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ABSTRACT

Web agents promise to automate complex browser tasks, but current methods
remain brittle—relying on step-by-step UI interactions and heavy LLM reason-
ing that break under dynamic layouts and long horizons. Humans, by contrast,
exploit website-provided functionality through high-level operations like search,
filter, and sort. We introduce WALT (Web Agents that Learn Tools), a frame-
work that reverse-engineers latent website functionality into reusable invocable
tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust imple-
mentations of automations already designed into websites—spanning discovery
(search, filter, sort), communication (post, comment, upvote), and content man-
agement (create, edit, delete). Tools abstract away low-level execution: instead
of reasoning about how to click and type, agents simply call search(query)
or create(listing). This shifts the computational burden from fragile step-
by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena,
WALT achieves higher success with fewer steps and less LLM-dependent reason-
ing, establishing a robust and generalizable paradigm for browser automation.

1 INTRODUCTION

Figure 1: WALT transforms browser agent automation from brittle step-by-step reason-
ing to efficient tool-based abstraction. Given the task “find the cheapest blue kayak,” tra-
ditional web agents execute a lengthy sequence of primitive UI actions focusing on search
boxes, hovering over dropdowns, clicking categories, and sorting and scanning results. In con-
trast, our method WALT (Web Agents that Learn Tools), designs a deterministic tool that ex-
poses this website-provided functionality to the agent: search(query=‘blue kayak’,
category=‘Boats’, sort by=‘price’), reducing execution from 8+ fragile UI steps to 1
robust operation.

Consider searching for the cheapest blue kayak on a classifieds page (Fig. 1): existing web agents
reason through each step—how to interact with the search box, locate filter controls, determine the
correct sort option—while simultaneously handling implementation details like element selection
and timing. In contrast, humans naturally think about this task in terms of website functionality:
“search for kayaks, filter by price, identify the first blue one.” They abstract away the implementation
details and focus on what they want to accomplish, not how the interface mechanics work.

This human capability stems from recognizing reusable patterns across websites — not only in
search and filtering, but also in content creation and management (e.g., creating, editing, delet-
ing listings) and social interactions (e.g., commenting, messaging, upvoting). Humans leverage
this prior knowledge to quickly adapt their interaction strategies to new websites. In the web
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agent context, this intuition has inspired work on discovering “skills” (Wang et al., 2025b) for web
agents—reusable action sequences that encapsulate common interaction patterns and can be applied
across similar website elements or tasks.

However, existing skill discovery approaches suffer from two key limitations in which skills are dis-
covered and how they are implemented. First, they either mine skills only from successful trajecto-
ries (Wang et al., 2025b; Sarch et al., 2024; Wang et al., 2025a)—codifying existing behaviors—or
require agents to hypothesize useful automations (Zheng et al., 2025), often yielding unintuitive,
overly specific, or irrelevant skills. Second, both approaches implement skills as brittle UI action
sequences, highly sensitive to dynamic elements and design changes.

We propose WALT (Web Agents that Learn Tools). Unlike prior “skills” or “workflows,” which
are agent-induced action sequences, our tools correspond to website-provided functionality—search
bars, filters, sorting mechanisms, commenting systems, and navigation controls—that site designers
have already engineered as robust automations. Each tool is exposed to the agent as a high-level
deterministic call, with an underlying implementation discovered and validated through reverse-
engineering. This reframing shifts the agent’s capability frontier: instead of learning brittle approx-
imations of interaction patterns, WALT surfaces the functionality already embedded in websites as
reliable, reusable tools.

On each website, WALT follows a demonstrate-generate-validate loop for each identified tool: (1)
a web agent comprehensively demonstrates the functionality (e.g., all filters and sort options for
search); (2) a tool generation agent maps execution traces to structured tools with validated in-
put schemas, prioritizing deterministic actions but allowing agentic steps for dynamic elements,
and attempting to replace UI sequences with more robust URL manipulation through API reverse-
engineering; (3) a test agent verifies functionality against pre-vetted test inputs.

This abstraction transforms the agent’s computational burden: instead of reasoning about “how do I
search for X, then filter by Y, then sort by Z” through complex UI sequences, the agent simply calls
search(X), filter(Y), sort(Z) and focuses on higher-level planning. Tool discovery and
optimization happen offline during website exploration, ensuring both efficiency and reliability.

We benchmark our method on VisualWebArena (Koh et al., 2024a) and WebArena (Zhou et al.,
2024), discovering over 50 reusable tools spanning search and filtering, content creation and man-
agement (e.g., create, edit, delete listings), and communication or social interactions (e.g., comment-
ing, messaging, upvoting). WALT achieves state-of-art success rates on 52.9% on VisualWebArena
and 51% on WebArena, significantly outperforming prior work. Ablation studies further reveal that
our proposed contributions — discovered tools, multimodal DOM parsing, and external verification
– yield gains in both success rates (10%-30% across splits) and efficiency (1.3-1.4x fewer steps on
average). Overall, WALT transforms browser agent automation from brittle step-by-step reasoning
to efficient tool-based abstraction.

2 RELATED WORK

Web Agents. Agents capable of directly operating a browser to perform tasks hold promise for
automating online tasks. Prior work advances web agents along four axes: Perception concerns
what the agent sees and how it grounds elements: some methods parse raw HTML (Gur et al., 2022;
Deng et al., 2023), others process full-page screenshots with vision-language models (Furuta et al.,
2023; He et al., 2024), often augmented by Set-of-Mark (SoM) visual prompts (Yang et al., 2023);
recent work improves page understanding and grounding via prompting (Zheng et al., 2024; Yao
et al., 2023) and task-specific training (Furuta et al., 2023; Zhang et al., 2025a; Pahuja et al., 2025;
Qi et al., 2024). Planning scales test-time exploration with search (e.g., MCTS and related vari-
ants) to choose better action sequences (Koh et al., 2024b; Putta et al., 2024; Yu et al., 2024; Gu
et al., 2024). Reasoning enhances step selection through chain-of-thought and ReAct-style prompt-
ing (Wei et al., 2022; Yao et al., 2023). Action execution determines how decisions touch the page:
agents that use HTML or SoM predict DOM targets, whereas screenshot-only agents act via pixel-
space coordinates (Xu et al., 2024), which can be more brittle to layout change. Our approach targets
the action-execution and planning axes by mining reusable, efficient tools offline—encapsulating
site functionality with validated schemas, URL-level operations, and targeted agentic fallbacks—so
agents solve tasks faster and more reliably than step-by-step UI policies.
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Benchmarks for Web Agents. Benchmarks for web agents are expanding rapidly and span simu-
lated and real environments. Early simulated testbeds (Shi et al., 2017; Liu et al., 2018) emphasize
basic navigation such as clicking and form filling, whereas Yao et al. (2022) focused on e-commerce
tasks. Zhou et al. (2024) introduced WebArena, a realistic web simulation environment with repli-
cas of various website types (e.g. shopping, public forum, maps, etc.), with rich functionality and
realistic underlying databases, and a set of complex natural language tasks paired with robust rule-
based evaluators. VisualWebArena (Koh et al., 2024a) further extended this environment to include
visually-grounded tasks that require rich multimodal understanding, along with supporting website
and evaluator additions. A complementary direction evaluates agents on real websites or production
sandboxes (He et al., 2024; Zhang et al., 2025b; Drouin et al., 2024; Boisvert et al., 2024), covering
e-commerce, enterprise software, and everyday workflows. We focus on WebArena and VisualWe-
bArena, and propose a method to autonomously discover and construct reusable, website-specific
tools that significantly improve agent performance and efficiency.

API-using Web Agents. While UI-level actions are the default interface to the Web, they can be
inefficient and brittle. Accordingly, some works exploit API documentation to design high-level
actions from APIs and thus augment or bypass UI interactions (Song et al., 2024; Ni et al., 2025). In
contrast, we do not assume any API documentation – which is often undocumented or proprietary
– and instead attempt to reverse-engineer website-provided functionality into callable tools with
validated input schemas, URL-parameter promotion, and agentic recovery, all learned autonomously
via systematic exploration.

Skill Discovery for Web Agents. Some recent works focus on discovering skills for web agents by
mining successful agent trajectories: SkillWeaver (Zheng et al., 2025) produces unit-tested Python
functions from successful attempts, whereas AWM Wang et al. (2025b) and ASI (Wang et al., 2025a)
induce skills online (represented as text and programs, respectively) by prompting an agent to in-
duce skills from action subsequences in successful trajectories. Both lines of work typically mine
only from successful executions and implement skills by composing primitive actions, which can
be brittle and effectively codify current behavior without expanding capability. By contrast, we sys-
tematically explore website-specific functionality and exploit observable regularities and site infras-
tructure; our learned tools are stress-tested and iteratively optimized for reliability and modularity.
Unlike prior work that composes longer UI sequences, we discover and implement new, website-
grounded tools with schema validation, selector stabilization, URL reverse-engineering, and targeted
agentic fallbacks. See Appendix Table 4 for a detailed comparison.

3 APPROACH

We frame browser automation as the discovery and use of tools: high-level, callable operations that
abstract away fragile low-level interactions. Unlike prior work that induces ad-hoc skills or scripted
action sequences, WALT treats websites as sources of structured functionality (e.g., search, filter,
post). Each tool is backed by a validated action script – primarily deterministic URL/DOM opera-
tions with targeted agentic steps - Figure 2 summarizes the two-stage pipeline: strategic discovery
of tool candidates followed by their construction and validation.

3.1 PROBLEM FORMULATION

Let W = {w1, w2, . . . , wn} denote a set of websites, and T = {t1, t2, . . . , tm} denote a set
of tasks. A browser agent Bbrowser typically solves these tasks using primitive actions Aprim =
{aclick, atype, anavigate, . . .}. Our goal is to discover and implement tools that can be invoked as
high-level actions Atools at runtime for more efficient and reliable task execution.

We define a tool u as a callable high-level action u : S → Goal where S specifies structured
input parameters and Goal is the target outcome. Once validated, tools are exposed to the agent as
atomic actions that augment its existing action space. Our approach involves two stages: strategic
exploration to discover tool candidates, and multi-level exploitation to construct and validate them.
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Figure 2: Overview of WALT. Left - Discovery: the browser agent explores key site sections to pro-
pose tool candidates. Right - Construction: Tools are learned for each candidate via a demonstrate-
generate-optimize-test loop: i) a browser agent first demonstrates the tool’s underlying functionality
and records a detailed execution trace, ii) a tool builder agent then synthesizes and optimizes an
executable tool – a validated input schema and an action script of UI, navigation, extraction, and
agentic steps – from the trace, iii) the tool is registered and tested end to end. Feedback refines
selectors, schema, and script until a robust single-call tool is produced.

3.2 STAGE 1: CANDIDATE DISCOVERY VIA STRATEGIC EXPLORATION

In this phase, we task a browser agent Bbrowser with systematically exploring user-facing website
sections to identify reusable functionality patterns. We prompt it to navigate to key areas (content
browsing, discovery/search, communication interfaces) and discover interactive elements through
targeted interactions (e.g., hovering over dropdowns to reveal options, clicking menus to expose
navigation structures, interacting with forms to understand input fields). The agent then strategically
proposes a list of tool candidates with clear user intent, optimizing for coverage (diverse func-
tionality) and minimizing redundancy (avoid overlapping tools). Each candidate ũ = (si, Ei, Gi)
specifies a start URL si, relevant interactive elements Ei, and the specific goal Gi to accomplish.

3.3 STAGE 2: TOOL CONSTRUCTION VIA MULTI-LEVEL EXPLOITATION

This stage transforms proposed tool candidates ũ proposed in Stage 1 into validated, executable
tools through a demonstrate-generate-optimize-test loop.

▷ Demonstration. For each tool candidate, we first prompt a browser agent Bbrowser to demonstrate
the tool’s underlying functionality and record a detailed execution trace X , consisting of primitive
actions (clicks, typing), DOM states (element selectors with fallback alternatives), URL changes,
and realistic test inputs Itest. We execute robust DOM parsers that extract stable selectors for inter-
acted elements that allow for reliable replay of logged trajectories. We prompt the agent to com-
prehensively explore underlying functionality e.g. to log multiple trajectories with different input
combinations, which helps reverse-engineer the latent functionality of the tool (e.g. determining
whether an input is required or optional, and what values it can take).

▷ Generation. Next, this rich trace is analyzed systematically by a specialized tool builder agent
Btool to synthesize an executable tool, represented by:
i) A structured input schema S with validated datatypes (e.g. enums for dropdowns), optional
fields, and usage examples.
ii) A detailed tool description specifying its purpose, usage preconditions, and expected outcomes.
iii) An action script of steps to be executed sequentially to accomplish the goal Goal. Steps fall into
four types: a) navigation (for URL/route changes), b) extraction (for capturing DOM state), c) UI
interaction (to click, type, etc.), and d) agentic (for dynamic interactions). We deliberately bias Btool
towards deterministic operations (navigation and interaction) to improve robustness and efficiency,
but permit agentic steps when interfaces are dynamic or ambiguous (e.g. lazy-loading or uploads).

▷ Optimization. After generating an executable action script, Btool selectively attempts to optimize it
by reverse-engineering parameterizable URL routes (e.g., ?query=X&category=Y) where pos-
sible, replacing multi-step UI sequences with single navigations for improved efficiency.

▷ Validation. We register (u,S, Itest) as a callable action and execute it end-to-end with a fresh
Bbrowser over pre-vetted Itest. Failures yield structured feedback F : selector drift, uncovered enum
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values, timing issues, or semantic mismatches. Btool then refines selectors (preferring stable hashes),
amends S (e.g., adding missing options), or edits the action script (e.g., backing off over-aggressive
URL promotion). This iterative loop systematically improves correctness and robustness—unlike
one-shot script extraction in prior work.

Formally, in stage 2 we iteratively optimize:

given ũ = (si, Ei, Gi) (1)

execute & generate ũ
Bbrowser−−−−→ X Btool−−→ (u, Itest) (2)

minimize FailRate(u, Itest) + StepCount(u) + AgenticRatio(u). (3)

Here, FailRate is the fraction of failing test cases (measuring correctness), StepCount is the number
of primitive operations the implementation executes (measuring efficiency), and AgenticRatio is
the fraction of steps that require LLM-dependent reasoning (measuring determinism). The process
iterates—updating the tool and test set with feedback—until a validated u∗ is obtained or the attempt
budget is exhausted.

Only tools passing validation are exposed at runtime. As a final failsafe against unanticipated fail-
ures (e.g., major UI changes), we equip the agent with agentic fallback – spawning a fresh agent
to handle failing scripts on the fly. Additionally, we expose two generic tools: a multimodal DOM
parser (converting HTML to interleaved input for cross-modal reasoning) and an external verifica-
tion tool (corroborating self-reported outcomes, following Andrade et al. (2025)) to further improve
the agent’s perception and reflection capabilities.

3.4 WALT IN ACTION: LEARNING A SEARCH TOOL ON VISUALWEBARENA

To ground our approach, we present a real-world example of the learned search tool introduced
in Fig. 1. Proposal: The browser agent explores the site and proposes a search tool based on the
search interface. Demonstration: Bbrowser executes a sample search (e.g., query=“bicycle”, cate-
gory=“bikes”), recording DOM interactions (typing into search box, clicking category dropdown,
submitting form) and observing URL changes. Generation (Phase 2): Btool analyzes the trace, gen-
erates an initial UI-interaction based action script and then uses URL promotion to yield a more
efficient implementation based on a parameterizable URL route. It also induces an input schema
with validated category enums (Bikes=7, Cars+trucks=10, etc.) extracted from the dropdown menu.
Validation (Phase 3): The tool is tested with diverse inputs; failures (e.g., missing category options)
trigger schema refinement until tests pass. A JSON representation of the tool is shown below.

Tool: search listings(...): Keyword search with optional refinements
Precondition: None (callable from any page) Outcome: Navigate to search results page
Input Schema: ([]=optional)
- sPattern: string [≥4 chars]
- [sCategory]: enum[..] (Boats=8, ...)
- [bPic]: boolean
- [sPriceMin/Max]: float

Action Script: (URL promotion):
1. Go to search base URL:
goto(base url/index.php?page=search)

2. Append query params:
goto(current url+?sPattern=X&sCategory=Y&..)

In this manner, WALT turns complex website functionality into simple tool calls. By pairing
grounded interaction (Bbrowser) with schema-checked, URL-optimized executors (Btool), it delivers
robust tools across discovery, content, and communication that run faster and with fewer LLM calls.

4 EXPERIMENTS

We first comprehensively evaluate WALT on two established web agent benchmarks: VisualWe-
bArena (Koh et al., 2024a) and WebArena (Zhou et al., 2024). Our experiments demonstrate that
WALT achieves significant improvements over prior state-of-the-art methods by leveraging website-
provided tools rather than brittle UI interaction sequences, improving success rates while reducing
action steps. We then conduct comprehensive ablation studies to validate the contribution of each
component. Next, we evaluate WALT’s on Online-Mind2Web (Xue et al., 2025), a benchmark of
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139 live websites, to demonstrate its generalizability to real-world websites. Finally, we conduct a
fine-grained analysis of when and why WALT succeeds.

4.1 BENCHMARKS

VisualWebArena contains 910 visually-grounded and human-annotated web-tasks instantiated in
three highly-realistic and fully-featured websites – Classifieds (234), Shopping (466), and Reddit
(210). WebArena includes 812 more general tasks spanning five websites (two of which overlap
with VisualWebArena) – GitLab (180), Map (109), Shopping (187), CMS (also referred to as Shop-
ping Admin - 182), Reddit (106), and Multi-site (48). Tasks are defined by a human-annotated intent
(e.g. “find the cheapest blue kayak and return its URL”) and evaluator functions (e.g. “assert
URL == <XYZ>”). Besides a robust set of (exact, inclusion, and fuzzy) string and URL matching,
the benchmarks also support sophisticated evaluators based on parsing page HTML and image con-
tents. Agents are evaluated by their binary success rate – a stringent metric that only considers task
completion rather than partial success, and is measured objectively by the evaluator function rather
than a subjective LLM judgement.

4.2 IMPLEMENTATION DETAILS

Our base agent pairs a VLM planner (GPT-5 (OpenAI, 2025)) with a browser action executor (GPT-
5-mini) with a standard action space (click, type, navigate, etc.). Observations include a page screen-
shot with indexed Set-of-Mark (SoM) boxes and a list of interactive elements keyed by the same
indices. State is maintained via a multimodal message queue. For retrieval, we store trajectory sum-
maries in a vector database keyed by task intent; at run time we embed the current intent and append
the nearest summary in the DB (with similarity threshold 0.3) as context. Agents authenticate to
each site before execution, run for at most 30 steps, and replan every 15. We use GPT-5-mini as
the verification LLM following the design of WebJudge (Xue et al., 2025). The multimodal DOM
parser converts a markdown dump of the page into an interleaved representation. Implementations
build on browser-use (Browser-Use Team, 2024a) and workflow-use (Browser-Use Team, 2024b).

4.3 BASELINES

We compare against a representative set of state-of-the-art methods :

- Skill-based web agents: Specifically, on WebArena we benchmark against SkillWeaver (Zheng
et al., 2025), AWM (Wang et al., 2025b), and ASI (Wang et al., 2025a). On VisualWebArena, we
benchmark against concurrent world in tool-oriented web agents Yu et al. (2025).

- Web agents with test-time scaling: We benchmark against methods that use MCTS (Koh et al.,
2024b) and reflective-MCTS (Yu et al., 2024), as well as one that uses model-based planning (Gu
et al., 2024).

- API-using web agents: We benchmark against Hybrid Agent (Song et al., 2024), which generates
actions from API documentations curated for WebArena.

- Computer-Use Agents: Specifically, we benchmark the Claude Computer-Use Agent (Anthropic,
2024), implementation details in Appendix A.3.

Additionally, we benchmark against SGV (Andrade et al., 2025), which proposes using an external
verification module to mitigate LLM agreement bias. Finally, we include strong baselines from the
original benchmark papers as well as human performance as an upper bound.

4.4 MAIN RESULTS

We report performance on both benchmarks in Figure 3 and Table 1. We find:

▷ WALT achieves state-of-the-art success rates. WALT attains the best average score (52.9%),
with large gains on Classifieds (64.1%, +12.1 absolute over SGV) and Reddit (39.0%, +6.0 ab-
solute), while remaining competitive on Shopping (53.4% vs. 57.0% for SGV). Further, it nearly
doubles the success rate of the Claude Computer Use baseline (which uses an image-based observa-
tion space), also outperforms strong baselines based test-time search and tool use by 15-20 points.
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Method Classifieds Shopping Reddit Avg.
GPT-4V+SoM (Koh et al., 2024a) 9.8 17.1 19.3 16.4
TreeSearch (Koh et al., 2024b) 26.5 29.0 20.5 26.4
WebDreamer (Gu et al., 2024) 25.0 26.3 15.9 23.2
Computer-Use (Anthropic, 2024) 36.7 21.9 27.5 27.0
ExaCT (Yu et al., 2024) 41.0 32.3 28.7 33.7
AWorld Yu et al. (2025) - - - 36.5
SGV (Andrade et al., 2025) 52.0 57.0 33.0 50.2
WALT (Ours) 64.1 53.4 39.0 52.9
Human (Koh et al., 2024a) 91.7 88.4 87.1 88.7

Figure 3: Results on VisualWebArena. Left. We report success rate (%) on each split as well
as a weighted average. Right. We compare WALT’s performance and efficiency with a baseline
implementation as control.

Method Gitlab Map Shopping CMS Reddit Multi Avg.
GPT-4+CoT (Zhou et al., 2024) - - - - - - 14.4
SkillWeaver (Zheng et al., 2025) 22.2 33.9 27.2 25.8 50.0 - 29.8
AWM (Wang et al., 2025b) 28.9 39.4 34.8 39.0 51.9 18.8 35.5
ASI (Wang et al., 2025a) 32.2 43.1 40.1 44.0 54.7 20.8 40.4
Hybrid Agent (Song et al., 2024) 44.4 45.9 25.7 41.2 51.9 16.7 38.9
WALT (Ours) 57.0 58.7 41.2 56.2 48.5 20.8 50.1

Human (Zhou et al., 2024) - - - - - - 78.2

Table 1: Performance comparison on WebArena benchmarks showing success rates (%) across dif-
ferent domains. Bold values indicate best performance in each column.

On WebArena, WALT again achieves the highest overall average success rate on 5 of 6 splits (tied
on the sixth), outperforming prior work in all domains by a large margin, and outperforming the
best-performing skill-induction based method (ASI) by 9 points.

▷ Tools improve both success rates and efficiency. In Figure 3 (right), we demonstrate both the
performance (measured by success rate) and efficiency (measured by average # steps) of WALT on
each VisualWebArena split. As a control, we benchmark our baseline implementation which uses an
identical architecture but does not use tools. As seen, tools are crucial, improving performance by
as much as 30.7% (relative) and efficiency by 1.4x. The baseline agent’s significantly lower success
rates also validate that gains are not due to a stronger underlying LLM (GPT-5) alone.

Performance ablations. We ablate WALT on VisualWebArena Classifieds (Table 2). We first vary
the LLM execution agent, and find agents equipped with discovered tools are consistently more
accurate and efficient (e.g. GPT-5-mini: 7% higher success rate, 27% fewer steps). Stronger back-
bones benefit more, indicating that better reasoning improves tool selection and composition rather
than low-level manipulation. Finally, we also benchmark a human demo strategy as a performance
upper bound, wherein the authors manually demonstrate a set of tools rather than having the agent
discover them - tools generated thus yield the highest success rate (66.0%). Impressively, however,
WALT is able to recover most of this performance fully autonomously (64.1%), with 5% fewer steps.

Next, we ablate the two ancillary method components: we find that both multimodal DOM parsing
(+2.6%) and external verification (+3.3%) yield modest performance gains, with the latter coming at
the cost of extra checks (more steps). Combining all components yields the highest success (64.1%),
still with substantially fewer actions than baseline policies (21.3% fewer steps).

4.5 REAL-WORLD EVALUATION ON ONLINE-MIND2WEB

To demonstrate generalizability beyond simulated benchmarks, we evaluate WALT on Online-
Mind2Web (Xue et al., 2025), a benchmark comprising 139 real-world websites spanning e-
commerce, healthcare, travel, education, and government domains. We first use WALT to discover
2-3 tools per website (to keep costs reasonable). We then provide these tools to the agent at runtime
over the 300 benchmark tasks.
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Table 2: Ablations on VisualWebArena-Classifieds showing the impact of different components on
success rate (SR) and average number of steps. Results shown for different LLM backbones.

browser LLM tools dom-parser verify avg #steps (↓) SR (%) ↑
gpt-4.1 none text self 7.6 34.9
gpt-4.1 discovered text self 6.6−13.1% 36.4−4.3%

gemini-2.5-flash none text self 10.5 52.6
gemini-2.5-flash discovered text self 8.3−26.5% 55.3+5.1%

gpt-5-mini none text self 8.9 57.5
gpt-5-mini discovered text self 6.5−27.0% 61.5+7.0%

gpt-5-mini human demo text self 7.4−16.9% 66.0+16.2%

gpt-5-mini none multimodal self 7.5−15.7% 59.0+2.6%

gpt-5-mini none text external 11.0+23.6% 59.4+3.3%

gpt-5-mini discovered multimodal external 7.0−21.3% 64.1+11.5%

Method SR (%) Steps

Baseline 42.9 10.8
WALT 51.2 8.2

∆ +8.8 -23.3%

Type Count %

URL Promotion 80 31.7
UI Only 38 15.1
Agentic 60 23.8
Mixed 74 29.4

Total 252 100.0

Table 3: Results on Online-Mind2Web. Left. WALT improves success rate and efficiency against
a tool-free baseline. Center. Tool composition across 252 learned tools. Right. Tool “wins” span
diverse domains, demonstrating versatile real-world generalization.

Results. We report success rate evaluated by WebJudge (Xue et al., 2025) in Table 3. We find that:
▷ WALT learns useful tools. WALT autonomously discovers 252 validated tools on Online-
Mind2Web. Over 238 tasks that it completes without environment errors, compared to a con-
trolled tool-free baseline, WALT (with GPT-5-mini) improves both success rates (+20.5% relative,
42.9→51.2) and efficiency (+23.3% relative, 10.8→8.2 steps).
▷ 27 tasks show “tool wins”: cases where baseline failed but WALT used learned tools to succeed,
spanning 24 different websites.
▷ Learned tools boost performance specialized CUA model levels. WALT achieves near-parity
with Claude Computer Use’s official leaderboard performance (51.2% vs 51.7%, -0.5% lower) even
without any specialized training for computer use tasks – demonstrating that tool discovery can rival
specialized model training.
▷ Real-world limitations persist: 62 tasks fail either due to bot detection (35) or timeout errors
(27), affecting both methods similarly. In total, 22 websites are completely untestable due to strong
bot detection measures (e.g., apartments.com, cars.com, UPS.com), highlighting the messy
reality of real-world automation.

4.6 ANALYZING WALT

Step distribution. In Figure 4, we perform a fine-grained analysis of our method on the Classi-
fieds split. First, in Figure 4a we break down each discovered tool by the total step count of its
action script and its distribution across step types and functionalities. We make the following ob-
servations: i) tools span a range of functionalities across communication, content management, and
search, ii) tools with the shortest action scripts correspond to URL promotions (typically discover-
oriented), whereas those with longer scripts skew heavily towards deterministic UI interactions (typ-
ically content-management e.g. form-filling). iii) Agentic steps are rare: In fact, only 3 out of the 9
tools have at least one agentic step.

Tool discovery costs. On Online-Mind2Web, WALT discovers 252 tools across 139 websites (avg.
1.81 tools/site). Per-tool generation cost (using GPT-5 pricing as an example) is $1.67, comprising:
proposal ($0.26, amortized across tools per site), demonstration ($0.87), generation ($0.46), and
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(a) Task type and complexity breakdown

(b) Success rate analysis by task complexity (c) Action type analysis

Figure 4: Detailed analysis of the composition, success rates, and runtime invocations of tools
discovered on the VisualWebArena Classifieds split.

testing ($0.08). With baseline inference costing $0.12/task, break-even occurs after ∼14 uses per
tool. Notably, WALT prompts the discovery agent to design a “minimal but flexible API” (system
prompt in Appendix), yielding an average of just 1.81 tools per website. Tools are learned once and
reused indefinitely, providing sustained gains: for websites with ≥20 tasks, total tool cost is less
than cumulative baseline inference cost.

Tool-use success rates. In Figure 4b, we analyze the success rates of each of these tools, measured
by the ratio of successful tool invocations by the agent during the entire evaluation run. Tools are
used frequently (e.g. search listings is invoked 262 times) and achieve nearly perfect success rates,
attesting to high reliability. Finally, Figure 4c breaks down the action type distribution of each tool
for successful and failed agent trajectories – as seen, the agent uses both primitive and tool actions
extensively in both cases.

Qualitative examples. Figure 5 demonstrates how WALT generalizes across diverse real-world
websites on Online-Mind2Web. The examples span classifieds (listing search and commenting),
healthcare (provider search and filtering), finance (retirement planning with calculator tools), and
travel (road trip planning with map-based search). Across these domains, WALT composes learned
tools to solve heterogeneous tasks efficiently: discovery tools jump directly to filtered result sets via
URL parameters, extraction steps parse structured content, and action tools complete interactions
(e.g., post comment). The traces show short programs (2–5 calls) with minimal UI clicking,
demonstrating how tool reuse enables step-count reductions even on previously unseen websites.
The panel illustrates the key design goal—deterministic navigation and schema-checked operations
for speed and robustness, with targeted agentic steps when needed for complex reasoning.

5 DISCUSSION

In this work, we reframe browser automation around tools – callable abstractions reverse-engineered
from website functionality – rather than agent-imagined skills implemented as a brittle sequence of
UI actions. Our method WALT exposes existing website functionality as robust tools that accept a
validated input schema and accomplish a specific goal via a sequence of UI interaction, extraction,
agent, and navigation steps, each with strong failsafes built in. WALT achieves state-of-the-art
performance on challenging web automation benchmarks while requiring fewer LLM interventions.

Our method has certain limitations. Offline tool discovery incurs an exploration and validation
cost per-website, and the type and quality of the tools discovered is a function both of what our

9
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Figure 5: Qualitative rollouts of WALT on Online-Mind2Web. Each column shows a task
with tiled screenshots (left to right) and the agent’s actions at each step (gray bars). Top row,
left: [PASS] “Recall exact item and return the most recent lister’s email.” The agent chains
search listings → sort results to narrow search, then navigates to extract the email.
Top row, middle/right: [PASS] Healthcare queries on Healthgrades (dentist search, provider pro-
files) demonstrate cross-site generalization with tool-based search and filtering. Bottom row, left:
[PASS] “Latest white Google Pixel; post a $10-under offer.” The agent locates the listing and uses a
tool to post the comment. Bottom row, middle: [PASS] Financial planning task comparing Tradi-
tional vs Roth IRA using calculator tools with structured inputs. Bottom row, right: [PASS] Travel
planning query finding road trip stops between Yellowstone and Vegas using map-based search tools.
Across diverse real-world sites, trajectories leverage discovered tools for efficient task completion.

exploration uncovers and what the site exposes. Highly dynamic interfaces, A/B experiments,
CAPTCHAs, and heavy anti-automation can reduce determinism or block URL promotion. Schemas
may still miss rare parameter values; selector stabilization can drift after major redesigns; and some
interactions (e.g., complex editors, file uploads) still require agentic steps. Our evaluation focuses on
two research benchmarks, but broader external validity (e.g., enterprise apps) remains to be tested.

These limitations also present opportunities for future work. Online tool patching when selectors
and schemas drift over time can improve robustness. Extracting canonical web patterns for common
functionalities (e.g. search, filter, sort) can aid generalization. Hybrid integration with official APIs
when available, external MCP servers (Luo et al., 2025), and more agent-accessible observation
spaces (Lù et al., 2025) can help further expand capabilities. Overall, our tool abstraction paradigm
suggests a practical path for safe, auditable automation: tools carry explicit contracts, examples, and
validation traces, making web agents easier to monitor, share, and maintain as sites evolve.

Ethics Statement. All authors have read and agree to the ICLR Code of Ethics. The benchmarks
used (VisualWebArena and WebArena) are publicly available testbeds that simulate interactions with
websites, and no experiments were conducted with human subjects. Our method is designed for
research purposes; however, as with any browser automation technique, misuse (e.g., for scraping or
spam) is possible. We emphasize that WALT is intended to improve robustness and reproducibility
of academic benchmarks, not to enable malicious automation. All data handling follows the licenses
of the underlying benchmarks, and no private or user-sensitive data is involved.

Reproducibility Statement. We have made efforts to ensure reproducibility. The paper provides
full details of the tool discovery and construction pipeline (Sec.3 and Sec. A), optimization objec-
tives and algorithmic design (Sec.3), and benchmark setups (Sec.4). Implementation details, includ-
ing model choices, observation formats, step limits, and verification procedures, are described in
Sec.4. Appendix materials include pseudocode, algorithm tables, and ablation analyses. Our code
will be made publicly available.
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A APPENDIX

A.1 COMPARISON WITH PRIOR WORK

Table 4 provides a detailed comparison between WALT and prior approaches to web automation.
Core insight: Humans use website-provided functionality (search, filters, forms)—robust by design.
Prior “skill” approaches solve an artificial problem: they induce ad-hoc patterns from agent behavior
rather than leveraging this infrastructure. WALT’s paradigm is to build robust and efficient tools that
exploit website-provided functionality. Key differences: i) WALT discovers what websites provide,
not what agents did - mirroring human web use, ii) No documentation required; autonomous reverse-
engineering, iii) Optimized for robustness via schema validation, selector stabilization, and URL
inference. These distinctions mark a paradigm shift from mining agent behavior to surfacing site
functionality.

Key Distinction: WALT exploits functionality web designers already built (search, filters,
forms)—features robust by design. Prior “skill” approaches solve an artificial problem by induc-
ing ad-hoc patterns from agent behavior rather than leveraging thoughtfully-designed infrastructure.
This mirrors how humans use websites: they exploit designed functionality, not invent workarounds.

A.2 ANALYSIS

Tools. In Figure 6, we include a list of all tools discovered across the WebArena and VisualWe-
bArena benchmarks, as well as the number of attempts required to obtain a validated implementa-
tion. As seen, most tools are discovered on the first attempt, but a few more nuanced functionalities
(e.g. post a comment on a Gitlab issue, searching on OpenStreetMaps, and estimating shopping on
Shopping) require as many as 4 attempts.
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Table 4: Detailed comparison of WALT with prior approaches for web automation.

Aspect SkillWeaver / AWM /
ASI

Hybrid Agent WALT (Ours)

Approach Agent-induced from suc-
cessful trajectories

Curated API documenta-
tion

Systematic exploration
of website functionality

Consequence Codify existing agent be-
havior

Reliant on human-
written docs

Reverse-engineer site in-
frastructure

Implementation Brittle UI action replay API calls (when avail-
able)

URL promotion + val-
idated schemas + fall-
backs

Validation Unit tests on synthetic
inputs

N/A Stress-testing on pre-
vetted inputs

Figure 6: Number of tries until successful.

Performance. In Figure 9a, we include additional fine-grained performance analysis of our method
on the Classifieds benchmark. First, we analyze the frequency and average length of successful
and failed trajectories, segmented by the agent’s own assessment of the task outcome – as found
in concurrent work (Andrade et al., 2025), web agents suffer from an ”agreement bias” and fre-
quently rationalize even failed trajectories as successful. Our approach mitigates this bias by using
an external verifier to corroborate the agent’s assessment.

In Figure 9b, we segment performance based on task difficulty (visual, reasoning, and overall),
annotations for which are available in the benchmark. Unsurprisingly, failure rates increase with
increasing difficulty of any type - impressively though, WALT’s failure rate does not cross 50%
even on the most difficult tasks.

Qualitative Examples. Figures 7- 8 show additional qualitative examples of trajectory rollouts from
both VisualWebArena and Online-Mind2Web, including successful and failure cases. Key findings:
i) Visual grounding: WALT successfully handles challenging visual matching tasks across sites
(e.g., finding items from thumbnail images, matching characters between Reddit and classifieds -
Fig. 7, top row). ii) Cross-domain generalization: Tools enable diverse real-world tasks spanning
travel deals, visual product search, apartment rentals, and pet adoption (Fig. 8). iii) Long-horizon
tasks: The apartment search example (Fig. 8, middle) shows WALT composing tools across 10+
steps involving map interactions and filtering. iv) Failure modes: Complex tasks with compound
constraints (e.g., “most expensive boat with image showing it on water, then rate it”) still exceed
the agent’s capabilities, particularly when requiring both global optimization and fine-grained visual
predicates combined with gated side-effect actions (Fig. 7 bottom; Fig. 8 bottom-right).

A.3 IMPLEMENTATION DETAILS

Tool Creation Agent Algorithm and System Prompt. We include the system prompt for the tool
discovery agent in Listing A.4 and algorithm and system prompt of the tool creation agent Btool in
Algorithm 1 and Listing A.4.
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Figure 7: Qualitative examples showing WALT tool discovery and execution on representative tasks
from VisualWebArena and Online-Mind2Web.

Figure 8: Qualitative examples showing WALT tool discovery and execution on representative tasks
from VisualWebArena and Online-Mind2Web.

Baseline Implementation Details. We use the Claude Computer-Use Agent with a dedicated desk-
top environment setup similar to OS-World (Xie et al., 2024). Each task initializes with a Chrome
browser and task-specific web pages. The agent receives desktop screenshots as observations, pre-
dicts OS-level actions, and executes them via pyautogui commands. Task completion is determined
by either reaching the maximum step limit or agent prediction, with evaluation based on the final
active webpage and parsed response.

We use claude-4-sonnet-20250514 with thinking mode enabled (temperature=1). Due to
Bedrock API limits, all screenshots and task images are resized to 1280×720, with a maximum of 30
steps per task. Note that active webpage detection relies on heuristic algorithms using Playwright
and Chrome DevTools Protocol, which may incorrectly identify the current page in edge cases.
Reported accuracies should be viewed as lower bounds rather than exact measurements.
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(a) Self-reporting analysis (b) Difficulty analysis

Figure 9: Analysis of classifieds task performance across different dimensions.

A.4 USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to polish (proofreading, revising, and compressing) the
writing, specifically Claude-4-Sonnet and GPT-5.
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Algorithm 1 WALT: Two-Agent Tool Construction (Appendix)

Require: Candidate ũ = (si, Ei, Gi), attempt budget Nmax
Ensure: Validated tool u∗ ∈ Atools or FAIL

1: attempts← 0
2: while attempts < Nmax do
3: attempts← attempts + 1
4: Phase I: Exploration & Stabilization (by Bbrowser)
5: X ← Bbrowser.Execute(si, Ei, Gi)
6: if X = FAIL then
7: continue ▷ retry with alternate exploration strategy
8: end if
9: X ← STABILIZESELECTORS(X ) ▷ resolve to stable DOM hashes/locators; drop unstable

segments
10: if X = UNSTABLE then
11: continue
12: end if
13: Phase II: Synthesis & Optimization (by Btool)
14: plan← ∅
15: for each segment ξ ∈ X do
16: step← Btool.ClassifyAndCreate(ξ) ▷ navigation / interaction / agentic
17: plan← plan ∪ {step}
18: end for
19: plan← ADDAGENTICFALLBACKS(plan) ▷ re-query DOM, retry alt selector, etc.
20: plan← REPLACEWITHURLOPS(plan) ▷ promote eligible UI subsequences to URL ops
21: Sinp ← INFERSCHEMA(X ) ▷ enums, optionals, descriptions, examples
22: Itest ← Btool.ExtractTestInputs(X ,Sinp)
23: u← (plan,Sinp)
24: Phase III: Registration & Validation (by Bbrowser)
25: RegisterTool(u,Sinp, Itest)
26: result← Bbrowser.TestTool(u, Itest)
27: if result = SUCCESS then
28: return u ▷ validated; added to Atools as u∗

29: else
30: F ← GetValidationErrors(result) ▷ selector drift, missing enum, timeout, semantic

mismatch
31: (si, Ei, Gi)← REFINECANDIDATE

(
(si, Ei, Gi),F

)
▷ update selectors, schema, or

plan hints
32: continue
33: end if
34: end while
35: return FAIL

System Prompt of the Tool Discovery Agent

You are an expert browser automation agent designer. Your goal is to first systematically explore {
base_url} and discover user-facing functionality offered by the website. Next, you will use this
information to design a minimal but flexible API specification that captures these core user
functions.

## Stage 1: Exploration

- Navigate systematically through user-facing site sections. For each area, ask: "What would a
typical logged-in user want to accomplish here"?.

- PRIORITIZE:
- discovery & search (e.g. search, filters, categories, sorting)
- content creation & management (e.g. create, edit, delete, view personal content)
- communication & interaction (e.g. post comments, reply to comments, vote on content, share

content)
- organization (e.g. save favorites, manage lists, subscribe to alerts)

Exploration Guidelines:
- You are already logged in with full user access to the site.
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- Only document tools that actually exist and function on the site.
- Aim to explore atleast 10-20 **diverse** tools covering comprehensive user functionality

## Stage 2: API Design
- In this stage, you will use the information from the exploration stage to design a minimal but

diverse and flexible API **specification** that captures these core user functions.
- **API Design principles**:

- **Goal-oriented**: Focus on user goals, not UI mechanics. One clear goal per function. Good
candidates typically compose an active verb and noun (eg. create+listing, post+comment, search
+forums, etc.)

- **Reusable**: Functions should be parameterizable and work with ANY item/content, not hardcoded
specifics

- **Composable**: Propose modules with **diverse** functionality that can be **combined** to
achieve more complex goals

API Design Guidelines:
- Use the information gathered from the exploration stage extensively
- DO NOT TRY TO EXPLORE THE SITE AGAIN IN THIS PHASE.
- Do not worry about implementation details, as long as you have confirmed the underlying

functionality exists.

FINAL OUTPUT FORMAT: Return a **single valid JSON object** with the following fields for each
proposed function:

1. **name**: Strategic goal identifier (e.g. "edit_listing", "search_by_category")
2. **start_url**: Exact URL where tools begins (only URLs you’ve actually visited)
3. **description**: Goal with parameterization (e.g. "locate listing by user-provided title and

update its properties to user-provided values")
4. **elements**: Key interactions (type and purpose, with available options for dropdowns/menus -

does not need to be exhaustive or perfect)

{{
"tools": [

{{
"name": "strategic_tools_name",
"start_url": "https://example.com/some/page",
"description": "Accomplish specific goal with user-provided parameters",
"elements": [

{{"type": "input", "purpose": "enter user-provided search terms"}},
{{"type": "select", "purpose": "choose user-specified category", "options": ["Electronics", "

Clothing", "Books", "All Categories"]}},
{{"type": "select", "purpose": "sort results", "options": ["Newly listed", "Lower price first

", "Higher price first"]}},
{{"type": "button", "purpose": "submit search"}}

]
}}

]
}}

System Prompt of the Tool Creation Agent

You are a master at building re-executable tools from browser automation steps. Your task is to
convert a sequence of Browser Use agent steps into a parameterized reusable tool.

**Core Objective**
Transform recorded browser interactions into a structured tool by:
- Extracting actual values (not placeholder defaults) from the input steps
- Identifying reusable parameters that should become tool inputs
- Creating deterministic steps wherever possible
- Optimizing the tool for clarity and efficiency
- Optimize Navigation: Skip unnecessary clicks when direct URL navigation works

**Input Format**
You will receive a series of messages, each containing a step from the Browser Use agent execution:

**Step Structure**
Each message contains two parts:
- parsed_step (content[0]) - The core step data:

- url: Current page URL
- title: Page title
- agent_brain: Agent’s internal reasoning

- evaluation_previous_goal: Success/failure assessment of previous action
- memory: What’s been accomplished and what to remember
- next_goal: Immediate objective for next action

- actions: List of actions taken (e.g., go_to_url, input_text, click_element, extract_content)
- results: Outcomes of executed actions with success status and extracted content
- interacted_elements: DOM elements the agent interacted with, including selectors and positioning

- special field element_hash: unique identifier for elements the agent interacted with.
- screenshot (content[1]) - Optional visual context of the webpage
---------------------------------------------------------------------------------------------------

**Output Requirements**

1. Tool Analysis (CRITICAL FIRST STEP)
The tool_analysis field must be completed first and contain:
- Step Analysis: What the recorded steps accomplish overall
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- Task Definition: Clear purpose of the tool being created
- Action Plan: Detailed to-do list of all necessary tool steps
- Variable Identification: All input parameters needed based on the steps and task
- Step Optimization: Review if steps can be combined, simplified, or if any are missing. Always

prefer: 1) Navigation steps (where possible), 2) Deterministic steps (when elementHash is stable
), 3) Agent steps only as last resort for truly dynamic content.

**Input Schema:** Define tool parameters using simple JSON schema
- Include at least one input unless the tool is completely static
- Add descriptive documentation: Always include desriptive field explanations
- **Field Requirements (setting "required" true/false):** Match website requirements - if website

requires it, tool requires it

**Steps Array**
Each step must include a "type" field and a brief "description".

** Tool DESIGN PRINCIPLES:**
- Sequential & Deterministic: Steps execute in order, no conditional branching
- Single Purpose: Each tool accomplishes ONE specific task
- No Optional Logic: Avoid "if user wants X, then do Y" patterns
- Essential Steps Only: Every step must be required for the core task
- Parameter-Driven: Use input parameters to customize behavior, not conditional steps
---------------------------------------------------------------------------------------------------

**Step Creation Algorithm (Two-Pass Approach)**
This tool generation uses a two-pass approach: PASS 1 creates basic steps using simple rules, then

PASS 2 (optional) potentially optimizes it by replacing UI interaction sequences with more
efficient URL manipulation, if possible.

**PASS 1: Basic Step Generation (Rule-Based):** Follow this exact sequence for each agent action - no
decisions required:

### STEP 1: Classify Action Type

FOR each agent action:
IF navigation/URL changes then Navigation Algorithm
ELIF extracts data then Extraction Algorithm
ELIF UI interaction:

IF elementHash exists then Deterministic Interaction
ELSE IF essential then Agentic Interaction
ELSE then Skip

ELSE then Skip
STEP 2: Execute the Appropriate Algorithm

**Navigation Algorithm:** Creates navigation steps to move between pages or change URLs
- url: Target URL to navigate to
- description: Brief explanation of the navigation purpose

**Extraction Algorithm:** Extracts goal-relevant data or content from the current page
- goal: Description of what data to extract from the page
- output: Label for the captured data (use meaningful names like "listing_data", "search_results")
- description: Brief explanation of what data is being extracted

**Deterministic Interaction Algorithm:** Interacts with page elements using stable identifiers
- elementHash: Unique identifier for the DOM element (required - stable selectors auto-generated)
- value: Text to input (for input steps)
- selectedText: Option to select (for select_change steps)
- key: Key to press (for key_press steps, e.g., ’Tab’, ’Enter’)
- scrollX, scrollY: Pixel offsets for scrolling (for scroll steps)
- description: Brief explanation of the interaction purpose
- seconds: Number of seconds to sleep (for wait steps)

**Agentic Interaction Algorithm:** Handles dynamic interactions requiring reasoning
- task: User perspective goal (e.g., "Select restaurant named {{{{restaurant_name}}}}")
- description: Why agentic reasoning is needed and what the step accomplishes
- max_steps: Always specify limit (3-8 typical, never null)

**[Optional] PASS 2: URL Manipulation Optimization**
REPLACE UI interaction sequences in tool with a single URL navigation for better efficiency and

reliability
- Web functionalities (typically GET requests eg. search, filtering, sort, pagination) are often

achievable by navigating to URL modified with certain parameters
- By inferring these parameters correctly, tools requiring several UI interactions can be

accomplished in only a few steps
---------------------------------------------------------------------------------------------------

**Context:**
Task Goal: {goal}
Available Actions: {actions}

The goal shows the original task given to the agent. Assume all agent actions can be parameterized
and identify which variables should be extracted. Input session events will follow in subsequent
messages.

19


	Introduction
	Related Work
	Approach
	Problem Formulation
	Stage 1: Candidate Discovery via Strategic Exploration
	Stage 2: Tool Construction via Multi-Level Exploitation
	WALT in action: Learning a search tool on VisualWebArena

	Experiments
	Benchmarks
	Implementation Details
	Baselines
	Main Results
	Real-World Evaluation on Online-Mind2Web
	Analyzing WALT

	Discussion
	Appendix
	Comparison with Prior Work
	Analysis
	Implementation Details
	Use of Large Language Models


