can rival
specialized model training.
▷ Real-world limitations persist: 62 tasks fail either due to bot detection (35) or timeout errors
(27), affecting both methods similarly. In total, 22 websites are completely untestable due to strong
bot detection measures (e.g., apartments.com, cars.com, UPS.com), highlighting the messy
reality of real-world automation.

4.6 ANALYZING WALT

Step distribution. In Figure 4, we perform a fine-grained analysis of our method on the Classi-
fieds split. First, in Figure 4a we break down each discovered tool by the total step count of its
action script and its distribution across step types and functionalities. We make the following ob-
servations: i) tools span a range of functionalities across communication, content management, and
search, ii) tools with the shortest action scripts correspond to URL promotions (typically discover-
oriented), whereas those with longer scripts skew heavily towards deterministic UI interactions (typ-
ically content-management e.g. form-filling). iii) Agentic steps are rare: In fact, only 3 out of the 9
tools have at least one agentic step.

Tool discovery costs. On Online-Mind2Web, WALT discovers 252 tools across 139 websites (avg.
1.81 tools/site). Per-tool generation cost (using GPT-5 pricing as an example) is $1.67, comprising:
proposal ($0.26, amortized across tools per site), demonstration ($0.87), generation ($0.46), and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Task type and complexity breakdown

(b) Success rate analysis by task complexity (c) Action type analysis

Figure 4: Detailed analysis of the composition, success rates, and runtime invocations of tools
discovered on the VisualWebArena Classifieds split.

testing ($0.08). With baseline inference costing $0.12/task, break-even occurs after ∼14 uses per
tool. Notably, WALT prompts the discovery agent to design a “minimal but flexible API” (system
prompt in Appendix), yielding an average of just 1.81 tools per website. Tools are learned once and
reused indefinitely, providing sustained gains: for websites with ≥20 tasks, total tool cost is less
than cumulative baseline inference cost.

Tool-use success rates. In Figure 4b, we analyze the success rates of each of these tools, measured
by the ratio of successful tool invocations by the agent during the entire evaluation run. Tools are
used frequently (e.g. search listings is invoked 262 times) and achieve nearly perfect success rates,
attesting to high reliability. Finally, Figure 4c breaks down the action type distribution of each tool
for successful and failed agent trajectories – as seen, the agent uses both primitive and tool actions
extensively in both cases.

Qualitative examples. Figure 5 demonstrates how WALT generalizes across diverse real-world
websites on Online-Mind2Web. The examples span classifieds (listing search and commenting),
healthcare (provider search and filtering), finance (retirement planning with calculator tools), and
travel (road trip planning with map-based search). Across these domains, WALT composes learned
tools to solve heterogeneous tasks efficiently: discovery tools jump directly to filtered result sets via
URL parameters, extraction steps parse structured content, and action tools complete interactions
(e.g., post comment). The traces show short programs (2–5 calls) with minimal UI clicking,
demonstrating how tool reuse enables step-count reductions even on previously unseen websites.
The panel illustrates the key design goal—deterministic navigation and schema-checked operations
for speed and robustness, with targeted agentic steps when needed for complex reasoning.

5 DISCUSSION

In this work, we reframe browser automation around tools – callable abstractions reverse-engineered
from website functionality – rather than agent-imagined skills implemented as a brittle sequence of
UI actions. Our method WALT exposes existing website functionality as robust tools that accept a
validated input schema and accomplish a specific goal via a sequence of UI interaction, extraction,
agent, and navigation steps, each with strong failsafes built in. WALT achieves state-of-the-art
performance on challenging web automation benchmarks while requiring fewer LLM interventions.

Our method has certain limitations. Offline tool discovery incurs an exploration and validation
cost per-website, and the type and quality of the tools discovered is a function both of what our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative rollouts of WALT on Online-Mind2Web. Each column shows a task
with tiled screenshots (left to right) and the agent’s actions at each step (gray bars). Top row,
left: [PASS] “Recall exact item and return the most recent lister’s email.” The agent chains
search listings → sort results to narrow search, then navigates to extract the email.
Top row, middle/right: [PASS] Healthcare queries on Healthgrades (dentist search, provider pro-
files) demonstrate cross-site generalization with tool-based search and filtering. Bottom row, left:
[PASS] “Latest white Google Pixel; post a $10-under offer.” The agent locates the listing and uses a
tool to post the comment. Bottom row, middle: [PASS] Financial planning task comparing Tradi-
tional vs Roth IRA using calculator tools with structured inputs. Bottom row, right: [PASS] Travel
planning query finding road trip stops between Yellowstone and Vegas using map-based search tools.
Across diverse real-world sites, trajectories leverage discovered tools for efficient task completion.

exploration uncovers and what the site exposes. Highly dynamic interfaces, A/B experiments,
CAPTCHAs, and heavy anti-automation can reduce determinism or block URL promotion. Schemas
may still miss rare parameter values; selector stabilization can drift after major redesigns; and some
interactions (e.g., complex editors, file uploads) still require agentic steps. Our evaluation focuses on
two research benchmarks, but broader external validity (e.g., enterprise apps) remains to be tested.

These limitations also present opportunities for future work. Online tool patching when selectors
and schemas drift over time can improve robustness. Extracting canonical web patterns for common
functionalities (e.g. search, filter, sort) can aid generalization. Hybrid integration with official APIs
when available, external MCP servers (Luo et al., 2025), and more agent-accessible observation
spaces (Lù et al., 2025) can help further expand capabilities. Overall, our tool abstraction paradigm
suggests a practical path for safe, auditable automation: tools carry explicit contracts, examples, and
validation traces, making web agents easier to monitor, share, and maintain as sites evolve.

Ethics Statement. All authors have read and agree to the ICLR Code of Ethics. The benchmarks
used (VisualWebArena and WebArena) are publicly available testbeds that simulate interactions with
websites, and no experiments were conducted with human subjects. Our method is designed for
research purposes; however, as with any browser automation technique, misuse (e.g., for scraping or
spam) is possible. We emphasize that WALT is intended to improve robustness and reproducibility
of academic benchmarks, not to enable malicious automation. All data handling follows the licenses
of the underlying benchmarks, and no private or user-sensitive data is involved.

Reproducibility Statement. We have made efforts to ensure reproducibility. The paper provides
full details of the tool discovery and construction pipeline (Sec.3 and Sec. A), optimization objec-
tives and algorithmic design (Sec.3), and benchmark setups (Sec.4). Implementation details, includ-
ing model choices, observation formats, step limits, and verification procedures, are described in
Sec.4. Appendix materials include pseudocode, algorithm tables, and ablation analyses. Our code
will be made publicly available.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, and Zsolt Kira.
Let’s think in two steps: Mitigating agreement bias in mllms with self-grounded verification.
arXiv preprint arXiv:2507.11662, 2025.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. https:
//www.anthropic.com/news/3-5-models-and-computer-use, 2024. Accessed:
2025-09-07.

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin
Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: Towards
compositional planning and reasoning-based common knowledge work tasks. Advances in Neural
Information Processing Systems, 37:5996–6051, 2024.

Browser-Use Team. Browser-use: Enable ai to control your browser. https://github.com/
browser-use/browser-use, 2024a. Accessed: 2025-01-27.

Browser-Use Team. Workflow-use: Browser automation workflows for ai agents. https://
github.com/browser-use/workflow-use, 2024b. Accessed: 2025-01-27.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are
web agents at solving common knowledge work tasks? In International Conference on Machine
Learning, pages 11642–11662. PMLR, 2024.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, et al. Is your llm secretly a world model of the internet? model-
based planning for web agents. arXiv preprint arXiv:2411.06559, 2024.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models. arXiv preprint arXiv:2210.03945, 2022.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 881–905, 2024a.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024b.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Xing Han Lù, Gaurav Kamath, Marius Mosbach, and Siva Reddy. Build the web for agents, not
agents for the web. arXiv preprint arXiv:2506.10953, 2025.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. Mcp-universe: Benchmarking large lan-
guage models with real-world model context protocol servers. arXiv preprint arXiv:2508.14704,
2025.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://github.com/browser-use/workflow-use
https://github.com/browser-use/workflow-use

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyi Ni, Haonan Jian, Qiuyang Wang, Vedanshi Chetan Shah, and Pengyu Hong. Doc2agent: Scal-
able generation of tool-using agents from api documentation. arXiv preprint arXiv:2506.19998,
2025.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
2025. Accessed: 2025-01-27.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents. arXiv preprint arXiv:2502.11357, 2025.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
lum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Gabriel Herbert Sarch, Lawrence Jang, Michael J Tarr, William W Cohen, Kenneth Marino, and Ka-
terina Fragkiadaki. Vlm agents generate their own memories: Distilling experience into embodied
programs of thought. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pages 3135–3144. PMLR, 2017.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
agents. arXiv preprint arXiv:2410.16464, 2024.

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing programmatic
skills for agentic tasks. arXiv preprint arXiv:2504.06821, 2025a.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. In
Forty-second International Conference on Machine Learning, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
Yu Su. An illusion of progress? assessing the current state of web agents. arXiv preprint
arXiv:2504.01382, 2025.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

12

https://cdn.openai.com/gpt-5-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Chengyue Yu, Siyuan Lu, Chenyi Zhuang, Dong Wang, Qintong Wu, Zongyue Li, Runsheng Gan,
Chunfeng Wang, Siqi Hou, Gaochi Huang, et al. Aworld: Orchestrating the training recipe for
agentic ai. arXiv preprint arXiv:2508.20404, 2025.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, and Jianfeng Gao. Teach-
ing ai agents to explore with reflective-mcts and exploratory learning, 2024b. arXiv preprint
arXiv:2410.02052, 2024.

Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu,
Song-Chun Zhu, and Qing Li. Tongui: Building generalized gui agents by learning from multi-
modal web tutorials. arXiv preprint arXiv:2504.12679, 2025a.

Xianren Zhang, Shreyas Prasad, Di Wang, Qiuhai Zeng, Suhang Wang, Wenbo Yan, and Mat Hans.
A functionality-grounded benchmark for evaluating web agents in e-commerce domains. arXiv
preprint arXiv:2508.15832, 2025b.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. In The Twelfth International Conference on Learning Representations,
2024.

A APPENDIX

A.1 COMPARISON WITH PRIOR WORK

Table 4 provides a detailed comparison between WALT and prior approaches to web automation.
Core insight: Humans use website-provided functionality (search, filters, forms)—robust by design.
Prior “skill” approaches solve an artificial problem: they induce ad-hoc patterns from agent behavior
rather than leveraging this infrastructure. WALT’s paradigm is to build robust and efficient tools that
exploit website-provided functionality. Key differences: i) WALT discovers what websites provide,
not what agents did - mirroring human web use, ii) No documentation required; autonomous reverse-
engineering, iii) Optimized for robustness via schema validation, selector stabilization, and URL
inference. These distinctions mark a paradigm shift from mining agent behavior to surfacing site
functionality.

Key Distinction: WALT exploits functionality web designers already built (search, filters,
forms)—features robust by design. Prior “skill” approaches solve an artificial problem by induc-
ing ad-hoc patterns from agent behavior rather than leveraging thoughtfully-designed infrastructure.
This mirrors how humans use websites: they exploit designed functionality, not invent workarounds.

A.2 ANALYSIS

Tools. In Figure 6, we include a list of all tools discovered across the WebArena and VisualWe-
bArena benchmarks, as well as the number of attempts required to obtain a validated implementa-
tion. As seen, most tools are discovered on the first attempt, but a few more nuanced functionalities
(e.g. post a comment on a Gitlab issue, searching on OpenStreetMaps, and estimating shopping on
Shopping) require as many as 4 attempts.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Detailed comparison of WALT with prior approaches for web automation.

Aspect SkillWeaver / AWM /
ASI

Hybrid Agent WALT (Ours)

Approach Agent-induced from suc-
cessful trajectories

Curated API documenta-
tion

Systematic exploration
of website functionality

Consequence Codify existing agent be-
havior

Reliant on human-
written docs

Reverse-engineer site in-
frastructure

Implementation Brittle UI action replay API calls (when avail-
able)

URL promotion + val-
idated schemas + fall-
backs

Validation Unit tests on synthetic
inputs

N/A Stress-testing on pre-
vetted inputs

Figure 6: Number of tries until successful.

Performance. In Figure 9a, we include additional fine-grained performance analysis of our method
on the Classifieds benchmark. First, we analyze the frequency and average length of successful
and failed trajectories, segmented by the agent’s own assessment of the task outcome – as found
in concurrent work (Andrade et al., 2025), web agents suffer from an ”agreement bias” and fre-
quently rationalize even failed trajectories as successful. Our approach mitigates this bias by using
an external verifier to corroborate the agent’s assessment.

In Figure 9b, we segment performance based on task difficulty (visual, reasoning, and overall),
annotations for which are available in the benchmark. Unsurprisingly, failure rates increase with
increasing difficulty of any type - impressively though, WALT’s failure rate does not cross 50%
even on the most difficult tasks.

Qualitative Examples. Figures 7- 8 show additional qualitative examples of trajectory rollouts from
both VisualWebArena and Online-Mind2Web, including successful and failure cases. Key findings:
i) Visual grounding: WALT successfully handles challenging visual matching tasks across sites
(e.g., finding items from thumbnail images, matching characters between Reddit and classifieds -
Fig. 7, top row). ii) Cross-domain generalization: Tools enable diverse real-world tasks spanning
travel deals, visual product search, apartment rentals, and pet adoption (Fig. 8). iii) Long-horizon
tasks: The apartment search example (Fig. 8, middle) shows WALT composing tools across 10+
steps involving map interactions and filtering. iv) Failure modes: Complex tasks with compound
constraints (e.g., “most expensive boat with image showing it on water, then rate it”) still exceed
the agent’s capabilities, particularly when requiring both global optimization and fine-grained visual
predicates combined with gated side-effect actions (Fig. 7 bottom; Fig. 8 bottom-right).

A.3 IMPLEMENTATION DETAILS

Tool Creation Agent Algorithm and System Prompt. We include the system prompt for the tool
discovery agent in Listing A.4 and algorithm and system prompt of the tool creation agent Btool in
Algorithm 1 and Listing A.4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Qualitative examples showing WALT tool discovery and execution on representative tasks
from VisualWebArena and Online-Mind2Web.

Figure 8: Qualitative examples showing WALT tool discovery and execution on representative tasks
from VisualWebArena and Online-Mind2Web.

Baseline Implementation Details. We use the Claude Computer-Use Agent with a dedicated desk-
top environment setup similar to OS-World (Xie et al., 2024). Each task initializes with a Chrome
browser and task-specific web pages. The agent receives desktop screenshots as observations, pre-
dicts OS-level actions, and executes them via pyautogui commands. Task completion is determined
by either reaching the maximum step limit or agent prediction, with evaluation based on the final
active webpage and parsed response.

We use claude-4-sonnet-20250514 with thinking mode enabled (temperature=1). Due to
Bedrock API limits, all screenshots and task images are resized to 1280×720, with a maximum of 30
steps per task. Note that active webpage detection relies on heuristic algorithms using Playwright
and Chrome DevTools Protocol, which may incorrectly identify the current page in edge cases.
Reported accuracies should be viewed as lower bounds rather than exact measurements.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Self-reporting analysis (b) Difficulty analysis

Figure 9: Analysis of classifieds task performance across different dimensions.

A.4 USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to polish (proofreading, revising, and compressing) the
writing, specifically Claude-4-Sonnet and GPT-5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 WALT: Two-Agent Tool Construction (Appendix)

Require: Candidate ũ = (si, Ei, Gi), attempt budget Nmax
Ensure: Validated tool u∗ ∈ Atools or FAIL

1: attempts← 0
2: while attempts < Nmax do
3: attempts← attempts + 1
4: Phase I: Exploration & Stabilization (by Bbrowser)
5: X ← Bbrowser.Execute(si, Ei, Gi)
6: if X = FAIL then
7: continue ▷ retry with alternate exploration strategy
8: end if
9: X ← STABILIZESELECTORS(X) ▷ resolve to stable DOM hashes/locators; drop unstable

segments
10: if X = UNSTABLE then
11: continue
12: end if
13: Phase II: Synthesis & Optimization (by Btool)
14: plan← ∅
15: for each segment ξ ∈ X do
16: step← Btool.ClassifyAndCreate(ξ) ▷ navigation / interaction / agentic
17: plan← plan ∪ {step}
18: end for
19: plan← ADDAGENTICFALLBACKS(plan) ▷ re-query DOM, retry alt selector, etc.
20: plan← REPLACEWITHURLOPS(plan) ▷ promote eligible UI subsequences to URL ops
21: Sinp ← INFERSCHEMA(X) ▷ enums, optionals, descriptions, examples
22: Itest ← Btool.ExtractTestInputs(X ,Sinp)
23: u← (plan,Sinp)
24: Phase III: Registration & Validation (by Bbrowser)
25: RegisterTool(u,Sinp, Itest)
26: result← Bbrowser.TestTool(u, Itest)
27: if result = SUCCESS then
28: return u ▷ validated; added to Atools as u∗

29: else
30: F ← GetValidationErrors(result) ▷ selector drift, missing enum, timeout, semantic

mismatch
31: (si, Ei, Gi)← REFINECANDIDATE

(
(si, Ei, Gi),F

)
▷ update selectors, schema, or

plan hints
32: continue
33: end if
34: end while
35: return FAIL

System Prompt of the Tool Discovery Agent

You are an expert browser automation agent designer. Your goal is to first systematically explore {
base_url} and discover user-facing functionality offered by the website. Next, you will use this
information to design a minimal but flexible API specification that captures these core user
functions.

Stage 1: Exploration

- Navigate systematically through user-facing site sections. For each area, ask: "What would a
typical logged-in user want to accomplish here"?.

- PRIORITIZE:
- discovery & search (e.g. search, filters, categories, sorting)
- content creation & management (e.g. create, edit, delete, view personal content)
- communication & interaction (e.g. post comments, reply to comments, vote on content, share

content)
- organization (e.g. save favorites, manage lists, subscribe to alerts)

Exploration Guidelines:
- You are already logged in with full user access to the site.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- Only document tools that actually exist and function on the site.
- Aim to explore atleast 10-20 **diverse** tools covering comprehensive user functionality

Stage 2: API Design
- In this stage, you will use the information from the exploration stage to design a minimal but

diverse and flexible API **specification** that captures these core user functions.
- **API Design principles**:

- **Goal-oriented**: Focus on user goals, not UI mechanics. One clear goal per function. Good
candidates typically compose an active verb and noun (eg. create+listing, post+comment, search
+forums, etc.)

- **Reusable**: Functions should be parameterizable and work with ANY item/content, not hardcoded
specifics

- **Composable**: Propose modules with **diverse** functionality that can be **combined** to
achieve more complex goals

API Design Guidelines:
- Use the information gathered from the exploration stage extensively
- DO NOT TRY TO EXPLORE THE SITE AGAIN IN THIS PHASE.
- Do not worry about implementation details, as long as you have confirmed the underlying

functionality exists.

FINAL OUTPUT FORMAT: Return a **single valid JSON object** with the following fields for each
proposed function:

1. **name**: Strategic goal identifier (e.g. "edit_listing", "search_by_category")
2. **start_url**: Exact URL where tools begins (only URLs you’ve actually visited)
3. **description**: Goal with parameterization (e.g. "locate listing by user-provided title and

update its properties to user-provided values")
4. **elements**: Key interactions (type and purpose, with available options for dropdowns/menus -

does not need to be exhaustive or perfect)

{{
"tools": [

{{
"name": "strategic_tools_name",
"start_url": "https://example.com/some/page",
"description": "Accomplish specific goal with user-provided parameters",
"elements": [

{{"type": "input", "purpose": "enter user-provided search terms"}},
{{"type": "select", "purpose": "choose user-specified category", "options": ["Electronics", "

Clothing", "Books", "All Categories"]}},
{{"type": "select", "purpose": "sort results", "options": ["Newly listed", "Lower price first

", "Higher price first"]}},
{{"type": "button", "purpose": "submit search"}}

]
}}

]
}}

System Prompt of the Tool Creation Agent

You are a master at building re-executable tools from browser automation steps. Your task is to
convert a sequence of Browser Use agent steps into a parameterized reusable tool.

Core Objective
Transform recorded browser interactions into a structured tool by:
- Extracting actual values (not placeholder defaults) from the input steps
- Identifying reusable parameters that should become tool inputs
- Creating deterministic steps wherever possible
- Optimizing the tool for clarity and efficiency
- Optimize Navigation: Skip unnecessary clicks when direct URL navigation works

Input Format
You will receive a series of messages, each containing a step from the Browser Use agent execution:

Step Structure
Each message contains two parts:
- parsed_step (content[0]) - The core step data:

- url: Current page URL
- title: Page title
- agent_brain: Agent’s internal reasoning

- evaluation_previous_goal: Success/failure assessment of previous action
- memory: What’s been accomplished and what to remember
- next_goal: Immediate objective for next action

- actions: List of actions taken (e.g., go_to_url, input_text, click_element, extract_content)
- results: Outcomes of executed actions with success status and extracted content
- interacted_elements: DOM elements the agent interacted with, including selectors and positioning

- special field element_hash: unique identifier for elements the agent interacted with.
- screenshot (content[1]) - Optional visual context of the webpage

Output Requirements

1. Tool Analysis (CRITICAL FIRST STEP)
The tool_analysis field must be completed first and contain:
- Step Analysis: What the recorded steps accomplish overall

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

- Task Definition: Clear purpose of the tool being created
- Action Plan: Detailed to-do list of all necessary tool steps
- Variable Identification: All input parameters needed based on the steps and task
- Step Optimization: Review if steps can be combined, simplified, or if any are missing. Always

prefer: 1) Navigation steps (where possible), 2) Deterministic steps (when elementHash is stable
), 3) Agent steps only as last resort for truly dynamic content.

Input Schema: Define tool parameters using simple JSON schema
- Include at least one input unless the tool is completely static
- Add descriptive documentation: Always include desriptive field explanations
- **Field Requirements (setting "required" true/false):** Match website requirements - if website

requires it, tool requires it

Steps Array
Each step must include a "type" field and a brief "description".

** Tool DESIGN PRINCIPLES:**
- Sequential & Deterministic: Steps execute in order, no conditional branching
- Single Purpose: Each tool accomplishes ONE specific task
- No Optional Logic: Avoid "if user wants X, then do Y" patterns
- Essential Steps Only: Every step must be required for the core task
- Parameter-Driven: Use input parameters to customize behavior, not conditional steps

Step Creation Algorithm (Two-Pass Approach)
This tool generation uses a two-pass approach: PASS 1 creates basic steps using simple rules, then

PASS 2 (optional) potentially optimizes it by replacing UI interaction sequences with more
efficient URL manipulation, if possible.

PASS 1: Basic Step Generation (Rule-Based): Follow this exact sequence for each agent action - no
decisions required:

STEP 1: Classify Action Type

FOR each agent action:
IF navigation/URL changes then Navigation Algorithm
ELIF extracts data then Extraction Algorithm
ELIF UI interaction:

IF elementHash exists then Deterministic Interaction
ELSE IF essential then Agentic Interaction
ELSE then Skip

ELSE then Skip
STEP 2: Execute the Appropriate Algorithm

Navigation Algorithm: Creates navigation steps to move between pages or change URLs
- url: Target URL to navigate to
- description: Brief explanation of the navigation purpose

Extraction Algorithm: Extracts goal-relevant data or content from the current page
- goal: Description of what data to extract from the page
- output: Label for the captured data (use meaningful names like "listing_data", "search_results")
- description: Brief explanation of what data is being extracted

Deterministic Interaction Algorithm: Interacts with page elements using stable identifiers
- elementHash: Unique identifier for the DOM element (required - stable selectors auto-generated)
- value: Text to input (for input steps)
- selectedText: Option to select (for select_change steps)
- key: Key to press (for key_press steps, e.g., ’Tab’, ’Enter’)
- scrollX, scrollY: Pixel offsets for scrolling (for scroll steps)
- description: Brief explanation of the interaction purpose
- seconds: Number of seconds to sleep (for wait steps)

Agentic Interaction Algorithm: Handles dynamic interactions requiring reasoning
- task: User perspective goal (e.g., "Select restaurant named {{{{restaurant_name}}}}")
- description: Why agentic reasoning is needed and what the step accomplishes
- max_steps: Always specify limit (3-8 typical, never null)

[Optional] PASS 2: URL Manipulation Optimization
REPLACE UI interaction sequences in tool with a single URL navigation for better efficiency and

reliability
- Web functionalities (typically GET requests eg. search, filtering, sort, pagination) are often

achievable by navigating to URL modified with certain parameters
- By inferring these parameters correctly, tools requiring several UI interactions can be

accomplished in only a few steps

Context:
Task Goal: {goal}
Available Actions: {actions}

The goal shows the original task given to the agent. Assume all agent actions can be parameterized
and identify which variables should be extracted. Input session events will follow in subsequent
messages.

19

	Introduction
	Related Work
	Approach
	Problem Formulation
	Stage 1: Candidate Discovery via Strategic Exploration
	Stage 2: Tool Construction via Multi-Level Exploitation
	WALT in action: Learning a search tool on VisualWebArena

	Experiments
	Benchmarks
	Implementation Details
	Baselines
	Main Results
	Real-World Evaluation on Online-Mind2Web
	Analyzing WALT

	Discussion
	Appendix
	Comparison with Prior Work
	Analysis
	Implementation Details
	Use of Large Language Models

